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Chapter 1

Zorn’s Lemma

A partially ordered set (X, 6 ) is a set X with a binary relation “6 ” satisfying the
following three axioms:

(i) for every x ∈ X , x 6 x;

(ii) for every x, y ∈ X , if x 6 y and y 6 x, then x = y;

(iii) for every x, y, z ∈ X , if x 6 y and y 6 z, then x 6 z.

An element x of a partially ordered set (X, 6 ) is called maximal if there are no other
elements greater than it, i.e., if x is maximal, then for every y ∈ X , if x 6 y, then x = y.

Example 1.1. Let Y be a nonempty set and let X be the set of all nonempty proper
subsets of Y . Define “ 6 ” on X by, A 6 B if, and only if, A ⊆ B. Then (X, 6 ) is a
partially ordered set.

Exercise 1.2. Find the maximal elements in the partially ordered set (X, 6 ) described
above.

A totally ordered set (X, 6 ) is a set X with a binary relation “6 ” satisfying the
following three axioms:

(i) for every x, y ∈ X , either x 6 y, or y 6 x;

(ii) for every x, y ∈ X , if x 6 y and y 6 x, then x = y;

(iii) for every x, y, z ∈ X , if x 6 y and y 6 z, then x 6 z.

Example 1.3. If (X, 6 ) is a totally ordered set, then (X2,�) is also a totally ordered
set if “�” is defined by, (x, y) � (x′, y′) if, and only if, x < x′ or x = x′ and y 6 y′.

Exercise 1.4. Show that if (T, 6 ) is a totally ordered set and T has only finitely many
elements, then T has a largest element i.e., there exists an element tmax ∈ T such that
t 6 tmax for all t ∈ T .

We will say that a subset S of a partially ordered set (X, 6 ) is bounded above if there
exists an element x ∈ X such that s 6 x for all s ∈ S.
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Theorem 1.5 (Zorn’s Lemma). Let (X, 6 ) be a nonempty partially ordered set. If every
totally ordered subset of X is bounded above, then (X, 6 ) has a maximal element.

Remarks 1.6. Zorn’s Lemma is equivalent to the “Axiom of Choice”.

Exercise 1.7. Let I be a proper ideal in a commutative ring with identity 〈R,+, ·〉. Show
that I is contained in a maximal proper ideal in R, i.e., show that every proper ideal is
contained in a maximal proper ideal.

Vector spaces

A vector space (V ; +; · ) over a field K is a set V together with two binary operations
+ : V × V → V and · : K× V → V which obey the following set of rules:

1. u+ v = v + u for all u, v ∈ V ;

2. u+ (v +w) = (u+ v) +w for all u, v,w ∈ V ;

3. there exists an element O ∈ V such that u+O = O + u = u for all u ∈ V ;

4. for each u ∈ V there exists an element v ∈ V such that u+ v = v + u = O;

5. t · (u+ v) = t · u+ t · v for each t ∈ K and all elements u, v ∈ V ;

6. (s+ t) · u = s · u+ t · u for each u ∈ V and all s and t ∈ K;

7. (st) · u = s · (t · u) for each u ∈ V and all s and t ∈ K;

8. 1 · u = u for each u ∈ V .

The elements of the set V are called vectors and the operations + and · are called
vector addition and scalar multiplication respectively. The vector O is called the
zero vector.

Example 1. The set of all geometric vectors in 2-space (or 3-space) with the operations
of vector addition and scalar multiplication, as defined in first year.

Example 2. The collection of all ordered n-tuples of elements of K, together with the
operations of component-wise addition and scalar multiplication, i.e.,

(a1, a2, . . . an) + (b1, b2, . . . bn) := (a1 + b1, a2 + b2, . . . an + bn)

t · (a1, a2, . . . an) := (ta1, ta2, . . . tan)

We shall denote this system by Kn.

Example 3. Let X be a nonempty set. Then the system (F (X); +; · ) comprised of all the
K-valued functions defined on X (i.e., F (X)), together with the operations of pointwise
addition and pointwise scalar multiplication, i.e., if f, g ∈ F (X) then f + g ∈ F (X) is
defined by, (f + g)(x) := f(x) + g(x) for each x ∈ X and if t ∈ K then t · f ∈ F (X) is
defined by, (t · f)(x) := t · f(x) for each x ∈ X .

Example 4. Let X be a nonempty set. Then the system (F0(X); +; · ) comprised of all
the K-valued functions defined on X with finite support (i.e., if f ∈ F0(X) then f ∈ F (X)
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and {x ∈ X : f(x) 6= 0} is a finite set), together with the operations of pointwise addition
and pointwise scalar multiplication (as in Example 3.).

Given two vector spaces (V ′;⊕;⊙) and (V ; +; · ) we say that (V ′;⊕;⊙) is isomorphic to

(V ; +; · ) if there exists a 1-to-1 and onto mapping ϕ : V ′ → V such that (i) ϕ(u⊕ v) =
ϕ(u) + ϕ(v) for all u, v ∈ V ′ and (ii) ϕ(t⊙ u) = t · ϕ(u) for all t ∈ K and all u ∈ V ′.

Example 1. The geometric vectors in 2-space are isomorphic to R2. To see this, let S
be a basis for 2-space. Then the mapping ϕ that maps each vector u in 2-space to its
S-coordinates fulfils the hypotheses above.

Example 2. The geometric vectors in 3-space are isomorphic to R3. To see this, let S
be a basis for 3-space. Then the mapping ϕ that maps each vector u in 3-space to its
S-coordinates fulfils the hypotheses above.

Example 3. Every vector space (V ; +; · ) over the real numbers, that consists of more
than just the zero vector, is isomorphic to (F0(X); +; · ) for some nonempty set X .

A linear combination of elements x1,x2, . . . ,xn of a vector space V with coefficients
λ1, λ2, . . . , λn ∈ K, is an expression of the form: λ1x1 + λ2x2 + . . .+ λnxn (or rather, the
value of this expression).

Exercise 1.8. Show that if (V ; +; · ) is a vector space and F is a family of subspaces of
V , then

⋂
S∈F S is a subspace of (V ; +; · ).

The span of a subset X ⊆ V , denoted span(X), is the smallest subspace of V containing
the set X . This is,

span(X) =
⋂

{S ∈ 2V : X ⊆ S and S is a subspace of V }.

In particular, span(∅) = {O}.

Exercise 1.9. Let X be a nonempty subset of a vector space V . Show that span(X) is
the set of all elements of V that can be expressed as a linear combination of elements of
X.

A nonempty finite subset {x1,x2, . . . ,xn} of V is said to be linearly independent if
the only solution to the equation λ1x1+λ2x2+ . . .+λnxn = 0 is λ1 = λ2 = · · · = λn = 0.
Otherwise, the set {x1,x2, . . . ,xn} is said to be linearly dependent. An arbitrary
subset X ⊆ V is said to be linearly independent if every nonempty finite subset of
X is linearly independent. So vacuously, ∅ is linearly independent. A subset X ⊆ V is
termed a basis for V if it is linearly independent and spans V , i.e., span(X) = V .

Basic facts about bases

(i) every element x ∈ V admits a unique basis decomposition, this is, every x ∈ V
can be uniquely expressed as a linear combination of elements of a fixed basis X ;
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(ii) if Y spans V , then Y contains a basis for V ;

(iii) in particular, every nonzero vector space admits a basis;

(iv) every linearly independent subset Y can be extended to form a basis for V .

A vector space V is called finite dimensional if it admits a basis with only finite many
elements. If a vector space is not finite dimensional, then it is called infinite dimen-

sional.

A function from one vector space to another is called an operator (or transformation).
A mapping from a vector space (over a field K) into the field K is called a functional.
An operator f : U → V is called a linear operator if for any x,y ∈ U and λ ∈ K,
f(x + y) = f(x) + f(y) and f(λx) = λf(x). The collection of all linear functionals on
a vector space V forms a subspace of the vector space KV , under pointwise addition and
pointwise scalar multiplication. It is denoted V # and is called the algebraic dual of V .
If V is finite dimensional, then V is isomorphic to V #.

Theorem 1.10. Every nonzero vector space (V ; +; · ) admits a basis.

Proof. Let (V ; +; · ) be a nonzero vector space and let X be the family of all linearly
independent subsets of V . Then X 6= ∅ and (X,⊆) is a partially ordered set (Note: if
x ∈ V \{0}, then {x} ∈ X). We claim that X contains a maximal element. By Zorn’s
Lemma to show this we need only show that each totally ordered subset of X has an
upper bound. Let ∅ 6= T ⊆ X be totally ordered and let U :=

⋃
{I : I ∈ T}. Clearly

I ⊆ U for each I ∈ T and so U is an upper bound for T , provided we have U ∈ X . So
suppose xj ∈ U, 1 6 j 6 n. Then for each 1 6 j 6 n there exists a Ij ∈ T such that
xj ∈ Ij. Now since T is totally ordered their exists a k ∈ {1, 2, . . . , n} so that Ij ⊆ Ik for
each 1 6 j 6 n. Hence {x1,x2, . . . ,xn} ⊆ Ik and so are linearly independent. This shows
that U ∈ X . Let Xmax be a maximal element in (X,⊆). We claim that span(Xmax) = V ,
for if this is not the case, then we may take x ∈ V \span(Xmax) and set X∗ := Xmax∪{x}.
Then X∗ ∈ X , Xmax ⊆ X∗ but Xmax 6= X∗; which contradicts the maximality of Xmax.
Hence, Xmax is a basis for V . ✷

Note that if V = {O}, then technically ∅ is a basis for V as ∅ is linearly independent
and span(∅) = {O} = V .

Exercise 1.11. Prove that every vector space (V ; +; · ) over the real numbers, that con-
sists of more than just the zero vector, is isomorphic to (F0(X); +; · ) for some nonempty
set X. This is the first “Representation Theorem” contained in this course.

Exercise 1.12. Prove that every linearly independent subset Y of a nonzero vector space
(V ; +; · ) can be extended to form a basis for V .

Exercise 1.13. Prove that if Y spans a nonzero vector space (V ; +; · ), then Y contains
a basis for V .
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Chapter 2

Introduction to Banach spaces

A norm on a vector space V (over a field K) is a function, denoted by ‖ · ‖, from V into
R such that:

(i) ‖x‖ > 0 for all x ∈ V and ‖x‖ = 0 if, and only if, x = 0;

(ii) ‖λx‖ = |λ|‖x‖ for all x ∈ V and all λ ∈ K;

(iii) ‖x+ y‖ 6 ‖x‖+ ‖y‖ for all x, y ∈ V .

Any pair (X, ‖ · ‖) consisting of a vector space and a norm is called a normed linear

space.

Proposition 2.1. Let (X, ‖ · ‖) be a normed linear space. Then the function ρ : X2 →
[0,∞) defined by, ρ(x, y) := ‖x− y‖ for all x, y ∈ X defines a metric on X.

Proof. From the definition, ρ(x, y) = 0 if, and only if, ‖x − y‖ = 0 and this only occurs
when x = y. Again, directly from the definition, if x, y ∈ X , then

ρ(x, y) = ‖x− y‖ = ‖(−1)(y − x)‖ = | − 1|‖y − x‖ = ‖y − x‖ = ρ(y, x).

So it remains to verify the triangle inequality. Let x, y and z be members of X , then

ρ(x, z) = ‖x− z‖ = ‖(x− y) + (y − z)‖ 6 ‖x− y‖+ ‖y − z‖ = ρ(x, y) + ρ(y, z).

This completes the proof. ✷

In a normed linear space (X, ‖ · ‖) we shall denote by, BX := {x ∈ X : ‖x‖ 6 1} and
SX := {x ∈ X : ‖x‖ = 1}. For a subset A of a vector space V (over a field K) and a
scalar λ ∈ K we define λA := {x ∈ V : x = λa for some a ∈ A}. If x0 ∈ V , then we
define x0 + A := {x ∈ V : x = x0 + a for some a ∈ A}.

Proposition 2.2. Let (X, ‖ · ‖) be a normed linear space. Then for each x ∈ X and each
positive real number r, x+ rBX = B[x; r] := {y ∈ X : ‖y − x‖ 6 r}.
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Proof. Suppose that y ∈ x+ rBX , then (y − x) ∈ rBX and so (1/r)(y − x) ∈ BX ; which
implies that ‖(1/r)(y − x)‖ = |1/r|‖x− y‖ 6 1, i.e., ‖y − x‖ 6 r. Therefore, ρ(x, y) 6 r
and so y ∈ B[x; r]. Conversely, suppose that y ∈ B[x; r], then ‖y − x‖ 6 r and so
‖(1/r)(y−x)‖ 6 1, i.e., (1/r)(y−x) ∈ BX . Therefore, (y−x) ∈ rBX and so y ∈ x+rBX .
This shows that B[x; r] = x+ rBX . ✷

A Banach space (X, ‖ ·‖) is a normed linear space that is complete in the metric defined
by, ρ(x, y) := ‖x− y‖, (i.e., Cauchy sequences in (X, ρ) are convergent).

Let (X, ‖·‖) be a normed linear space. We say that a series
∑∞

k=1 xk in X (i.e., xk ∈ X for
all k ∈ N) is convergent if the sequence (of partial sums) sn :=

∑n
k=1 xk is convergent in

X . We say that a series
∑∞

k=1 xk is absolutely convergent if
∑∞

k=1 ‖xk‖ is convergent.

Proposition 2.3. A normed linear space (X, ‖·‖) is a Banach space if, and only if, every
absolutely convergent series in (X, ‖ · ‖) is convergent.

Proof. Suppose that (X, ‖ · ‖) is a Banach space and
∑∞

k=1 xk is an absolutely convergent
series in (X, ‖ · ‖). For each n ∈ N, let sn :=

∑n
k=1 xk and tn :=

∑n
k=1 ‖xk‖. Then, for

any (m,n) ∈ N2 with m < n we have that

‖sn − sm‖ =

∥∥∥∥∥
n∑

k=m+1

xk

∥∥∥∥∥ 6

n∑

k=m+1

‖xk‖ = |tn − tm|.

Since the sequence (tn : n ∈ N) is convergent it is also Cauchy. It then follows that the
sequence (sn : n ∈ N) is a Cauchy sequence in (X, ‖ · ‖) and hence convergent.

Converse: Suppose that (X, ‖ · ‖) is a normed linear space in which every absolutely
convergent series in (X, ‖ · ‖) is convergent. Let (xn : n ∈ N) be a Cauchy sequence in
(X, ‖ · ‖). To show that (xn : n ∈ N) is convergent it is sufficient to show that it possesses
a convergent subsequence. To this end, let us inductively define a strictly increasing
sequence (nk : k ∈ N) of natural numbers such that sup{‖xi−xj‖ : nk 6 i, j ∈ N} < 1/k2.
Then define, (yk : k ∈ N) in X by, yk := xnk+1

− xnk
. By construction the series

∑∞
j=1 yj

is absolutely convergent, and hence by assumption, convergent. Let us also note that
xn1 +

∑k
j=1 yj = xnk+1

for all k ∈ N. Therefore, (xnk
: k ∈ N) is a convergent subsequence

of (xn : n ∈ N); which completes the proof. ✷

Theorem 2.4. Let (X, ‖·‖) be a Banach space and let Y be a subspace of (X, ‖·‖). Then
(Y, ‖ · ‖) is a Banach space if, and only if, Y is a closed subspace of (X, ‖ · ‖).

Proof. The proof that a closed subspace of a Banach space is again a Banach space is left
as an easy exercise for the reader. To prove the converse it suffices to show that Y ⊆ Y .
So let y ∈ Y . Then there exists a sequence (yn : n ∈ N) in Y converging to y. Therefore,
(yn : n ∈ N) is a Cauchy sequence in (Y, ‖ · ‖). Now since (Y, ‖ · ‖) is a Banach space there
exists a point y∞ ∈ Y such that limn→∞ yn = y∞ (the limit is considered in (Y, ‖ · ‖)). On
the other hand, limn→∞ yn = y∞ (considered in (X, ‖ · ‖)). Since the limit of a convergent
sequence in (X, ‖ · ‖) is unique, y = y∞ ∈ Y . Hence, Y ⊆ Y . ✷
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Let Y be a closed subspace of a normed linear space (X, ‖ · ‖). For each x ∈ X we
consider the coset x̂ relative to Y , x̂ := x + Y . The space X/Y := {x̂ : x ∈ X} of all
cosets, together with the addition and scalar multiplication defined by, x̂+ ŷ = x̂+ y and
λx̂ = λ̂x is a vector space. It is routine to check that ‖x̂‖ := inf{‖y‖ : y ∈ x̂} defines a
norm on X/Y .

Let Y be a closed subspace of a normed linear space (X, ‖ · ‖). Then the space X/Y
endowed with the norm ‖x̂‖ = inf{‖y‖ : y ∈ x̂} is called the quotient space of X with

respect to Y .

Exercise 2.5. Let Y be a closed subspace of a normed linear space (X, ‖ · ‖). Show that
the mapping x 7→ x̂ from (X, ‖ · ‖) into (X/Y, ‖ · ‖) is linear and continuous.

Theorem 2.6. Let Y be a closed subspace of a Banach space (X, ‖ · ‖). Then (X/Y, ‖ · ‖)
is a Banach space.

Proof. Let
∑∞

k=1 x̂k be an absolutely convergent series in X/Y . For each k ∈ N, choose
yk ∈ x̂k so that ‖x̂k‖ 6 ‖yk‖ < ‖x̂k‖+1/k2. Then

∑∞
k=1 ‖yk‖ is convergent. Since (X, ‖·‖)

is a Banach space
∑∞

k=1 yk is convergent in X . Let y :=
∑∞

k=1 yk, then

ŷ =
̂

lim
n→∞

n∑

k=1

yk = lim
n→∞

n̂∑

k=1

yk = lim
n→∞

n∑

k=1

ŷk = lim
n→∞

n∑

k=1

x̂k =

∞∑

k=1

x̂k.

This shows that every absolutely convergent series in (X/Y, ‖ · ‖) is convergent; thus
(X/Y, ‖ · ‖) is a Banach space. ✷

Next, we examine finite dimensional normed linear spaces.

Let ‖ · ‖ and ||| · ||| be norms on a vector space V . We say that the norm ‖ · ‖ is equivalent
to the norm ||| · ||| if, and only if, there exists real numbers 0 < m 6 M < ∞ such that
m‖x‖ 6 |||x||| 6 M‖x‖ for all x ∈ V .

Exercise 2.7. Let ‖ · ‖1, ‖ · ‖2 and ‖ · ‖3 be norms on a vector space V . Show that if ‖ · ‖1
is equivalent to ‖ · ‖2 and ‖ · ‖2 is equivalent to ‖ · ‖3, then ‖ · ‖1 is equivalent to ‖ · ‖3.
Also show that ‖ · ‖1 is equivalent to ‖ · ‖2 if, and only if, ‖ · ‖2 is equivalent to ‖ · ‖1.

Theorem 2.8 (Fundamental Theorem of Finite Dimensional Normed Linear Spaces). Let
‖ · ‖ and ||| · ||| be norms on a finite dimensional vector space V . Then ‖ · ‖ and ||| · ||| are
equivalent norms (i.e., all norms on a finite dimensional space are equivalent).

Proof : Let B := {e1, e2, . . . , en} be a basis for V . On V we define the ‖ · ‖1 norm by,
‖x‖1 :=

∑n
k=1 |xk| where (xk : 1 6 k 6 n) are the coordinates of x with respect to B. It

is easy to show that ‖ · ‖1 is indeed a norm on V . So it will be sufficient to show that if
‖ · ‖ is any norm on V , then ‖ · ‖ is equivalent to ‖ · ‖1. Let M := max{‖ek‖ : 1 6 k 6 n}.
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Then for any x ∈ V ,

‖x‖ =

∥∥∥∥∥
n∑

k=1

xkek

∥∥∥∥∥ where (x1, x2, . . . , xn) are the coordinates of x with respect to B

6

n∑

k=1

|xk| · ‖ek‖ (by the triangle inequality)

6 M

(
n∑

k=1

|xk|
)

= M‖x‖1.

So now it is sufficient to show that there exists a positive real number m such that
m‖x‖1 6 ‖x‖ for all x ∈ V . This is what we do next. Since

∣∣∣∣‖x‖ − ‖y‖
∣∣∣∣ 6 ‖x− y‖ 6 M‖x− y‖1 for all x, y ∈ V

we see that the mapping x 7→ ‖x‖ is continuous on (V, ‖ · ‖1). Let us now show that S1 :=
{x ∈ V : ‖x‖1 = 1} is a compact subset of (V, ‖·‖1). Consider Y := [−1, 1]n endowed with
the product topology and let D := {(x1, x2, . . . , xn) ∈ Y :

∑n
k=1 |xk| = 1}. Then D is a

closed subset of Y and hence D is compact. Now, S1 = ϕ(D), where ϕ : D → V is defined
by, ϕ(x1, x2, . . . , xn) :=

∑n
k=1 xkek. However, since ϕ : D → (V, ‖ · ‖1) is continuous, S1

is compact. Hence there exists a point x0 ∈ S1 such that 0 < m := ‖x0‖ 6 ‖x‖ for all
x ∈ S1. Therefore, m 6 ‖(x/‖x‖1)‖ for any x ∈ V \ {0} and so m‖x‖1 6 ‖x‖ 6 M‖x‖1
for all x ∈ V . �

Corollary 2.9. Every finite dimensional normed linear space is a Banach space.

Proof. Let (X, ‖·‖) be a finite dimensional normed linear space with basis B := {e1, e2, . . . , en}.
Define the ‖ · ‖∞ norm on X by, ‖x‖∞ := max{|xk| : 1 6 k 6 n} where (xk : 1 6 k 6 n)
are the coordinates of x with respect to B. Then it is easy to check that (X, ‖ · ‖∞) is a
Banach space. Since the norms ‖ · ‖ and ‖ · ‖∞ are equivalent (X, ‖ · ‖) is also a Banach
space. ✷

Corollary 2.10. Let (Y, ‖ · ‖) be a finite dimensional subspace of (X, ‖ · ‖). Then Y is a
closed subspace of (X, ‖ · ‖).

Proof. By the previous corollary, (Y, ‖ · ‖) is a Banach space. Hence, if we define a metric
ρ : X2 → R by, ρ(x, y) := ‖x − y‖ for all x, y ∈ X , then (Y, ρ|Y ) is a complete metric
space. Therefore, from metric space theory, Y is a closed subset of (X, ρ). This proves
the result. ✷

Theorem 2.11. Let (X, ‖ · ‖) be a finite dimensional normed linear space. Then BX is
compact in (X, ‖ · ‖).

Proof. Let (X, ‖·‖) be a finite dimensional normed linear space with basis B := {e1, e2, . . . , en}.
Define the ‖ · ‖∞ norm on X by, ‖x‖∞ := max{|xk| : 1 6 k 6 n}, where (xk : 1 6 k 6 n)
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are the coordinates of x with respect to B. Consider Y := [−1, 1]n endowed with the
product topology and let ϕ : Y → X be defined by, ϕ(x1, x2, . . . , xn) :=

∑n
k=1 xkek. Then

B1 := ϕ(Y ) is compact in (X, ‖·‖∞) since Y is compact and ϕ : Y → (X, ‖·‖∞) is contin-
uous. Now B1 is the closed unit ball in (X, ‖ · ‖∞). Hence, there exists a 0 < m < ∞ such
that mBX ⊆ B1 since ‖ · ‖∞ and ‖ · ‖ are equivalent norms. Moreover, since the norms
‖ · ‖∞ and ‖ · ‖ are equivalent, BX is closed in (X, ‖ · ‖∞). Therefore, mBX is closed in B1

and thus compact. It now follows that BX is compact in (X, ‖ · ‖∞) since the mapping
x 7→ (1/m)x is continuous on (X, ‖ · ‖∞). Finally, since ‖ · ‖∞ and ‖ · ‖ are equivalent
norms, BX is compact in (X, ‖ · ‖). ✷

Exercise 2.12. Let C be a nonempty closed subset of a normed linear space (X, ‖ · ‖) and
let 0 < r < 1. Show that C =

⋂
n∈N(C + rnBX).

Let T be a subset of a metric space (X, ρ). Then we say that T is totally bounded if
for every 0 < ε there exists a finite set Fε ⊆ X such that T ⊆ ⋃{B[x; ε] : x ∈ Fε}.

Theorem 2.13. Let (X, ‖·‖) be a normed linear space. Then (X, ‖·‖) is finite dimensional
if, and only if, BX is totally bounded.

Proof. If (X, ‖ · ‖) is finite dimensional, then BX is compact and hence totally bounded.
Conversely, suppose that BX is totally bounded. Fix 0 < r < 1. Since BX is totally
bounded there exists a finite subset F of X such that BX ⊆ ⋃x∈F B[x; r]. Let Y := sp(F ).
Then Y is finite dimensional and hence a closed subspace of (X, ‖ ·‖) and BX ⊆ Y +rBX .

We claim that X = Y . To see this consider the following argument. Let n ∈ N, then

rnBX ⊆ rn(Y + rBX) = rnY + rn+1BX = Y + rn+1BX .

Therefore,

Y + rnBX ⊆ Y + (Y + rn+1BX) = (Y + Y ) + rn+1BX = Y + rn+1BX .

Thus, by induction, it follows that BX ⊆ Y + rnBX for all n ∈ N. Hence, by the
Exercise 2.12, BX ⊆ Y . This shows that X = Y , which in turn means (X, ‖ · ‖) is finite
dimensional. This completes the proof. ✷

Corollary 2.14. Let (X, ‖ · ‖) be a normed linear space. Then (X, ‖ · ‖) is finite dimen-
sional if, and only if, BX is compact.

Next, we consider one of the fundamental building blocks of Banach space theory.

If C is a nonempty subset of a metric space (M, d), then for each x ∈ M ,

dist(x, C) := inf{d(x, c) : c ∈ C}.

Exercise 2.15. Let Y be a proper closed subspace of a normed linear space (X, ‖ · ‖).
Show that (i) dist(x, Y ) = 0 if, and only if, x ∈ Y ; (ii) dist(λx, Y ) = |λ|dist(x, Y ) for all
λ ∈ K and x ∈ X; (iii) dist(x+ y, Y ) = dist(x, Y ) for all x ∈ X and y ∈ Y .
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Lemma 2.16 (Riesz’s Lemma). Let Y be a proper closed subspace of a normed linear
space (X, ‖ · ‖). Then for every 0 < ε there exists a z ∈ SX such that 1− ε 6 dist(z, Y ).

Proof : Choose x′ 6∈ Y . Then dist(x′, Y ) > 0. Next, let us choose 0 < t so that
1− ε < t dist(x′, Y ) < 1. Set x := tx′, then 1− ε < dist(x, Y ) < 1, since

t dist(x′, Y ) = dist(tx′, Y ) = dist(x, Y ).

Pick any y ∈ Y such that ‖x− y‖ 6 1 and set z := (x− y)/‖x− y‖. Then z ∈ SX and

1− ε < dist(x, Y ) 6 (1/‖x− y‖) dist(x, Y )

= (1/‖x− y‖) dist(x− y, Y )

= dist((x− y)/‖x− y‖, Y ).

This completes the proof. �.

Exercise 2.17. Let T be a subset of a metric space (X, ρ). Show that T is not totally
bounded if, and only if, there exists an 0 < ε and an infinite subset C of T such that
ε < ρ(x, y) for all (x, y) ∈ C2 \∆C.

We now give a second proof of the following fact.

Theorem 2.18. Let (X, ‖·‖) be a normed linear space. If (X, ‖·‖) is infinite dimensional,
then BX is not totally bounded.

Proof. If (X, ‖ · ‖) is infinite dimensional, then by Riesz’s Lemma we can inductively
construct a sequence (xn : n ∈ N) in SX such that 1/2 < dist(xn+1, span{x1, x2, . . . , xn}).
Thus, 1/2 < ‖xm − xn‖ whenever m 6= n. Therefore, BX is not totally bounded. ✷

Linear Operators

We call a subset A of a normed linear space (X, ‖·‖) bounded if there exists an r ∈ [0,∞)
such that A ⊆ rBX . Let (X, ‖·‖) and (Y, ||| · |||) be normed linear spaces and let T : X → Y
be a linear mapping. Then we say that T is a bounded linear mapping if T (BX) is a
bounded subset of Y . For a bounded linear mapping T acting between normed linear
spaces (X, ‖ · ‖) and (Y, ||| · |||) we define the operator norm of T to be,

‖T‖ := sup{|||T (x)||| : x ∈ BX}.

Exercise 2.19. Let T be a bounded linear mapping acting between normed linear spaces

(X, ‖ · ‖) and (Y, ||| · |||). Show that ‖T‖ = sup
x∈BX\{0}

|||T (x)|||
‖x‖ = sup

x∈SX

|||T (x)|||.

Note: |||T (x)||| 6 ‖T‖‖x‖ for all x ∈ X . In fact, ‖T‖ is the smallest real number M such
that |||T (x)||| 6 M‖x‖ for all x ∈ X .
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Theorem 2.20. Let (X, ‖ · ‖) and (Y, ||| · |||) be normed linear spaces and let T : X → Y
be a linear mapping. Then the following properties are equivalent:

(i) T is a bounded operator;

(ii) T is continuous at 0;

(iii) T is continuous on X.

Proof. (i) ⇒ (ii): Suppose that T is a bounded operator. Then there exists a K > 0 such
that |||T (x)||| 6 K‖x‖ for all x ∈ X . (Note: we could take K = ‖T‖). Suppose ε > 0 is
given. Let δ := ε/K > 0. Then |||T (x)− T (0)||| = |||T (x)||| 6 K‖x‖ = K‖x− 0‖ < ε for all
‖x− 0‖ < δ. This shows that T is continuous at x = 0.

(ii) ⇒ (i): Suppose that T is continuous at 0. Let ε := 1. Then there exists a δ > 0 such
that

δT (BX) = T (δBX) = T (B[0; δ]) ⊆ B[T (0); ε] = B[0; ε] = εBY = BY .

Therefore, T (BX) ⊆ (1/δ)BY and so T is bounded.

(i) ⇒ (iii): Suppose that T is bounded. Then there exists aK > 0 such that |||T (x)||| 6 K‖x‖
for all x ∈ X . Now suppose that x0 ∈ X and ε > 0 are given. Let δ := ε/K. Then,

|||T (x)− T (x0)||| = |||T (x− x0)||| 6 K‖x− x0‖ < ε.

for all ‖x− x0‖ < δ.

(iii) ⇒ (ii): This is obvious. ✷

Let (X, ‖ · ‖) and (Y, ||| · |||) be normed linear spaces (over a field K). Then by B(X, Y ) we
denote the space of all bounded linear operators from X into Y . It is easy to show that
B(X, Y ) is a vector space (over K).

Theorem 2.21. Let (X, ‖ · ‖) and (Y, ||| · |||) be normed linear spaces. Then B(X, Y ),
equipped with the operator norm, is a normed linear space.

Proof. We need only show that the “operator norm” is indeed a norm. Let T ∈ B(X, Y ),
then ‖T‖ = sup

x∈SX

|||T (x)|||. Hence, ‖T‖ > 0 and ‖T‖ = 0 if, and only if, T = 0. Now, let

λ ∈ K and T ∈ B(X, Y ), then

‖λT‖ = sup
x∈SX

|||(λT )(x)||| = sup
x∈SX

|λ| · |||T (x)||| = |λ| sup
x∈SX

|||T (x)||| = |λ| · ‖T‖.

Finally, if S, T ∈ B(X, Y ), then for any x ∈ SX ,

|||(S + T )(x)||| 6 |||S(x)|||+ |||T (x)||| 6 ‖S‖+ ‖T‖.

Therefore, ‖S + T‖ = sup
x∈SX

|||(S + T )(x)||| 6 ‖S‖+ ‖T‖. ✷
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Let (X, ‖ · ‖) be a normed linear space. Then we shall denote by X∗ the vector space of
all bounded linear functionals on X . The space X∗ equipped with the operator norm is
called the dual space of X and is a normed linear space since X∗ = B(X,K). The norm
on X∗ is usually called the dual norm (on X∗) instead of the “operator norm”.

Theorem 2.22. Let (X, ‖ · ‖) be a normed linear space and let (Y, ‖ · ‖) be a Banach
space. Then B(X, Y ) is a Banach space.

