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Abstract. We show that if (X, ‖ · ‖) is a Banach space that admits an equivalent locally
uniformly rotund norm and the set of all norm attaining functionals is residual then the dual
norm ‖ · ‖∗ on X∗ is Fréchet at the points of a dense subset of X∗. This answers the main open
problem in a 2018 paper by Guiarao, Montesinos and Zizler [Studia Math. 241, pages 71–86].
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We shall begin with some basic notation and assumed terminology. In this short note all normed
linear spaces will be over the field of real numbers (denoted R). The closed unit ball in a normed
linear space (X, ‖ · ‖) will be denoted by BX and the norm closed convex hull of a subset K of
a normed linear space (X, ‖ · ‖) will be denoted by, co(K). If X is a set and f : X → (−∞,∞]
is a function then Dom(f) := {x ∈ X : f(x) < ∞} and we say that f is a proper function if
Dom(f) 6= ∅. Furthermore, we define argmax(f) := {x ∈ X : f(y) ≤ f(x) for all y ∈ X}. We shall
call a proper function f : X → (−∞,∞], defined on a vector space X, (over the real numbers) a
convex function if, for each x, y ∈ Dom(f) and 0 < λ < 1, f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

The main purpose of this note is to answer [7, Problem 3.7]. Many of the results contained in
this note were previously known, although perhaps not explicitly published anywhere. Here we
shall put these results together in order to solve some open problems concerning norm attaining
functionals. The key notion required is that of a dual differentiation space. We shall say that a
Banach space (X, ‖·‖) is a dual differentiation space, [3] (or DD-space for short) if every continuous
convex function ϕ : A → R defined on a nonempty open convex subset A of X∗ for which {x∗ ∈
A : ∂ϕ(x∗)∩ X̂ 6= ∅} is residual in A, is Fréchet differentiable at the points of a dense subset of A.

Recall that a continuous convex function ϕ : A → R defined on a nonempty open convex subset
A of a normed linear space (X, ‖ · ‖) is said to be Fréchet differentiable at x0 ∈ A provided there
exists a continuous linear functional x∗ such that for every 0 < ε, there exists a 0 < δ such that

|ϕ(x+ x0)− ϕ(x0)− x∗(x)| ≤ ε‖x‖ for all ‖x‖ < δ.

For convex functions there is a derivative-like notion that holds even when the function is not
differentiable. This is presented next.

Let ϕ : C → R be a convex function defined on a nonempty convex subset of a normed linear space
(X, ‖ · ‖) and let x ∈ C. Then we define the subdifferential ∂ϕ(x) by,

∂ϕ(x) := {x∗ ∈ X∗ : x∗(y − x) ≤ ϕ(y)− ϕ(x) for all y ∈ C}.

The relationship between Fréchet differentiability and the subdifferential mapping is revealed in
the following proposition.
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Proposition 1 ([16]). Let ϕ : A→ R be a continuous convex function defined on a nonempty open
convex subset A of a normed linear space (X, ‖ · ‖) and let x0 ∈ A. Then ϕ is Fréchet differentiable
at x0 if, and only if, ∂ϕ(x0) is a singleton (i.e., ∂ϕ(x0) = {x∗0} for some x∗0 ∈ X∗) and for every
0 < ε there exists a 0 < δ such that ∂ϕ(B(x0; δ)) ⊆ B(x∗0; ε).

Let (X, ‖ ·‖) be a Banach space. We shall say that an element x∗ ∈ X∗ attains its norm (or that x∗

is norm-attaining) if there exists an x ∈ BX such that x∗(x) = ‖x∗‖∗. The set of all norm-attaining
functionals on X is denoted by NA(X, ‖ · ‖).

The connection between norm attaining functionals and weak∗ continuous subderivatives of the
dual norm is given in the next proposition.

Proposition 2. Let (X, ‖ · ‖) be a Banach space and let x∗ ∈ X∗. Then x∗ ∈ NA(X, ‖ · ‖) if, and
only if, ∂‖x∗‖∗ ∩ X̂ 6= ∅.

Proof. Suppose that x∗ ∈ NA(X, ‖ · ‖). Then there exists an x ∈ BX such that x∗(x) = ‖x∗‖∗.
Note also that for every y∗ ∈ X∗, y∗(x) ≤ ‖y∗‖∗‖x‖ ≤ ‖y∗‖∗. Hence, if y∗ is any element of X∗

then
x̂(y∗ − x∗) = (y∗ − x∗)(x) = y∗(x)− x∗(x) ≤ ‖y∗‖∗ − ‖x∗‖∗.

