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Abstract. Fort’s theorem states that if F : X → 2Y is an upper (lower) semicontinuous set-
valued mapping from a Baire space (X, τ) into the nonempty compact subsets of a metric space
(Y, d) then F is both upper and lower semicontinuous at the points of a dense Gδ subset of X .
In this paper we show that a variant of Fort’s theorem holds, without the assumption of the
compactness of the images, provided we restrict the domain space of the mapping to a large
class of “nice” Baire spaces.
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Suppose that F : X → 2Y is a set-valued mapping acting from a topological space (X, τ) into
subsets of a topological space (Y, τ ′). We shall say that F is upper semicontinuous at a point
x0 ∈ X if for each W ∈ τ ′ containing F (x0) there exists a neighbourhood U of x0 such that
F (U) :=

⋃

x∈U F (x) ⊆ W . Similarly, we shall that F is lower semicontinuous at a point x0 if for
each W ∈ τ ′ such that F (x0)∩W 6= ∅ there exists a neighbourhood U of x0 such that F (x)∩W 6= ∅

for all x ∈ U . If F is both upper and lower semicontinuous at a point x0 then we simply say that
F is continuous at x0. Further, if F is upper semicontinuous (lower semicontinuous) [continuous]
at each point of X then we say that F is upper semicontinuous on X (lower semicontinuous on X)
[continuous on X].

Throughout this paper we shall denote by C(F ) := {x ∈ X : F is continuous at x} and we shall
be particularly interested in set-valued mappings that are defined on Baire spaces. So let us recall
that a topological space (X, τ) is called a Baire space if for every sequence {On : n ∈ N} of dense
open subsets,

⋂

n∈N
On is dense in X. Since the family of all dense open subsets on a topological

space X is closed under finite intersections it follows that a topological space (X, τ) is a Baire space
if

⋂

n∈N
On is dense in X for each decreasing sequence (i.e., On+1 ⊆ On for all n ∈ N) of dense open

subsets {On : n ∈ N} of X with O1 = X.

A well-known and useful theorem of Fort [2] states that if F : X → 2Y is an upper (lower) semi
continuous set-valued mapping from a Baire space (X, τ) into the nonempty compact subsets of a
metric space (Y, d) [denoted K(Y, d)] then C(F ) is dense in X.

Remarks 1 Let (Y, d) be a metric space. For any nonempty subset A of Y we can always define
dA : Y → [0,∞) by, dA(x) := inf{d(x, a) : a ∈ A}. Then we can define a metric D on K(Y, d)
by, D(A,B) := max{supx∈A dB(x), supx∈B dA(x)}. Now, for any mapping F : (X, τ) → K(Y, d),
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emanating from a topological space (X, τ) we have that C(F ) =
⋂

n∈N
O1/n where, for each ε > 0

Oε :=
⋃

{U ∈ τ : D − diam{F (t) : t ∈ U} < ε}. Thus, we see that for any set-valued mapping
F : (X, τ) → K(Y, d), C(F ) is always a Gδ subset of X.

It is known that Fort’s theorem provides a characterisation for the class of Baire spaces in the
following sense.

Theorem 1 (Theorem 3.1 in [9]) Let (X, τ) be a topological space and (Y, d) be a metric space
with at least one non-isolated point. Then (X, τ) is a Baire space if, and only if, for every upper
semicontinuous mapping F : X → K(Y, d), C(F ) is dense in (X, τ).

Proof: If (X, τ) is a Baire space, then C(F ) is dense in (X, τ) by Fort’s theorem. So let us consider
the converse. Let {On : n ∈ N} be a decreasing sequence of dense open of (X, τ) with O1 = X. We
need to show that

⋂

n∈N
On is dense in (X, τ). Let y∞ ∈ Y be a non-isolated point of Y and let

(yn : n ∈ N) be a sequence of distinct points of Y \{y∞} that converge to y∞. For each n ∈ N, let
Yn := {yk : k ≥ n} ∪ {y∞}.

Define F : X → K(Y ) by, F (x) :=

{

{y∞} if x ∈
⋂

n∈N
On

Yn if x ∈ On \ On+1.