Proof. Let (Tn : n ∈ N) be a Cauchy sequence in B(X, Y ). Then for each x ∈ X ,
(Tn(x) : n ∈ N) is a Cauchy sequence in (Y, ‖ · ‖) since,

‖Tn(x)− Tm(x)‖ = ‖(Tn − Tm)(x)‖ 6 ‖Tn − Tm‖ · ‖x‖.

Since (Y, ‖ · ‖) is complete the sequence (Tn(x) : n ∈ N) is convergent in (Y, ‖ · ‖). For
each x ∈ X , let T (x) := limn→∞ Tn(x). Then T : X → Y is well-defined and linear. Since
(Tn : n ∈ N) is a Cauchy sequence in B(X, Y ), it is bounded in B(X, Y ), i.e., there exists
a constant M > 0 such that ‖Tn‖ 6 M for all n ∈ N. We claim that ‖T‖ 6 M . Let
x ∈ SX , then

‖T (x)‖ =
∥∥∥ lim
n→∞

Tn(x)
∥∥∥ = lim

n→∞
‖Tn(x)‖ 6 sup

n∈N
‖Tn(x)‖ 6 sup

n∈N
‖Tn‖ 6 M.

Therefore, ‖T‖ 6 M . We now claim that (Tn : n ∈ N) converges to T with respect to the
operator norm on B(X, Y ). To justify this claim let us consider an arbitrary ε > 0. Then
there exists a N ∈ N such that

‖Tm(x)− Tn(x)‖ 6 ‖Tm − Tn‖ < ε for all x ∈ BX and all m,n > N .

Thus, if we take the limit over m ∈ N we get that

‖(T − Tn)(x)‖ = ‖T (x)− Tn(x)‖ 6 ε for all x ∈ BX and all n > N .

Hence, we have that ‖T − Tn‖ = sup{‖(T − Tn)(x)‖ : x ∈ BX} 6 ε for all n > N . ✷

Theorem 2.23. All linear operators defined on finite dimensional normed linear spaces
are continuous.

Proof. Let (X, ‖ · ‖) be a finite dimensional normed linear space, (Y, ‖ · ‖) be a normed
linear space and T : X → Y be a linear operator. Let us define a norm ||| · ||| by,
|||x||| := ‖x‖+ ‖T (x)‖ for all x ∈ X . By the Fundamental Theorem of Finite Dimensional
Normed Linear Spaces, there exists a constant M > 0 such that |||x||| 6 M‖x‖ for all
x ∈ X . This implies that ‖T (x)‖ 6 M‖x‖ for all x ∈ X , i.e., T ∈ B(X, Y ). ✷

A linear transformation T : (X, ‖ · ‖) → (Y, ||| · |||) acting between normed linear spaces
(X, ‖ · ‖) and (Y, ||| · |||) is called a normed linear space isomorphism if:

(i) T is one-to-one and onto;

(ii) T ∈ B(X, Y );
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(iii) T−1 ∈ B(Y,X).

If there exists an isomorphism T acting between normed linear spaces (X, ‖ · ‖) and
(Y, ||| · |||), then we say that (X, ‖ · ‖) is isomorphic to (Y, ||| · |||)

Corollary 2.24. Any two n-dimensional normed linear spaces (over the same field K)
are isomorphic.

Proof. Suppose that (X, ‖ · ‖ and (Y, ||| · |||) are n-dimensional normed linear spaces. Let
J : X → Y be any vector space isomorphism from X into Y . Note that such an
isomorphism exists since X and Y have the same dimension. Since J is one-to-one and
onto, J −1 : Y → X exists. Moreover, J −1 will also be linear. The result now follows
from Theorem 2.23. ✷

Exercise 2.25. Show that a normed linear space (X, ‖ · ‖) is finite dimensional if, and
only if, every linear functional on (X, ‖ · ‖) is continuous.

These last two results indicate that the isomorphic theory of finite dimensional normed
linear spaces largely reduces to linear algebra.
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Chapter 3

Hilbert Spaces

Recall that an inner product (or a scalar product or a dot product) on a vector space
X is a scalar-valued function 〈·, ·〉 on X ×X such that:

(i) for every y ∈ X , the function x 7→ 〈x, y〉 is linear;
(ii) 〈x, y〉 = 〈y, x〉 for every x, y ∈ X ;

(iii) 〈x, x〉 > 0 for every x ∈ X ;

(iv) 〈x, x〉 = 0 if, and only if, x = 0.

Note that by (i), 〈0, y〉 = 0 for any y ∈ X , and so by (ii), 〈y, 0〉 = 0 = 0.

Theorem 3.1 (Cauchy-Schwarz inequality). Let 〈·, ·〉 be an inner product on a vector
space X.

(i) For any x, y ∈ X, we have |〈x, y〉| 6
√

〈x, x〉
√

〈y, y〉;
(ii) the function ‖x‖ :=

√
〈x, x〉 is a norm on X.

Proof. (i): If 〈y, y〉 = 0, then we have that y = 0 and the inequality is satisfied. So we
may suppose that 〈y, y〉 > 0. Then for any λ ∈ K,

0 6 ‖x− λy‖2 = 〈x− λy, x− λy〉
= 〈x, x〉 − λ〈y, x〉 − λ〈x, y〉+ |λ|2〈y, y〉

= 〈y, y〉
[∣∣∣∣λ− 〈x, y〉

〈y, y〉

∣∣∣∣
2

+

[〈x, x〉
〈y, y〉 −

|〈x, y〉|2
〈y, y〉2

]]
.

Set λ := 〈x, y〉/〈y, y〉 and multiply both sides by 〈y, y〉. Then,
|〈x, y〉|2 6 〈x, x〉〈y, y〉.

(ii): We will check the triangle inequality. For any x, y ∈ X , we have

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈y, y〉+ 〈x, y〉+ 〈y, x〉
= 〈x, x〉+ 〈y, y〉+ 2Real〈x, y〉 6 〈x, x〉 + 〈y, y〉+ 2|〈x, y〉|
6 〈x, x〉+ 〈y, y〉+ 2

√
〈x, x〉

√
〈y, y〉

= (
√

〈x, x〉+
√

〈y, y〉)2 = (‖x‖+ ‖y‖)2.
This concludes the proof ✷

15



Exercise 3.2. Show that |〈x, y〉| =
√

〈x, x〉
√

〈y, y〉 if, and only if, x and y are linearly
dependent.

One immediate consequence of Theorem 3.1 is that 〈·, ·〉 is a continuous function on
(X‖ · ‖)× (X, ‖ · ‖) into the scalar field. In particular, it implies that for a fixed vector
y ∈ X , x 7→ 〈x, y〉 is a continuous linear functional on X .

An ordered pair (H, 〈·, ·〉) is called a Hilbert space if:

(i) H is a vector space;

(ii) 〈·, ·〉 is an inner product on H and

(iii) (H, ‖ · ‖) is a Banach space, where ‖x‖2 = 〈x, x〉 for all x ∈ H .

Theorem 3.3. Let (V, ‖ · ‖) be a normed linear space. Then there exists an inner product
〈·, ·〉 : V × V → K such that ‖x‖2 = 〈x, x〉 for all x ∈ V if, and only if, the norm ‖ · ‖
satisfies the parallelogram law, i.e.,

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) for all x, y ∈ V .

Moreover, the inner product 〈·, ·〉 is generated by the polarisation identity

〈x, y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2

)
for all x, y ∈ V , if V is a vector space over R

and by

〈x, y〉 = 1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
for all x, y ∈ V

if V is a vector space over C. Alternatively, we can write 〈x, y〉 = 1
4

∑4
k=1 i

k‖x+ iky‖2.

Proof. (⇒) Suppose that the norm ‖ · ‖ is induced by the inner product 〈·, ·〉. Then

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 and

‖x− y‖2 = 〈x− y, x− y〉 = 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉.

Taking the sum gives the parallelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2(〈x, x〉+ 〈y, y〉) = 2(‖x‖2 + ‖y‖2).

Taking the difference gives:

‖x+ y‖2 − ‖x− y‖2 = 2(〈x, y〉+ 〈y, x〉) = 2(〈x, y〉+ 〈x, y〉) = 4Real〈x, y〉

which is the real part of the polarisation identity. Now,

Im〈x, y〉 = Real(−i〈x, y〉) = Real〈x, iy〉 = 1

4

(
‖x+ iy‖2 − ‖x− iy‖2

)
.
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(⇐) Suppose the norm satisfies the parallelogram law. It suffices to show that 〈·, ·〉 is a
complex inner product if it is defined by the polarisation identity. The proof for real inner
product is similar by removing all the imaginary terms.

First we check that 〈x, y〉 = 〈y, x〉:

〈x, y〉 = 1

4
(‖x+ y‖2 − ‖x− y‖2) + i

4
(‖x+ iy‖2 − ‖x− iy‖2)

=
1

4
(‖y + x‖|2 − ‖y − x‖2) + i

4
(‖(−i)(x+ iy)‖2 − ‖i(x− iy)‖2)

=
1

4
(‖y + x‖2 − ‖y − x‖2)− i

4
(‖y + ix‖2 − ‖y − ix‖2) = 〈y, x〉.

It follows that 〈x, x〉 is real, so that we may check 0 6 〈x, x〉:

〈x, x〉 = Real〈x, x〉 = 1

4
(‖x+ x‖2 + ‖x− x‖2) = ‖x‖2 > 0,

and 〈x, x〉 = 0 if, and only if, ‖x‖2 = 0, or x = 0.

We now show additive distributivity. For x, y, z ∈ V : We will use the identity that
x+ iky + ikz = [(1/2)x+ iky] + [(1/2)x+ ikz] and the parallelogram identity.

〈x, y + z〉 =
4∑

k=1

ik‖x+ iky + ikz‖2

=

4∑

k=1

ik
(
2
∥∥∥x
2
+ iky

∥∥∥
2

+ 2
∥∥∥x
2
+ ikz

∥∥∥
2

− ‖ik(y − z)‖2
)

=

4∑

k=1

ik
(
2
∥∥∥x
2
+ iky

∥∥∥
2

+ 2
∥∥∥x
2
+ ikz

∥∥∥
2

− ‖(y − z)‖2
)

= 2

4∑

k=1

ik
∥∥∥x
2
+ iky

∥∥∥
2

+ 2

4∑

k=1

ik
∥∥∥x
2
+ ikz

∥∥∥
2

= 2
(〈x

2
, y
〉
+
〈x
2
, z
〉)

.

We used the fact that
∑4

k=1 i
kc = 0 for all c ∈ C. Putting z = 0 gives 〈x, y〉 = 2

〈
x
2
, y
〉
so

that 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉. We now show scalar multiplication distribution. Using
〈x, y+ z〉 = 〈x, y〉+ 〈x, z〉 we can show, by induction, that 〈ax, y〉 = a〈x, y〉 for all a ∈ Q.
The equation then holds for all a ∈ R by the continuity of ‖ · ‖ and the density of Q in
(R, | · |). Finally, for complex multiples we have

〈ix, y〉 =
4∑

k=1

ik‖ix+ iky‖2 = i
4∑

k=1

ik−1‖x+ ik−1y‖2 = i〈x, y〉

so that 〈ax, y〉 = a〈x, y〉 for all a ∈ C by real linearity. This allows us to conclude that
〈·, ·〉 is an inner product on V that induces the norm ‖ · ‖. ✷
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Therefore, a Banach space (X, ‖·‖) is a Hilbert space if, and only if, every two dimensional
subspace of (X, ‖ · ‖) is a Hilbert space.

Let (H, 〈·, ·〉) be a Hilbert space and let x, y ∈ H . We say that x is orthogonal to y,
denoted x ⊥ y, if 〈x, y〉 = 0. Let M be a subset of H . We say that x ∈ H is orthogonal
to M , denoted x ⊥ M , if x is orthogonal to every vector y ∈ M .

Let M be a subset of a Hilbert space (H, 〈·, ·〉). Then the set

M⊥ := {h ∈ H : h ⊥ M}
is called the orthogonal complement of M in H .

Exercise 3.4. Let M be a subspace of a Hilbert space H. Show that (i) M⊥ is a closed
subspace of H, (ii) M ∩M⊥ = {0} and (iii) M ⊆ (M⊥)⊥.

Lemma 3.5. Let M be a closed subspace of a Hilbert space (H, 〈·, ·〉). If x0 ∈ H, then
there exists an m0 ∈ M such that ‖x0 −m0‖ = inf{‖x0 −m‖ : m ∈ M}.

Proof. Choose a sequence (mn : n ∈ N) in M such that

d := lim
n→∞

‖x0 −mn‖ = inf{‖x0 −m‖ : m ∈ M}.

Recall the parallelogram law; namely, ‖x− y‖2 = 2[‖x‖2 + ‖y‖2]−‖x+ y‖2. Let us apply
this with x := (x0 −mn) and y := (x0 −mm), then

‖mm −mn‖2 = 2[‖x0 −mn‖2 + ‖x0 −mm‖2]− ‖2x0 − (mn +mm)‖2

= 2[‖x0 −mn‖2 + ‖x0 −mm‖2 − 2‖x0 − (mn +mm)/2‖2]
6 2[‖x0 −mn‖2 + ‖x0 −mm‖2 − 2d2], since (mn +mm)/2 ∈ M .

It now follows that (mn : n ∈ N) is a Cauchy sequence in M . Let m0 := lim
n→∞

mn. Then

m0 ∈ M , since M is closed and ‖x0 −m0‖ = lim
n→∞

‖x0 −mn‖ = d. ✷

Lemma 3.6. Let M be a closed subspace of a Hilbert space X. If x0 6∈ M and there exists
an m0 ∈ M such that ‖x0 −m0‖ = inf{‖x0 −m‖ : m ∈ M}, then (x0 −m0) ∈ M⊥.

Proof. Fix m ∈ M and define D : R → R by,

D(λ) := ‖x0 − (m0 + λm)‖2 = ‖(x0 −m0)− λm‖2.
Therefore,

D(λ) = λ2‖m‖2 − 2λReal〈m, x0 −m0〉+ ‖x0 −m0‖2; which is a quadratic in λ.

Now, by assumption, D attains its minimum value at λ = 0 and so by elementary calculus,
0 = D′(0) = 2Real〈m, x0 −m0〉, since D′(λ) = 2λ‖m‖2 − 2Real〈m, x0 −m0〉.

Thus, for any m ∈ M , Real〈m, x0 − m0〉 = 0. Now, if m ∈ M , then im is also in M
and so 0 = Real〈im, x0 − m0〉 = −Im〈m, x0 − m0〉, i.e., Im〈m, x0 − m0〉 = 0 and so
〈m, x0 −m0〉 = 0. Since m ∈ M was arbitrary it follows that (x0 −m0) ∈ M⊥. ✷
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Theorem 3.7. If M is a closed subspace of a Hilbert space (H, 〈·, ·〉), then M+M⊥ = H.
In fact, M ⊕M⊥ = H.

Proof. Clearly, M +M⊥ ⊆ H . So it is sufficient to show that H ⊆ M +M⊥. Let x0 ∈ H ,
then by the earlier two lemmas there exists a m0 ∈ M such that (x0 −m0) ∈ M⊥. Thus,
x0 = m0 + (x0 −m0) ∈ M +M⊥. ✷

Corollary 3.8. If M is a closed subspace of a Hilbert space (H, 〈·, ·〉), then (M⊥)⊥ = M .

Proof. From before we know thatM ⊆ (M⊥)⊥ so it is sufficient to show that (M⊥)⊥ ⊆ M .
To this end, choose x ∈ (M⊥)⊥. Then x = m+m⊥ for some m ∈ M and m⊥ ∈ M⊥ (as
H = M ⊕M⊥). Now, since x ∈ (M⊥)⊥,

0 = 〈x,m⊥〉 = 〈m+m⊥, m⊥〉 = 〈m,m⊥〉+ 〈m⊥, m⊥〉 = 0 + ‖m⊥‖2.

Hence m⊥ = 0 and so x = m ∈ M . ✷

Let (H, 〈·, ·〉) be a Hilbert space and let S ⊆ H . Then S is called an orthonormal set

if 〈s, s′〉 = 0 whenever s 6= s′ and 〈s, s〉 = 1 for every s ∈ S. A subset S of a Hilbert
space (H, 〈·, ·〉) is called an orthonormal basis for H if S is an orthonormal set and
H = span(S).

Theorem 3.9. Every nonzero Hilbert space admits an orthonormal basis.

Proof. Let (H, 〈·, ·〉) be a nonzero Hilbert space and let X be the family of all orthonormal
subsets of H . Then X 6= ∅ and (X,⊆) is a partially ordered set. (Note: if x ∈ SH , then
{x} ∈ X). We claim that X contains a maximal element. By Zorn’s Lemma to show
this we need only show that every totally ordered subset of X has an upper bound. Let
∅ 6= T ⊆ X be a totally ordered and let B :=

⋃{S : S ∈ T}. Clearly, S ⊆ B for
each S ∈ T and so B is an upper bound for T provided we have B ∈ X . So suppose
that x, y ∈ B and x 6= y. Then there exists Sx ∈ T and Sy ∈ T such that x ∈ Sx and
y ∈ Sy. Now since T is totally ordered either Sx ⊆ Sy or Sy ⊆ Sx. Therefore, either
{x, y} ⊆ Sx or {x, y} ⊆ Sy. Hence, in either case, 〈x, y〉 = 0. Furthermore, it is easy
to see that if x ∈ B, then ‖x‖ = 1. This shows that B ∈ X . Let Bmax be a maximal
element of (X,⊆). We claim that span(Bmax) = H ; for if this is not the case then we may
choose x ∈ SH ∩ span(Bmax)

⊥ and set B∗ := Bmax ∪ {x}. Then B∗ ∈ X , Bmax ⊆ B∗, but
B∗ 6= Bmax; which contradicts that maximality of Bmax. Hence Bmax is an orthonormal
basis for H . ✷

Exercise 3.10 (Pythagoras’ Theorem). Let (X, 〈·, ·〉) be an inner product space. Show
that if x ⊥ y, then

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Theorem 3.11. Let {ek : 1 6 k 6 n} be an orthonormal set in an inner product space
(X, 〈·, ·〉). Let x ∈ X and M := span{e1, e2, . . . en}. Then:

(i) (x−∑n
k=1〈x, ek〉ek) ⊥ M ;
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(ii)
∑n

k=1〈x, ek〉ek is the closest point in M to x;

(iii) ‖x‖2 = ‖
∑n

k=1〈x, ek〉ek‖2 + ‖x−
∑n

k=1〈x, ek〉ek‖2.

Proof. (i): To show this it is sufficient to check that 〈x−
∑n

k=1〈x, ek〉ek, ej〉 = 0 for each
1 6 j 6 n. But this follows from the following simple calculation.

〈x−
n∑

k=1

〈x, ek〉ek, ej〉 = 〈x, ej〉 − 〈
n∑

k=1

〈x, ek〉ek, ej〉

= 〈x, ej〉 −
n∑

k=1

〈x, ek〉〈ek, ej〉

= 〈x, ej〉 −
n∑

k=1

〈x, ek〉δk,j = 〈x, ej〉 − 〈x, ej〉 = 0.

(ii): Let m ∈ M . Then m =
∑n

k=1mkek for some (m1, m2, . . . , mn) ∈ Kn. Now,

‖x−m‖2 =
∥∥∥∥∥(x−

n∑

k=1

〈x, ek〉ek) +
n∑

k=1

(〈x, ek〉 −mk)ek

∥∥∥∥∥

2

.

Therefore, since
∑n

k=1(〈x, ek〉 −mk)ek ∈ M and x−
∑n

k=1〈x, ek〉ek ∈ M⊥ we have that

‖x−m‖2 =
∥∥∥∥∥

n∑

k=1

(〈x, ek〉 −mk)ek

∥∥∥∥∥

2

+

∥∥∥∥∥x−
n∑

k=1

〈x, ek〉ek

∥∥∥∥∥

2

>

∥∥∥∥∥x−
n∑

k=1

〈x, ek〉ek

∥∥∥∥∥

2

i.e., ‖x − m‖ > ‖x −
∑n

k=1〈x, ek〉ek‖. (iii): The proof of this follows from part (i) and
Exercise 3.10. ✷

Exercise 3.12. Let (M, d) be a metric space. Show that (M, d) is not separable if, and
only if, there exists an ε > 0 and an uncountable set C ⊆ M such that d(x, y) > ε for all
(x, y) ∈ C2 \∆. Here ∆ := {(x, y) ∈ C2 : x = y} - the diagonal of C2.

Theorem 3.13. Let (H, 〈·, ·〉) be a separable infinite dimensional Hilbert space. Then
(H, 〈·, ·〉) has an orthonormal basis {en : n ∈ N} such that x =

∑∞
k=1〈x, ek〉ek, for each

x ∈ H.

Proof. We know, from Theorem 3.9 that (H, 〈·, ·〉) has an orthonormal basis B. Since
H is infinite dimensional, B must be infinite. On the other hand, for every (b, b′) ∈
B2 \ ∆, ‖b − b′‖2 = ‖b‖2 + ‖b′‖2 = 2 and so by Exercise 3.12, B must be at most
countable i.e., B can be expressed as B = {en : n ∈ N}. For each n ∈ N, let Mn :=
span{e1, e2, . . . en}. Then span(B) =

⋃
n∈N Mn. Fix x ∈ H . Since Mn ⊆ Mn+1 for

all n ∈ N, 0 6 dist(x,Mn+1) 6 dist(x,Mn) and so limn→∞ dist(x,Mn) exists, and is
greater than, or equal to 0. Further, since H = span(B) =

⋃
n∈NMn, it follows that

lim
n→∞

dist(x,Mn) = 0. However, by Theorem 3.11 part (ii)

dist(x,Mn) =

∥∥∥∥∥x−
n∑

k=1

〈x, ek〉ek

∥∥∥∥∥ for each n ∈ N.

Thus, lim
n→∞

‖x−∑n
k=1〈x, ek〉ek‖ = 0 and we are done. ✷
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Exercise 3.14. Let {ek : 1 6 k 6 n} be an orthonormal set in an inner product space
(X, 〈·, ·〉). Show that for any (a1, a2, . . . an) ∈ Kn, ‖∑n

k=1 akek‖2 =
∑n

k=1 |ak|2.

Theorem 3.15. Let {en : n ∈ N} be an orthonormal set in a Hilbert space (H, 〈·, ·〉) and
let x ∈ H. Then: (i)

∑∞
k=1 |〈x, ek〉|2 6 ‖x‖2 (Bessel’s Inequality); (ii) If {en : n ∈ N} is

an orthonormal basis for (H, 〈·, ·〉), then
∑∞

k=1 |〈x, ek〉|2 = ‖x‖2 (Parseval’s Identity).

Proof. (i): For every n ∈ N, we have

0 6

∥∥∥∥∥x−
n∑

k=1

〈x, ek〉ek

∥∥∥∥∥

2

= ‖x‖2 −
∥∥∥∥∥

n∑

k=1

〈x, ek〉ek

∥∥∥∥∥

2

= ‖x‖2 −
n∑

k=1

|〈x, ek〉|2.

From which Bessel’s inequality follows.

(ii): If {en : n ∈ N} is an orthonormal basis for (H, 〈·, ·〉), then x =
∑∞

k=1〈x, ek〉ek. The
result then follows from the above equation. ✷

Example 3.16. Recall that ℓ2(N) := {(xn : n ∈ N) ∈ KN :
∑

n∈N |xn|2 < ∞}. On ℓ2(N)
one can define the following inner product.

〈(xn : n ∈ N), (yn : n ∈ N)〉2 :=
∑

n∈N

xnyn.

Then (ℓ2(N), 〈·, ·〉2) is a separable infinite dimensional Hilbert space.

We now present a representation theorem for separable infinite dimensional Hilbert spaces.

Theorem 3.17 (Riesz-Fischer Theorem). Every separable infinite dimensional Hilbert
space (H, 〈·, ·〉) is isometrically isomorphic to (ℓ2(N), 〈·, ·〉2).

Proof : Let {en : n ∈ N} be an orthonormal basis for (H, 〈·, ·〉). Define T : ℓ2(N) →
H by, T (a) :=

∑∞
k=1 akek, where a := (ak : k ∈ N). First we must show that T is

well-defined, i.e., show that for each a ∈ ℓ2(N), T (a) really is an element of H . Let
a := (ak : k ∈ N) ∈ ℓ2(N), then for each (m,n) ∈ N2 such that m < n we have that
‖
∑n

k=m akek‖2 =
∑n

k=m |ak|2. Therefore, the partial sums (
∑n

k=1 akek : n ∈ N) form a
Cauchy sequence in (H, 〈·, ·〉) and thus are convergent. It is easy to see that T is linear
and by Parseval’s Identity it follows that T is an isometric embedding. Therefore, it
remains to show that T is onto. To this end, consider x ∈ H . Then x =

∑∞
k=1〈x, ek〉ek.

Define a := (ak : k ∈ N) by, ak := 〈x, ek〉. By Bessel’s inequality a ∈ ℓ2(N). The proof is
completed with the simple observation that T (a) = x. �

Example 3.18. Let Γ be a nonempty set and let p ∈ [1,∞). We shall denote by, ℓp(Γ)
the set of all functions from Γ into K such that

sup

{∑

γ∈F

|f(γ)|p : F is a finite subset of Γ

}
< ∞.
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Then (ℓp(Γ), ‖ · ‖p) is a Banach space, where

‖f‖p :=
(
sup

{∑

γ∈F

|f(γ)|p : F is a finite subset of Γ

})1/p

.

Note that if f ∈ ℓp(Γ), then {γ ∈ Γ : f(γ) 6= 0} is at most countable and we write
‖f‖p = (

∑
γ∈Γ |f(γ)|p)1/p. If p = 2, then ℓp(Γ) is a Hilbert space with inner product

defined by

〈f, g〉2 :=
∑

γ∈Γ

f(γ)g(γ).

If Γ = {1, 2, . . . , n}, then we write ℓ2n instead of ℓ2({1, 2, . . . , n}).
Exercise 3.19. Let (H, 〈·, ·〉) be a nonzero finite dimensional inner product space. Show
that (H, 〈·, ·〉) is isometrically isomorphic to (ℓ2n, 〈·, ·〉2), where n := dim(H).

More generally, one can prove that every nonzero Hilbert space (H, 〈·, ·〉) is isometrically
isomorphic to (ℓ2(Γ), 〈·, ·〉2) for some nonempty set Γ.

Unlike the case of a general Banach space, one can give a satisfactory description of all
the bounded linear functionals on a Hilbert space.

Theorem 3.20 (Riesz’s Representation Theorem). Let x∗ be a bounded linear functional
on a Hilbert space (H, 〈·, ·〉). Then there exists an element x0 ∈ H such that x∗(y) = 〈y, x0〉
for all y ∈ H. Moreover, the element x0 is unique and the operator norm of x∗ equals
‖x0‖.

Proof. Consider the mapping T : H → H∗ defined by, T (x) := 〈·, x〉, i.e., T (x)(y) = 〈y, x〉
for each y ∈ H . From our earlier work we know that T well-defined, i.e., T (x) is a
continuous linear functional on H , for each x ∈ H . Fix x ∈ H , from the Cauchy-Schwarz
inequality we have that |〈y, x〉| 6 ‖x‖‖y‖ for all y ∈ H and so the operator norm of T (x)
is less than, or equal to, ‖x‖. However, |〈x, x〉| = ‖x‖2 and so

‖T (x)‖ = sup{|T (x)(y)| : y ∈ SH} = ‖x‖.
Thus, it remains to show that T is onto. To this end let x∗ ∈ H∗ \ {0} and let M :=
Ker(x∗). Choose x ∈ M⊥ \ {0}. Note that this is possible since M 6= H . We claim that
H = span{x,M}, i.e., H = {h ∈ H : h = λx+m for some λ ∈ K and m ∈ M}. To prove
this assertion, let us consider any h ∈ H . Then h− [x∗(h)/x∗(x)]x ∈ M since

x∗(h− [x∗(h)/x∗(x)]x) = x∗(h)− [x∗(h)/x∗(x)]x∗(x) = x∗(h)− x∗(h) = 0.

Therefore, h = [x∗(h)/x∗(x)]x + m where, m := h − [x∗(h)/x∗(x)]x ∈ M . We can now
check that T (x0) = x∗ where x0 := µx and µ := x∗(x)/‖x‖2. But this is easy to check
since we need only show that T (x0) = x∗ on a spanning set for H . In particular, we need
only show that T (x0) = x∗ on {x} and M . However, T (x0)(x) = 〈x, x0〉 = x∗(x) and
T (x0)(m) = 〈m, x0〉 = 0 = x∗(m) for each m ∈ M . ✷

For the idea behind this proof note that if f and g are linear functionals on a vector space
V and Ker(f) ⊆ Ker(g), then g = λf for some λ ∈ K. We shall examine the structure of
Hilbert spaces more closely later in this course.
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Chapter 4

Hahn-Banach Theorem

A real-valued function p defined on a vector space V is called sublinear if for every
x, y ∈ V and 0 6 λ < ∞, p(λx) = λp(x) and p(x + y) 6 p(x) + p(y). If, moreover,
p(λx) = |λ|p(x) for all x ∈ V and all λ ∈ K, then p is called a semi-norm on V .

Exercise 4.1. (a) Show that every sublinear function p defined on a vector space V is
convex and has the property that p(0) = 0.

(b) Show that if p is a semi-norm then p(x) = p(−x) for all x ∈ V and 0 6 p(x) for all
x ∈ V . Hint : 0 = (1/2)(−x) + (1/2)x.

Let us start this section with some linear algebra. Suppose that U is a subspace of a
vector space (V ; +; · ), over the field of real numbers and suppose that f : U → R is a
linear mapping. We will look at possible “extensions” of f to larger subspaces of V . To
this end, suppose that x0 ∈ V \ U and W := span(U, x0). Then every x ∈ W can be
uniquely expressed in the form: x = λx0 + u where u ∈ U and λ ∈ R. That is,

span(U, x0) = {λx0 + u ∈ V : u ∈ U and λ ∈ R}

and if, λ1x0+u1 = λ2x0+u2, then λ1 = λ2 and u1 = u2. For each α ∈ R, let Fα : W → R
be defined by, Fα(x) := f(u) + λα, where x = λx0 + u. Note that since the λ ∈ R and
u ∈ U are unique, this function is well-defined. It is also evident that Fα|U = f . It is also
easy to verify that Fα is linear on W . Thus, each Fα is a linear extension of f to W .

Let us also observe that if G : W → R is any linear function on W such that G|U = f ,
then G = Fα for some α ∈ R. In fact, G = FG(x0). To see this we simply do a calculation.
Suppose that G : W → R is a linear function such that G|U = f and x ∈ W . Then
x = λx0 + u for some unique λ ∈ R and u ∈ U and

G(x) = G(λx0 + u) = λG(x0) +G(u) = λG(x0) + f(u) = FG(x0)(λx0 + u) = FG(x0)(x).

Next, we shall consider whether we can extend f to a linear function G : W → R in
such a way that if f(u) 6 p(u) for all u ∈ U , then G(x) 6 p(x) for x ∈ W , where
p : V → R is some sublinear functional on V . From our observations above this reduces

23



to the question of whether there exist an α ∈ R such that Fα(x) 6 p(x) for all x ∈ W ,
whenever, f(u) 6 p(u) for all u ∈ U .

We shall look at this more closely. Firstly, Fα(x) 6 p(x) for all x ∈ W if, and only if,
f(u) + λα 6 p(u+ λx0) for all u ∈ U and all λ ∈ R and this holds if, and only if,

f(u) + λα 6 p(u+ λx0) for all u ∈ U and all 0 6 λ and

f(u) + (−λ)α 6 p(u+ (−λ)x0) for all u ∈ U and all 0 < λ.

Since f(u) 6 p(u) for all u ∈ U , the above inequalities hold if, and only if,

α 6 p(λ−1u+ x0)− f(λ−1u) for all u ∈ U and all 0 < λ and

α > f(λ−1u)− p(λ−1u− x0) for all u ∈ U and all 0 < λ.