Thus, x̂ ∈ ∂‖x∗‖∗ ∩ X̂. Conversely, suppose that x̂ ∈ ∂‖x∗‖∗ ∩ X̂. Then for any y∗ ∈ X∗,

x̂(y∗) = x̂((y∗ + x∗)− x∗) ≤ ‖y∗ + x∗‖∗ − ‖x∗‖∗ ≤ ‖y∗‖∗ (by the triangle inequality).

Thus, ‖x‖ = ‖x̂‖∗∗ ≤ 1. That is, x ∈ BX . On the other hand, if we substitute y∗ = 0 into the
definition of x̂ ∈ ∂‖x∗‖∗ we obtain,

−x̂(x∗) = x̂(0− x∗) ≤ ‖0‖∗ − ‖x∗‖∗ = −‖x∗‖∗

and so ‖x∗‖∗ ≤ x̂(x∗). Therefore,

‖x∗‖∗ ≤ x̂(x∗) = x∗(x) ≤ ‖x∗‖∗‖x‖ ≤ ‖x∗‖∗.

This shows that x∗(x) = x̂(x∗) = ‖x∗‖∗, i.e., x∗ ∈ NA(X, ‖ · ‖). �

Theorem 3. Let (X, ‖ · ‖) be a dual differentiation space. Then the set NA(X, ‖ · ‖) is residual in
(X∗, ‖·‖∗) if, and only if, ‖·‖∗ is Fréchet differentiable at the points of a dense subset of (X∗, ‖·‖∗).

Proof. Suppose that NA(X, ‖·‖) is residual in X∗. Then by Proposition 2, {x∗ ∈ X∗ : ∂‖x∗‖∗∩X̂ 6=
∅} = NA(X, ‖ · ‖) is residual in X∗. Thus, by the definition of a DD-space ‖ · ‖∗ is Fréchet
differentiable at the points of a dense subset of X∗. Conversely, suppose that D := {x∗ ∈ X∗ :
‖ · ‖∗ is Fréchet differentiable at x∗} is dense in X∗. Then, by Proposition 1, D =

⋂
n∈NOn, where

for each n ∈ N,
On :=

⋃
{U ⊆ X∗ : U is open and diam(∂‖U‖∗) < 1/n}.

Hence D is always a Gδ set. We claim that D ⊆ NA(X, ‖ · ‖). To confirm this assertion consider
any x∗ ∈ D and suppose, for the purpose of obtaining a contradiction, that x∗ 6∈ NA(X, ‖ · ‖).
That is, by Proposition 2, ∂‖x∗‖∗ ∩ X̂ = ∅. Since x∗ ∈ D, we have, by Proposition 1, that
there exists an x∗∗ ∈ X∗∗ such that ∂‖x∗‖∗ = {x∗∗}. Furthermore, as x∗∗ 6∈ X̂ there exists a
0 < ε such that B(x∗∗; ε) ∩ X̂ = ∅. Then, by Proposition 1 again, there exists a 0 < δ such that
∂‖B(x∗; δ)‖∗ ⊆ B(x∗∗; ε). In particular, ∂‖B(x∗; δ)‖∗ ∩ X̂ = ∅. However, this is impossible since
by the Bishop-Phelps theorem (see, [1]) there exists a y∗ ∈ NA(X, ‖ · ‖) ∩ B(x∗; δ) 6= ∅, and for
this y∗, ∂‖y∗‖∗ ∩ X̂ 6= ∅ (see Proposition 2). Thus it must be the case that x∗ ∈ NA(X, ‖ · ‖). �
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Remark 4. In [13, Theorem 4.4] it is shown that a Banach space (X, ‖ ·‖) has the Radon Nikodým
Property (see [16, page 79] for the definition) if, and only if, for every equivalent norm ||| · ||| on X,
NA(X, ||| · |||) is residual in X∗. This gives a non-separable version of [7, Theorem 3.4].

The significance of Theorem 3 depends upon the size of the class of DD-spaces. Fortunately there
are many results in this direction. Perhaps the first paper on this topic is [2] where it is shown
that every Banach space that can be equivalently renormed to be locally uniformly rotund (see [7]
for the definition) is a DD-space. This line of inquiry was pursued further in the papers [4–6, 12]
where various generalisations of local uniform rotundity were considered and shown to imply the
same conclusion i.e., that the space is a DD-space.

In the paper [3] the first real systematic study of DD-spaces was conducted. In this paper it was
shown that every Radon-Nikodým Property space is a DD-space and that every Banach space
whose dual is weak Asplund (see [16, page 13] for the definition) is a DD-space. It was also shown
that every space that admits an equivalent weak locally uniformly rotund norm is a DD-space,
however, it has since been shown that such spaces admit an equivalent locally uniformly rotund
norm, [11]. In [3] it is also shown that the class of DD-spaces is stable under passing to subspaces.