Then F is upper semicontinuous on X and C(F ) =
⋂

n∈N
On. Therefore, if C(F ) is dense in X

then
⋂

n∈N
On is dense in X; which implies that X is a Baire space.

Theorem 2 (Theorem 3.2 in [9]) Let (X, τ) be a topological space and (Y, d) be a metric space
with at least one non-isolated point. Then (X, τ) is a Baire space if, and only if, for every lower
semicontinuous mapping F : X → K(Y, d), C(F ) is dense in (X, τ).

Proof: If (X, τ) is a Baire space, then C(F ) is dense in (X, τ) by Fort’s theorem. So let us consider
the converse. Let {On : n ∈ N} be a decreasing sequence of dense open of (X, τ) with O1 = X. We
need to show that

⋂

n∈N
On is dense in (X, τ). Let y∞ ∈ Y be a non-isolated point of Y and let

(yn : n ∈ N) be a sequence of distinct points of Y \{y∞} that converge to y∞. For each n ∈ N, let
Yn := {yk : 1 ≤ k ≤ n} and let Y∞ := {yk : k ∈ N} ∪ {y∞}.

Define F : X → K(Y ) by, F (x) :=

{

Y∞ if x ∈
⋂

n∈N
On

Yn if x ∈ On \ On+1.

Then F is lower semicontinuous on X and C(F ) =
⋂

n∈N
On. Therefore, if C(F ) is dense in X then

⋂

n∈N
On is dense in X; which implies that X is a Baire space.

In the literature there have been several generalizations of Fort’s theorem see, [5, 6, 7]. Most of
these generalizations involve relaxing the notions of upper semicontinuity and lower semicontinuity.
However, it is also natural to want to relax the hypothesis that the images are compact. Unfortu-
nately, the following examples show that this is not really possible unless we strengthen some of
the other hypotheses of Fort’s theorem.

Example 1 Let X := Y := R, let τ be the Sorgenfrey topology on R (i.e., each point x of R has a
τ -neighbourhood base comprising of sets of the form: (a, x] where a < x) and let ρ : Y ×Y → {0, 1}
be the discrete metric on Y (i.e., ρ(x, y) = 1 if, and only if, x 6= y). Let us also consider the
following set-valued mappings. F1 : (X, τ) → 2Y defined by F1(x) := (−∞, x] and F2 : (X, τ) → 2Y

defined by F2(x) = [x,∞). Then (X, τ) is a Baire space, F1 is upper semicontinuous but C(F1) = ∅

and F2 is lower semicontinuous but C(F2) = ∅.
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Despite this example, it is possible to relax the hypothesis that the underlying mapping possesses
nonempty compact images. However the price one must pay is that one must restrict the class of
domain spaces. For example, in [9] the authors proved the following theorems.

Theorem 3 (Theorem 4.2 in [9]) If F : X → 2Y is a upper semicontinuous set-valued mapping
from a complete metric space (X, d) into nonempty subsets of a metric space (Y, ρ) then F is lower
semicontinuous at the points of a dense Gδ subset of X.

The corresponding result for lower semicontinuous mappings fails, [9, Example 4.1]. However, by
introducing the stronger notion of metric lower semicontinuity we can state the following theorem.

Theorem 4 (Theorem 4.4 in [9]) If F : X → 2Y is a metric lower semicontinuous set-valued
mapping from a complete metric space (X, d) into nonempty subsets of a metric space (Y, ρ) then
F is metric upper semicontinuous at the points of a dense Gδ subset of X.

Recall that a set-valued mapping F : X → 2Y from a topological space (X, τ) into nonempty subsets
metric space (Y, ρ) is said to be metric lower (upper) semicontinuous at a point x0 ∈ X if for each
ε > 0 there exists a neighbourhood U of x0 such that F (x0) ⊆ B(F (x); ε) (F (x) ⊆ B(F (x0); ε)) for
all x ∈ U . [Here we are using the notation B(A; ε) :=

⋃

a∈A B(a; ε) for all ∅ 6= A ⊆ Y and ε > 0.]
If F is metric lower (upper) semicontinuous at each point of X then we say that F is metric lower
(upper) semicontinuous on X.