Therefore, Fα(x) 6 p(x) for all x ∈ W , if, and only if,

sup
u∈U
0<λ

f(λ−1u)− p(λ−1u− x0) 6 α 6 inf
u∈U
0<λ

p(λ−1u+ x0)− f(λ−1u). (∗)

Lemma 4.2. Let U be a subspace of a vector space V over the real numbers and let
p : V → R be a sublinear functional on V . If f is a linear functional on U , f(u) 6 p(u)
for all u ∈ U and x0 ∈ V \ U , then there exists a linear function G : span(U, x0) → R
such that G|U = f and G(x) 6 p(x) for all x ∈ span(U, x0).

Proof. Let W := span(U, x0) and let Fα : W → R be defined by, Fα(x) := f(u) + λα,
where u ∈ U , λ ∈ R and x = λx0 + u. We need to show that the equality (∗) holds. Let
u1, u2 ∈ U and λ1, λ2 ∈ (0,∞). Then, since p is subadditive

f(λ−1
1 u1 + λ−1

2 u2) 6 p(λ−1
1 u1 + λ−1

2 u2) 6 p(λ−1
1 u1 − x0) + p(λ−1

2 u2 + x0).

Therefore,
f(λ−1

1 u1)− p(λ−1
1 u1 − x0) 6 p(λ−1

2 u2 + x0)− f(λ−1
2 u2).

Hold u2 and λ2 fixed, then

sup
u∈U
0<λ

f(λ−1u)− p(λ−1u− x0) 6 p(λ−1
2 u2 + x0)− f(λ−1

2 u2).

Now, take the infimum over u2 ∈ U and 0 < λ2 to get

sup
u∈U
0<λ

f(λ−1u)− p(λ−1u− x0) 6 inf
u∈U
0<λ

p(λ−1u+ x0)− f(λ−1u).

Next, choose α ∈ R such that

sup
u∈U
0<λ

f(λ−1u)− p(λ−1u− x0) 6 α 6 inf
u∈U
0<λ

p(λ−1u+ x0)− f(λ−1u).

Then, by (∗), Fα(x) 6 p(x) for all x ∈ W . ✷
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Theorem 4.3 (Hahn-Banach Theorem). Let U be a subspace of a vector space V (over
R) and let p : V → R be a sublinear functional on V . If f is a linear functional on U
and f(u) 6 p(u) for all u ∈ U , then there exists a linear functional F : V → R such that
F |U = f and F (x) 6 p(x) for all x ∈ V .

Proof. Let P denote the collection of all ordered pairs (W ′, f ′), where W ′ is a subspace of
V containing U and f ′ : W ′ → R is a linear functional defined on W ′ such that f ′|U = f
and satisfies f ′(x) 6 p(x) for all x ∈ W ′. P is non-empty as (U, f) ∈ P. We partially
order P by, (W ′, f ′) 6 (W ′′, f ′′) if W ′ ⊆ W ′′ and f ′′|W ′ = f ′. If {(Wα, fα) : α ∈ A} is a
nonempty totally ordered sub-family of P, then W ′ :=

⋃
{Wα : α ∈ A} is a subspace of

V containing U . The function f ′ : W ′ → R defined by, f ′(x) := fα(x) if x ∈ Wα is well-
defined and linear. In fact, (W ′, f ′) ∈ P. Moreover, (Wα, fα) 6 (W ′, f ′) for all α ∈ A.
Therefore, by Zorn’s Lemma, P has a maximal element (W,F ). We must show that
W = V . So suppose, in order to obtain a contradiction, that W 6= V and pick x0 ∈ V \W .
Then, by the previous lemma, there exists a linear function G : span(W,x0) → R such
that G|W = F and G(x) 6 p(x) for all x ∈ span(W,x0). Then (span(W,x0), G) ∈ P and
so (W,F ) < (span(W,x0), G); which is impossible, since (W,F ) is a maximal element of
P. Therefore, W = V , which completes the proof. ✷

Exercise 4.4. Let Y be a subspace of a normed linear space (X, ‖ · ‖) (over R). If
f ∈ Y ∗ then there exists an F ∈ X∗ such that F |Y = f and ‖F‖ = ‖f‖. Hint: Consider
p : X → R defined by, p(x) := ‖f‖ · ‖x‖. Note also that F (x) 6 p(x) for all x ∈ X if,
and only if, |F (x)| 6 p(x) for all x ∈ X.

Let V be a vector space over C. Then V may also be considered as a vector space over
R (or indeed, any subfield of C). Let us denote this vector space by VR. In this way, if
(X, ‖ · ‖) is a normed linear space over C then (XR, ‖ · ‖) is a normed linear space over R.
If f ∈ X∗ then fR : XR → R defined by, fR(x) := Real[f(x)], is a member of (XR)

∗ (i.e.,
fR is real linear and continuous).

Fact : Let (X, ‖ · ‖) be a normed linear space over C and let f ∈ X∗. Then ‖fR‖ =
‖f‖. Clearly, ‖fR‖ 6 ‖f‖. To obtain the reverse inequality, let us fix x ∈ SX and set
θ := arg(f(x)) ∈ [0, 2π). Then, f(e−iθx) = e−iθf(x) ∈ R and so f(e−iθx) = fR(e

−iθx).
Therefore,

|f(x)| = |f(e−iθx)| = |fR(e−iθx)| 6 ‖fR‖‖e−iθx‖ = ‖fR‖‖x‖ = ‖fR‖.

Since x ∈ SX was arbitrary, ‖f‖ = sup
x∈SX

|f(x)| 6 ‖fR‖.

Exercise 4.5. Let f be a linear functional defined on a vector space V over C. Show
that f(x) = fR(x) − ifR(ix) for all x ∈ V . Hint: Write f as: f = fR + ifI where
fI(x) := Im[f(x)] for all x ∈ V . Conversely, show that if g is a real linear functional on
V and f : V → C is defined by, f(x) := g(x) − ig(ix) then f is complex linear and
fR = g.

Theorem 4.6. Let Y be a subspace of a normed linear space (X, ‖·‖) (over C). If f ∈ Y ∗

then there exists an F ∈ X∗ such that F |Y = f and ‖F‖ = ‖f‖.
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Proof : Consider the real linear functional fR : Y → R. By an earlier exercise there
exists a G ∈ (XR)

∗ such that G|Y = fR and ‖G‖ = ‖fR‖ = ‖f‖. Define, F : X → C by,
F (x) := G(x)− iG(ix). Then F is complex linear and

‖F‖ = ‖FR‖ = ‖G‖ = ‖f‖.

Moreover,
F |Y (y) = G|Y (y)− iG|Y (iy) = fR(y)− ifR(iy) = f(y)

for all y ∈ Y , i.e., F |Y = f . �

Corollary 4.7. Let (X, ‖ ·‖) be a normed linear space. For every x ∈ X \{0} there exists
an f ∈ SX∗ such that f(x) = ‖x‖.

Proof. Let Y := span{x} and define f ∈ Y ∗ by, f(λx) := λ‖x‖. Clearly, ‖f‖ = 1 and
f(x) = ‖x‖. By Theorem 4.6 there exists an F ∈ X∗ such that ‖F‖ = ‖f‖ and F |Y = f .
In particular, F (x) = f(x) = ‖x‖. ✷

Let S be a nonempty subset of a vector space V . We shall say that a point x ∈ S is a
core point of S if for every v ∈ V there exists a 0 < δ < ∞ such that x+ λv ∈ S for all
0 6 λ < δ. The set of all core points of S is called the core of S.

Let C be a convex set in a vector space V with 0 in the core of C. Then the functional
µC : V → R defined by, µC(x) := inf{λ > 0 : x ∈ λC} is called the Minkowski

functional generated by the set C.

Theorem 4.8. Let A be a convex subset of a vector space V with 0 in the core of A.
Then µA : V → R is a sublinear functional. Moreover,

{x ∈ V : µA(x) < 1} ⊆ A ⊆ {x ∈ V : µA(x) 6 1}.

Proof. To show that µA is positively homogeneous (i.e., µA(sx) = sµA(x) for all
0 6 s < ∞ and all x ∈ V ) it is sufficient to show that µA(sx) 6 sµA(x) for all 0 < s < ∞
and all x ∈ V . To see this, let 0 < s < ∞ and let x ∈ V , then

µA(x) = µA(s
−1(sx)) 6 s−1µA(sx) and so sµA(x) 6 µA(sx).

Note that as µA(0) = 0, we get for free that µA(0x) = 0µA(x) for all x ∈ V .

Next, let 0 < s < ∞, x ∈ V and let 0 < ε. Then choose 0 < λ < (µA(x) + ε/s) such that
x ∈ λA. Therefore, sx ∈ (sλ)A. Thus, µA(sx) 6 sλ and so µA(sx) 6 sµA(x) + ε. Since
0 < ε was arbitrary, µA(sx) 6 sµA(x).

We now show that µA is subadditive (i.e., µA(x+ y) 6 µA(x) + µA(y) for all x, y ∈ V ).
Let x, y ∈ V . Let 0 < ε be arbitrary. Then there exists 0 < λ1 < µA(x) + ε/2 and
0 < λ2 < µA(y) + ε/2 such that x ∈ λ1A and y ∈ λ2A. Then

x+ y ∈ λ1A+ λ2A = (λ1 + λ2)A, since A is convex.
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Therefore, µA(x + y) 6 λ1 + λ2 < µA(x) + µA(y) + ε. Since 0 < ε was arbitrary,
µA(x+ y) 6 µA(x) + µA(y).

If µA(x) < 1, then there exists a 0 < λ < 1 such that x ∈ λA or λ−1x ∈ A. Therefore,
x = λ[(λ−1x)]+(1−λ)0 ∈ A, since A is convex. On the other hand, if x ∈ A, then x ∈ 1A
and so µA(x) 6 1. ✷

We now introduce some topology to the situation.

Proposition 4.9. Let p : X → R be a sublinear functional defined on a normed linear
space (X, ‖ · ‖). Then p is continuous on X if, and only if, p is continuous at 0.

Proof. Clearly if p is continuous on X , then p is continuous at 0. So we consider the
converse. Suppose that p is continuous at 0. Note that for any x, y ∈ X

p(x) 6 p(x− y) + p(y) and p(y) 6 p(y − x) + p(x).

Therefore, p(x)− p(y) 6 p(x− y) and p(y)− p(x) 6 p(y − x). Thus,

±[p(x)− p(y)] 6 max{p(x− y), p(y − x)}.

That is, |p(x) − p(y)| 6 max{p(x − y), p(y − x)}. Now, suppose x0 ∈ X and 0 < ε are
given. Since p is continuous at 0, there exists a 0 < δ such that |p(x)| = |p(x)− p(0)| < ε
for all ‖x‖ = ‖x− 0‖ < δ. Note also that |p(−x)| < ε for all ‖x‖ < δ. So if, ‖x− x0‖ < δ,
then

|p(x)− p(x0)| 6 max{p(x− x0), p(x0 − x)} = max{p(x− x0), p(−(x− x0))} < ε.

Hence, p is continuous at x0. ✷

Proposition 4.10. Let A be a convex subset of a normed linear space (X, ‖ · ‖). If
0 ∈ int(A), then µA is continuous on X.

Proof. By the Proposition 4.9 we need only show that µA is continuous at 0 ∈ X . To this
end, let 0 < ε. Since 0 ∈ int(A) there exists an 0 < r such that rBX ⊆ A. Therefore,
(εr)BX ⊆ εA and so if x ∈ B(0, εr), then µA(x) 6 ε. Let δ := εr. Then 0 < δ and if
‖x− 0‖ < δ, |µA(x)− µA(0)| = µA(x) 6 ε. This completes the proof. ✷

Corollary 4.11. Let A be a convex subset of a normed linear space (X, ‖ · ‖) with 0 ∈
Cor(A). Then µA is continuous on X if, and only if, 0 ∈ int(A).

Proof. From Proposition 4.10, if 0 ∈ int(A), then µA is continuous on X . So we consider
the converse. Suppose that µA is continuous on X , then (µA)

−1((−1, 1)) is an open subset
of A and moreover, since µA(0) = 0 ∈ (−1, 1), (µA)

−1((−1, 1)) is an open neighbourhood
of 0, that is contained in A. Hence, 0 ∈ int(A). ✷
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Exercise 4.12. Let C be a convex subset of a normed linear space (X, ‖·‖) with 0 ∈ int(C).
Then

{x ∈ V : µC(x) < 1} = int(C) and {x ∈ V : µC(x) 6 1} = C.

In particular, if C is a closed subset of X with 0 ∈ int(C) and x0 6∈ C, then 1 < µC(x0).

Theorem 4.13 (Separation Theorem)). Let C be a nonempty closed convex subset of
a normed linear space (X, ‖ · ‖). If x0 6∈ C, then there exists an f ∈ X∗ such that
sup{Real[f(x)] : x ∈ C} < Real[f(x0)].

Proof. First, let us consider the case when (X, ‖ · ‖) is a normed linear space over R. We
may assume without loss of generality that 0 ∈ C; otherwise we consider C−x and x0−x
for some x ∈ C. Let δ := dist(x0, C) > 0. Set D := {x ∈ X : dist(x, C) 6 δ/2}. Since
0 ∈ C, we have that 0 ∈ int(D). D is also closed and convex and x0 6∈ D. Let µD be the
Minkowski functional for D. Since D is closed and x0 6∈ D we have µD(x0) > 1. Define
a linear functional on span{x0} by, f(λx0) := λµD(x0). Then on span{x0} we have that
f(λx0) 6 µD(λx0). Indeed, for 0 6 λ it is clear from the definition of f ; whereas for
λ < 0 we have f(λx0) = λµD(x0) < 0 while µD(λx0) > 0. Extend f onto X so that
f(x) 6 µD(x) for all x ∈ X . If x ∈ D, then µD(x) 6 1 and thus, f(x) 6 µD(x) 6 1. Since
D contains a neighbourhood of the origin we have that f is a bounded on a neighbourhood
of 0 and so f ∈ X∗. Since f(x0) = µD(x0) > 1 we get that sup{f(x) : x ∈ C} 6 1 < f(x0).

In the complex case, we construct g from (XR)
∗ as in the real case and then define

f(x) := g(x)− ig(ix). ✷

Two subsets A and B of a normed linear space (X, ‖·‖) are said to be strongly separated

by a closed hyperplane if there exists an f ∈ X∗, an α ∈ R and an 0 < ε < ∞ such
that:

A ⊆ {x ∈ X : Real[f(x)] 6 α− ε} and B ⊆ {x ∈ X : Real[f(x)] > α + ε}.

Theorem 4.14 (Strong Separation Theorem). Two disjoint closed and convex subsets A
and B of a normed linear space (X, ‖ · ‖) can be strongly separated by a closed hyperplane
if there exists a 0 < δ < ∞ such that (A+ δBX) ∩ B = ∅.

Proof. Let K := A−B. Then K is a nonempty closed and convex subset of X and
0 6∈ K. So from Theorem 4.13 there exists an f ∈ X∗ and an r ∈ R such that

sup{Real[f(x)] : x ∈ K} < r < Real[f(0)] = 0.

In particular, for any a ∈ A and b ∈ B, Real[f(a) − f(b)] < r < 0, or equivalently,
Real[f(a)] < r + Real[f(b)] for any a ∈ A and b ∈ B. Hold b ∈ B fixed and take the
supremum over a ∈ A to get:

sup{Real[f(a)] : a ∈ A} 6 r + Real[f(b)]

Now take the infimum over b ∈ B to get:

sup{Real[f(a)] : a ∈ A} 6 r + inf{Real[f(b)] : b ∈ B} < inf{Real[f(b)] : b ∈ B}.
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Let
α := (1/2) sup{Real[f(a)] : a ∈ A}+ (1/2) inf{Real[f(b)] : b ∈ B}

and ε := (1/2) inf{Real[f(b)] : b ∈ B} − (1/2) sup{Real[f(a)] : a ∈ A} > 0. Then,

A ⊆ {x ∈ X : Real[f(x)] 6 α− ε} and B ⊆ {x ∈ X : Real[f(x)] > α + ε}

which completes the proof. ✷

Exercise 4.15. Let M be a closed subspace of a normed linear space (X, ‖·‖). If x0 6∈ M ,
then there exists an f ∈ X∗ such that Real[f(x0)] = 1 and Real[f(x)] = 0 for all x ∈ M .

Note that if a linear functional is bounded on a vector space, then it must be the zero
functional. If the vector space is over the field of real number, and a linear function is
bounded above (or below), then it must also be the zero functional.
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Chapter 5

Baire’s Theorem

Let C be a nonempty subset of a metric space (M, d). Then we define the diameter of

C to be:

diam(C) := sup{d(x, y) : x, y ∈ C}.

Theorem 5.1 (Cantor Intersection Property). Let (Fn : n ∈ N) be a decreasing sequence
(i.e., Fn+1 ⊆ Fn for all n ∈ N) of nonempty closed subsets of a metric space (M, d). If
(M, d) is a complete metric space and lim

n→∞
diam(Fn) = 0, then

⋂
n∈N Fn 6= ∅.

Proof : For each n ∈ N, choose xn ∈ Fn. We claim that the sequence (xn : n ∈ N) is a
Cauchy sequence. To verify this claim let us fix 0 < ε. Since limn→∞ diam(Fn) = 0, there
exists an N ∈ N such that diam(Fn) < ε for all n > N . Let N 6 n < m, then

xm ∈ Fm ⊆ Fm−1 ⊆ · · · ⊆ Fn+1 ⊆ Fn i.e., xm, xn ∈ Fn. (∗)

Therefore, d(xm, xn) 6 diam(Fn) < ε. This completes the proof of the claim.

Since (M, d) is a complete metric space, (xn : n ∈ N) converges to some point x∞. We
now claim that x∞ ∈

⋂
n∈N Fn. Let n ∈ N, then by (∗) it follows that xm ∈ Fn for all

m > n. Therefore, since Fn is a closed set, x∞ = lim
m→∞

xm ∈ Fn. However, as n ∈ N was

arbitrary, x∞ ∈ ⋂n∈N Fn. This completes the proof. �

Theorem 5.2 (Baire Category Theorem). Let (M, d) be a nonempty complete metric
space and let (On : n ∈ N) be dense open subsets of (M, d). Then,

⋂∞
n=1On is dense in

(M, d).

Proof. Let W be a nonempty open subset of (M, d); we will show that
⋂∞

n=1On∩W 6= ∅.
We proceed inductively. First choose x1 ∈ O1∩W . Note this is possible since O1 is dense
in (M, d) and W is a nonempty open subset of (M, d). Then choose 0 < r1 < 1 such that
B[x1, r1] ⊆ O1 ∩W . Note: this is possible since O1 ∩W is an open set.

31



In general, we will choose xn ∈ M and 0 < rn < 1/n such that

B[xn, rn] ⊆ B(xn−1, rn−1) ∩ On ⊆ B[xn−1, rn−1].

Inductive step. Choose xn+1 ∈ B(xn, rn)∩On+1. Note this is possible since On+1 is dense
in (M, d) and B(xn, rn) is a nonempty open subset of (M, d). Then choose 0 < rn+1 <
1/(n+ 1) such that

B[xn+1, rn+1] ⊆ B(xn, rn) ∩ On+1 ⊆ B[xn, rn].

Note this is possible since B(xn, rn) ∩ On+1 is open in (M, d).

By the Cantor Intersection Property ∅ 6=
⋂

n∈N B[xn, rn] ⊆ B[x1, r1] ⊆ W . So we need
only show that

⋂
n∈N B[xn, rn] ⊆

⋂
n∈N On. However, by construction, B[xn, rn] ⊆ On for

all n ∈ N, and so
⋂

n∈NB[xn, rn] ⊆
⋂

n∈N On. This completes the proof. ✷

Example 5.3. Let {rn : n ∈ N} be an enumeration of the rational numbers. For each n ∈
N, let On := Q\{rn}. Then each On is a dense open subset of Q. However,

⋂∞
n=1On = ∅.

This demonstrates the need for the metric space to be complete.

Corollary 5.4. Let (M, d) be a nonempty complete metric space and let (Fn : n ∈ N) be
a closed cover of (M, d). Then for some k ∈ N, int(Fk) 6= ∅.

Proof. For each n ∈ N, let On := M \ Fn. Then,
⋂

n∈N

On =
⋂

n∈N

(M \ Fn) = M \
⋃

n∈N

Fn = ∅.

Therefore, for some k ∈ N, Ok must not be dense in (M, d). Thus, Fk = M \ Ok has
nonempty interior. ✷

We shall call a topological space (X, τ) a Baire space if for each sequence (On : n ∈ N)
of dense open subsets of (X, τ),

⋂
n∈NOn is dense in (X, τ).

From Theorem 5.2 we see that every nonempty complete metric space is a Baire space.

Exercise 5.5. (a) Show that every nonempty regular compact space is a Baire space;
(b) Show that if M is a nonempty complete metric space and X is a nonempty regular
compact space, then M ×X is a Baire space; (c) Show that every nonempty open subset
of a Baire space is a Baire space (with the relative topology); (d) Show that if Y is a dense
Gδ subset of a Baire space X, then Y (with the relative topology) is also a Baire space; (e)
Let X be an uncountable set. Show that X with the co-finite (or co-countable) topology is
a Baire space.

Let (X, τ) be a topological space. Then we shall say that a subset F of (X, τ) is first

category in (X, τ) if there exists a sequence (Fn : n ∈ N) of closed subsets of (X, τ) such
that: (i) F ⊆

⋃
n∈N Fn and (ii) int(Fn) = ∅ for each n ∈ N. We shall say that a subset S

of (X, τ) is second category if it is not first category.

Note that a topological space (X, τ) is a Baire space if, and only if, each nonempty open
subset of (X, τ) is second category.
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Application

Lemma 5.6. Suppose that a < b and f ∈ C[a, b]. Then for each ε > 0 and n ∈ N
there exists a piecewise linear mapping g ∈ C[a, b] such that (i) ‖f − g‖∞ < ε and (ii)
|g′+(x)| > n for all x ∈ [a, b).

Proof. Consider the following set:

S := {x ∈ [a, b] : there exists a piecewise linear mapping g ∈ C[a, x] with

g(x) = f(x), ‖f |[a,x] − g‖∞ < ε and |g′+(y)| > n for all y ∈ [a, x)}
Let s := sup{x ∈ [a, b] : x ∈ S}. Clearly, a < s 6 b. To complete the proof we need to
show that s ∈ S and that s = b (i.e., show that s < b leads to a contradiction). ✷

Example 5.7. If a < b, then there exists a continuous nowhere differentiable function on
[a, b].

Proof. Let D denote the set of all functions in (C[a, b], ‖ · ‖∞) that have a right-hand
derivative at some point of [a, b). For each n ∈ N, let

Dn := {f ∈ C[a, b] : ∃x ∈ [a, b− 1/n] for which sup
0<h6 1/n

∣∣∣∣
f(x+ h)− f(x)

h

∣∣∣∣ 6 n}.

Clearly, D ⊆ ⋃n∈N Dn. Let us now show that each Dn is closed subset of (C[a, b], ‖ · ‖∞).
So fix n ∈ N and let (fk : k ∈ N) be a sequence in Dn that converges to f in (C[a, b], ‖·‖∞).
We need to show that f ∈ Dn, i.e.,

sup
0<h6 1/n

∣∣∣∣
f(x+ h)− f(x)

h

∣∣∣∣ 6 n for some x ∈ [a, b− 1/n].

Our first task is to find the candidate point x ∈ [a, b−1/n] such that this inequality holds.

For each i ∈ N, choose xi ∈ [a, b− 1/n] so that

sup
0<h6 1/n

∣∣∣∣
fi(xi + h)− fi(xi)

h

∣∣∣∣ 6 n.

Since [a, b− 1/n] is compact, by passing to a subsequence if needed, we may assume that
(xi : i ∈ N) converges to x ∈ [a, b− 1/n]. (This is our candidate point!). We claim that:

sup
0<h6 1/n

∣∣∣∣
f(x+ h)− f(x)

h

∣∣∣∣ 6 n.

To see this, let 0 < h 6 1/n be arbitrary. We need to show that
∣∣∣∣
f(x+ h)− f(x)

h

∣∣∣∣ 6 n.

To this end, let 0 < ε be arbitrary. We will show that:
∣∣∣∣
f(x+ h)− f(x)

h

∣∣∣∣ 6 n + ε.
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Choose k ∈ N so that:

(i) |f(xk)− f(x)| < hε/4;

(ii) |f(xk + h)− f(x+ h)| < hε/4 and

(iii) ‖f − fk‖ < hε/4.

Note that such a choice is possible since x = lim
i→∞

xi and f = lim
i→∞

fi. Then,

∣∣∣∣
f(x+ h)− f(x)

h

∣∣∣∣ 6

∣∣∣∣
f(x+ h)− f(xk + h)

h

∣∣∣∣+
∣∣∣∣
f(xk + h)− fk(xk + h)

h

∣∣∣∣

+

∣∣∣∣
fk(xk + h)− fk(xk)

h

∣∣∣∣+
∣∣∣∣
fk(xk)− f(xk)

h

∣∣∣∣

+

∣∣∣∣
f(xk)− f(x)

h

∣∣∣∣ 6 ε/4 + ε/4 + n + ε/4 + ε/4 = n + ε.

Since 0 < ε was arbitrary, ∣∣∣∣
f(x+ h)− f(x)

h

∣∣∣∣ 6 n.

Since h ∈ (0, 1/n] was arbitrary,

sup
0<h6 1/n

∣∣∣∣
f(x+ h)− f(x)

h

∣∣∣∣ 6 n.

This shows that f ∈ Dn.

We now show that each Dn is nowhere dense in (C[a, b], ‖ · ‖∞). So fix n ∈ N. Suppose,
in order to obtain a contradiction, that there is some f ∈ Dn and r > 0 such that
B(f, r) ⊆ Dn. Then, by Lemma 5.6, there exists a piecewise linear mapping g : [a, b] → R
such that (i) ‖f − g‖∞ < r; (ii) g′+(x) exists for all x ∈ [a, b) and (iii) |g′+(x)| > n for all
x ∈ [a, b). However, this is impossible, since g ∈ B(f, r) ⊆ Dn, but g 6∈ Dn. ✷

Remarks 5.8. The previous example actually shows that the set of all functions in C[a, b]
that have a right-hand derivative at at-least one point of [a, b) is of the first category in
(C[a, b], ‖ · ‖∞).
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Chapter 6

Open Mapping Theorem

Lemma 6.1. Let (X, ‖ · ‖) be a Banach space, (Y, ||| · |||) a normed linear space and T ∈
B(X, Y ). If 0 < r, s satisfy B[0, s] ⊆ T (B[0, r]), then B[0, s] ⊆ T (B[0, 2r]).

Proof. By considering the mapping (r/s)T if necessary, we may assume that r = s = 1.
Let y be an arbitrary element of B[0, 1]. We will construct an x ∈ B[0, 2] such that
y = T (x).

Now, since B[0, 1] ⊆ T (B[0, 1]), we have that for each x ∈ X and each 0 < ε

B(T (x), ε) = T (x) +B(0, ε)

= T (x) + εB(0, 1)

⊆ T (x) + εT (B[0, 1])

= T (x) + εT (B[0, 1]) = T (B[x, ε]). (∗)

We shall inductively construct a sequence (xn : n ∈ N) in X such that:

(i) xn ∈ B[xn−1, 1/2
n−1] for all n ∈ N and

(ii) T (xn) ∈ B(y, 1/2n) for all n ∈ N.

Set x0 := 0. Base Step. Since y ∈ T (B[0, 1]), B(y, 1/21) ∩ T (B[0, 1]) 6= ∅. Choose
x1 ∈ B[0, 1] = B[x0, 1/2

0] so that T (x1) ∈ B(y, 1/21).

Let n ∈ N and suppose that we have constructed x0, x1, . . . , xn such that:

(i) xk ∈ B[xk−1, 1/2
k−1] for all 1 6 k 6 n and

(ii) T (xk) ∈ B(y, 1/2k) for all 1 6 k 6 n.

Inductive Step. Since T (xn) ∈ B(y, 1/2n), y ∈ B(T (xn), 1/2
n). Thus, by (∗), y ∈

T (B[xn, 1/2n]). Therefore, B(y, 1/2n+1) ∩ T (B[xn, 1/2
n]) 6= ∅. Hence, we may choose

xn+1 ∈ B[xn, 1/2
n] such that T (xn+1) ∈ B(y, 1/2n+1). This completes the induction.

Now, xn =
∑n

k=1(xk − xk−1) and ‖xk − xk−1‖ 6 1/2k−1. Therefore,

x := lim
n→∞

xn = lim
n→∞

∑n
k=1(xk − xk−1) exists and moreover,
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‖x‖ = ‖ lim
n→∞

∑n
k=1(xk − xk−1)‖ = lim

n→∞
‖
∑n

k=1(xk − xk−1)‖
6 lim

n→∞

∑n
k=1‖xk − xk−1‖

6 lim
n→∞

∑n
k=11/2

k−1 = 2.

i.e., x ∈ 2BX . On the other hand, |||y − T (xn)||| 6 1/2n for all n ∈ N. Therefore,

0 6 |||y − T (x)||| = |||y − T ( lim
n→∞

xn)|||
= |||y − lim

n→∞
T (xn)|||

= lim
n→∞

|||y − T (xn)|||
6 lim

n→∞
1/2n = 0.

Thus, y = T (x) and so B[0, 1] ⊆ T (B[0, 2]). ✷

Theorem 6.2 (Open Mapping Theorem). Suppose that (X, ‖·‖) and (Y, ||| · |||) are Banach
spaces and T ∈ B(X, Y ). If T maps onto Y , then T is an open mapping (i.e., maps open
sets to open sets).

Proof. First, let us show that there exists an 0 < s such that B(0, s) ⊆ T (2BX). In light
of Lemma 6.1, to accomplish this, we need only show that B(0, s) ⊆ T (BX). To this end,
consider the following:

Y = T (X) = T (
⋃

n∈N

nBX) =
⋃

n∈N

nT (BX) ⊆
⋃

n∈N

nT (BX) ⊆ Y.

Therefore, by Baire’s theorem, for some n0 ∈ N, int[n0T (BX)] 6= ∅. Choose y ∈ Y and
r > 0 such that B[y, r] ⊆ n0T (BX). Then,

B[0, r] = (1/2)B[−y, r] + (1/2)B[y, r] ⊆ n0T (BX)

since n0T (BX) is convex and symmetric. Therefore, if s := r/n0, then

sBY = (1/n0)B[0, r] ⊆ (1/n0)(n0T (BX)) = T (BX).

Next, let G be a nonempty open subset of (X, ‖ · ‖) and let y ∈ T (G). Choose x ∈ G such
that y = T (x). Since G is open there exists a δ > 0 such that B[x, 2δ] ⊆ G. Then,

y ∈ B(y, sδ) = y + δB(0, s) = T (x) + δB(0, s) ⊆ T (x) + δT (2BX) = T (x+ 2δBX)

= T (B[x, 2δ]) ⊆ T (G)

and so T (G) is open in (Y, ||| · |||). ✷

Corollary 6.3. Suppose that (X, ‖ · ‖) and (Y, ||| · |||) are Banach spaces and T ∈ B(X, Y ).
If T is 1-to-1 and onto, then T−1 ∈ B(Y,X).

Proof. Since T is 1-to-1 and onto T−1 exists and is linear. So it is sufficient to show that
T−1 is continuous. To this end, let G be an open subset of (X, ‖ · ‖). Then (T−1)−1(G) =
T (G); which is open in (Y, ||| · |||). Therefore, T−1 is continuous. ✷
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Corollary 6.4. Suppose that (X, ‖ · ‖) and (Y, ||| · |||) are Banach spaces and T ∈ B(X, Y ).
If T is onto, then (X/Ker(T ), ‖ · ‖) is isomorphic to (Y, ||| · |||).

Proof. Apply Corollary 6.3 to the mapping T̂ : X/Ker(T ) → Y defined by, T̂ (x +

Ker(T )) := T (x). To see that T̂ is continuous, notice that the open unit ball in X/Ker(T )

is contained in B̂X and so T̂ (B(0, 1)) ⊆ T (BX); which is bounded in (Y, ||| · |||). ✷

Theorem 6.5 (Closed Graph Theorem). Suppose that (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are
Banach spaces and T is a linear mapping from X into Y . If the graph of T is a closed
subset of X × Y , then T is continuous.