Following the paper [3], was the paper [14], where the investigation of DD-spaces continued. In [14]
the class of GC-spaces (Generic continuity spaces) were considered and it was shown that every
GC-space is a DD-space. It was also shown that if a Banach space X admits an equivalent weak
mid-point locally uniformly rotund norm, and every weakly continuous function acting from an
α-favourable space into X, is norm continuous at the points of a dense subset of its domain, then
X is a DD-space (see, [14, p. 249] and [8, p. 2745]).

Finally, in [10] it was shown that every Banach space (X, ‖ · ‖) such that (X,weak) is Lindelöf is
a DD-space. Note also that in [9] an example wass given, under the continuum hypothesis, of a
DD-space without an equivalent locally uniformly rotund norm.

We shall end this paper with some applications of DD-spaces to optimisation and the geometry of
Banach spaces.

We shall say that a function f : X → [−∞,∞) defined on a normed linear space (X, ‖ · ‖) attains
a (or has a) strong maximum at x0 ∈ X if,

f(x0) = sup
x∈X

f(x) and lim
n→∞

xn = x0

whenever (xn : n ∈ N) is a sequence in X such that

lim
n→∞

f(xn) = sup
x∈X

f(x) = f(x0).

In order to expedite the phrasing of Theorem 5 we introduce some terminology from optimisation.
If f : X → (−∞,∞] is a proper function on a Banach space (X, ‖ · ‖) then the Fenchel conjugate
of f , denoted f∗ : X∗ → (−∞,∞], is defined by,

f∗(x∗) := sup
x∈X

(x∗ − f)(x) = sup
x∈Dom(f)

(x∗ − f)(x).

Theorem 5 ([15, Theorem 5.6]). Let f : X → (−∞,∞] be a proper function on a dual differentia-
tion space (X, ‖·‖). If there exists a nonempty open subset A of Dom(f∗) and a dense and Gδ subset
R of A such that argmax(x∗ − f) 6= ∅ for each x∗ ∈ R, then there exists a dense and Gδ subset R′

of A such that (x∗ − f) : X → [−∞,∞) has a strong maximum for each x∗ ∈ R′. In addition, if
0 ∈ A and 0 < ε then there exists an x∗0 ∈ X∗ with ‖x∗0‖ < ε such that (x∗0 − f) : X → [−∞,∞)
has a strong maximum.
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For our application to the geometry of Banach spaces we need the notion of a strongly exposed
point.

Let C be a nonempty closed and bounded convex subset of a normed linear space (X, ‖ · ‖). We
shall say that a point x0 ∈ C is a strongly exposed point of C if there exists an x∗ ∈ X∗ such that
x∗|C has a strong maximum at x0 and we shall denote by Exp(C) the set of all strongly exposed
points of C. Note that if f : X → (−∞,∞] is defined by, f(x) := 0 if x ∈ C and f(x) := ∞
otherwise, then we have the following:

If x∗ ∈ X∗ and x∗ − f has a strong maximum at x0 ∈ X then x0 ∈ C and, x0 is in fact a strongly
exposed point of C.

Theorem 6. If C is a nonempty closed and bounded convex subset of a DD-space (X, ‖ · ‖) and
{x∗ ∈ X∗ : x∗ attains its supremum over C} is residual in X∗ then C = co(Exp(C)).

Proof. Let f : X → (−∞,∞] be defined by, f(x) := 0 if x ∈ C and by f(x) :=∞ otherwise. Then,
by assumption

R := {x∗ ∈ X∗ : argmax(x∗|C) 6= ∅} = {x∗ ∈ X∗ : argmax(x∗ − f) 6= ∅}

is residual in X∗. Therefore, by Theorem 5, there exists a dense and Gδ subset R′ of X∗ such that
(x∗− f) has a strong maximum for each x∗ ∈ R′. Now suppose, in order to obtain a contradiction,
that C 6= co(Exp(C)). Then there exists an x0 ∈ C \ co(Exp(C)) and an x∗ ∈ X∗ such that

sup{x∗(c) : c ∈ co(Exp(C))} < x∗(x0).

Since C is bounded and R′ is dense in X∗ we can assume, without loss of generality, that x∗ ∈ R′.
But then argmax(x∗|C) = argmax(x∗ − f) =: {x} is a strong maximum of (x∗ − f), and hence a
strongly exposed point of C. On the other hand,

sup{x∗(c) : c ∈ co(Exp(C))} < x∗(x0) ≤ x∗(x);

which implies that x 6∈ Exp(C). Thus, it must be the case that C = co(Exp(C)). �

We end this short note with the most important open question in the area.

Question 7. Is every Banach space (X, ‖ · ‖) a dual differentiation space?
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