In this paper we extend the class of domain spaces for which Theorems 3 and 4 hold.

Let (X, τ) be a topological space. On X we consider the Gc-game played between two players α
and β. Player β goes first (always!) and chooses a nonempty open subset B1 ⊆ X. Player α must
then respond by choosing a nonempty open subset A1 ⊆ B1 and a point a1 ∈ A1. Following this,
player β must select another nonempty open subset B2 ⊆ A1 ⊆ B1 and in turn player α must again
respond by selecting a nonempty open subset A2 ⊆ B2 ⊆ A1 ⊆ B1 and a point a2 ∈ A2. Continuing
this procedure indefinitely the players α and β produce a sequence {((an, An), Bn) : n ∈ N} called
a play of the Gc-game. We shall declare that α wins a play {((an, An), Bn) : n ∈ N} of the Gc-game
if:

(i) I :=
⋂

n∈N
An 6= ∅ and

(ii) for each open subset W containing I there exists a k ∈ N such that ak ∈ W .

Otherwise the player β is said to have won this play. By a strategy t for the player β we mean a
‘rule’ that specifies each move of the player β in every possible situation. More precisely, a strategy
t := (tn : n ∈ N) for β is a sequence of τ -valued functions such that

∅ 6= t1(∅) and ∅ 6= tn+1((a1, A1), (a2, A2), . . . , (an, An)) ⊆ An for each n ∈ N.

The domain of t1 is {∅}, (where ∅ denotes the sequence of length 0) and the domain of t2 is
{(a,A) ∈ X × τ : a ∈ A ⊆ t1(∅)}. For n ≥ 3 the domain of each function tn is precisely the set of
all finite sequences {(a1, A1), (a2, A2), . . . , (an−1, An−1)} of length n − 1 in X × τ such that

a1 ∈ A1 ⊆ t1(∅) and aj ∈ Aj ⊆ tj(A1, . . . , Aj−1) for all 2 ≤ j ≤ n − 1.

Such a finite sequence {(a1, A1), (a2, A2), . . . , (an−1, An−1)} or infinite sequence {(an, An) : n ∈ N}
is called a t-sequence. A strategy t := (tn : n ∈ N) for the player β is called a winning strategy if
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each t-sequence is won by β. We will call a topological space (X, τ) nearly complete if the player β
does not have a winning strategy in the Gc-game played on X. Note that nearly complete spaces
are very similar to the σ-β défavorable spaces considered in [8]. In fact, the only difference is
that in the Gc-game, the player α is obliged to choose the points an ∈ An, whereas, in the game
considered in [8], α is free to choose the points an anywhere in X. Hence, it follows that every
nearly complete space is σ-β défavorable. It follows from [8, Theorem 1] that every nearly complete
space is a Baire space. However, from Theorem 5 and Example 1 we see that not every Baire space
is nearly complete. The class of nearly complete spaces is quite large, as it includes all the strongly
Baire spaces [3]. In particular, it includes all Baire metric spaces, all Čech-complete spaces and all
regular, locally countably compact spaces.

Theorem 5 If F : X → 2Y is a metric upper semicontinuous set-valued mapping from a nearly
complete space (X, τ) into nonempty subsets of a metric space (Y, d) then F is metric lower semi-
continuous at the points of a dense Gδ subset of X.

Proof: For each x ∈ X, let N (x) denote the family of all open subsets of X that contain the point
x and for each ε > 0 let,

Oε := {x ∈ X : ∃ 0 < ε′ < ε and ∃ U ∈ N (x) such that F (x) ⊆
⋂

y∈UB(F (y); ε′)}.

[Note that if x 6∈ Oε then for all 0 < ε′ < ε and all U ∈ N (x), F (x) 6⊆
⋂

y∈U B(F (y); ε′).]