Proof. Let ‖ · ‖ : X → R be defined by, ‖x‖ := ‖x‖X + ‖T (x)‖Y . Then ‖ · ‖ is a norm
on X and ‖x‖X 6 ‖x‖ for all x ∈ X . Therefore, the linear mapping I : (X, ‖ · ‖) →
(X, ‖ · ‖X) defined by, I(x) := x is 1-to-1, onto and continuous. Next, we will show that
(X, ‖ · ‖) is a Banach space. Now, if (xn : n ∈ N) is a Cauchy sequence in (X, ‖ · ‖), then
(xn : n ∈ N) is a Cauchy sequence in (X, ‖ · ‖X) and (T (xn) : n ∈ N) is a Cauchy sequence
in (Y, ‖ · ‖Y ). Let x := lim

n→∞
xn and y := lim

n→∞
T (xn). Since T has closed graph y = T (x)

(i.e., (x, y) ∈ Graph(T )). Therefore,

lim
n→∞

‖x− xn‖ = lim
n→∞

‖x− xn‖X + lim
n→∞

‖T (x)− T (xn)‖Y = 0

and so (X, ‖ · ‖) is a Banach space. Thus, by Corollary 6.3 ‖ · ‖ and ‖ · ‖X are equivalent
norms on X ; which implies that T is continuous. ✷

Exercise 6.6. Show that if (X, ‖ · ‖) and (Y, ||| · |||) are normed linear spaces and T ∈
B(X, Y ), then T has a closed graph.

Application

Let (X, ‖ · ‖) be an infinite dimensional separable normed linear space. A sequence (en :
n ∈ N) in (X, ‖·‖) is called a Schauder basis if for every x ∈ X there exist unique scalars
(an : n ∈ N), called the coordinates of x, such that x =

∑
n∈N anen. For each n ∈ N, the

canonical projections Pn : X → X are defined by, Pn(
∑∞

k=1 akek) =
∑n

k=1 akek.

If (ek : k ∈ N) is a Schauder basis for a normed linear space (X, ‖ · ‖), then for each
n ∈ N, the mapping x∗

n : X → K defined by, x∗
n(x) := an, where an is the nth-coordinate

of x with respect to the basis (ek : k ∈ N), is a linear functional on (X, ‖ · ‖), called the
coordinate functional.

Theorem 6.7. If (ek : k ∈ N) is a Schauder basis for a Banach space (X, ‖ · ‖). Then
for each n ∈ N, the coordinate functional x∗

n is continuous.
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Proof. Define ‖ · ‖X : X → R by, ‖x‖X := sup{‖Pn(x)‖ : n ∈ N}. (Note: this is well
defined since (Pn(x) : n ∈ N) converges to x in (X, ‖·‖) and so sup{‖Pn(x)‖ : n ∈ N} < ∞
i.e., convergent sequences are bounded.)

Then ‖ · ‖X is a norm on X . Moreover, ‖x‖ 6 ‖x‖X for all x ∈ X since

‖x‖ = ‖ lim
n→∞

Pn(x)‖ = lim
n→∞

‖Pn(x)‖ 6 sup{‖Pn(x)‖ : n ∈ N} = ‖x‖X .

Therefore, if we can show that ‖ · ‖X is a complete norm, then we have by Corollary 6.3
that ‖ · ‖X is an equivalent norm to ‖ · ‖. To show this we need several facts: (i) If
(xn : n ∈ N) is a Cauchy sequence in (X, ‖ · ‖X), then for each k ∈ N, (x∗

k(xn) : n ∈ N)
is a Cauchy sequence in K, and hence is convergent; (ii) If ak := limn→∞ x∗

k(xn) for each
k ∈ N, then x :=

∑
k∈N akek is an element of X ; (iii) (xn : n ∈ N) converges to x in

(X, ‖ · ‖X).

Since each x∗
n is continuous with respect to ‖ · ‖X and ‖ · ‖X is equivalent to ‖ · ‖ we have

that each x∗
n is continuous with respect to ‖ · ‖. ✷

Exercise 6.8. For each n ∈ N, let fn : [0, 1] → R be defined by, fn(x) := xn.

(a) Show that (fn : n ∈ N) is a Schauder basis for (P [0, 1], ‖ · ‖∞), i.e., the polyno-
mials on [0, 1] equipped with the sup-norm.

(b) Show that the coordinate functionals on P [0, 1], with respect to the basis (fn :
n ∈ N), are not continuous.

Exercise 6.8 shows that the completeness of (X, ‖ · ‖) is essential to deduce the continuity
of the the coordinate functionals.
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Chapter 7

Uniform Boundedness Theorem

Theorem 7.1 (Uniform Boundedness Theorem). Let (X, ‖·‖) be a Banach space, (Y, |||·|||)
be a normed linear space and {Tα : α ∈ A} ⊆ B(X, Y ). If

{x ∈ X : {Tα(x) : α ∈ A} is bounded}

is second category in (X, ‖ · ‖), then {Tα : α ∈ A} is uniformly bounded (i.e., there exists
an M > 0 such that ‖Tα‖ 6 M for all α ∈ A).

Proof : Let S := {x ∈ X : {Tα(x) : α ∈ A} is bounded}. For each n ∈ N, let

Fn := {x ∈ X : |||Tα(x)||| 6 n for all α ∈ A}
=

⋂

α∈A

{x ∈ X : |||Tα(x)||| 6 n}

=
⋂

α∈A

(‖ · ‖ ◦ Tα)
−1 ([0, n]);

which is closed. Since {Tα : α ∈ A} is pointwise bounded on S, S ⊆ ⋃∞
n=1 Fn. Therefore,

for some n0 ∈ N, int(Fn0) 6= ∅. Choose x ∈ X and r > 0 such that B[x, r] ⊆ Fn0 . Then
B[−x, r] ⊆ Fn0 and B[0, r] = 1

2
B[−x, r] + 1

2
B[x, r] ⊆ Fn0, since Fn0 is symmetric and

convex. Hence, for any x 6= 0 and α ∈ A

r

‖x‖|||Tα(x)||| = |||Tα

(
xr

‖x‖

)
||| 6 n0.

Therefore, |||Tα(x)||| 6 (n0/r)‖x‖ for all x ∈ X and α ∈ A and so ‖Tα‖ 6 M for all α ∈ A,
where M := (n0/r). �

Corollary 7.2. Let (X, ‖ · ‖) be a Banach space, (Y, ||| · |||) be a normed linear space and
{Tα : α ∈ A} ⊆ B(X, Y ). If for some x0 ∈ X, {Tα(x0) : α ∈ A} is unbounded, then
{x ∈ X : {Tα(x) : α ∈ A} is bounded} is first category in (X, ‖ · ‖).
Theorem 7.3 (Banach-Steinhaus Theorem). Let (X, ‖ · ‖) and (Y, ||| · |||) be Banach spaces
and let (Tn : n ∈ N) be a sequence in B(X, Y ). If (Tn : n ∈ N) is pointwise Cauchy, then
it is pointwise convergent to some T ∈ B(X, Y ).
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Proof. For each x ∈ X , let T (x) := limn→∞ Tn(x). Since (Y, ||| · |||) is complete, this is
well-defined. Moreover, it is easy to check that T is linear. Since (Tn : n ∈ N) is pointwise
convergent it is pointwise bounded. Thus, by the Uniform Boundedness Theorem, there
exists an M > 0 such that ‖Tn‖ 6 M for all n ∈ N. In particular, ‖Tn(x)‖ 6 M‖x‖ for
all x ∈ X and all n ∈ N. Therefore, ‖T (x)‖ 6 M‖x‖ for all x ∈ X . ✷

Let (X, ‖ · ‖) be a normed linear space. For each x ∈ X we define, x̂ ∈ X∗∗ := (X∗)∗ by,
x̂(x∗) := x∗(x) for each x∗ ∈ X∗. To show that x̂ is really in X∗∗ we must first check that
it is linear and then check that it is continuous. Fix x ∈ X and suppose that x∗ and y∗

are in X∗, then

x̂(x∗ + y∗) = (x∗ + y∗)(x) = x∗(x) + y∗(x) = x̂(x∗) + x̂(y∗).

Also, if s ∈ K and x∗ ∈ X∗, then we have that

x̂(sx∗) = (sx∗)(x) = sx∗(x) = sx̂(x∗).

This shows that x̂ is linear. Now, let x∗ ∈ X∗, then |x̂(x∗)| = |(x∗)(x)| 6 ‖x∗‖‖x‖.
Therefore, ‖x̂‖ 6 ‖x‖.

Proposition 7.4. Let (X, ‖·‖) be a normed linear space, then for each x ∈ X, ‖x̂‖ = ‖x‖.

Proof. Fix x ∈ X , then by Corollary 4.7, there existence of a continuous linear function
x∗ ∈ X∗ such that ‖x∗‖ = 1 and x∗(x) = ‖x‖. Therefore,

‖x̂‖ >
|x̂(x∗)|
‖x∗‖ = |x̂(x∗)| = |x∗(x)| = ‖x‖.

This completes the proof. ✷

Moreover, the mapping x 7→ x̂ from X into X∗∗ is linear. To see this, fix x∗ ∈ X∗. Then,

̂(x+ y)(x∗) = x∗(x+ y) = x∗(x) + x∗(y) = x̂(x∗) + ŷ(x∗).

This shows that x̂+ y = x̂+ ŷ. Also, if s ∈ K and x∗ ∈ X∗, then

(̂sx)(x∗) = x∗(sx) = sx∗(x) = sx̂(x∗),

which shows that (̂sx) = sx̂.

If (X, ‖ · ‖) is a Banach space, then X̂ is a closed subspace of (X∗∗, ‖ · ‖), where X̂ is

defined as {x̂ : x ∈ X}. We call X̂ the natural embedding of X into X∗∗ and we call
x 7→ x̂ from X into X∗∗ the natural embedding mapping.

We will say that a subset A of a normed linear space (X, ‖ · ‖) is weakly bounded if for
each x∗ ∈ X∗, supx∈A |x∗(x)| < ∞.

Theorem 7.5. Let A be a nonempty subset of a normed linear space (X, ‖ · ‖). Then A
is a weakly bounded if, and only if, A is bounded.
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Proof. Suppose A is bounded (i.e., there exists an M > 0 such that ‖x‖ 6 M for all
x ∈ A). Then, |x∗(x)| 6 ‖x∗‖ · ‖x‖ 6 M‖x∗‖ < ∞ for all x ∈ A.

Conversely, suppose A is weakly bounded and consider the family, {x̂ ∈ X∗∗ : x ∈ A}.
Now, (X∗, ‖ · ‖) is a Banach space and by the hypothesis {x̂ ∈ X∗∗ : x ∈ A} is pointwise
bounded. Therefore, by the Uniform Boundedness Theorem, there exists an M > 0 such
that ‖x‖ = ‖x̂‖ 6 M for all x ∈ A. ✷

Corollary 7.6. Let T be a linear mapping acting between normed linear spaces (X, ‖ · ‖)
and (Y, ||| · |||). Then T is continuous if, and only if, for each y∗ ∈ Y ∗, y∗ ◦ T : X → K is
continuous.

Proof. If T is continuous, then for every y∗ ∈ Y ∗, y∗ ◦ T is continuous. This follows
from the general fact that the composition of continuous functions is continuous. Now,
suppose that for each y∗ ∈ Y ∗, y∗ ◦ T : X → K is continuous. We will show that T (BX)
is a weakly bounded subset of (Y, ||| · |||), and hence by Theorem 7.5, a bounded subset of
(Y, ||| · |||). Let y∗ ∈ Y ∗. Then y∗(T (BX)) = (y∗ ◦ T )(BX) is a bounded subset of K, since
by assumption, y∗ ◦ T is a bounded operator. Since y∗ ∈ Y ∗ was arbitrary, it follows that
T (BX) is weakly bounded. ✷

In the proof of the next theorem we will, in order to avoid any possible confusion, denote
the norm on the second dual of the normed linear space (X, ‖ · ‖) by ‖ · ‖∗∗.

Theorem 7.7. Let (X, ‖ · ‖) be a normed linear space. Then there exists a Banach space
(Y, ||| · |||) (called the completion of X) such that (X, ‖ · ‖) is isometrically isomorphic to
a dense subspace of (Y, ||| · |||).

Proof. Firstly, (X∗∗, ‖ · ‖∗∗) is a Banach space. Let Y := X̂ and let ||| · ||| denote the

restriction of the norm ‖ · ‖∗∗ to the subspace Y . Then, (Y, ||| · |||) is a Banach space, X̂ is

clearly dense in (Y, ||| · |||) and (X, ‖ · ‖) is isometrically isomorphic to X̂ . ✷

Application

Let C2π(R) denote the space of all continuous real-valued functions defined on R such that
f(x) = f(x + 2π) for all x ∈ R. Note that it follows from induction that if f ∈ C2π(R),
x ∈ R and n ∈ Z, then f(x) = f(x+ 2πn).

It follow from this that for any a < b and any n ∈ Z,

∫ b

a

f(t) dt =

∫ b+2nπ

a+2nπ

f(t) dt (∗).

Furthermore, if 0 6 x < 2π, then

∫ π

−π

f(t) dt =

∫ π+x

−π+x

f(t) dt. To see this consider the

following.
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∫ π

−π

f(t) dt =

∫ −π+x

−π

f(t) dt+

∫ π

−π+x

f(t) dt

=

∫ π+x

π

f(t) dt+

∫ π

−π+x

f(t) dt apply (∗) with a = −π and b = −π + x

=

∫ π+x

−π+x

f(t) dt. (∗∗)

By combining (∗) and (∗∗) we get the (probably obvious) fact that for any x ∈ R,

∫ π

−π

f(t) dt =

∫ π+x

−π+x

f(t) dt.

Theorem 7.8. There exists a function f ∈ C2π(R) whose Fourier series is divergent at
each point of a dense subset of R.

Proof. We shall begin by showing that

{f ∈ C2π(R) : the Fourier series for f converges at 0}

is first category in (C2π(R), ‖ · ‖∞). For each f ∈ C2π(R) and n ∈ N, the nth-partial sum
of the Fourier series of f is:

Sn(f, x) :=

n∑

k=−n

cke
ikx where ck :=

1

2π

∫ π

−π

f(t)e−ikt dt.

Now,

Sn(f, x) =
1

2π

∫ π

−π

f(x− t)Dn(t) dt where, Dn(t) :=
sin[(n + 1/2)t]

sin[(1/2)t]
.

Notice that if we define ϕn : C2π(R) → R by, ϕn(f) := Sn(f, 0) for each n ∈ N, then each
ϕn is a continuous linear functional on C2π(R). In fact,

‖ϕn‖ =
1

2π

∫ π

−π

|Dn(t)| dt.

Next suppose, in order to obtain a contradiction, that

S := {f ∈ C0[−π, π] : the Fourier series for f converges at 0}

is second category in (C2π(R), ‖ · ‖∞). Then by the Uniform Boundedness Theorem the
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set {‖ϕn‖ : n ∈ N} is bounded. However, we have that,
∫ π

−π

|Dn(t)| dt = 2

∫ π

0

|Dn(t)| dt > 4

∫ π

0

| sin[(n+ 1/2)t]|
t

dt

= 4

∫ π/2

0

| sin[(2n+ 1)t]|
t

dt

> 4
n−1∑

k=0

∫ (k+1)π
2n+1

kπ
2n+1

| sin[(2n+ 1)t]|
t

dt

> 4
n−1∑

k=0

2n+ 1

(k + 1)π

∫ (k+1)π
2n+1

kπ
2n+1

| sin[(2n+ 1)t]| dt = 8

π

n−1∑

k=0

1

k + 1
;

which is divergent. But this contradicts the boundedness of {‖ϕn‖ : n ∈ N}. So the set
S must be first category in (C2π(R), ‖ · ‖∞).

Next, we show that for each α ∈ R,

Sα := {f ∈ C2π(R) : the Fourier series for f converges at −α}

is of the first category in (C2π(R), ‖ · ‖∞). To this end, fix α ∈ R. Let Tα : R → R be
defined by, Tα(t) := t + α for each t ∈ R and let T ∗

α : C2π(R) → C2π(R) be defined by,
T ∗
α(f) := f ◦Tα. Then T ∗

α is an isometry. Hence, T ∗
α(S) is first category in (C2π(R), ‖·‖∞).

Claim: Sα ⊆ T ∗
α(S). To see this consider g ∈ Sα. Since T ∗

α is onto there exists an
f ∈ C2π(R) such that g = T ∗

α(f). We need to show that f ∈ S. To this end, consider the
following:

ck =
1

2π

∫ π

−π

g(t)e−ikt dt =
1

2π

∫ π

−π

T ∗
α(f)(t)e

−ikt dt =
1

2π

∫ π

−π

f(t+ α)e−ikt dt

=
1

2π

∫ π+α

−π+α

f(t)e−ik(t−α) dt =
1

2π

∫ π

−π

f(t)e−ik(t−α) dt =
eikα

2π

∫ π

−π

f(t)e−ikt dt.

Therefore, for each n ∈ N, we have that

Sn(g,−α) =

n∑

k=−n

(
eikα

2π

∫ π

−π

f(t)e−ikt dt

)
· e−ikα

=
n∑

k=−n

(
1

2π

∫ π

−π

f(t)e−ikt dt

)
· eik0 = Sn(f, 0).

Therefore, f ∈ S.

Let S :=
⋃
{Sα : α ∈ Q}. Then S is first category in (C2π(R), ‖ · ‖∞) and lim

n→∞
Sn(f, α)

diverges for each α ∈ Q and each f ∈ C2π(R) \ S. ✷

Exercise 7.9. Let n ∈ N and t ∈ R \ 2πZ. Show that:

n∑

k=−n

eikt =
ei(n+1)t − e−int

eit − 1
=

ei(n+1/2)t − e−i(n+1/2)t

eit/2 − e−it/2
=

sin[(n+ 1/2)t]

sin[(1/2)t]
.
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Remarks 7.10. For each f ∈ C2π(R) and n ∈ N,

Sn(f, x) =

n∑

k=−n

(
1

2π

∫ π

−π

f(t)e−ikt dt

)
· eikx

=
1

2π

∫ π

−π

f(t)

(
n∑

k=−n

eik(x−t)

)
dt

=
1

2π

∫ π

−π

f(t)Dn(x− t) dt, where Dn(t) :=
sin[(n+ 1/2)t]

sin[(1/2)t]

= − 1

2π

∫ x−π

x+π

f(x− t′)D(t′) dt,′ where t′ := x− t

=
1

2π

∫ x+π

x−π

f(x− t)D(t) dt

=
1

2π

∫ π

−π

f(x− t)Dn(t) dt, since, t → f(x− t)Dn(t), has period 2π.
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Chapter 8

Conjugate Mappings

Let T be a continuous linear mapping acting between normed linear spaces (X, ‖ · ‖) and
(Y, ||| · |||). Then we define T ′ : Y ∗ → X∗ by, T ′(y∗) := y∗ ◦ T for each y∗ ∈ Y ∗, i.e., for
each x ∈ X , [T ′(y∗)](x) = y∗(T (x)). Note that T ′(y∗) is indeed a member of X∗.

Similarly, we define T ′′ : X∗∗ → Y ∗∗ by, T ′′(x∗∗) := x∗∗ ◦ T ′ for each x∗∗ ∈ X∗∗, i.e., for
each y∗ ∈ Y ∗, [T ′′(x∗∗)](y∗) = [x∗∗ ◦ T ′](y∗) = x∗∗(T ′(y∗)) = x∗∗(y∗ ◦ T ).

Fact : Let T : X → Y be a continuous linear operator acting between normed linear
spaces (X, ‖ · ‖) and (Y, ||| · |||). Then T is an isomorphism if, and only if, T is onto and
there exists an m > 0 such that m‖x‖ 6 |||T (x)||| for all x ∈ X .

Proof. First note that T must be one-to-one, since if x 6= 0, then |||T (x)||| > m‖x‖ 6= 0
i.e., x /∈ Ker(T ). Hence, Ker(T ) = {0} and so T is one-to-one. Therefore, T−1 exists and
is linear. We need to show that it is continuous. Consider y ∈ Y . Now, m‖x‖ 6 |||T (x)|||
for all x ∈ X . Therefore, m‖T−1(y)‖ 6 |||T (T−1(y))||| = |||y|||. That is, ‖T−1(y)‖ 6 M |||y|||
for all y ∈ Y where, M := 1/m. �

Fact : Let T be a continuous linear mapping acting between normed linear spaces (X, ‖·‖)
and (Y, ||| · |||). Then T ′ is one-to-one if, and only if, T (X) = Y . In particular, if X or Y
are finite dimensional, then T ′ is one-to-one if, and only if, T is onto.

Proof. Suppose that T (X) = Y and consider y∗ ∈ Y ∗ such that T ′(y∗) = 0, i.e., y∗◦T = 0.
Then, for each x ∈ X, y∗(T (x)) = 0, i.e., y∗|T (X) = 0. Since y∗ is continuous, this implies

that y∗ = 0 on T (X) = Y . Thus, if T ′(y∗) = 0, then y∗ = 0.

Now, suppose T ′ is one-to-one, but T (X) 6= Y . Then by Exercise 4.15 there exists a
y∗ ∈ SY ∗ such that y∗(T (X)) = {0}. Then T ′(y∗) = 0; which implies that T ∗ is not
one-to-one. �

Corollary 8.1. Let T be a continuous linear mapping acting between normed linear spaces
(X, ‖ · ‖) and (Y, ||| · |||). Then T ′′ is one-to-one if, and only if, T ′(Y ∗) = X∗.
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Fact : Let T be a continuous linear mapping acting between normed linear spaces (X, ‖·‖)
and (Y, ||| · |||). Then, T ′′|X̂ = T̂ , where T̂ : X̂ → Ŷ is defined by, T̂ (x̂) := T̂ (x).

Proof. T ′′(x̂) = x̂ ◦ T ′. Therefore, for any y∗ ∈ Y ∗,

[T ′′(x̂)](y∗) = [x̂ ◦ T ′](y∗) = x̂(T ′(y∗)) = x̂(y∗ ◦ T ) = (y∗ ◦ T )(x) = y∗(T (x)) = T̂ (x)(y∗).

Thus, T ′′(x̂) = T̂ (x) = T̂ (x̂). �

Corollary 8.2. Let T be a continuous linear mapping acting between normed linear spaces
(X, ‖ · ‖) and (Y, ||| · |||). If T ′(Y ∗) = X∗, then T is one-to-one.

Warning : The converse is not true! That is, there exist 1-to-1 mappings T such that T ′

does not have dense range.

Fact : Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) and (Z, ‖ · ‖Z) be normed linear spaces and suppose
S ∈ B(X, Y ) and T ∈ B(Y, Z). Then (T ◦ S)′ ∈ B(Z∗, X∗) and (T ◦ S)′ = S ′ ◦ T ′.

Proof. Firstly, S ′ ◦ T ′ is well defined since T ′ ∈ B(Z∗, Y ∗) and S ′ ∈ B(Y ∗, X∗). Now,

(T ◦ S)′(z∗) = z∗ ◦ (T ◦ S) = (z∗ ◦ T ) ◦ S = (T ′(z∗)) ◦ S = S ′(T ′(z∗)) = (S ′ ◦ T ′)(z∗).

for any z∗ ∈ Z∗. Therefore, (T ◦ S)′ = S ′ ◦ T ′. �

Exercise 8.3. Let (X, ‖ · ‖) be a normed linear space. Show that (IX)
′ = IX∗, where IX

is the identity mapping on X and IX∗ is the identity mapping on X∗.

Theorem 8.4. Let (X, ‖ · ‖) and (Y, ||| · |||)) be a Banach spaces and let T : X → Y . Then
T is an isomorphism if, and only if, T ′ : Y ∗ → X∗ is an isomorphism.

Proof. Suppose T is an isomorphism from X onto Y . Then,

(T ′ ◦ (T−1)′) = (T−1 ◦ T )′ = (IX)
′ = IX∗

and

((T−1)′ ◦ T ′) = (T ◦ T−1)′ = (IY )
′ = IY ∗ .

Therefore, (T ′)−1 = (T−1)′.

Now, suppose that T ′ is an isomorphism, then in particular, T ′ is one-to-one. Therefore,
T (X) = Y . Since T ′′ is an isomorphism there exists anm > 0 such that |||T ′′(x∗∗)||| > m‖x∗∗‖.
Hence,

|||T (x)||| = |||T̂ (x)||| = |||T̂ (x̂)||| = |||T ′′(x̂)||| > m‖x̂‖ = m‖x‖.

Thus, T is one-to-one, and an isomorphism onto T (X). Since (X, ‖ · ‖) is a Banach space,
T (X) is also a Banach space, with the restriction of the norm ||| · ||| on Y to T (X), and is
therefore a closed subspace. Hence, T (X) = T (X) = Y and so T is an isomorphism. ✷
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What does T ′ look like in finite dimensions? Suppose that (X, ‖ ·‖) is a finite dimensional
normed linear space.

Let (en)
N
n=1 be a basis for X and for each 1 6 n 6 N , let e∗n : X → K be defined by,

e∗n

(
N∑

k=1

xkek

)
:= xn.

In particular, e∗n(ek) = δnk for each 1 6 k 6 N and 1 6 n 6 N .

Claim: For each x∗ ∈ X∗, x∗ =
∑N

k=1 x
∗(ek)e

∗
k.

To see this, observe that

x∗(en) =

(
N∑

k=1

x∗(ek)e
∗
k

)
(en) for all 1 6 n 6 N.

Also, if
∑N

k=1 cke
∗
k = 0 for some (ck)

N
k=1 ∈ KN , then for each 1 6 n 6 N ,

cn =

(
N∑

k=1

cke
∗
k

)
(en) = 0.

Hence (e∗k)
N
k=1 is a basis for X∗. In particular, dim(X) = dim(X∗).

Now, suppose that both (X, ‖ ·‖) and (Y, ||| · |||) are finite dimensional normed linear spaces
and T : X → Y is linear. Let (ek)

n
k=1 be a basis for X and (fk)

m
k=1 be a basis for Y . Also,

let A be the m× n matrix representation of T with respect to (ek)
n
k=1 and (fk)

m
k=1 (That

is, [A]ij = ith coordinate of T (ej) with respect to (fk)
m
k=1).

Similarly, let B be the n × m matrix representation of T ′ : Y ∗ → X∗ with respect to
(f ∗

k )
m
k=1 and (e∗k)

n
k=1 (That is, [B]ij = ith coordinate of T ′(f ∗

j ) with respect to (e∗k)
n
k=1).

What is the relationship between B and A?

Firstly, A is an m × n matrix and B is an n × m matrix. Moreover, [B]ij is the ith

coordinate of T ′(f ∗
j ) with respect to (e∗k)

n
k=1, i.e.,

[B]ij = T ′(f ∗
j )(ei) = f ∗

j (T (ei));

which is the jth coordinate of T (ei) with respect to (fk)
m
k=1, which is [A]ji. That is,

[B]ij = [A]ji. Thus, B = At. �
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Chapter 9

Reflexive Spaces

We shall say that a normed linear space (X, ‖ · ‖) is reflexive if X̂ = X∗∗.

Fact : If (X, ‖ · ‖) is reflexive, then (X, ‖ · ‖) is a Banach space.

Fact : If (X, ‖ · ‖) is separable and reflexive, then (X∗∗, ‖ · ‖) and (X∗, ‖ · ‖) are also
separable.

Corollary 9.1. (c0(N), ‖ · ‖∞), (ℓ1(N), ‖ · ‖1) and (C[a, b], ‖ · ‖∞) are not reflexive. Note:
we can also deduce that (ℓ∞(N), ‖ · ‖∞) is not reflexive since closed subspaces of reflexive
spaces are reflexive and (c0(N), ‖ · ‖∞) is a closed subspace of (ℓ∞(N), ‖ · ‖∞).

Theorem 9.2 (James’ Theorem). Let (X, ‖ · ‖) be a Banach space. Then (X, ‖ · ‖) is
reflexive if, and only if, for each x∗ ∈ SX∗ there exists an x ∈ SX such that ‖x∗‖ = x∗(x).

Theorem 9.3. All finite dimensional normed linear spaces are reflexive.

Proof. Let (X, ‖·‖) be a finite dimensional normed linear space. Then X̂ (i.e., the natural
embedding of X into X∗∗) is a subspace of X∗∗. However,

dim(X̂) = dim(X) = dim(X∗) = dim(X∗∗).

Therefore, X̂ = X∗∗ and so X is reflexive. ✷

In the next exercise we use the following definition. For each n ∈ N, e∗n : ℓp(N) → K is
defined by, e∗n((xk)

∞
k=1) := xn. It is easy to show that e∗n ∈ ℓp(N)∗ and ‖e∗n‖ = 1 for all

n ∈ N

Exercise 9.4. Suppose that 1 < p, 1 < q and 1/p + 1/q = 1. Show that: (cn)
∞
n=1 7→∑∞

n=1 cne
∗
n is an isometry from (ℓq(N), ‖ · ‖q) onto (ℓp(N)∗, ‖ · ‖).

Theorem 9.5. (ℓp(N), ‖ · ‖p) is reflexive for each 1 < p < ∞.
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Proof. As always, ℓ̂p(N) is a closed subspace of ℓp(N)∗∗. So it is sufficient to show that

ℓp(N)∗∗ ⊆ ℓ̂p(N). To this end, consider F ∈ ℓp(N)∗∗. Then

F

(
∞∑

k=1

cke
∗
k

)
= F

(
lim
n→∞

n∑

k=1

cke
∗
k

)
= lim

n→∞
F

(
n∑

k=1

cke
∗
k

)

= lim
n→∞

n∑

k=1

ckF (e∗k) =
∞∑

k=1

ckF (e∗k) .

Next we show that (F (e∗k))
∞
k=1 ∈ ℓp(N), i.e.,

∑∞
k=1 |F (e∗k) |p < ∞. For each n ∈ N, define

x∗
n ∈ ℓp(N)∗ by,

x∗
n :=

n∑

k=1

[sign[F (e∗k)] · |F (e∗k) |p−1]e∗k.

Then,
n∑

k=1

|F (e∗k) |p = F (x∗
n) 6 ‖F‖ · ‖x∗

n‖.

Now,

‖x∗
n‖ =

(
n∑

k=1

(
|F (e∗k)|p−1)q

)1/q

=

(
n∑

k=1

|F (e∗k)|p
)1/q

since (p− 1)q = p. Therefore, for each n ∈ N,

n∑

k=1

|F (e∗k) |p 6 ‖F‖
(

n∑

k=1

|F (e∗k)|p
)1/q

.

By dividing both sides by

(
n∑

k=1

|F (e∗k)|p
)1/q

we get that for each n ∈ N,

(
n∑

k=1

|F (e∗k)|p
)1/p

=

(
n∑

k=1

|F (e∗k)|p
)1−(1/q)

6 ‖F‖ < ∞.

Finally, we claim that ̂(F (e∗k))
∞

k=1 = F . To see this, note that for each n ∈ N,

̂(F (e∗k))
∞

k=1(e
∗
n) = e∗n ((F (e∗k)

∞
k=1) = F (e∗n).

Since span (e∗n)
∞
n=1 = ℓp(N)∗ and both ̂(F (e∗k))

∞

k=1 and F are continuous linear functionals

on ℓp(N)∗, ̂(F (e∗k))
∞

k=1 = F . ✷

Theorem 9.6. Let (H, 〈·, ·〉) be a Hilbert space. Then its dual space is also a Hilbert
space and the mapping x 7→ x∗ from H into H∗, defined by, x∗(y) := 〈y, x〉 for all y ∈ H,
is a conjugate linear isometry.
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Proof. From our earlier work on Hilbert spaces we know that the mapping x 7→ x∗ is onto
and an isometry. Let us now show that it is conjugate linear. Suppose x, y ∈ H . Then
for any z ∈ H ,

(x+ y)∗(z) = 〈z, (x+ y)〉 = 〈z, x〉+ 〈z, y〉 = x∗(z) + y∗(z).

Therefore (x+ y)∗ = x∗ + y∗. Suppose λ ∈ C and x ∈ H . Then for any z ∈ H ,

(λx)∗(z) = 〈z, λx〉 = λ〈z, x〉 = λx∗(z).

Therefore, (λx)∗ = λx∗. Next, we define an inner product on H∗ as follows. For x∗ and
y∗ ∈ H∗ we define

〈x∗, y∗〉 := 〈y, x〉.
We need to check that this indeed defines an inner product:

(i): 〈x∗, x∗〉 = 〈x, x〉 = ‖x‖2 > 0 and 〈x∗, x∗〉 = 0 if, and only if, x∗ = 0.

(ii): For any x∗, y∗ and z∗ in H∗,

〈x∗ + y∗, z∗〉 = 〈(x+ y)∗, z∗〉 = 〈z, x+ y〉 = 〈z, x〉 + 〈z, y〉
= 〈x∗, z∗〉+ 〈y∗, z∗〉.

(iii): For any x∗, z∗ in H∗ and λ ∈ C,

〈λx∗, z∗〉 = 〈(λx)∗, z∗〉 = 〈z, λx〉 = λ〈z, x〉 = λ〈z, x〉 = λ〈x∗, z∗〉.

(iv): For any x∗ and z∗ in H∗, 〈x∗, z∗〉 = 〈z, x〉 = 〈x, z〉 = 〈z∗, x∗〉. Therefore, this defines
an inner product on H∗.

We now need to show that the norm generated by this inner product is consistent with
the operator norm on H∗. To this end, let ‖x∗‖H :=

√
〈x∗, x∗〉 for all x∗ ∈ H∗. Therefore,

‖x∗‖H =
√

〈x∗, x∗〉 =
√
〈x, x〉 = ‖x‖ = ‖x∗‖.

for all x∗ ∈ H∗, since x → x∗ is an isometry. As (H∗, ‖ · ‖) is a dual space, it is also
automatically complete. ✷

Note: it follows from the proof of Theorem 9.6 that the inner product on H∗ is given by,
〈x∗, y∗〉 = 〈y, x〉.
Corollary 9.7. Every Hilbert space is reflexive.

Proof. Let (H, 〈·, ·〉) be a Hilbert space. It is sufficient to show that H∗∗ ⊆ Ĥ . To this
end, consider F ∈ H∗∗. By Theorem 9.6 we know that F = f ∗ for some f ∈ H∗ and that
f = x∗ for some x ∈ H . We clam that x̂ = F . To see this consider the following. Let
y∗ ∈ H∗, then

F (y∗) = f ∗(y∗) = 〈y∗, f〉 = 〈y∗, x∗〉 = 〈x, y〉 = y∗(x) = x̂(y∗)

Since y∗ ∈ H∗ was arbitrary, it follows that F = x̂, and so H∗∗ ⊆ Ĥ . ✷
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Adjoint Operators on Hilbert Spaces

Let (H, 〈·, ·〉) be a Hilbert space and let ϕ : H → H∗ be defined by, ϕ(x)(z) := 〈z, x〉 for
all z ∈ H , (i.e., in terms of the notation from Theorem 9.6, ϕ(x) = x∗).

Given a continuous linear operator T on H we can associate with T another continuous
linear operator on H , derived from its conjugate T ′ on H∗, and the mapping ϕ : H → H∗

defined above.

For a continuous linear operator T on a Hilbert space (H, 〈·, ·〉) we define the adjoint of

T by, T ∗ := ϕ−1 ◦ T ′ ◦ ϕ.

Remarks 9.8. Since ϕ, ϕ−1 and T ′ are additive so too is T ∗. Since ϕ and ϕ−1 both
are conjugate homogeneous and T ′ is homogeneous then T ∗ is homogeneous. Therefore,
T ∗ is linear. As both ϕ and ϕ−1 as isometries, and in particular continuous, and T ′ is
continuous, it follows that T ∗ is also continuous. Thus, T ∗ ∈ B(H).

Theorem 9.9. Let (H, 〈·, ·〉) be a Hilbert space and let T ∈ B(H), then for any x, z ∈ H,
〈T (z), x〉 = 〈z, T ∗(x)〉. Moreover, if S ∈ B(H) and 〈T (x), z〉 = 〈x, S(z)〉 for all x, z ∈ H,
then S = T ∗.

Proof. Suppose that x, z ∈ H . Then

〈z, T ∗(x)〉 = ϕ(T ∗(x))(z) = [(ϕ ◦ T ∗)(x)](z)

= [(ϕ ◦ (ϕ−1 ◦ T ′ ◦ ϕ))(x)](z)
= [((ϕ ◦ ϕ−1) ◦ T ′ ◦ ϕ)(x)](z)
= [(T ′ ◦ ϕ)(x)](z)
= T ′(ϕ(x))(z)

= (ϕ(x))(T (z))

= 〈T (z), x〉.

Suppose that S ∈ B(H) and 〈T (x), z〉 = 〈x, S(z)〉 for all x, z ∈ H . Fix z ∈ H and let x
be any member of H . Then,

〈x, T ∗(z)〉 = 〈T (x), z〉 = 〈x, S(z)〉.

Therefore, 〈x, T ∗(z) − S(z)〉 = 0 for all x ∈ H . In particular, if x := T ∗(z) − S(z), then
‖T ∗(z)− S(z)‖2 = 0 and so T ∗(z) = S(z). Since z ∈ H was arbitrary, S = T ∗. ✷

Theorem 9.10. Given a Hilbert space (H, 〈·, ·〉) the adjoint mapping T 7→ T ∗ defined on
B(H) has the properties:

(i) (S + T )∗ = S∗ + T ∗ for any S, T ∈ B(H);

(ii) (λT )∗ = λT ∗ for any λ ∈ C and T ∈ B(H);

(iii) (ST )∗ = T ∗S∗ for any S, T ∈ B(H);

(iv) T ∗∗ = T for any T ∈ B(H);
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(v) ‖T ∗T‖ = ‖T‖2 for any T ∈ B(H).

Proof. The proof of these facts are left as an exercise for the reader. ✷

Exercise 9.11. Let H be a Hilbert space. Show that for any T ∈ B(H), ‖T ∗‖ = ‖T‖.
Also show that 〈T ∗(x), z〉 = 〈x, T (z)〉 for any x, z ∈ H.

What does T ∗ look like in finite dimensions? Suppose that (H, 〈·, ·〉) is a finite dimensional
Hilbert space and T ∈ B(H). Let (ek)

n
k=1 be an orthonormal basis for H and let A be the

n×n matrix representation of T with respect to (ek)
n
k=1 (That is, [A]ij = ith coordinate of

T (ej) with respect to (ek)
n
k=1). Similarly, let B be the n× n matrix representation of T ∗

with respect to (ek)
n
k=1 (That is, [B]ij = ith coordinate of T ∗(ej) with respect to (ek)

n
k=1).

What is the relationship between B and A? Firstly, A and B have the same shape and
moreover,

[B]ij = 〈T ∗(ej), ei〉 = 〈ej , T (ei)〉 = 〈T (ei), ej〉 = [A]ji.

Therefore, B = (A)t.

In the next example will be working in L2[a, b]. Recall that (L2[a, b], 〈·, ·〉) is a Hilbert
space, where the inner product 〈·, ·〉 is defined by,

〈f, g〉 :=
∫

[a,b]

f(t)g(t) dt for all f, g ∈ L2[a, b].

Note also that ‖f‖2 =
√
〈f, f〉 for all f ∈ L2[a, b].

Example 9.12. Let K ∈ CC([a, b]× [a, b]). Then the mapping

T : (L2[a, b], ‖ · ‖2) → (L2[a, b], ‖ · ‖2)

defined by,

T (x)(t) :=

∫

[a,b]

K(t, s)x(s) ds for all t ∈ [a, b] and all x ∈ L2[a, b]

is a member of B(L2[a, b]).

Claim: S : (L2[a, b], 〈·, ·〉) → (L2[a, b], 〈·, ·〉) given by,

S(x)(s) =

∫

[a,b]

K(t, s)x(t) dt for all s ∈ [a, b] and all x ∈ L2[a, b]

is the adjoint of T , i.e., S = T ∗.
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Proof. It is sufficient to show that for every x, y ∈ L2[a, b],

〈T (x), y〉 = 〈x, S(y)〉, that is

∫

[a,b]

[T (x)(t)]y(t) dt =

∫

[a,b]

x(s)[S(y)(s)] ds.

Now,

∫

[a,b]

[T (x)(t)]y(t) dt =

∫

[a,b]

(∫

[a,b]

K(t, s)x(s) ds

)
y(t) dt

=

∫

[a,b]

(∫

[a,b]

K(t, s)x(s)y(t) ds

)
dt

=

∫

[a,b]×[a,b]

K(t, s)x(s)y(t) dsdt

=

∫

[a,b]×[a,b]

K(t, s)x(s)y(t) dtds

=

∫

[a,b]

x(s)

(∫

[a,b]

K(t, s)y(t) dt

)
ds

=

∫

[a,b]

x(s)

(∫

[a,b]

K(t, s)y(t) dt

)
ds

=

∫

[a,b]

x(s)[S(y)(s)] ds.

This complete the proof of the claim. ✷

Remarks 9.13. Note that if K is real-valued and symmetric, i.e., K(s, t) = K(t, s) for
all (s, t) ∈ [a, b]× [a, b], then T = T ∗. In this case we call T self-adjoint.
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Chapter 10

Stone-Weierstrass Theorem

Let (T, τ) be a topological space. We shall denote by C(T ) the space of all bounded
real-valued continuous functions defined on T . We shall say that a nonempty subset A of
C(T ) is an algebra if it is a vector subspace of C(T ), i.e., closed under pointwise scalar
multiplication and pointwise addition, and is also closed under pointwise multiplication,
i.e., if f, g ∈ A , then f · g ∈ A , where (f · g)(t) := f(t)g(t) for each t ∈ T .

We shall say that a subset L of C(T ) is a lattice if it is closed under taking pointwise
maximums and pointwise minimums, i.e., if f, g ∈ L, then f ∨g ∈ L and f ∧g ∈ L, where
(f ∨ g)(t) := max{f(t), g(t)} for each t ∈ T and (f ∧ g)(t) := min{f(t), g(t)} for each
t ∈ T .

Exercise 10.1. Let (T, τ) be a topological space and let S be a vector subspace of C(T ).
Show that S is a lattice if, and only if, |f | ∈ S for every f ∈ S.

Exercise 10.2. Let (T, τ) be a topological space. Show that if A is a subalgebra of C(T ),
then the closure of A in (C(T ), ‖ · ‖∞) is also a subalgebra of C(T ).

Theorem 10.3. There exists a sequence of polynomials (Pn : n ∈ N), without constant
terms, defined on R that converge uniformly on [−1, 1] to the function g : [−1, 1] → [0, 1]
defined by, g(x) := |x| for all x ∈ [−1, 1].

Proof. Let us inductively define a sequence (Pn : n ∈ N) of polynomials by, P0(t) := 0
for all t ∈ R and Pn+1(t) := Pn(t) + (1/2)[t2 − Pn(t)

2] for all t ∈ R. Clearly each Pn is a
polynomial and Pn+1(t) = Pn(t) + (1/2)(|t| − Pn(t))(|t|+ Pn(t)) for all t ∈ R.

We shall prove, by induction, that

0 6 |t| − Pn(t) 6 2|t|/(2 + n|t|) 6 2/(2 + n) for all −1 6 t 6 1 and all n ∈ N.

Firstly, let us note that the inequality 2|t|/(2+n|t|) 6 2/(2+n) for all −1 6 t 6 1 follows
directly from cross multiplying. Next, let us note that

|t| − Pn+1(t) = |t| −
[
Pn(t) + (1/2)(|t| − Pn(t))(|t|+ Pn(t))

]

=
[
|t| − Pn(t)

]
− (1/2)(|t| − Pn(t))(|t|+ Pn(t))

=
[
|t| − Pn(t)

][
1− (1/2)(|t|+ Pn(t))

]
for all n ∈ N. (∗)
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Using equation (∗) and the recursive definition of the polynomials Pn we may deduce, via
induction, that 0 6 Pn(t) 6 |t| for all n ∈ N and t ∈ [−1, 1]. Indeed, if 0 6 Pn(t) 6 |t| for
all t ∈ [−1, 1], then 0 6 t2 − Pn(t)

2 and so Pn+1(t) = Pn(t) + (1/2)[t2 − Pn(t)
2] > 0.

Note also that if Pn(t) 6 |t| and t ∈ [−1, 1], then (1/2)[|t|+ Pn(t)] 6 1 and so

0 6
(
1− (1/2)(|t|+ Pn(t))

)
.

Therefore, if t ∈ [−1, 1] and 0 6 Pn(t) 6 |t|, then by Equation (∗) we have that 0 6 |t| −
Pn+1(t) for all t ∈ [−, 1, 1]. Thus, Pn+1(t) 6 |t| for all t ∈ [−1, 1].

Now, since 0 6 Pn(t) for all t ∈ [−1, 1], 1− (1/2)
[
|t|+ Pn(t)

]
6 1− (1/2)|t|. Therefore,

[
2 + (n+ 1)|t|

][
1− (1/2)(|t|+ Pn(t))

]
6

[
2 + (n + 1)|t|

][
1− (1/2)|t|

]

= 2 + (n+ 1)|t| − (|t|/2)
[
2 + (n+ 1)|t|

]

= 2 + n|t| −
[
(n+ 1)/2

]
|t|2

6 2 + n|t| for all n ∈ N and t ∈ [−1, 1].

Therefore, by cross multiplying, we get that:

1

2 + n|t|
[
1− (1/2)(|t|+ Pn(t))

]
6

1

2 + (n+ 1)|t| for all n ∈ N and t ∈ [−1, 1]

Then, by multiplying through by 2|t|, we get that:

2|t|
2 + n|t|

[
1− (1/2)(|t|+ Pn(t))

]
6

2|t|
2 + (n + 1)|t| (∗∗)

for all n ∈ N and t ∈ [−1, 1]. The inequality |t| −Pn(t) 6 2|t|/(2+ n|t|) now follows from
induction by applying the inequality (∗∗) to equation (∗). ✷

Theorem 10.4. Let (T, τ) be a topological space and let A be a subalgebra of C(T ). Then
the closure of A in (C(T ), ‖ · ‖∞), denoted A , is a sublattice of C(T ).

Proof. By Exercise 10.2, A is a subalgebra of C(T ), and in particular, a subspace of C(T ).
So by Exercise 10.1 we need only show that |f | ∈ A . In fact, because A is homogeneous,
we need only show that |f | ∈ A , whenever f ∈ A and ‖f‖∞ = 1.

Now, from Theorem 10.3 there exist polynomials (Pn : n ∈ N), without constant terms,
on R such that

|f | = lim
n→∞

(Pn ◦ f)

in (C(T ), ‖ · ‖∞). Therefore, since (Pn ◦ f) ∈ A for all n ∈ N, |f | ∈ A . ✷

Let (T, τ) be a topological space and let S be a subset of C(T ). We shall say that S has
the 2-point approximation property if for every f ∈ C(T ), x, y ∈ T and ε > 0 there
exists an s ∈ S such that |s(x)− f(x)| < ε and |s(y)− f(y)| < ε.
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Theorem 10.5 (Stone-Weierstrass Theorem). Let (T, τ) be a compact space and let L be
a sublattice of C(T ). If L possesses the 2-point approximation property, then L = C(T ).

Proof. Let f ∈ C(T ) and ε > 0. It will be sufficient to show that there exists a g ∈ L
such that ‖f − g‖ < ε. Fix x ∈ T . For each y ∈ T there exists an open neighbourhood
Ux
y of y and an element gxy ∈ L such that gxy (x) < f(x) + ε and f(t) − ε < gxy (t) for all

t ∈ Ux
y . Let {Ux

yj
: 1 6 j 6 n} be a finite subcover of {Ux

y : y ∈ T} and let gx : T → R be
defined by,

gx(t) := max
16 j 6 n

gxyj (t)

i.e., gx =
∨

16 j 6 n g
x
yj
∈ L. Then gx(x) < f(x) + ε while f(t)− ε < gx(t) for all t ∈ T .

We now consider the family of functions {gx : x ∈ T}. For each x ∈ T there exists an open
neighbourhood Vx of x such that gx(t) < f(t) + ε for all t ∈ Vx. Let {Vxj

: 1 6 j 6 m} be
a finite subcover of {Vx : x ∈ T} and define g : T → R by,

g(t) := min
16 j 6 m

gxj
(t)

i.e., g =
∧

16 j 6 m gxj
∈ L. It is easily seen that |g(t)− f(t)| < ε for each t ∈ T and so

‖g − f‖∞ < ε. ✷

Corollary 10.6. Let (T, τ) be a compact space and let A be a subalgebra of C(T ). If A
possesses the 2-point approximation property, then C(T ) = A .

Proof. By Theorem 10.4, A is a lattice. Since A ⊆ A , A clearly possesses the 2-point

approximation property. Therefore, by Theorem 10.5, C(T ) = A = A . ✷

Corollary 10.7. Let (T, τ) be a compact space and let A be a subalgebra of C(T ) that
contains all the constant functions and separates the points of T (i.e., if x 6= y ∈ T , then
there exists an f ∈ A such that f(x) 6= f(y)), then C(T ) = A .

Proof. If A contains all the constant functions and separates the point of T , then A has
the 2-point approximation property. The result then follows from Corollary 10.6. ✷

Let (T, τ) be a topological space. We shall denote by, CC(T ) the space of all bounded
complex-valued continuous functions defined on T . We shall say that a subalgebra A
of CC(T ) is self-adjoint if f ∈ A whenever f ∈ A , where f : T → C is defined by,
f(t) := f(t) for each t ∈ T .

Theorem 10.8. Let (T, τ) be a compact space and let A be a self-adjoint subalgebra
of CC(T ) that contains all the constant functions and separates the points of T , then
CC(T ) = A .

Proof. The proof of this is left as an exercise for the reader. ✷
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Applications

Theorem 10.9. Let (X, τ) and (Y, τ ′) be compact spaces. Then for each h ∈ C(X × Y )
and ε > 0 there exist (fj)

n
j=1 in C(X) and (gj)

n
j=1 in C(Y ) such that

∣∣∣∣∣h(x, y)−
n∑

j=1

fj(x)gj(y)

∣∣∣∣∣ < ε for all (x, y) ∈ X × Y .

Proof. The proof of this is left as an exercise for the reader. ✷

Theorem 10.10. The set

{
1√
2π

eikx : k ∈ Z

}
is an orthonormal basis for the Hilbert

space (L2[0, 2π], 〈·, ·〉).

Proof. We give here only an outline.

(i) First note that

{
1√
2π

eikx : k ∈ Z

}
is an orthonormal basis if, and only if,

L2[0, 2π] = span

{
1√
2π

eikx : k ∈ Z

}
;

(ii) Justify the fact that L2[0, 2π] = span

{
1√
2π

eikx : k ∈ Z

}
if, and only if, C∗

C[0, 2π] ⊆

span

{
1√
2π

eikx : k ∈ Z

}
, where C∗

C[0, 2π] := {f ∈ CC[0, 2π] : f(0) = f(2π)};

(iii) Let A be the algebra generated by the set

{
1√
2π

eikx : k ∈ Z

}
. Show that

A = span

{
1√
2π

eikx : k ∈ Z

}
;

(iv) Show that A is a self-adjoint algebra;

(v) Adapt the proof of the Stone-Weierstrass Theorem to show that

C∗
C[0, 2π] = span

{
1√
2π

eikx : k ∈ Z

}

considered in (C∗
C[0, 2π], ‖ · ‖∞);

(vi) Hence deduce that C∗
C[0, 2π] ⊆ span

{
1√
2π

eikx : k ∈ Z

}
when considered in

(L2[0, 2π], ‖ · ‖2).
This completes the proof. ✷
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Chapter 11

Arzelà-Ascoli Theorem

A subset T of a metric space (X, d) is called totally bounded if for each ε > 0 there
exists a finite subset Fε of X such that T ⊆ ⋃{B[x; ε] : x ∈ Fε}.

Theorem 11.1. Let (X, d) be a complete metric space and let K be a closed and totally
bounded subset of (X, d). Then K is compact.

Proof. Let (xn : n ∈ N) be a sequence in K. We need to show that (xn : n ∈ N) possesses
a subsequence that is Cauchy. For each n ∈ N, let {Cn

j : 1 6 j 6 Nn} be a finite cover of
K by sets with diameter less than 1/n. Note: this is possible since K is totally bounded.
We shall inductively construct infinite subsets {Jn : n ∈ N} of N such that:

(i) Jn+1 ⊆ Jn for all n ∈ N;

(ii) for each n ∈ N there exists a jn ∈ {1, 2, . . . , Nn} such that xk ∈ Cn
jn for all

k ∈ Jn.

The construction of these sets is left as an exercise for the reader. Next, we may define
(nk : k ∈ N) such that:

(i) nk < nk+1 for all k ∈ N;

(ii) nk ∈ Jk for all k ∈ N.

Now, since Jn+1 ⊆ Jn for all n ∈ N and nk ∈ Jk for all k ∈ N we have that for each
N ∈ N, nk ∈ JN for all k > N . Therefore, for each N ∈ N, diam{xnk

: k > N} < 1/N .
Hence (xnk

: k ∈ N) is a Cauchy sequence. ✷

Corollary 11.2. Let (X, ‖·‖) be a Banach space and let K be a closed subset of (X, ‖·‖).
Then K is compact if for each ε > 0 there exists a compact subset Cε of (X, ‖ · ‖) such
that K ⊆ Cε + εBX .

Let (T, τ) be a topological space. We shall say that a subset F of C(T ) is equicontinuous
on T if for every ε > 0 and every t ∈ T there exists a neighbourhood U(t, ε) of t such
that |f(t′)− f(t)| < ε for all t′ ∈ U(t, ε) and all f ∈ F .
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Theorem 11.3 (Arzelà-Ascoli Theorem). Let (T, τ) be a compact space and let K be a
nonempty subset of C(T ). Then K is compact in (C(T ), ‖ · ‖∞) if, and only if, K is
bounded and equicontinuous on T .

Proof. Suppose that K is compact. Consider the function d : K → [0,∞) defined by,
d(f) := ‖f‖∞. Then d is continuous on K (since |d(f) − d(g)| 6 ‖f − g‖∞) and hence
bounded above by some M > 0. Then ‖f‖∞ = d(f) 6 M for all f ∈ K (i.e., K is
bounded).

We will now show that K is equicontinuous on T . To see this, consider t ∈ T and ε > 0.
Since K is compact there exists a finite set (fn)

N
n=1 in K such that K ⊆

⋃N
n=1B(fn, ε/3).

For each 1 6 n 6 N , choose a neighbourhood U(t, n, ε) of t such that |fn(t′)−fn(t)| < ε/3
for all t′ ∈ U(t, n, ε) and let U(t, ε) :=

⋂N
n=1 U(t, n, ε). Let f ∈ K and let t′ ∈ U(t, ε).

Then choose k ∈ {1, 2, . . . , N} so that ‖f − fk‖∞ < ε/3. Thus,

|f(t)− f(t′)| 6 |f(t)− fk(t)|+ |fk(t)− fk(t
′)|+ |fk(t′)− f(t′)|

6 2‖f − fk‖∞ + |fk(t)− fk(t
′)|

< 2 · ε
3
+

ε

3
= ε.

Hence, K is equicontinuous.

Converse direction. Since we know that (C(T ), ‖ · ‖∞) is complete and K is closed it is
sufficient to show that K is totally bounded. Thus, let us fix ε > 0. For each x ∈ T there
exists an open neighbourhood Vx of x such that |f(y)− f(x)| < ε for all y ∈ Vx and all
f ∈ K. Since T is compact and {Vx : x ∈ T} is an open cover of T there exists a finite
subcover {Vx1, Vx2, . . . , Vxn

} of T . Now, {f(xi) : i ∈ {1, 2, . . . , n}, f ∈ K} is bounded in
R. Therefore there exist real numbers {y1, y2, . . . , ym} such that

{f(xi) : i ∈ {1, 2, . . . , n}, f ∈ K} ⊆ B(y1, ε) ∪ B(y2, ε) ∪ · · · ∪ B(ym, ε).

Let π : {1, 2, . . . , n} → {1, 2, . . .m} be a function. Then define,

Sπ := {f ∈ K : f(xi) ∈ B(yπ(i), ε) for all 1 6 i 6 n}.

Note that {
Sπ : π ∈ {1, 2, . . . , m}{1,2,...,n}

}

is a cover of K. Next, we will show that each Sπ has diameter at most 4ε. To this
end, let π ∈ {1, 2, . . . , m}{1,2,...,n}, let f, f ′,∈ Sπ and let x ∈ T . Then there exists an
i ∈ {1, 2, . . . , n} such that x ∈ Vxi

. Thus,

|f(x)− f ′(x)| 6 |f(x)− f(xi)|+ |f(xi)− yπ(i)|+ |yπ(i) − f ′(xi)|+ |f ′(xi)− f ′(x)| < 4ε.

Since x ∈ T was arbitrary it follows that ‖f − f ′‖∞ 6 4ε, and since f, f ′ ∈ Sπ were also
arbitrary, we have that ‖ · ‖∞ − diam(Sπ) 6 4ε. Hence, K can be covered with at most
mn closed balls of radius 4ε. Thus, K can also be covered with at most mn closed balls of
radius 4ε, as a finite union of closed sets is again closed. This completes the proof. ✷
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Exercise 11.4. Prove the following complex-valued version of the Arzelá-Ascoli Theorem:
Let (T, τ) be a compact space and letK be a nonempty subset of CC(T ). ThenK is compact
in (CC(T ), ‖ · ‖∞) if, and only if, K is bounded and equicontinuous on T .

Exercise 11.5. Let K be a subset of a complete metric space (X, d). Show that K is
compact if, and only if, every sequence in K has a Cauchy subsequence.

Exercise 11.6. Let (X, ‖ · ‖) and (Y, ||| · |||) be normed linear spaces and suppose that
T ∈ B(X, Y ). Show that if T (BX) is a compact subset of (Y, ||| · |||), then T ′(BY ∗) is a
compact subset of (X∗, ‖ · ‖).

Hint: In light of Exercise 11.5, to prove Exercise 11.6 we need only show that every
sequence in T ′(BY ∗) possesses a Cauchy subsequence. On the other hand, if we consider
K := {y∗|T (BX) : y

∗ ∈ BY ∗} as a subset of (C(T (BX)), ‖ · ‖∞), then one should be able to

show that K is compact, by appealing to the Arzelà-Ascoli Theorem.

The result in Exercise 11.6 is called “Schauder’s Theorem”.
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Chapter 12

Banach Algebras

An algebra over a field K is a vector space A over K with a multiplication operation
(a, b) ∈ A× A 7→ ab ∈ A such that:

(i) x(yz) = (xy)z for all x, y, z ∈ A;

(ii) x(y + z) = xy + xz and (y + z)x = yx+ zx for all x, y, z ∈ A;

(iii) α(xy) = (αx)y = x(αy) for scalars α ∈ K and x, y ∈ A.

In this course all algebras will be over the field of complex numbers. An algebra need not
have a multiplicative identity element, i.e., an element e ∈ A \ {0} such that ea = ae = a
for all a ∈ A. If it does have one, then it can be shown to be unique and we will denote
it by 1A. We call 1A the identity of A and we say that A is an algebra with identity

if A is an algebra that possesses an identity element.

Example 12.1. Let Mn(C) denote the set of all n×n matrices over C. Then Mn(C) with
the operations of matrix addition and matrix multiplication is an algebra with identity.

A Banach algebra is a Banach space (A, ‖·‖) over C which is also an algebra over C and
in which the norm is related to multiplication by the following inequality ‖ab‖ 6 ‖a‖‖b‖
for all a, b ∈ A. In this case we say that the norm is submultiplicative.

A Banach algebra (A, ‖ · ‖) need not have a multiplicative identity, but if it does and it
satisfies ‖1A‖ = 1, then we call it a unital Banach algebra or else a Banach algebra

with identity.

Example 12.2. Some examples of unital Banach algebras

(i) The space (CC(K), ‖ · ‖∞) of all complex-valued continuous functions defined on a
compact space K, with scalar multiplication, addition and multiplication defined pointwise
is a unital Banach algebra. The multiplicative identity is the function that maps every
element of K to 1.

(ii) Let D := {z ∈ C : |z| 6 1} and let A(D) be the subset of (CC(D), ‖ · ‖∞) consisting of
all the functions that are analytic on {z ∈ C : |z| < 1}. This is called the disc algebra.
Again the multiplicative identity is the function that maps every element of D to 1.
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(iii) If (X, ‖ ·‖) is a nontrivial Banach space over C, then (B(X), ‖ ·‖) is a unital Banach
algebra, with scalar multiplication and addition defined pointwise and multiplication de-
fined by composition, i.e., if S, T ∈ B(X), then ST := S ◦ T . The multiplicative identity
in this case is the identity mapping on X.

(iv) Let (G, ·) be a group with identity e and let

ℓ1(G) := {f ∈ CG :
∑

g∈G

|f(g)| < ∞},

with scalar multiplication and addition defined pointwise. For f, g ∈ ℓ1(G) we define the
convolution of f and g to be the function f ∗ g : G → C defined by,

(f ∗ g)(x) :=
∑

y∈G

f(xy−1)g(y).

Then (ℓ1(G), ‖ · ‖1) is a unital Banach algebra. The identity element is the function
1 : G → {0, 1} defined by, 1(x) := 1 if, and only if, x = e.

Proof. (i) We already know that (CC(K), ‖·‖∞) is a Banach space and that CC(K) is closed
under pointwise multiplication. Further, if f, g ∈ CC(K) and k ∈ K, then |(fg)(k)| =
|f(k)||g(k)| 6 ‖f‖∞‖g‖∞ and so ‖fg‖∞ 6 ‖f‖∞‖g‖∞. Note also that ‖1‖∞ = 1, where
1 : K → C is defined by, 1(k) = 1 for all k ∈ K.

(ii) It is easy to verify that A(D) is a subalgebra of CC(D) with identity element 1. It
also follows, for free, since A(D) is a subset of CC(D) that the norm is submultiplicative
and ‖1‖∞ = 1. It remains to show that A(D) is a closed subalgebra of CC(D). Suppose
that (fn : n ∈ N) is a sequence in A(D) converging to f in (CC(D), ‖ · ‖∞). Now suppose
that Γ is a simple closed contour with length L lying in D, then

∣∣∣∣
∫

Γ

fn(z) dz −
∫

Γ

f(z) dz

∣∣∣∣ =
∣∣∣∣
∫

Γ

(fn − f)(z) dz

∣∣∣∣ 6 ‖fn − f‖∞L,

and thus
∫
Γ
fn(z) dz →

∫
Γ
f(z) dz. By Cauchy’s Theorem we have that

∫
Γ
fn(z) dz = 0

for all n ∈ N, hence
∫
Γ
f(z) dz = 0. Morera’s Theorem then implies that f is analytic on

{z ∈ C : |z| < 1}. Thus, f ∈ A(D).

(iii) The only interesting feature here to check is that for any S, T ∈ B(X), ‖ST‖ 6 ‖S‖‖T‖.
To see this, let x ∈ X . Then

‖(ST )(x)‖ = ‖S(T (x))‖ 6 ‖S‖‖T (x)‖ 6 ‖S‖‖T‖‖x‖.

Since x ∈ X was arbitrary it follows that ‖ST‖ 6 ‖S‖‖T‖.
(iv) This is an important example, called the group algebra of G, so we will take the
opportunity to verify a couple of the axioms to show that ℓ1(G), endowed with the convolu-
tion, really is a unital Banach algebra. Specifically, we will show that ‖f ∗g‖1 6 ‖f‖1‖g‖1
for all f, g ∈ ℓ1(G) and ‖1‖1 = 1. Of course we do already know that (ℓ1(G), ‖ · ‖1) is a
Banach space.
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Let f, g ∈ ℓ1(G), then

‖f ∗ g‖1 =
∑

x∈G

|(f ∗ g)(x)|

=
∑

x∈G

∣∣∣∣∣
∑

y∈G

f(xy−1)g(y)

∣∣∣∣∣

6
∑

x∈G

∑

y∈G

|f(xy−1)||g(y)| by the triangle inequality

=
∑

y∈G

∑

x∈G

|f(xy−1)||g(y)| swap the order of summation

=
∑

y∈G

|g(y)|
(∑

x∈G

|f(xy−1)|
)

=
∑

y∈G

|g(y)|
(∑

z∈G

|f(z)|
)

since G = Gy−1

=
∑

y∈G

|g(y)|‖f‖1 = ‖f‖1
∑

y∈G

|g(y)| = ‖f‖1‖g‖1.