It is easy to check, using the metric upper semicontinuity of F , that each Oε is an open subset of
X. It is also easy to see that F is metric lower semicontinuous at each point of

⋂

n∈N
O1/n. So

to prove the theorem it is sufficient to show that each Oε is dense in X. To this end, let us fix
0 < ε < ∞. In order to obtain a contradiction let us assume that there exists a nonempty open
subset W of X such that Oε ∩ W = ∅. We shall use this assumption to inductively construct a
(necessarily non-winning) strategy for the player β in the Gc-game played on X.

Step 1. Let t1(∅) := W , ε′ := (2/3)ε and δ := (1/3)ε.

Step 2. Suppose that α has chosen (a1, A1) ∈ X × τ such that a1 ∈ A1 ⊆ t1(∅) as their first move.
Since a1 6∈ Oε, 0 < ε′ < ε and A1 ∈ N (a1), F (a1) 6⊆

⋂

y∈A1
B(F (y); ε′). Therefore, there exists a

b1 ∈ A1 such that F (a1) 6⊆ B(F (b1); ε
′). Let t2((a1, A1)) := int{x ∈ A1 : F (x) ⊆ B(F (b1); δ)}.

In general, suppose that α has chosen

{(a1, A1), (a2, A2), . . . , (an, An)}

and β has defined

tj+1((a1, A1), (a2, A2), . . . , (aj , Aj)) for all 1 ≤ j < n and defined {b1, b2, . . . , bn−1}

so that:

(i) aj ∈ Aj for all 1 ≤ j ≤ n;

(ii) bj ∈ Aj and F (aj) 6⊆ B(F (bj); ε
′) for all 1 ≤ j < n;

(iii) tj+1((a1, A1), (a2, A2), . . . , (aj , Aj)) := int{x ∈ Aj : F (x) ⊆ B(F (bj); δ)} for all 1 ≤ j < n.
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Step n+1. Since an 6∈ Oε, 0 < ε′ < ε and An ∈ N (an), F (an) 6⊆
⋂

y∈An

B(F (y); ε′). Therefore,
there exists a bn ∈ An such that F (an) 6⊆ B(F (bn); ε′). Let

tn+1((a1, A1), (a2, A2), . . . , (an, An)) := int{x ∈ An : F (x) ⊆ B(F (bn); δ)}.

This completes the definition of t := (tn : n ∈ N). Now, since t is not a winning strategy for
the player β in the Gc-game played on X there exists a t-sequence {(an, An) : n ∈ N} [and an
accompanying sequence (bn : n ∈ N)] such that:

(i) I :=
⋂

n∈N
An 6= ∅;

(ii) there exists a k ∈ N such that ak ∈
⋃

x∈I int{F−1(B(F (x); δ))} ⊆
⋃

x∈I F−1(B(F (x); δ)).

Here we have used the notation F−1(A) to denote {x ∈ X : F (x) ⊆ A} for any subset A of Y .

Therefore, for some x ∈ I, F (ak) ⊆ B(F (x); δ) ⊆ B(F (I); δ). On the other hand,

F (I) ⊆ F (Ak+1) ⊆ B(F (bk); δ).

Thus,
F (ak) ⊆ B(F (I); δ) ⊆ B(F (bk); 2δ) = B(F (bk); ε

′);

which contradicts the way bk was chosen. This completes the proof.

Theorem 6 If F : X → 2Y is a metric lower semicontinuous set-valued mapping from a nearly
complete space (X, τ) into nonempty subsets of a metric space (Y, d) then F is metric upper semi-
continuous at the points of a dense Gδ subset of X.

Proof: The proof of this theorem is almost identical to that of Theorem 5, once one replaces the
definition of the Oε set by,

Oε := {x ∈ X : ∃ 0 < ε′ < ε and ∃ U ∈ N (x) such that
⋃

y∈UF (y) ⊆ B(F (x); ε′)}.

Interest in Fort’s theorem stems from the fact that it has many applications in optimization,
variational inequalities, game theory, generic differentiation, selection theorems and the geometry
of Banach spaces, see [4, 9] and the many references within. For more information on topological
games see [1].
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