Note also that ‖1‖1 =
∑

x∈G

|1(x)| = 1(e) = 1. ✷

Exercise 12.3. Let (G, ·) be a group. Show that the convolution operation on ℓ1(G) is
associative. Hint: Show that for all f, g, h ∈ ℓ1(G) and all x ∈ G

((f ∗ g) ∗ h)(x) =
∑{

f(a)g(b)h(c) : (a, b, c) ∈ G3 and x = abc
}
= (f ∗ (g ∗ h))(x).

Note also that for every x ∈ G,
∑ {|f(a)g(b)h(c)| : (a, b, c) ∈ G3 and x = abc} < ∞.

Finally, note that π : G → ℓ1(G), defined by, [π(g)](x) = 1 if x = g and [π(g)](x) = 0 if
x 6= g, is a group monomorphism from (G, ·) into (ℓ1(G), ∗).

Theorem 12.4. Every unital Banach algebra is isometrically isomorphic to a unital sub-
algebra of B(X), for some Banach space (X, ‖ · ‖).

Proof. Let (A, ‖ · ‖) be a unital Banach algebra. Consider the mapping M : A → B(A)
defined by, M(a)(x) := ax for all x ∈ A. One can verify that M is indeed an isometric
isomorphism and that M(A) is a unital Banach subalgebra of B(A). ✷

An element a of a unital algebra A is invertible if there exists an element b ∈ A such
that ab = ba = 1A. Note that if ab = ba = 1A and ac = ca = 1A, then b = c. Simply
note that b = b1A = b(ac) = (ba)c = 1Ac = c. Any element b ∈ A such that ab = ba = 1A

is called an inverse of a and by our previous argument we see that the inverse of a is
unique. Hence, if a ∈ A is invertible, then we can denote its inverse by a−1.
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Basic facts : Let (A, ‖ · ‖) be a unital Banach algebra, then

(i) If A−1 := {a ∈ A : a−1 exists}, then (A−1, ·) is a group, called the group of units

or group of regular elements.

(ii) (x, y) 7→ x · y is jointly continuous, that is, if lim
n→∞

xn = x and lim
n→∞

yn = y, then

lim
n→∞

(xn · yn) = x · y.
(iii) If x, y ∈ A−1, then (xy)−1 = y−1x−1 and if λ 6= 0, then λx ∈ A−1 and

(λx)−1 = λ−1x−1.

(iv) If xy = yx, then xy ∈ A−1 if, and only if, both x ∈ A−1 and y ∈ A−1.

(v) If a ∈ A−1, then the mapping Ta : A → A defined by, Ta(x) := ax for all x ∈ A is a
homeomorphism, i.e., Ta is one-to-one and onto and both Ta and T−1

a are continuous.

(vi) If x, y ∈ A−1, then y−1 − x−1 = x−1(x− y)y−1 = y−1(x− y)x−1.

Exercise 12.5. This exercise concerns inverses.

(i) Let K be a nonempty compact space. Show that an element f of CC(K) is invertible
if, and only if, 0 is not in the image of f , i.e., if 0 6∈ f(K).

(ii) Show that an element f of A(D) is invertible if, and only if, 0 is not in the image of
f , i.e., if 0 6∈ f(D).

(iii) Let (X, ‖ · ‖) be a Banach space. Show that S ∈ B(X) is invertible if, and only if, S
is a bijection.

(iv) Let A ∈ Mn(C). Show that A is invertible if, and only if, Ker(A) = {0}.
Theorem 12.6. Let (A, ‖ · ‖) be a Banach algebra. Then for each x ∈ A,

lim
n→∞

‖xn‖ 1
n exists

and
lim
n→∞

‖xn‖ 1
n = inf{‖xn‖ 1

n : n ∈ N}.

Proof. Clearly the result is true if x = 0, so we shall consider the case when 0 < ‖x‖.
First note that ‖xn‖ 6 ‖x‖n for all n ∈ N and so ‖xn‖ 1

n 6 ‖x‖ for all n ∈ N. Therefore,

lim sup
n→∞

‖xn‖ 1
n exists. Hence it will be sufficient to show that if

M := inf{‖xn‖ 1
n : n ∈ N}, then M = lim sup

n→∞
‖xn‖ 1

n .

To this end, let ε > 0 and choose m ∈ N such that ‖xm‖ 1
m < M +ε. Then for each n ∈ N,

there exists qn ∈ N and 0 6 rn < m such that n = qnm+ rn. Thus,

M 6 ‖xn‖ 1
n = ‖xqnm+rn‖ 1

n

6 ‖xqnm‖ 1
n · ‖xrn‖ 1

n

6 ‖xm‖ qn
n · ‖x‖ rn

n

=
(
‖xm‖ 1

m

) qnm
n · ‖x‖ rn

n

6 (M + ε)
qnm
n · ‖x‖ rn

n for all n ∈ N.
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Therefore, since lim
n→∞

rn
n

= 0 and lim
n→∞

qnm

n
= lim

n→∞
1− rn

n
= 1,

M 6 lim sup
n→∞

‖xn‖ 1
n 6 lim sup

n→∞
(M + ε)

qnm
n ‖x‖ rn

n = lim
n→∞

(M + ε)
qnm
n ‖x‖ rn

n = M + ε.

Thus, since ε was arbitrary, lim sup
n→∞

‖xn‖ 1
n = M . ✷

Exercise 12.7. Let (A, ‖ · ‖) be a Banach algebra. Show that if x ∈ A and

lim
n→∞

‖xn‖ 1
n = ‖x‖,

then ‖xn‖ = ‖x‖n for all n ∈ N.

Theorem 12.8. Let (A, ‖ · ‖) be a unital Banach algebra. If x ∈ A and lim
n→∞

‖xn‖ 1
n < 1,

then (1A − x) ∈ A−1 and (1A − x)−1 = 1A +
∑

n∈N x
n.

Proof. For each n ∈ N, let

sn := 1A +
n∑

k=1

xk.

Then notice that by the “Root Test” for convergence,
∞∑

k=0

‖xk‖ < ∞. Therefore, since

(A, ‖ · ‖) is a Banach space

1A +
∑

k∈N

xk = lim
n→∞

sn exists.

Moreover,

(1A − x)sn =
n∑

k=0

xk −
n+1∑

k=1

xk = (1A − xn+1) =
n∑

k=0

xk −
n+1∑

k=1

xk = sn(1A − x).

Therefore,

(1A − x)(1 +

∞∑

k=1

xk) = lim
n→∞

(1A − x)sn = lim
n→∞

(1A − xn+1)

= 1A

= lim
n→∞

sn(1A − x) = (1A +

∞∑

k=1

xk)(1A − x).

Thus, (1A − x)−1 = 1A +
∑

k∈N x
k. ✷
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Remarks 12.9. Given a unital Banach algebra (A, ‖ · ‖) and an element x ∈ A the

previous theorem shows that (1A − λx) is regular provided lim
n→∞

‖(λx)n‖ 1
n < 1; that is,

provided that:

0 6 |λ| < 1/( lim
n→∞

‖xn‖ 1
n ), if lim

n→∞
‖xn‖ 1

n 6= 0 and for all λ ∈ C if, lim
n→∞

‖xn‖ 1
n = 0.

For any such λ in this range,

(1A − λx)−1 = 1A +
∑

n∈N

λnxn.

This series is called the Neumann series for x.

Corollary 12.10. Let (A, ‖ · ‖) be a unital Banach algebra. Then B(1A, 1) ⊆ A−1.

Proof. The proof is left as an exercise for the reader. ✷

Corollary 12.11. Let (A, ‖ · ‖) be a unital Banach algebra. If x ∈ A and ‖x‖ < 1, then

‖(1A − x)−1‖ 6
1

1− ‖x‖ .

Proof. From Theorem 12.8,

‖(1A − x)−1‖ =

∥∥∥∥∥1A +
∞∑

k=1

xk

∥∥∥∥∥ 6 1 +
∞∑

k=1

‖xk‖ 6

∞∑

k=0

‖x‖k =
1

1− ‖x‖ .

This completes the proof. ✷

Corollary 12.12. Let (A, ‖ · ‖) be a unital Banach algebra, then A−1 is an open set.

Proof. Let x0 ∈ A−1. Then x0 ∈ x0 · B(1A, 1) ⊆ A−1, since B(1A, 1) ⊆ A−1. Now,
x0 · B(1A, 1) is open in (A, ‖ · ‖) and so x0 ∈ int(A−1); which completes the proof. ✷

Theorem 12.13. Let (A, ‖ · ‖) be a unital Banach algebra, then x 7→ x−1 is continuous
on A−1. In fact, (A−1, ·) is a topological group.

Proof. Suppose x, y ∈ A−1, then

‖y−1 − x−1‖ = ‖x−1(x− y)y−1‖ 6 ‖x−1‖ · ‖(x− y)‖ · ‖y−1‖

and since x−1 = y−1 + (x−1 − y−1)

‖x−1‖ 6 ‖y−1‖+ ‖y−1 − x−1‖ 6 ‖y−1‖+ ‖x−1‖ · ‖x− y‖ · ‖y−1‖.

Note that this immediately implies that

‖x−1‖ ·
(
1− ‖x− y‖ · ‖y−1‖

)
6 ‖y−1‖
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or

‖x−1‖ 6
‖y−1‖

(1− ‖x− y‖ · ‖y−1‖)
provided ‖x− y‖ < 1/‖y−1‖. This then gives us that

‖x−1 − y−1‖ 6
‖x− y‖ · ‖y−1‖2

(1− ‖x− y‖ · ‖y−1‖) 6 2‖x− y‖ · ‖y−1‖2

provided 0 6 ‖x− y‖ < 1/2‖y−1‖. Thus, given ε > 0, if we choose

δ := min

{
1

2‖y−1‖ ,
ε

2‖y−1‖2
}

> 0

then ‖x−1 − y−1‖ < ε whenever ‖x− y‖ < δ. ✷

Unitisation

Theorem 12.14. If (A, ‖ · ‖) is a Banach algebra without an identity element, then there
exists a unital Banach algebra (B, ||| · |||) such that A is a closed subalgebra of B.

Proof. Let B := A× C and define,

(x, a) + (y, b) := (x+ y, a+ b), (x, a)(y, b) := (xy + ay + bx, ab), λ(x, a) := (λx, λa).

Also define |||(x, a)||| := ‖x‖ + |a|. Then (B, ||| · |||) is a Banach algebra with identity
1B := (0, 1) and A is isometrically isomorphic to A× {0}. ✷

Application

Suppose that f, g ∈ CC[a, b] and that k is a continuous complex-valued function defined
on the triangular region {(x, t) ∈ [a, b]× [a, b] : a 6 t 6 x}. Then the Volterra integral

equation determined by f , g, k and λ ∈ C is the equation:

f(x) = g(x) + λ

∫

[a,x]

k(x, t)f(t) dt for all x ∈ [a, b].

Theorem 12.15. For each g ∈ CC[a, b] and continuous complex-valued function k defined
on the triangular region {(x, t) ∈ [a, b]× [a, b] : a 6 t 6 x}. The Volterra equation

f(x) = g(x) + λ

∫

[a,x]

k(x, t)f(t) dt for all x ∈ [a, b]

has a unique solution for every λ ∈ C.
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Proof. We define the Volterra operator K : (CC[a, b], ‖ · ‖∞) → (CC[a, b], ‖ · ‖∞) by,

K(f)(x) :=

∫

[a,x]

k(x, t)f(t) dt.

It is a straightforward exercise (which we leave to the reader) to show that K is a contin-
uous linear operator on CC[a, b]. In terms of the Volterra operator, the Volterra integral
equation can be written as (I − λK)(f) = g. From before, we see that (I − λK) is

invertible (i.e., regular) for all λ ∈ C, provided that lim
n→∞

‖Kn‖ 1
n = 0 and furthermore the

solution will be given by the Neumann series

f = (I − λK)−1(g) =
(
I +

∑
n∈Nλ

nKn
)
(g).

That is, we have a series solution for the Volterra integral equation. So next we will show
that lim

n→∞
‖Kn‖ 1

n = 0. Now,

|K(f)(x)| 6

∫

[a,x]

|k(x, t)||f(t)| dt

6 (x− a) sup{|k(x, t)||f(t)| : a 6 t 6 x}
6 M‖f‖∞(x− a)

where M := sup{|k(x, t)| : a 6 t 6 x and a 6 x 6 b}. We shall prove by induction that

|Kn(f)(x)| 6 Mn‖f‖∞
(x− a)n

n!
for all a 6 x 6 b.

We have already shown that this is true in the case when n = 1. So suppose that the
statement is true for the case n = m. Then,

|Km+1(f)(x)| = |K(Km(f))(x)| =

∣∣∣∣
∫

[a,x]

k(x, t)(Km(f))(t) dt

∣∣∣∣

6

∫

[a,x]

|k(x, t)||(Km(f))(t)| dt

6
Mm‖f‖∞

m!

∫

[a,x]

M(t− a)m dt

6
Mm+1‖f‖∞(x− a)m+1

(m+ 1)!

which concludes the induction. Using this fact we obtain that for all n ∈ N,

‖Kn(f)‖∞ = max{|Kn(f)(x)| : a 6 x 6 b} 6 Mn‖f‖∞
(b− a)n

n!

and so

‖Kn‖ = sup{‖Kn(f)‖∞ : ‖f‖∞ 6 1} 6 Mn (b− a)n

n!
.

Since lim
n→∞

1
n
√
n!

= 0 we conclude that lim
n→∞

‖Kn‖ 1
n = 0. ✷
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Chapter 13

The Resolvent Function

Let (A, ‖ · ‖) be a unital Banach algebra. We define the spectrum of x ∈ A to be

σA(x) := {λ ∈ C : x− λ1A is singular}.

When there is no ambiguity we shall simply write σ(x) for σA(x). Recall that an element
a ∈ A is called singular if a 6∈ A−1.

It is easy to see that λ 7→ (x − λ1A) is a continuous function from C into A. Since the
set of singular elements in A is closed, it follows at once that σA(x) is closed. Further,
observe that σA(x) ⊆ {z ∈ C : |z| 6 ‖x‖} because if λ > ‖x‖, then (1A − λ−1x) is a unit,
since

∥∥λ−1x
∥∥ < 1 and so (x− λ1A) is a unit as well, since (x− λ1A) = (−λ)(1A − λ−1x).

Thus, for each x ∈ A, σA(x) is compact.

Basic facts : Let (A, ‖ · ‖) be a unital Banach algebra.

(i) If A is a subalgebra of a Banach algebra (B, ‖ ·‖), then σB(x) ⊆ σA(x) for all x ∈ A.

(ii) If λ ∈ C and x ∈ A, then σA(λx) = λσA(x).

(iii) If λ ∈ C and x ∈ A, then σA(x+ λ1A) = σA(x) + λ.

(iv) If B is a Banach algebra and π : A → B is a unital homomorphism (i.e., an algebra
homomorphism such that π(1A) = 1B), then σB(π(x)) ⊆ σA(x).

(v) If x ∈ A−1 and λ ∈ C \ {0}, then (x−1 − λ−11A) = (−λ)−1x−1(x− λ1A).

(vi) If x ∈ A−1, then σA(x
−1) = {λ−1 : λ ∈ σA(x)}.

(vii) If x, y ∈ A and (1A−xy) ∈ A−1, then (1A− yx) ∈ A−1. Hint: Consider the element
1A + y(1A − xy)−1x.

(viii) For any x, y ∈ A, σA(xy) \ {0} = σA(yx) \ {0}.

Proof. We give only outlines.

(i) This follows from the fact that A−1 ⊆ B−1.

(ii) Check first that σA(0x) = 0σ(x) = {0}, assuming we know that σA(x) 6= ∅.
Then check that σA(λx) = λσA(x) for λ 6= 0.
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(iii) Straightforward.

(iv) Firstly note that π(A−1) ⊆ B−1. Indeed, if 1A = ab = ba, then

1B = π(1A) = π(ab) = π(a)π(b) and 1B = π(1A) = π(ba) = π(b)π(a).

Therefore, π(a) ∈ B−1. Now, suppose that λ 6∈ σA(x), then (x − λ1A) ∈ A−1 and
so π(x)− λ1B = π(x− λ1A) ∈ B−1, i.e., λ 6∈ σB(π(x)).

(v) Straightforward.

(vi) Again straightforward.

(vii) To check this, one just does the multiplication, but to see where this formula
might have come from, consider the following formal calculation

(1A−xy)−1 = 1A+xy+(xy)2+· · · = 1A+x(1A+yx+(yx)2+· · · )y = 1A+x(1A−yx)−1y.

(viii) This just follows from (vii).

This completes the justifications of the basic facts. ✷

Example 13.1. We consider some basic examples.

(i) Let A := Mn(C) and define |||M ||| := sup{‖Mx‖ : ‖x‖ = 1}. Then (A, ||| · |||) is a unital
Banach algebra and for each M ∈ A, σA(M) consists of all the eigenvalues of M .

(ii) Let A = CC(K), then for each f ∈ A, σA(f) = {f(k) : k ∈ K}, i.e., σA(f) is the
image of f . To see this, note that if f ∈ A, then

λ 6∈ σA(f) ⇐⇒ (f − λ1) is invertible

⇐⇒ (f − λ1)(x) 6= 0 for any x ∈ K

⇐⇒ λ 6= f(x) for any x ∈ K

⇐⇒ λ 6∈ f(K).

(iii) Let H be a Hilbert space. For T ∈ B(H), σB(H)(T ) contains all the eigenvalues, but
could be strictly larger. For example, take H = ℓ2(N) and let T be defined by,

T (x1, x2, x3, . . .) := (0, x1, x2, x3, . . .).

We claim that (a) T has no eigenvalues and (b) σB(H)(T ) = {λ ∈ C : |λ| 6 1}. To prove
(a) suppose λ is an eigenvalue so that there exists a nonzero sequence (xn : n ∈ N) ∈ ℓ2(N)
with T [(xn : n ∈ N)] = λ(xn : n ∈ N). Then

(0, x1, x2, x3, . . .) = (λx1, λx2, λx3, . . .);

the left-hand side is nonzero, so λ cannot be zero. Also it follows that λx1 = 0, i.e., x1 = 0
and xn = λxn+1 for all n ∈ N, i.e., xn+1 = λ−nx1 for all n ∈ N. Therefore, xn = 0 for all
n ∈ N, which is a contradiction.

(b) Since ‖T‖ = 1 we know from above that σB(H)(T ) ⊆ {λ ∈ C : |λ| 6 1}. So let us show
that if |λ| 6 1, then T − λ1 is not surjective by showing that (1, 0, 0, 0, . . .) is not in the
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range of (T − λ1). Suppose that (xn : n ∈ N) ∈ ℓ2(N) satisfies (T − λ1)[(xn : n ∈ N)] =
(1, 0, 0, 0, . . .). Then

(0− λx1, x1 − λx2, x2 − λx3, . . .) = (1, 0, 0, 0, . . .).

Since −λx1 = 1, x1 = −1/λ. Moreover, since xn − λxn+1 = 0 for all n ∈ N we have that
xn+1 = λ−nx1 for all n ∈ N, i.e., xn+1 = −λ−(n+1) for all n ∈ N, but then (xn : n ∈ N) 6∈
ℓ2(N). This gives (b). �

Proposition 13.2. Suppose that (B, ‖ · ‖) is a unital Banach algebra and (A, ‖ · ‖) is a
Banach subalgebra of B, with 1B ∈ A. Then for any x ∈ A, ∂σA(x) ⊆ σB(x) ⊆ σA(x).
Here, ∂σA(x) denotes the boundary of σA(x).

Proof. As A−1 ⊆ B−1 it follows that σB(x) ⊆ σA(x). So we consider the other set
inclusion. To obtain a contradiction, let us suppose there is some λ ∈ ∂σA(x) \ σB(x).
Then (x − λ1B)

−1 ∈ B \ A. Since λ ∈ ∂σA(x) there exists a sequence (λn : n ∈ N) in
C \ σA(x) such that λ = limn→∞ λn. Therefore, (x− λn1B)

−1 ∈ A for all n ∈ N and

(x− λ1B)
−1 =

(
lim
n→∞

(x− λn1B)
)−1

= lim
n→∞

(x− λn1B)
−1 ∈ A

since A is closed and the mapping b 7→ b−1 is continuous on B−1. However, this contradicts
the assumption that λ ∈ σA(x). ✷

Example 13.3. Let D := {x ∈ C : |z| 6 1} and let T := ∂D, i.e., T = {z ∈ C : |z| = 1}.
Let A(D) := {f ∈ CC(D) : f is analytic on int(D)}. Then (A(D), ‖ · ‖∞) is a unital
Banach algebra and σA(D)(f) = f(D) for every f ∈ A(D).

Proof. From Example 12.2 part(ii) we know that (A(D), ‖·‖∞) is a unital Banach algebra
and by Exercise 12.5 part(ii) we know that f ∈ A(D) is invertible if, and only if, 0 6∈
f(D). From this it follows that σA(D)(f) = f(D). Let R : A(D) → C(T) be defined
by, R(f) := f |T. Then by the Maximum Modulus Principle, ‖R(f)‖∞ = ‖f‖∞ for all
f ∈ A(D). Therefore, R is a Banach algebra isomorphism from A(D) onto R(A(D)). Let
X := A(D) and Y := R(A(D)). Then σX(f) = σY (R(f)) for all f ∈ X . In particular,
σY (R(idD)) = σX(idD) = D, where idD : D → C is defined by, idD(z) := z for all z ∈ D.
Let g := R(idD)), then σY (g) = D.

On the other hand, Y is a subalgebra of Z := CC(T) and σZ(g) = T. Thus,

σZ(g) = T = ∂D = ∂[σY (g)].

This completes the exmple. ✷

Let (A, ‖ · ‖) be a unital Banach algebra, then the resolvent of x ∈ A is the function
R : C \ σA(x) → A defined by,

R(λ) := (x− λ1)−1.

Since R(λ) = (−λ)−1(1−λ−1x)−1 for λ ∈ C\σA(x) we have that ‖R(λ)‖ → 0 as |λ| → ∞.
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If µ and λ ∈ C \ σA(x), then

R(µ)− R(λ) = R(λ)(µ1− λ1)R(µ) = (µ− λ)R(λ)R(µ).

Thus, if x∗ ∈ A∗, then

x∗(R(µ))− x∗(R(λ))

µ− λ
= x∗(R(λ)R(µ))

for all µ, λ ∈ C \ σ(x) with µ 6= λ.

The next theorem requires a result from complex analysis, namely Liouville’s Theorem,
which says that the only bounded analytic functions f : C → C are the constant functions.

Theorem 13.4. Let (A, ‖ ·‖) be a unital Banach algebra and let a ∈ A. Then σA(a) 6= ∅.

Proof. Fix x∗ ∈ A∗ and define f : C \ σA(x) → C by, f(λ) := x∗(R(λ)). Then for any
λ, µ ∈ C\σA(x), (λ 6= µ),

f(µ)− f(λ)

µ− λ
= x∗(R(λ)R(µ))

Thus,

f ′(λ) = lim
µ→λ

f(µ)− f(λ)

µ− λ
= x∗(R2(λ)), since R is continuous on C\σA(x).

So f is analytic on C \ σA(x). Moreover, for any λ ∈ C\σA(x),

|f(λ)| 6 ‖x∗‖ ‖R(λ)‖ = (‖x∗‖/|λ|)‖
(
1− λ−1x

)−1 ‖.

Therefore |f(λ)| → 0 as |λ| → ∞.

Now suppose, in order to obtain a contradiction, that σA(x) = ∅. Then f is a bounded
entire function (i.e., analytic on all of C) and so from Liouville’s Theorem f ≡ c for some
c ∈ C. However, since f → 0 as |λ| → ∞ it must be the case that f ≡ 0. Therefore, for
each x∗ ∈ A, x∗(R(λ)) = 0 for all λ ∈ C. Hence, by the Hahn-Banach Theorem R(λ) = 0
for all λ ∈ C. However, this is absurd since 0 is not invertible. ✷

An algebra with identity in which each nonzero element is invertible is called a division

algebra.

Theorem 13.5 (Gelfand-Mazur). If (A, ‖ · ‖) is a division Banach algebra, then it equals
the set of all scalar multiples of the identity.

Proof. Let x ∈ A and λ ∈ σA(x) 6= ∅. Then x− λ1A must equal 0, i.e., x = λ1A. ✷
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For an element x of a unital Banach algebra (A, ‖ · ‖) we define the spectral radius of

x to be
rA(x) := max{|λ| : λ ∈ σA(x)}.

When there is no ambiguity we simply write r(x) for rA(x).

We need some further results from complex analysis. Recall that if f is analytic in a ball
B(z0, r), then the Taylor series for f converges to f throughout B(z0, r). We need the
following analogue for functions analytic in an annulus

A(z0, r, R) := {z ∈ C : r < |z| < R}.

Theorem 13.6. Suppose that the power series
∑∞

n=0 an(z−z0)
n converges when |z−z0| <

R and
∑−1

n=−∞ an(z−z0)
n converges when |z−z0| > r. Then the function f : A(z0, r, R) →

C defined by the following Laurent series

f(x) =

∞∑

n=−∞

an(z − z0)
n :=

∞∑

n=−∞

an(z − z0)
n +

∞∑

n=−∞

an(z − z0)
n

is analytic in A(z0, r, R). Conversely, if f : A(z0, r, R) → C is analytic, then there is a
unique Laurent series which converges absolutely to f(z) for every z ∈ A(z0, r, R).

Theorem 13.7 (Spectral Radius Formula). Let (A, ‖ · ‖) be a unital Banach algebra and
let x ∈ A. Then

rA(x) = lim
n→∞

‖xn‖ 1
n .

Proof. Note that rA(x) 6 lim
n→∞

‖xn‖ 1
n since if λ > lim

n→∞
‖xn‖ 1

n , then lim
n→∞

∥∥(λ−1x
)n∥∥ 1

n < 1

and so
(
1− λ−1x

)
is a unit. However,

(x− λ1) = (−λ)
(
1− λ−1x

)

and so (x− λ1) is a unit as well, i.e., λ /∈ σA(x).

So now we need only show that rA(x) > lim
n→∞

‖xn‖ 1
n . To do this, it suffices to show that

if rA(x) < a, then lim
n→∞

‖xn‖ 1
n 6 a.

For |λ| > ‖x‖ we have that

R(λ) = (x− λ1)−1 = (−λ)−1
(
1− λ−1x

)−1
= (−λ)−1

∞∑

k=0

λ−kxk.

Fix x∗ ∈ A∗ and define f : C \ σA(x) → C by, f(λ) := x∗(R(λ)). For |λ| > ‖x‖, and in
particular, for λ ∈ A(0, ‖x‖, ‖x‖+ 1) we have that

f(λ) = (−λ)−1

∞∑

k=0

x∗(xk)

λk
.
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As we have seen previously, f is analytic on C \ σA(x). Therefore, f has a Laurent
expansion on A(0, rA(x), ‖x‖+ 1). Moreover, since the Laurent expansion of f is unique
it must coincide with the Laurent expansion given above on the annulus A(0, ‖x‖, ‖x‖+1).
Hence,

f(λ) = (−λ)−1

∞∑

k=0

x∗(xk)

λk
for λ ∈ A(0, rA(x), ‖x‖+ 1).

Therefore,

f(a) = (−a)−1

∞∑

k=0

x∗(xk)

ak
= (−a)−1

∞∑

k=0

x∗
(
a−kxk

)
.

In particular, limn→∞ x∗ (a−nxn) = 0 and so the set {x∗(a−nxn) : n ∈ N} is bounded.
Since this holds for any x∗ ∈ A∗ the set {a−nxn : n ∈ N} is weakly bounded and hence,
by the Uniform Boundedness Theorem, norm bounded. That is, there exists a K > 0
such that ‖xn‖ 6 Kan for all n ∈ N. Thus, ‖xn‖ 1

n 6 K
1
na for all n ∈ N and so

lim
n→∞

‖xn‖ 1
n 6 1a = a. ✷

Let A be an algebra. Then a linear functional x∗ on A is called a multiplicative linear

functional if x∗(xy) = x∗(x)x∗(y) for all x, y ∈ A.

Note that if K is a compact topological space and x ∈ K, then δx : CC(K) → C defined
by, δx(f) := f(x) for all f ∈ CC(K) is a multiplicative linear functional on CC(K).

Remarks 13.8. Let A be an algebra. Then x∗ : A → C is a multiplicative linear functional
on A if, and only if, x∗ is an algebra homomorphism.

Exercise 13.9. These exercises are on multiplicative linear functionals.

(i) Show that if A is an algebra with identity and x∗ is a nonzero multiplicative linear
functional on A, then x∗(1A) = 1.

(ii) Show that if (A, ‖ · ‖) is a Banach algebra and x∗ ∈ A∗ is a multiplicative linear
functional on (A, ‖ · ‖), then ‖x∗‖ 6 1. Hint: Suppose to the contrary that there exists
an element x′ ∈ BA such that |x∗(x′)| > 1. Then show that this implies that there
exists an element x ∈ A such that ‖x‖ < 1 and x∗(x) = 1. Let x := 1

x∗(x′)
x′ and consider

y :=
∑∞

n=1 x
n and show that x+xy = y. Finally, deduce that this leads to a contradiction.

(iii) Show that if (A, ‖ · ‖) is a unital Banach algebra and x∗ ∈ A∗ is a nonzero multi-
plicative linear functional on (A, ‖ · ‖), then ‖x∗‖ = 1.

Let (A, ‖ · ‖) be a unital Banach algebra. We call a functional x∗ ∈ A∗ a state if
‖x∗‖ = x∗(1) = 1. We shall denote by S(A) the set of all state functionals in A∗ and
by ∆A the set of all nonzero multiplicative linear functionals on A. We know from the
previous exercises that ∆A ⊆ S(A) ⊆ SA∗ .

Note that if K is a compact Hausdorff topological space and p is a Borel probability
measure on K, then x∗ : CC(K) → C defined by, x∗(f) :=

∫
K
f dp for all f ∈ CC(K), is

a state on CC(K).
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Recall that a subset U in the dual of a normed linear space (X, ‖ · ‖) is called weak∗

open if for each x∗ ∈ U there exists an ε > 0 and a finite set {x1, x2, . . . xn} in X such
that the set

N(x∗, x1, x2, . . . xn, ε) := {y∗ ∈ X∗ : |x∗(xj)− y∗(xj)| < ε for each 1 6 j 6 n}

is contained in U .

Exercise 13.10. Let (X, ‖ · ‖) be a normed linear space.

(i) Show that the set of all weak∗ open subsets of X∗ forms a topology on X∗. This topology
is called the weak∗ topology on X∗.

(ii) Show that the weak∗ topology on X∗ is weaker than the norm topology on X∗.

(iii) Show that each element of X̂ is continuous on (X∗,weak∗).

Let (X, ‖ · ‖) be a normed linear space. Then the weak∗ topology on X∗ is sometimes
called the topology of pointwise convergence on X . Furthermore, it can be shown
that the weak∗ topology on X∗ is the weakest topology on X∗ that make each functional
from X̂ continuous, i.e., the weak∗ topology on X∗ is the weak topology on X∗ generated
by X̂ .

Theorem 13.11 (Banach-Alaoglu Theorem). Let (X, ‖·‖) be a normed linear space, then
(BX∗ ,weak∗) is compact.

Exercise 13.12. Let (A, ‖ · ‖) be a unital Banach algebra. Show that S(A) is a weak∗

compact convex subset of A∗. Hint: S(A) = BA∗ ∩ (1̂A)
−1(1).

Theorem 13.13. Let (A, ‖ · ‖) be a unital Banach algebra. Then ∆A is a weak∗ closed
and hence a weak∗ compact subset of BA∗.

Proof. Firstly, as already noted, ∆A ⊆ S(A) ⊆ BA. So it is sufficient to show that ∆A is
weak∗ closed.

∆A =
⋂

x,y∈A{x∗ ∈ A∗ : x∗(1A) = 1 and x∗(xy) = x∗(x)x∗(y)}
=

⋂
x,y∈A{x∗ ∈ A∗ : x∗(1A) = 1 and (x̂y − x̂ŷ)(x∗) = 0}

= (1̂A)
−1(1) ∩⋂x,y∈Aq

−1
x,y(0), where qx,y := x̂y − x̂ŷ.

Since each qx,y is weak∗ continuous, q−1
x,y(0) is weak∗ closed. Therefore, ∆A being the

intersection of weak∗ closed subsets is itself weak∗ closed. ✷

Eventually, we will show that if (A, ‖ · ‖) is a commutative unital Banach algebra, then
there exists an algebra homomorphism ϕ : (A, ‖ · ‖) → (CC(∆A), ‖ · ‖∞) such that for each
x ∈ A, ‖ϕ(x)‖∞ = r(x).

To prove this we first need to prove three preliminary results.

Let A be an algebra, then a subset I of A is called a 2-sided ideal if:
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(i) I is a vector subspace of A;

(ii) xI ⊆ I and Ix ⊆ I for all x ∈ A.

Using Zorn’s Lemma it is easy to show that every proper ideal in a unital algebra is
contained in a maximal, with respect to set inclusion, proper ideal.

If A is a commutative algebra with identity and x ∈ A, then the set {ax : a ∈ A} is an
ideal in A and is called the principal ideal generated by x and is denoted by 〈x〉. An
ideal I is called a principal ideal if I = 〈x〉 for some x ∈ I.

Lemma 13.14. Let A be a commutative algebra with identity. Then every singular el-
ement x ∈ A is contained in a maximal proper ideal. In fact, x ∈ A is singular if, and
only if, it is contained in a maximal proper ideal.

Proof. If x is singular, then 〈x〉 is a proper ideal in A, since 1A /∈ 〈x〉. Hence, by the
above, there exists a maximal proper ideal N such that x ∈ 〈x〉 ⊆ N . Conversely, if x is
nonsingular (i.e., invertible) and N is an ideal in A containing x, then N = A. Thus, if x
is a unit in A, then x is not contained in any proper ideal in A. ✷

Note: If (A, ‖ · ‖) is a unital Banach algebra, then each maximal ideal is closed, since if
I is an ideal in A, then so is I. Moreover, if I is a proper ideal in A, then I ∩ A−1 = ∅.
Therefore, I ∩A−1 = ∅ and so I is also a proper ideal in A.

Lemma 13.15. If I is a proper closed 2-sided ideal in a Banach algebra (A, ‖ · ‖). Then
the quotient Banach space A/I is a Banach algebra in which (a + I)(b + I) = (ab + I).
The quotient map q : a 7→ a + I is a norm-decreasing homomorphism with kernel I.
Furthermore, if (A, ‖ · ‖) is a unital Banach algebra, then so is A/I, with multiplicative
identity 1A + I.

Proof. It is routine to check that if I is an ideal, then (a + I)(b + I) = (ab + I) gives a
well-defined multiplication on A/I. Indeed, if a + I = a′ + I and b + I = b′ + I, then
a = a′ + x and b = b′ + y for some x, y ∈ I and

ab = (a′ + x)(b′ + y) = a′b′ + (a′y + xb′ + xy);

because I is a 2-sided ideal, a′y + xb′ + xy ∈ I and so ab + I = a′b′ + I. Associativity,
distributivity and the properties of the identity 1A + I all follow immediately from the
corresponding properties of A. We know from our work on Banach spaces that if I is
closed in (A, ‖ · ‖) then A/I is a Banach space in the quotient norm

‖a+ I‖ := inf{‖a+ x‖ : x ∈ I}.
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To see that the norm is submultiplicative, let a + I, b+ I ∈ A/I. Then,

‖(a+ I)(b+ I)‖ = ‖ab+ I‖
= inf

w∈I
‖ab+ w‖

6 inf
z,z′∈I

‖ab+ (az′ + zb + zz′)‖

= inf
z,z′∈I

‖(a + z)(b+ z′)‖

6 inf
z,z′∈I

‖a + z‖‖b+ z′‖

=

(
inf
z∈I

‖a+ z‖
)(

inf
z′∈I

‖b+ z′‖
)

= ‖a+ I‖‖b+ I‖

i.e., ‖(a + I)(b + I)‖ 6 ‖a + I‖‖b + I‖; which shows that the norm on A/I is sub-
multiplicative. In particular,

‖1A + I‖ = ‖(1A + I)(1A + I)‖ 6 ‖1A + I‖2.

Since 1A 6∈ I, 1A + I 6= I and so 0 < ‖1A + I‖. Therefore, 1 6 ‖1A + I‖. On the other
hand, ‖1A + I‖ = inf{‖1A + x‖ : x ∈ I} 6 ‖1A + 0‖ = ‖1A‖ = 1, since 0 ∈ I. Thus,
‖1A + I‖ = 1, which shows that A/I is a Banach algebra. That q is norm decreasing
follows from the definition of the quotient norm, that q is a homomorphism follows from
the definition of scalar multiplication, addition and multiplication in A/I. ✷

Lemma 13.16. Let N be a maximal proper ideal in a commutative unital Banach algebra
(A, ‖ · ‖). Then there exists a nonzero multiplicative linear functional x∗ on A such that
N = Ker(x∗).

Proof. Firstly, from our earlier note, we know thatN is closed. Therefore, by Lemma 13.15
we know that A/N is a unital Banach algebra. We claim that A/N is a division Banach
algebra. To justify this claim let us consider x+N ∈ A/N with x+N 6= N . Also, let us
consider the mapping π : A → A/N defined by, π(a) := a+N . Then if x+N is singular
in A/N , then 〈x + N〉 would be a proper ideal in A/N and so π−1 (〈x+N〉) would be
a proper ideal in A that contains N as a proper subset. However this contradicts the
maximality of N . Therefore, x+N must be invertible in A/N . Thus, from Theorem 13.5,
we know that A/N is isomorphic to C. Let σ : A/N → C be an isomorphism that realises
this. Then (σ ◦ π) : A → C is a multiplicative linear functional (i.e., a homomorphism)
and Ker(σ ◦ π) = N . ✷

By combining the previous three results we get the following useful fact.

Corollary 13.17. Let (A, ‖ · ‖) be a commutative unital Banach algebra and let x ∈ A.
Then x is singular if, and only if, there exists a nonzero multiplicative linear functional
x∗ ∈ A∗ such that x ∈ Ker(x∗).
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Exercise 13.18. Let (A, ‖ · ‖) be a commutative unital Banach algebra and let x ∈ A.
Then λ ∈ σA(x) if, and only if, there exists a nonzero multiplicative linear functional
x∗ ∈ A∗ such that λ = x∗(x).

Let (A, ‖ · ‖) be a commutative unital Banach algebra and let ∆A denote the set of all
nonzero multiplicative linear functionals on A. The Gelfand transform of an element
a ∈ A is the function â : ∆A :→ C defined by, â(x∗) := x∗(a). We know from our work
on Banach spaces that â ∈ CC(∆A,weak

∗).

Theorem 13.19 (Gelfand, 1941). If (A, ‖ · ‖) is a commutative unital Banach algebra,
then: (i) the mapping a 7→ â is a unital algebra homomorphism from A into CC(∆A);

(ii) σA(a) = range(â) = σCC(∆A)(â) and so rA(a) = ‖â‖∞ and (iii) Â is a subalgebra of
CC(∆A) that contains all the constant functions and separates the points of ∆A.

Proof. Consider the mapping a 7→ â from A into CC(∆A). As mentioned above we know
that this mapping is well-defined, i.e., â ∈ CC(∆A,weak

∗) for all a ∈ A.

(i) Now, 1̂A(x
∗) = x∗(1A) = 1 for all x∗ ∈ ∆A since ∆A ⊆ S(A). Therefore, 1̂A = 1C(∆A).

Next, suppose that x, y ∈ A and λ ∈ C, then for each x∗ ∈ ∆A,

x̂+ y(x∗) = x∗(x+ y) = x∗(x) + x∗(y) = x̂(x∗) + ŷ(x∗),

λ̂x(x∗) = x∗(λx) = λx∗(x) = λx̂(x∗)

and
x̂y(x∗) = x∗(xy) = x∗(x)x∗(y) = x̂(x∗)ŷ(x∗).

Therefore, x̂+ y = x̂ + ŷ, λ̂x = λx̂ and x̂y = x̂ŷ. This shows that a 7→ â is a unital
algebra homomorphism.

(ii) This follows from the Exercise 13.18.

The first part of (iii) follows from the fact that a 7→ â is a unital algebra homomorphism.

To show that Â separates the points of ∆A we simply note that if x∗, y∗ ∈ ∆A and x∗ 6= y∗

then there exists an a ∈ A such that x∗(a) 6= y∗(a). Therefore,

â(x∗) = x∗(a) 6= y∗(a) = â(y∗).

This completes the proof. ✷

Application

Let (A, ‖ · ‖) be the commutative unital Banach algebra ℓ1(Z) under convolution. For
each z ∈ T := {z ∈ C : |z| = 1}, there is a nonzero homomorphism fz : A → C such that

fz(a) :=
∑

n∈Z

a(n)zn for all a ∈ ℓ1(Z).
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That this defines a homomorphism is not obvious and relies upon careful handling of
absolutely convergent series. In fact every g ∈ ∆A has the form fz for some z ∈ T. To
see this, for each n ∈ Z, define en ∈ ℓ1(Z) by

en(k) :=

{
0 for k 6= n;
1 for k = n.

Observe that e1 and its inverse e−1 generate A, in the sense that A is the smallest Banach
algebra that contains e1 and e−1. Therefore, if g, h ∈ ∆A and g(e1) = h(e1), then g = h
since if g(e1) = h(e1), then

g(e−1) = g(e−1
1 ) = g(e1)

−1 = h(e1)
−1 = h(e−1

1 ) = h(e−1)

and {a ∈ A : g(a) = h(a)} is a Banach subalgebra of A.

Now note that (i) g(en) ∈ T for all n ∈ Z and all g ∈ ∆A and (ii) fz(e1) = z for all
z ∈ T. Therefore fg(e1)(e1) = g(e1) for every g ∈ ∆A and so fg(e1) = g for every g ∈ ∆A.
Thus, z 7→ fz is a bijection from T onto ∆A, with inverse given by, g 7→ g(e1). Since, (i)
g 7→ g(e1) is continuous, by the definition of the weak∗ topology on ∆A, (ii) g 7→ g(e1)
is a bijection from ∆A onto T, (iii) T is Hausdorff and (iv) ∆A is compact, it follows
that g 7→ g(e1) is a homeomorphism. Therefore, π : T → ∆A defined by, π(z) := fz is
a homeomorphism. [Since π is the inverse of g 7→ g(e1)]. Hence, π∗ : C(∆A) → C(T)
defined by,

π∗(g)(z) := (g ◦ π)(z) = g(fz) for all z ∈ T,

is an Banach algebra isomorphism. In particular, if a := (a(n) : n ∈ Z) ∈ ℓ1(Z), then
â ∈ C(∆A) and

π∗(â)(z) = â(fz) = fz(a) =
∑

n∈Z

a(n)zn.

If f ∈ C(T) and f = π∗(â) for some a ∈ ℓ1(Z), then we can recover a(n) as the nth Fourier
coefficient of f . This is,

a(n) =
1

2π

∫ π

−π

f(eiθ)e−inθ dθ for each n ∈ Z.

The algebra A = ℓ1(Z) is often called the algebra of absolutely convergent Fourier

series because a continuous function f ∈ C(T) has the form π∗(â) for some a ∈ ℓ1(Z) if,
and only if, the Fourier coefficients of f form an ℓ1 sequence on Z. This relies upon the
fact that if two continuous functions on T possess the same Fourier coefficients, then they
are equal.

Theorem 13.20 (Wiener). If f is a unit in (C(T), ‖ · ‖∞), i.e., 0 6∈ f(T) and has an
absolutely convergent Fourier series, then so does 1/f .

Proof. (Gelfand) Let a(n) denote the nth Fourier coefficient of f so that a ∈ ℓ1(Z) by
hypothesis. Then π∗(â) ∈ C(T) has the same Fourier coefficients as f , hence equals
f . Thus f non-vanishing says that π∗(â) is a unit in C(T) which in turn implies that
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â ∈ C(∆ℓ1(Z)) is a unit in C(∆ℓ1(Z)) and so, by the Gelfand Theorem, a is a unit in ℓ1(Z).

But then, π∗(â−1) is an inverse of π∗(â) = f , and so

(1/f)(z) = π∗(â−1)(z) =
∑

n∈Z

a−1(n)zn.

This shows that 1/f has an absolutely convergent Fourier series. ✷
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Chapter 14

C∗-algebras

Given an algebra A over C, an operation x 7→ x∗ on A which satisfies the properties:

(i) (x+ y)∗ = x∗ + y∗ for all x, y ∈ A;

(ii) (λx)∗ = λx∗ for all λ ∈ C and x ∈ A;

(iii) (xy)∗ = y∗x∗ for all x, y ∈ A;

(iv) x∗∗ = x for all x ∈ A.

is called an involution on A. An algebra A with an involution ∗ is called a ∗-algebra. A
Banach algebra (A, ‖ · ‖) with an involution ∗ that is related to the norm by the equation

(v) ‖xx∗‖ = ‖x‖2 for all x ∈ A

is called a C∗-algebra. This last requirement of the norm is called the C∗-condition.

Exercise 14.1. Show that in a C∗-algebra (A, ‖ · ‖), ‖x‖ = ‖x∗‖ for all x ∈ A.
Hint: ‖x‖2 = ‖xx∗‖ 6 ‖x‖‖x∗‖.

Example 14.2. (a) Let (H, 〈·, ·〉) be a nontrivial Hilbert space. Then B(H) is a C∗-
algebra, the involution being the adjoint operation; (b) Let K be a compact Hausdorff
space, then (CC(K), ‖ · ‖∞) is a C∗-algebra, the involution being pointwise conjugation.

We shall say that an element x of a C∗-algebra A is normal if x∗x = xx∗ i.e., if x
commutes with its adjoint. Moreover, we shall say that an element x ∈ A is self-adjoint
if x = x∗. Clearly every self-adjoint element is normal.

We shall let Asa denote the set of self-adjoint elements of A. Note that if (A, ‖ · ‖) is a
unital C∗-algebra and a ∈ A, then a1∗

A = (1Aa
∗)∗ = (a∗)∗ = a and similarly 1∗

Aa = a.
By the uniqueness of the multiplicative identity, it follows that 1A = 1∗

A and so 1A is
self-adjoint.

Exercise 14.3. Let (A, ‖ · ‖) be a unital C∗-algebra. Show that:

(i) 0∗ = 0;

(ii) x ∈ A is a unit if, and only if, x∗ is a unit;

(iii) If x ∈ A is a unit, then (x∗)−1 = (x−1)∗;

(iv) If x ∈ A, then σA(x
∗) = {λ : λ ∈ σA(x)}.

83



Lemma 14.4. If (A, ‖ · ‖) is a C∗-algebra and a ∈ A, then there exist unique self-adjoint
elements b, c ∈ A such that (i) a = b+ ic and (ii) ‖b‖, ‖c‖ 6 ‖a‖.

Proof. Note that 1
2
(a+a∗) and −i

2
(a−a∗) are self-adjoint and a = 1

2
(a+a∗)+ i−i

2
(a−a∗).

This shows existence. Suppose a = b + ic where b, c ∈ Asa then a∗ = b − ic. From these
equations we get b = 1

2
(a+ a∗) and c = −i

2
(a− a∗). This shows uniqueness.

Using the triangle inequality, ‖b‖ = ‖1
2
(a + a∗)‖ 6 1

2
(‖a‖ + ‖a∗‖) = ‖a‖ and similarly

‖c‖ 6 ‖a‖. ✷

Lemma 14.5. Suppose (A, ‖ · ‖) is a unital C∗-algebra and f is a state on A. Then
f(a∗) = f(a) for all a ∈ A. In particular, if f is a multiplicative linear functional on A,
then f(a∗) = f(a) for all a ∈ A

Proof. Let a ∈ A be self-adjoint. Then f(a) = α + iβ for α, β ∈ R. For each λ ∈ R
consider bλ := a+ iλ1A. Note that ‖f‖ = 1 so,

|f(bλ)|2 6 ‖bλ‖2 = ‖b∗λbλ‖ = ‖(a− iλ1A)(a+ iλ1A)‖ 6 ‖a‖2 + λ2.

On the other hand from the definition of bλ,

|f(bλ)|2 = |f(a) + iλf(1A)|2 = |α + i(β + λ)|2 = α2 + β2 + λ2 + 2λβ.

Putting this together gives α2 + β2 + 2βλ 6 ‖a‖2 for all λ ∈ R. But this is impossible
unless β = 0. Thus f(a) ∈ R. Now in general if a ∈ A then a = b+ ic for b, c ∈ Asa. So,

f(a) = f(b+ ic) = f(b) + if(c) = f(b)− if(c) = f(b− ic) = f(a∗). ✷

Corollary 14.6. Let (A, ‖·‖) be a unital C∗-algebra and let f be a state, and in particular
a nonzero multiplicative linear functional on A. If a ∈ A is self-adjoint, then f(a) ∈ R.

Exercise 14.7. Suppose (A, ‖ · ‖) is a unital C∗-algebra and a ∈ A is normal. Show that
a2

n

is normal for all n ∈ N.

Lemma 14.8. Suppose (A, ‖ · ‖) is a unital C∗-algebra and a ∈ A is normal. Then
rA(a) = ‖a‖.

Proof. Let a be a normal element of A. Note that (a2)∗ = a∗a∗ = (a∗)2. Then,

‖a2‖2 = ‖a2(a2)∗‖ = ‖a2(a∗)2‖ = ‖(aa∗)(aa∗)‖ = ‖aa∗‖2 = ‖a‖4.

Now proceeding inductively and noting that a2
n

is normal for all n ∈ N we see that
‖a2k‖ = ‖a‖2k for all k ∈ N. Hence using the spectral radius formula,

rA(a) = lim
n→∞

‖an‖ 1
n = lim

k→∞
‖a2k‖ 1

2k = ‖a‖. ✷

Theorem 14.9. If (A, ‖ · ‖) is a unital C∗-algebra, then ‖a‖ =
√

rA(aa∗). In particular,
the norm on A is completely determined by the algebraic structure on A.
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Proof. Let (A, ‖ · ‖) be a unital C∗-algebra and let a ∈ A. Then rA(aa
∗) = ‖aa∗‖ = ‖a‖2,

since aa∗ is self-adjoint and hence normal. Therefore, ‖a‖ =
√
rA(aa∗). Now the right-

hand side of this equation is solely determined by the algebraic structure of A. ✷

The next corollary shows that unital ∗-homomorphisms between unital C∗-algebras are
automatically bounded and hence continuous.

Corollary 14.10. Suppose that (A, ‖ · ‖) and (B, ||| · |||) are unital C∗-algebras and π :
A → B is a unital ∗-homomorphism. Then |||π(a)||| 6 ‖a‖ for all a ∈ A.

Proof. For a ∈ A we have σB(π(a
∗a)) ⊆ σA(a

∗a) and so

|||π(a)||| =
√

rB(π(a)∗π(a)) =
√

rB(π(a∗a)) 6
√
rA(a∗a) = ‖a‖. ✷

Theorem 14.11 (Commutative Gelfand-Naimark). Suppose (A, ‖ · ‖) is a nonzero com-
mutative unital C∗-algebra. Then the Gelfand transform a 7→ â is an isometric ∗-
isomorphism from A onto C(∆A).

Proof. We know a → â preserves scalar multiplication, addition and multiplication. Fur-
ther for a ∈ A and f ∈ ∆A using Lemma 14.5,

â∗(f) = f(a∗) = f(a) = â(f).

It follows the Gelfand transform is a ∗-homomorphism. AsA is commutative every element
of A is normal. Hence,

‖a‖ = rA(a) = ‖â‖∞
for all a ∈ A. It follows the Gelfand transform is isometric, hence injective and Â is
closed. Finally as Â is a closed self-adjoint subalgebra of C(∆A) that contains all the

constant function, it follows from the Stone-Weierstrass Theorem that Â = C(∆A) and
so the Gelfand transform is surjective. This completes the proof. ✷

Even though the Commutative Gelfand-Naimark Theorem only applies to commutative
unital C∗-algebras we shall later see it can be useful even if the C∗-algebra is not com-
mutative or have a multiplicative identity. Note that if (A, ‖ · ‖) is a C∗-algebra, S is a
set and for each s ∈ S, Bs is a C∗-subalgebra of A, then the intersection B :=

⋂
s∈S Bs is

also a C∗-subalgebra of A. If S ⊆ A we shall let C(S) denote the smallest C∗-subalgebra
of A containing S. That is, C(S) is the intersection of all C∗-algebras containing S. If
{a1, a2, ..., an} ⊆ A, then we will write C(a1, a2, ..., an) instead of C({a1, a2, ..., an}).

Lemma 14.12. Suppose that (A, ‖ · ‖) is a C∗-algebra and a ∈ A. Then

Comm(a) := {b ∈ A : ab = ba and ab∗ = b∗a}

is a C∗-subalgebra of (A, ‖ · ‖).
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Proof. It is easy to see that Comm(a) is a subspace of A that is closed under multiplication
and the involution. Further, suppose (bn : n ∈ N) is a sequence in Comm(a) converging
to b ∈ A. Then abn = bna for all n ∈ N. Therefore, as multiplication is continuous,
ab = limn→∞ abn = limn→∞ bna = ba. As the involution is continuous ab∗ = b∗a also.
It follows b ∈ Comm(a). Hence, Comm(a) is closed in the norm topology and so is a
C∗-subalgebra of A. This completes the proof. ✷

Lemma 14.13. Suppose (A, ‖ · ‖) is a unital C∗-algebra and a ∈ A is normal. Then
C(a, 1A) is a commutative C∗-algebra.

Proof. Consider Comm(a). As a is normal aa∗ = a∗a and so Comm(a) is a C∗-algebra
containing 1A and a. For b ∈ Comm(a), ab = ba and ab∗ = b∗a. That is, ba = ab
and ba∗ = a∗b and so 1A, a ∈ Comm(b). Define C :=

⋂
b∈Comm(a) Comm(b). Then C

is a C∗ algebra containing 1A and a. It follows that C(a, 1A) ⊆ C. Further, since
a ∈ Comm(a), C(a, 1A) ⊆ C ⊆ Comm(a). Now, if c, d ∈ C(a, 1A), then c ∈ Comm(a)
and d ∈ C(a, 1A) ⊆ C ⊆ Comm(c). Therefore, it follows that cd = dc, and so C(a, 1A) is
commutative. ✷

The Commutative Gelfand-Naimark Theorem allows us to construct a continuous func-
tional calculus. If (A, ‖ · ‖) is a unital C∗-algebra and a ∈ A is normal, then C(a, 1A)
is a commutative unital C∗-algebra. Let f be a function continuous on σA(a). Then

f ◦ â ∈ C(∆A). We let f(a) denote the unique element of C(a, 1A) such that f̂(a) = f ◦ â.
This construction has many desirable properties.

Corollary 14.14. Suppose that (A, ‖ · ‖) is unital C∗-algebra and a ∈ A is self-adjoint.
Then σA(a) ⊆ R

Proof. Consider the commutative unital C∗-algebra C(a, 1A). As a = a∗, applying the
Commutative Gelfand-Naimark Theorem we get â = â∗ = â and so range(â) ⊆ R. Hence,
σA(a) ⊆ σC(a,1A)(a) = range(â) ⊆ R. ✷

Lemma 14.15. Suppose that (A, ‖ · ‖) is a unital C∗-algebra with identity 1A and B is a
C∗-subalgebra of A with 1A ∈ B. Then for a ∈ B, a is a unit in B if, and only if, a is a
unit in A. In particular σB(a) = σA(a).

Proof. Suppose first that a is self-adjoint. Then σB(a) ⊆ R by Corollary 14.14. Then
σB(a) a closed subset of C with empty interior so ∂σB(a) = σB(a). Then, by Proposi-
tion 13.2

σB(a) = ∂σB(a) ⊆ σA(a) ⊆ σB(a)

and so σB(a) = σA(a). Noting 0 ∈ σA(a) if, and only if, a is singular, the result follows
for self-adjoint elements. Now for arbitrary a ∈ B, suppose a is a unit in A. Then a∗a is
also a unit in A. But as a∗a is self-adjoint from the special case previously proved a∗a is
a unit in B and so (a∗a)−1 ∈ B. Then,

a−1 = a−11A = a−1(aa−1)∗ = a−1((a−1)∗a∗) = (a−1(a−1)∗)a∗ = (a∗a)−1a∗

so a−1 a product of elements in B and so a−1 ∈ B. It follows a is invertible in B. The
reverse implication is obvious as B−1 ⊆ A−1. ✷
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Chapter 15

Positive elements

Our first goal in this section is to show that for a self-adjoint element a of a unital
C∗-algebra (A, ‖ · ‖), σA(a) ⊆ [0,∞) if, and only if, a = bb∗ for some b ∈ A.

Lemma 15.1. Suppose that a is a normal element of a unital C∗-algebra (A, ‖ · ‖). If
λ ∈ C and r > 0, then σA(a) ⊆ B[λ, r] if, and only if, ‖a− λ1A‖ 6 r.

Proof. Suppose that a ∈ A is normal, λ ∈ C and r > 0, then

σA(a) ⊆ B[λ, r]

⇐⇒ σA(a) ⊆ λ+B[0, r]

⇐⇒ σA(a)− λ ⊆ B[0, r]

⇐⇒ σA(a− λ1A) ⊆ B[0, r]

⇐⇒ rA(a− λ1A) 6 r

⇐⇒ ‖a− λ1A‖ 6 r since a− λ1 is normal.

This completes the proof. ✷

Corollary 15.2. Suppose {a1, a2, . . . , an} are normal elements of a unital C∗-algebra
(A, ‖ · ‖). If {λ1, λ2, . . . , λn} ⊆ C and {r1, r2, . . . , rn} ⊆ [0,∞) are such that σA(ak) ⊆
B[λk, rk] for all 1 6 k 6 n, then

σA(a1 + a2 + · · ·+ an) ⊆ B[(λ1 + λ2 + · · ·+ λn), (r1 + r2 + · · ·+ rn)].

Proof. Suppose that {a1, a2, . . . , an} are normal elements of A, {λ1, λ2, . . . , λn} ⊆ C and
{r1, r2, . . . , rn} ⊆ [0,∞). Then,

0 6 rA((a1 + a2 + · · ·+ an)− (λ1 + λ2 + · · ·+ λn)1A)

6 ‖(a1 + a2 + · · ·+ an)− (λ1 + λ2 + · · ·+ λn)1A‖
= ‖(a1 − λ11A) + (a2 − λ21A) + · · ·+ (an − λn1A)‖
6 ‖a1 − λ11A‖+ ‖a2 − λ21A‖+ · · ·+ ‖an − λn1A‖
6 r1 + r2 + · · ·+ rn, by the Lemma 15.1.
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Therefore, σA((a1 + a2 + · · · + an) − (λ1 + λ2 + · · ·λn)1A) ⊆ B[0, r1 + r2 + · · · + rn]
and so σA(a1 + a2 + · · · + an) − (λ1 + λ2 + · · · + λn) ⊆ B[0, r1 + r2 + · · · + rn], i.e.,
σA(a1 + a2 + · · ·+ an) ⊆ B[(λ1 + λ2 + · · ·λn), (r1 + r2 + · · ·+ rn)]. ✷

Theorem 15.3. Suppose that a and b are self-adjoint elements of a unital C∗-algebra
(A, ‖ · ‖). If σA(a) ⊆ [0,∞) and σA(b) ⊆ [0,∞), then σA(a+ b) ⊆ [0,∞).

Proof. Firstly, note that a+ b is self-adjoint and so σA(a+ b) ⊆ R. Let λ1 := r1 := ‖a‖/2
and λ2 := r2 := ‖b‖/2. Then σA(a) ⊆ [0, ‖a‖] ⊆ B[λ1, r1] and σA(b) ⊆ [0, ‖b‖] ⊆ B[λ2, r2].
Therefore, by Corollary 15.2, σA(a+ b) ⊆ B[(λ1+ λ2), (r1+ r2)]∩R = [0, ‖a‖+ ‖b‖]. ✷

Unfortunately, we are still unable to prove the desired result that for any element a of a
unital C∗-algebra (A‖ · ‖), σA(a) ⊆ [0,∞) whenever a = bb∗ for some b ∈ A. However, we
can easily prove the following partial result.

Proposition 15.4. Suppose that a is any element of a unital C∗ algebra (A, ‖ · ‖). Then
σA(aa

∗ + a∗a) ⊆ [0,∞).

Proof. Write a as: a = x+ iy, where x and y are self-adjoint elements of A. Then,

aa∗ + a∗a = (x+ iy)(x− iy) + (x− iy)(x+ iy) = 2(x2 + y2).

Because x and y are self-adjoint we have, via the Gelfand-Naimark Theorem, applied to
C(x, 1A) and C(y, 1A), that

σA(x
2) = σC(x,1A)(x

2) = range[(x̂)2] ⊆ [0,∞)

and
σA(y

2) = σC(y,1A)(y
2) = range[(ŷ)2] ⊆ [0,∞).

Hence, by Theorem 15.3,

σA(aa
∗ + a∗a) = σA(2(x

2 + y2)) = 2σA(x
2 + y2) ⊆ [0,∞).

This completes the proof. ✷

Theorem 15.5 (Square Root Theorem). Let a be a self-adjoint element of a unital C∗-
algebra (A, ‖ · ‖). Then σA(a) ⊆ [0,∞) if, and only if, a = bb∗ for some b ∈ A.

Proof. It follows from the Gelfand-Naimark Theorem applied to C(a, 1A) that if a is a self-
adjoint element and σA(a) = σC(a,1A)(a) ⊆ [0,∞), then there exists a self-adjoint element
b ∈ C(a, 1A) such that a = b2 = bb∗. This is essentially an application of functional
calculus. So we concern ourselves with the converse.

Suppose that a = bb∗ for some b ∈ A. In order to obtain a contradiction let us suppose
that σA(a) = σC(a,1A)(a) 6⊆ [0,∞). We shall first show that this implies that there exists
a nonzero element d ∈ C(a, 1A) such that σA(d

∗d) = σC(a,1A)(d
∗d) ⊆ (−∞, 0]. From the

Gelfand-Naimark Theorem applied to C(a, 1A) we have range(â) = σC(a,1A)(a) 6⊆ [0,∞).
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Therefore there exists a “bump” function g ∈ CC(∆C(a,1A)) such that: (i) g : ∆C(a,1A) →
[0, 1]; (ii) ‖gâ‖∞ 6= 0 and (iii) range(gâ) ⊆ (−∞, 0]. For example, g := −1

‖a‖
min{â, 0}.

Let h ∈ CC(∆C(a,1A)) be defined by, h(x∗) =
√

g(x∗) for all x∗ ∈ ∆C(a,1A). Next, select

c ∈ C(a, 1A) so that ĉ = h and note that c = c∗ since h = h. Then,

ĉac = ĉâĉ = hâh = h2â = gâ.

Therefore, cac 6= 0 since gâ 6= 0 and the Gelfand transform is 1-to-1. Furthermore,

σA(cac) = σC(a,1A)(cac) = range(ĉac) = range(gâ) ⊆ (−∞, 0].

Let d := b∗c, then

d∗d = (b∗c)∗(b∗c) = (cb)(b∗c) = c(bb∗)c = cac.

Thus, σA(d
∗d) ⊆ (−∞, 0] and d 6= 0, since cac 6= 0.

We will now use this d to obtain a contraction. Since σA(dd
∗) \ {0} = σA(d

∗d) \ {0} we
also have that σA(dd

∗) ⊆ (−∞, 0]. Thus, from Theorem 15.3, σA(dd
∗ + d∗d) ⊆ (−∞, 0].

On the other hand, by Proposition 15.4, σA(dd
∗+d∗d) ⊆ [0,∞), i.e., σA(dd

∗+d∗d) = {0}.
Since dd∗ + d∗d is self-adjoint, ‖dd∗ + d∗d‖ = rA(dd

∗ + d∗d) = 0, i.e., dd∗ = −d∗d. In
particular, this implies that

σA(dd
∗) \ {0} = σA(−d∗d) \ {0} = −(σA(d

∗d) \ {0}) ⊆ [0,∞)

i.e., σA(dd
∗) ⊆ (−∞, 0] ∩ [0,∞) = {0}. Thus, ‖d‖2 = ‖dd∗‖ = rA(dd

∗) = 0. However,
this contradicts our assumption that d 6= 0. Hence, σA(a) ⊆ [0,∞). ✷

Let (A, ‖ · ‖) be a unital C∗-algebra. An element a ∈ A is said to be positive if it is
self-adjoint and σA(a) ⊆ [0,∞). Or equivalently, by the Square Root Theorem, if a = bb∗

for some b ∈ A. We shall denote by A+ the set of all positive element of A.

If V is a vector space over R and C is a subset of V such that C ∩ (−C) = {0} and
αa+ βb ∈ C for all x, y ∈ C and α, β ∈ [0,∞), then we say C is a cone of V .

Lemma 15.6. Suppose V is a vector space over R and C is a cone of V . If we define a
relation on V by, x > y, if x− y ∈ C, then > is a partial order on V .

Proof. Note x − x = 0 ∈ C so x > x. If x > y and y > x, then x − y,−(x− y) ∈ C so
x = y. If x > y and y > z, then x − y, y − z ∈ C so x − z = (x − y) + (y − z) ∈ C so
x > z. It follows > is a partial ordering of V . ✷

If (A, ‖ · ‖) is a unital C∗-algebra we can regard Asa as a vector space over R in a natural
way. From Theorem 15.3 it is obvious that αa+βb ∈ A+ for all a, b ∈ A+ and α, β ∈ [0,∞).
Moreover, if a ∈ A+ ∩ (−A+), then σA(a) = {0} so as a is self-adjoint and hence normal
‖a‖ = rA(a) = 0 so a = 0. It follows A+ is a cone of Asa and the relation “ > ” defined
by a > b, if a− b ∈ A+ is a partial ordering of Asa.
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Lemma 15.7. Suppose (A, ‖ · ‖) is a unital C∗-algebra. If a ∈ A is self adjoint, then
−‖a‖1A 6 a 6 ‖a‖1A.

Proof. Suppose a ∈ A is self-adjoint. Consider C(a, 1A),

σA(a+ ‖a‖1A) = σC(a,1A)(a+ ‖a‖1A) = range(â+ ‖a‖1̂A) = range(â) + ‖â‖∞ ⊆ [0,∞).

So a + ‖a‖1A is positive. Therefore, −‖a‖1A 6 a. Similarly, a 6 ‖a‖1A. ✷

Sesquilinear Forms

Suppose V is a vector space over C and [·,·] : V × V → C is a map that is linear in the
first variable and conjugate linear in the second variable. That is,

(i) [w + x, y + z] = [w, y] + [w, z] + [x, y] + [x, z] for all w, x, y, z ∈ V,

(ii) [αx, βy] = αβ[x, y] for all x, y ∈ V and α, β ∈ C.

Then we say that [·,·] is a sesquilinear form. Further,

(i) if [x, x] > 0 for all x ∈ V , then we say that [·,·] is positive sesquilinear form,

(ii) if [x, y] = [y, x] for all x, y ∈ V , then we say that [·,·] is a hermitian sesquilinear

form,

(iii) if [·,·] is positive and [x, x] = 0 =⇒ x = 0, then we say that [·,·] is a positive

definite sesquilinear form.

Note that if V is a vector space and [·,·] is a sesquilinear form on V , then for any x ∈ V ,

2[x, 0] = [2x, 0] = [x+ x, 0 + 0] = [x, 0] + [x, 0] + [x, 0] + [x, 0] = 4[x, 0]

and so [x, 0] = 0. Similarly, it follows that [0, x] = 0.

Let (A, ‖ · ‖) be a unital C∗-algebra. Suppose f is a linear functional on A. We say f
is a positive linear functional if f(a) > 0 for all a ∈ A+. Note that positive linear
functionals respect the ordering on Asa. If a > b, then a−b is positive and so f(a−b) > 0.
Therefore, f(a)− f(b) > 0 and so f(a) > f(b).

Note that if K is a compact Hausdorff topological space and µ is a positive Borel measure
on K, then x∗ : CC(K) → C defined by, x∗(f) :=

∫
K
f dµ for all f ∈ CC(K), is a positive

functional on CC(K). Furthermore, if Tr : Mn(C) → C is defined by Tr((aij)) :=
∑n

i=1 aii,
for all (aij) ∈ Mn(C), then Tr is a positive functional on Mn(C).

Lemma 15.8. Suppose (A, ‖·‖) is a unital C∗-algebra and f is a positive linear functional
on A. Then f is bounded.

Proof. Consider a ∈ Asa. Then −‖a‖1A 6 a 6 |a‖1A so −‖a‖f(1A) 6 f(a) 6 ‖a‖f(1A).
Hence, |f(a)| 6 ‖a‖f(1A). In general, if a ∈ A, then there exist self-adjoint elements
b, c ∈ A such that a = b+ ic, ‖b‖ 6 ‖a‖ and ‖c‖ 6 ‖a‖. Then,

|f(a)| = |f(b+ ic)| 6 |f(b)|+ |f(c)| 6 ‖b‖f(1A) + ‖c‖f(1A) 6 2f(1A)‖a‖.

Which shows f is bounded and in particular ‖f‖ 6 2f(1A). ✷
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Example 15.9. Suppose (A, ‖ · ‖) is a unital C∗-algebra and f is a positive linear func-
tional on A. Define [a, b]f := f(b∗a). Then [·,·]f is a positive sesquilinear form. In fact
[a, b] := f(ab∗) is also a positive sesquilinear form, but we will not use this latter.

Lemma 15.10. Suppose V is a vector space over C and [·,·] : V × V → C is a positive
sesquilinear form. Then [·,·] is a hermitian sesquilinear form.

Proof. Suppose x, y ∈ V and λ ∈ C then,

0 6 [x+ λy, x+ λy] = [x, x] + |λ|2[y, y] + λ[y, x] + λ[x, y].

As [x, x] + |λ|2[y, y] ∈ R it follows that Im(λ[y, x] + λ[x, y]) = 0. Setting λ = 1 and λ = i
shows that Im[x, y] = −Im[y, x] and Re[x, y] = Re[y, x]. Thus, [·,·] is hermitian. ✷

If (A, ‖ · ‖) is a unital C∗-algebra and f is a positive linear functional on A, then

f(a∗) = f(a∗1A) = [1A, a]f = [a, 1A]f = f(1∗
Aa) = f(a).

This shows positive linear functionals preserve the involution. Recall also that a positive
definite sesquilinear form is an inner product.

Lemma 15.11. Suppose V is a vector space and [·,·] : V ×V → C is a positive sesquilinear
form. If y ∈ V is such that [y, y] = 0, then [y, x] = [x, y] = 0 for all x ∈ V .

Proof. Recall from previously that [·,·] is hermitian, as [·,·] is positive. Let x ∈ V and set
λ := −t[x, y] for t ∈ R. Then

0 6 [x+ λy, x+ λy] = [x, x] + λ[x, y] + λ[y, x] = [x, x]− 2t
∣∣[x, y]

∣∣2.

So if [x, y] 6= 0, then [x, x] − 2t
∣∣[x, y]

∣∣2 is negative for large enough t ∈ R. Therefore, it
follows that [x, y] = 0. As [·,·] is hermitian it also follows that [y, x] = 0. ✷

The next lemma gives a version of the Cauchy-Schwarz inequality for positive sesquilinear
forms.

Lemma 15.12 (Cauchy-Schwarz inequality). Suppose V is a vector space and [·,·] : V ×
V → C is a positive sesquilinear form. Then

∣∣[x, y]
∣∣2 6 [x, x][y, y] for all x, y ∈ V .

Proof. Let x, y ∈ V note that as [·,·] is positive, [·,·] is hermitian. Consider first the case

when [y, y] = 0. Then, by above, [x, y] = 0 also and so
∣∣[x, y]

∣∣2 6 [x, x][y, y] holds. Now
suppose that [y, y] 6= 0. Set α := [y, y] and β := −[x, y]. Then,

0 6 [αx+ βy, αx+ βy] = |α|2[x, x] + |β|2[y, y] + αβ[x, y] + βα[y, x]

= [y, y]2[x, x]− [y, y]
∣∣[x, y]

∣∣2

so rearranging and dividing by [y, y] we get that
∣∣[x, y]

∣∣2 6 [x, x][y, y]. ✷
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If (A, ‖ · ‖) is a unital C∗-algebra and f is a positive linear functional on A, then by
applying this result to [a, b]f we get that |f(b∗a)|2 6 f(a∗a)f(b∗b) for all a, b ∈ A. We call
this the Cauchy-Schwarz inequality for positive linear functionals.

Theorem 15.13. Suppose V is a vector space and [·,·] : V × V → C is a positive
sesquilinear form. Then: (i) N := {x ∈ V : [x, x] = 0} is a subspace of V ; (ii) the map
〈·,·〉 : V/N × V/N → C defined by 〈x+N, y +N〉 := [x, y] is a well defined inner product
on V/N .

Proof. First note 0 ∈ N . If x, y ∈ N and α, β ∈ C, then by the previous lemma,
[x, y] = [y, x] = 0 and so,

[αx+ βy, αx+ βy] = |α|2[x, x] + |β|2[y, y] + αβ[x, y] + βα[y, x] = 0

This shows αx + βy ∈ N . It follows N is a subspace of V . If x1, x2, y1, y2 ∈ V are such
that x1 +N = x2+N and y1+N = y2+N , then x1−x2, y1− y2 ∈ N so, by the previous
lemma, [x2, y1 − y2] = 0, [x1 − x2, y2] = 0 and [x1 − x2, y1 − y2] = 0. Then,

[x1, y1] = [x2 + (x1 − x2), y2 + (y1 − y2)]

= [x2, y2] + [x2, y1 − y2] + [x1 − x2, y2] + [x1 − x2, y1 − y2]

= [x2, y2].

This shows 〈·,·〉 is well defined. The fact that 〈·,·〉 is linear in the first variable and
conjugate linear in the second is easily verified as [·,·] is a positive (hence hermitian)
sesquilinear form. As [·,·] is positive it follows 〈x + N, x + N〉 := [x, x] > 0 for all
x + N ∈ A/N . Finally, if 〈x + N, x + N〉 = 0, then [x, x] = 0 and so x ∈ N , that is,
x+N = 0. It follows 〈·,·〉 is positive definite. ✷

More on Positive Linear Functionals

Lemma 15.14. Suppose that f is a state on a unital C∗-algebra (A, ‖·‖) and a is a normal
element of A. If λ ∈ C, and r > 0 are such that σA(a) ⊆ B[λ, r], then f(a) ∈ B[λ, r].

Proof. From Lemma 15.1 we know that ‖a− λ1A‖ 6 r. Therefore,

|f(a)− λ| = |f(a)− f(λ1A)| = |f(a− λ1A)| 6 ‖f‖‖a− λ1A‖ 6 r.

This completes the proof. ✷

Theorem 15.15. Suppose that f is a linear functional on a unital C∗-algebra (A, ‖ · ‖).
Then f is a positive functional if, and only if, ‖f‖ = f(1A).
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Proof. Suppose first that f is a positive functional on a unital C∗-algebra (A, ‖ · ‖). If
f = 0, then the result is obvious, so suppose that f 6= 0. By Lemma 15.8 we know that
f is bounded. Consider a ∈ A with ‖a‖ = 1. Then

|f(a)|2 = |f(1∗
Aa)|2 since 1∗

A = 1A

6 f(1∗
A1A)f(a

∗a) by Cauchy-Schwarz inequality

= f(1A)f(a
∗a) since 1∗

A = 1A

6 f(1A)‖f‖‖a∗a‖ = f(1A)‖f‖‖a‖2 = f(1A)‖f‖.

Therefore,

‖f‖2 =
[
sup
‖a‖=1

|f(a)|
]2

= sup
‖a‖=1

|f(a)|2 6 f(1A)‖f‖ 6 ‖f‖2 since ‖1A‖ = 1

and so f(1A) = ‖f‖, since ‖f‖ 6= 0. Conversely, suppose that ‖f‖ = f(1A). If ‖f‖ = 0,
then the result is obvious, so suppose that ‖f‖ 6= 0. Let g := f/‖f‖. Then ‖g‖ = g(1A) =
1 and so g is a state on A. Let a be any element of A. From the section on C∗-algebras
we already know that g(aa∗) ∈ R since (aa∗)∗ = aa∗. We now show that 0 6 g(aa∗).
Let λ := r := ‖a‖2/2. Then σA(aa

∗) ⊆ [0, ‖a‖2] ⊆ B[λ, r]. Therefore, by Lemma 15.14,
g(aa∗) ∈ B[λ, r] ∩ R = [0, ‖a‖2]. Hence, g is a positive functional. Since f = ‖f‖g it
follows that f is a positive functional as well. ✷

Corollary 15.16. Suppose that f is a positive linear functional on a unital C∗-algebra.
If either ‖f‖ = 1 or f(1A) = 1, then f is a state on A.

Proof. By Theorem 15.15, ‖f‖ = f(1A) and so the result follows immediately. ✷

The next lemma establishes a technical inequality that will be used later.

Lemma 15.17. Suppose (A, ‖ · ‖) is a unital C∗-algebra and f is a positive linear func-
tional on A. Then for a, b ∈ A, f((ab)∗ab) 6 f(b∗b)‖a‖2.

Proof. If f(b∗b) = 0, then f((ab)∗ab) = f(b∗a∗ab) = f(b∗(a∗ab)) = [a∗ab, b]f = 0, by
the Cauchy-Schwarz inequality, and so the inequality holds. Suppose f(b∗b) 6= 0. Define

g : A → C by g(c) := f(b∗cb)
f(b∗b)

for all c ∈ A. Then g is linear and

g(c∗c) =
f(b∗c∗cb)

f(b∗b)
=

f((cb)∗cb)

f(b∗b)
> 0 for all c ∈ A.

Therefore, g is positive. Moreover, g(1A) = 1. Hence, g is a state. Therefore,

|g(a∗a)| 6 ‖a∗a‖ = ‖a‖2 for all a ∈ A

and so f((ab)∗ab) 6 f(b∗b)‖a‖2 for all a, b ∈ A. ✷
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The GNS Construction

If (A, ‖ · ‖) is a Banach algebra and N is a subspace of A with the property that for all
a ∈ A and all b ∈ N , ab ∈ N , then we shall say N is a left ideal of A.

Lemma 15.18. Suppose (A, ‖ · ‖) is a unital C∗-algebra and f is a positive linear func-
tional on A. Then N := {a ∈ A : f(a∗a) = 0} is a left ideal of A.

Proof. From before we know that N is a subspace of A. Further if a ∈ A and b ∈ N ,
then f((ab)∗(ab)) = f(b∗a∗ab) = f(b∗(a∗ab)) = [a∗ab, b]f = 0, by the Cauchy-Schwarz
inequality, and so ab ∈ N . ✷

We shall need the following general result from linear algebra.

Lemma 15.19 (Factorisation Lemma). Suppose U, V and W are vector spaces, g : U →
W is a surjective linear map, f : U → V is a linear map and ker(g) ⊆ ker(f). Then there
exists a linear map h : W → V such that f = h ◦ g.

Proof. For y ∈ W , as g is surjective, there exists an x ∈ U with g(x) = y. Define
h(y) := f(x). If g(x1) = y = g(x2) then g(x1 − x2) = 0 so x1 − x2 ∈ ker(g). Hence
x1−x2 ∈ ker(f) and so f(x1) = f(x2). This shows h is well defined. It is immediate from
the definition of h that f = h ◦ g. As g and f are linear it can easily be checked h is also
linear. ✷

This lemma can be generalised to many other algebraic structures such as groups and
rings. However, we shall only need the above version for vector spaces.

Suppose that (A, ‖ · ‖) is a C∗-algebra, (H, 〈·, ·〉) is a Hilbert space and π : A → B(H) is
a ∗-homomorphism (i.e., preserves scalar multiplication, addition, multiplication and the
involution). Then we say say that the pair (π,H) is a representation of A. If π is an
isometric ∗-homomorphism, then we say that (π,H) is an isometric representation.
Furthermore, if (A, ‖ · ‖) is a unital C∗-algebra and π is a unital ∗-homomorphism (i.e.,
π(1A) is the identity operator on H), then we say that (π,H) is a unital representation.
If there exists a vector h ∈ H such that span{π(a)(h) : a ∈ A} is dense in H , then we
say that (π,H) is a cyclic representation and the vector h is called a cyclic vector

for (π,H).

Example 15.20. Suppose (A, ‖ · ‖) is a unital C∗-algebra and (π,H) is a unital repre-
sentation of A. Let h ∈ H and define f : A → C by f(a) := 〈π(a)(h), h〉. Then f is a
linear functional. Further, since

f(a∗a) = 〈π(a∗a)(h), h〉 = 〈(π(a)∗π(a))(h), h〉 = 〈π(a)(h), π(a)(h)〉 > 0

it follows that f is a positive functional on A.
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The next theorem is perhaps the most important theorem in this part of the course. In
some sense it gives a converse to the above example and says that all bounded positive
functionals come from a representation. Recall that if V is an inner product space then
there exists a Hilbert space H containing V as a dense subspace. Furthermore the space
H is unique, up to a unitary map, and is called the Hilbert space completion of V .

Theorem 15.21 (The GNS construction). Suppose that (A, ‖ · ‖) is a unital C∗-algebra
and f is a positive functional on A. Then there exists a unital representation (πf , Hf), of
A and an hf ∈ Hf such that and hf ∈ Hf such that (πf , Hf) is cyclic, with cyclic vector
hf , and f(a) = 〈πf(a)(hf ), hf〉 for all a ∈ A.

Proof. Firstly, N := {a ∈ A : f(a∗a) = 0} is a subspace of A and A/N is an inner product
space with inner product 〈a+N, b+N〉 = f(b∗a). Let a ∈ A and define ha : A → A/N by
ha(b) = ab+N . Then ha is a linear map. Define ga : A → A/N by ga(b) = b+N . Then
ga is a surjective linear map. Suppose b ∈ ker(ga). Then b ∈ N , so as N is a left ideal
of A, ab ∈ N and ha(b) = ab + N = N thus b ∈ ker(ha). By the Factorisation Lemma
there exists a linear map π(a) : A/N → A/N such that ha = π(a) ◦ ga. In particular
π(a)(b+N) = ab+N for all b+N ∈ A/N . Now, by Lemma 15.17,

‖π(a)(b+N)‖2 = 〈ab+N, ab+N〉 = f((ab)∗ab) 6 f(b∗b)‖a‖2 = ‖b+N‖2‖a‖2.

So π(a) is bounded with ‖π(a)‖ 6 ‖a‖.

Let Hf be the Hilbert space completion of A/N . Then, as A/N is a dense subset of
Hf and π(a) is uniformly continuous, π(a) extends uniquely to a bounded linear func-
tional on Hf , say πf (a). Now, πf : A → B(Hf ) is a well defined map. Further for a, b ∈ A
and λ ∈ C and c +N ∈ A/N ,

πf(ab)(c +N) = abc +N = πf (a)(bc +N) = πf (a)πf (b)(c+N),

πf (a+ b)(c +N) = (a + b)c+N = (ac+N) + (bc+N) = πf (a)(c+N) + πf(b)(c +N),

πf (λa)(c+N) = λac+N = λ(ac+N) = λπf(a)(c+N),

so

πf(ab) = πf (a)πf (b), πf (a+ b) = πf (a) + πf (b) and πf (λa) = λπf (a)

on A/N . As A/N is dense in Hf by continuity these equations hold on all of Hf . Next we
show that πf preserves that involution. To do that we need to show that 〈πf (a

∗)(h), k〉 =
〈h, πf(a)(k)〉 for all h, k ∈ Hf . To this end, let a ∈ A, b+N, c+N ∈ A/N then,

〈πf(a
∗)(b+N), c+N〉 = 〈a∗b+N, c+N〉

= f(c∗a∗b) this is why we used [a, b]f = f(b∗a) rather than f(ab∗)

= f((ac)∗b)

= 〈b+N, ac+N〉
= 〈b+N, πf(a)(c+N)〉
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As A/N is dense in Hf and by the continuity of the inner product and of πf (a) we have
〈πf(a

∗)(h), k〉 = 〈h, πf(a)(k)〉 for all h, k ∈ Hf . Hence we have πf(a
∗) = πf (a)

∗. This
shows that πf is a ∗-homomorphism. It follows that (πf , Hf) is a representation of A.

Now set hf := 1A +N . Then,

span{πf (a)hf : a ∈ A} = span{πf (a)(1A +N) : a ∈ A} = span{a+N : a ∈ A} = A/N

is dense in Hf and so (πf , Hf) is cyclic with cyclic vector hf . Next, for any a ∈ A,

〈πf(a)(hf ), hf〉 = 〈πf(a)(1A +N), 1A +N〉 = 〈a+N, 1A +N〉 = f(1∗
Aa) = f(a).

Finally, note that for a+N ∈ A/N ,

πf(1A)(a +N) = a +N = I(a+N)

where I is the identity operator on Hf . As πf (1A) and I are equal on a dense subset of
Hf by continuity it follows πf (1A) = I. It follows (πf , Hf) is a unital representation. ✷

Suppose (A, ‖ · ‖) is a unital C∗-algebra and f is a positive linear functional on A. Let
(πf , Hf) be the representation of A as constructed above. Then we call (πf , Hf) the GNS

representation of A corresponding to f .

We saw earlier that the proof of the commutative Gelfand-Naimark Theorem relied upon
an ample supply of nonzero multiplicative linear functionals. Enough in fact that for every
a ∈ A there existed a nonzero multiplicative linear functional x∗ such that |x∗(a)| = ‖a‖.
However, as the next example shows, we cannot in general, expect a large supply of
multiplicative linear functions.

Example 15.22. Consider the finite dimensional Hilbert space Cn, endowed with the
usual inner product. Then B(Cn) has no non-trivial ideals. In particular, there are no
nonzero multiplicative linear functionals on B(Cn), as the kernel of such a functional
would be a proper ideal in B(Cn).

Proof. Suppose that J is an ideal of B(Cn) containing a nonzero operator A ∈ J . Then
there is at least one vector z ∈ Cn such that A(z) 6= 0. For each 1 6 i 6 n, let Bi ∈ B(Cn)
and Ci ∈ B(Cn) be defined by, Bi(x) := 〈x, ei〉z and Ci(x) = 〈x,A(z)〉ei. Let x ∈ Cn,
then

(CiABi)(x) = CiA(B(x)) = CiA(〈x, ei〉z) = 〈x, ei〉Ci(A(x)) = 〈x, ei〉‖A(z)‖2ei.

Let Di :=
1

‖A(z)‖2
CiABi ∈ J , then Di(x) = 〈x, ei〉ei and so for each x ∈ Cn,

(
∑n

i=1Di)(x) =
∑n

i=1Di(x) =
∑n

i=1〈x, ei〉ei = x = In(x).

Thus, In =
∑n

i=1Di ∈ J . This shows that J = B(Cn). ✷

The next theorem shows that there are plenty of states on a unital C∗-algebra.
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Theorem 15.23. Let a be any normal element of a unital C∗-algebra (A, ‖ · ‖) and let
λ ∈ σA(a). Then there exists a state f ∈ A∗ such that f(a) = λ. In particular, since
‖a‖ = rA(a) there exists a state f ∈ A∗ such that |f(a)| = ‖a‖.

Proof. Consider C(a, 1A). This is a commutative unital C∗-algebra and hence the Gelfand
transform is an isomorphism from C(a, 1A) onto CC(∆C(a)). Since

λ ∈ σA(a) = σC(a,1A)(a) = range(â)

there exists an x∗ ∈ ∆C(a,1A) such that λ = â(x∗) = x∗(a). By the Hahn-Banach extension
theorem there exists an f ∈ A∗ such that ‖f‖ = ‖x∗‖ = 1 and f |C(a,1A) = x∗. In particular,
since x∗ is a nonzero multiplicative linear functional f(1A) = x∗(1A) = 1. Thus, f is a
state and f(a) = x∗(a) = λ. ✷

Corollary 15.24. Let a be any element of a unital C∗-algebra (A, ‖·‖). Then there exists
a state f ∈ A∗ such that f(a∗a) = ‖a‖2.

Proof. Since a∗a is self-adjoint it is normal. Therefore, by Theorem 15.23, there exists a
state such that |f(a∗a)| = ‖a∗a‖ = ‖a‖2. However, as all states are positive functionals,
f(a∗a) ∈ [0,∞). Therefore, f(a∗a) = ‖a‖2. ✷

In the next section we will prove the following theorem.

Theorem 15.25 (Gelfand-Naimark, 1943). Suppose (A, ‖ · ‖) is a C∗-algebra. Then
there exists a Hilbert space (H, 〈·, ·〉) such that (A, ‖ · ‖) is isometrically ∗-isomorphic to
a C∗-subalgebra of B(H).
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Chapter 16

Gelfand-Naimark Theorem

Lemma 16.1. Suppose that (A, ‖ · ‖) and (B, ||| · |||) are C∗-algebras and π : A → B
is an isometric unital ∗-homomorphism. Then π(A) is a C∗-subalgebra of B and A is
isometrically ∗-isomorphic to π(A).

Proof. As π : A → B is an isometric unital ∗-homomorphism it follows that π(A) is
closed in the norm topology. It is easy to see that π(A) is closed under multiplication
and the involution. It then follows that π(A) is a C∗-subalgebra of B that is isometrically
∗-isomorphic to A. ✷

As a corollary of the above result, to prove the Gelfand-Naimark Theorem it suffices to
show every C∗-algebra has an isometric representation.

Let Λ be a nonempty set and for each λ ∈ Λ, let (Hλ, 〈·, ·〉λ) be a Hilbert space. Note
that for each λ ∈ Γ, ‖ · ‖2λ = 〈·.·〉λ We define,

⊕

λ∈Λ

Hλ :=

{
(hλ)λ∈Λ ∈

∏

λ∈Λ

Hλ :
∑

λ∈Λ

‖hλ‖2λ < ∞
}
.

If scalar multiplication and addition are defined pointwise, that is,

α(hλ)λ∈Λ + β(kλ)λ∈Λ = (αhλ + βkλ)λ∈Λ

and
〈(hλ)λ∈Λ, (kλ)λ∈Λ〉 :=

∑

λ∈Λ

〈hλ, kλ〉λ,

then
⊕

λ∈Λ Hλ is a Hilbert space with inner product 〈·,·〉.
Further, if for each λ ∈ Λ, Tλ is a bounded linear operator on Hλ and supλ∈Λ‖Tλ‖ < ∞,
then ⊕

λ∈Λ

Tλ((hλ)λ∈Λ) := (Tλ(hλ))λ∈Λ

defines a bounded linear operator on
⊕

λ∈Λ Hλ with ‖
⊕

λ∈Λ Tλ‖ = supλ∈Λ‖Tλ‖. The
proofs of these claims are straightforward calculations.
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Lemma 16.2. Suppose (A, ‖ · ‖) is a unital C∗-algebra, Λ is a nonempty set and for
each λ ∈ Λ, (πλ, Hλ) is a unital representation of A. Set H :=

⊕
λ∈Λ Hλ and define

π : A → B(H) by π(a) :=
⊕

λ∈Λ πλ(a). Then,

(i) (π,H) is a unital representation of A.

(ii) If for each a ∈ A\{0} there exists λ ∈ Λ with ‖πλ(a)‖ = ‖a‖, then (π,H) is isometric.

Proof. Since πλ is a unital ∗-homomorphism, ‖πλ(a)‖ 6 ‖a‖ for all λ ∈ Λ. Therefore,
supλ‖πλ(a)‖ 6 ‖a‖ so π(a) =

⊕
λ∈Λ πλ(a) is a bounded linear operator for each a ∈ A.

Some straightforward calculations show that π is a unital ∗-homomorphism and so (π,H)
is a unital representation of A.

Suppose that for each a ∈ A\{0} there exists a λ ∈ Λ with ‖πλ(a)‖ = ‖a‖. As π is a
∗-homomorphism, π is norm decreasing and so it follows that

‖a‖ > ‖π(a)‖ = ‖
⊕

λ∈Λ

πλ(a)‖ = sup
λ∈Λ

‖πλ(a)‖ = ‖a‖.

This completes the proof. ✷

Suppose (A, ‖ · ‖) is a unital C∗-algebra, Λ is a nonempty set and for each λ ∈ Λ, (πλ, Hλ)
is a unital representation of A. Further, suppose that H and π : A → B(H) are defined
as above, then we say that (π,H) is the direct sum of ((πλ, Hλ))λ∈Λ.

Suppose (A, ‖ · ‖) is a unital C∗-algebra. For each f ∈ S(A), let (πf , Hf) be the GNS
representation corresponding to f with cyclic vector hf . Let (π,H) be the direct sum of
((πf , Hf))f∈S(A). We shall call (π,H) the universal representation of A.

Lemma 16.3. Suppose that (A, ‖ · ‖) is a unital C∗-algebra and (π,H) is a unital rep-
resentation of A. Let h ∈ H and define f(a) = 〈π(a)(h), h〉 for each a ∈ A. Then
‖f‖ = ‖h‖2.

Proof. From earlier we know that f is a positive linear functional. Using the Cauchy-
Schwarz inequality and the fact that unital ∗-homomorphisms are norm decreasing we get
that,

|f(a)| = |〈π(a)(h), h〉| 6 ‖π(a)(h)‖‖h‖ 6 ‖π(a)‖‖h‖2 6 ‖a‖‖h‖2

so ‖f‖ 6 ‖h‖2. Further, as f(1A) = 〈π(1A)(h), h〉 = 〈h, h〉 = ‖h‖2 it follows ‖f‖ = ‖h‖2.
This completes the proof. ✷

Theorem 16.4 (Gelfand-Naimark Theorem). Suppose that (A, ‖·‖) is a unital C∗-algebra.
Then there exists an isometric unital representation of A.

Proof. Let (π,H) be the universal representation of A. Then (π,H) is a direct sum of
unital representations and so is itself a unital representation. It remains to show (π,H)
is isometric. For each a ∈ A\{0}, there exists a state, f ∈ S(A) such that f(a∗a) = ‖a‖2.
Let (πf , Hf) be the GNS representation corresponding to f with cyclic vector hf . Then
as f(a) = 〈πf(a)(hf ), hf〉 we have,

1 = ‖f‖ = ‖hf‖2
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by Lemma 16.3. Furthermore,

‖a‖2 = f(a∗a)

= 〈πf(a
∗a)(hf), hf 〉

= 〈πf(a)
∗πf(a)(hf ), hf〉

= 〈πf(a)(hf ), πf(a)(hf )〉
= ‖πf(a)(hf )‖2

6 ‖πf (a)‖2‖hf‖2
= ‖πf(a)‖2
6 ‖a‖2,

where we used the fact that unital ∗-homomorphisms are norm decreasing. Equality is
forced in the middle and so ‖πf (a)‖ = ‖a‖. From our earlier results, it follows that (π, f)
is an isometric representation. ✷

The question now remains as to how we handle non-unital C∗-algebras.

Unitisation

In Gelfand and Naimark’s 1943 paper the C∗-algebras were assumed to be unital among
other conditions. Later on it became apparent that this excluded many interesting ex-
amples such as the space of compact operators on an infinite-dimensional Hilbert space.
Nevertheless, C∗-algebras with a unit are easier to work with. The aim of this section
is to describe how to appropriately embed a non-unital C∗-algebra inside a unital C∗-
algebra. This enables many results to be proved assuming a multiplicative identity and
then extending to the non-unital case.

Lemma 16.5. Suppose that (X, ‖·‖) is a Banach space, S is a closed subspace of (X, ‖·‖)
and T is a finite dimensional subspace of (X, ‖ · ‖). Then S + T is a closed subspace of
(X, ‖ · ‖).

Proof. It is easy to see S + T is a subspace of X . As S is closed X/S is a Banach space
with norm ‖x + S‖ = dist(x, S). Let π : X → X/S be the quotient map. Then π is a
linear map and as T is finite dimensional, π(T ) is finite dimensional and hence closed.
Therefore S + T = π−1(π(T )) is the inverse image of a closed set so is closed. ✷

Suppose that (A, ‖ · ‖) is a C∗-algebra. For a ∈ A define La : A → A by La(b) := ab for all
b ∈ A. Let I denote the identity operator in B(A). For a ∈ A and λ ∈ C define L(a,λ) :=
La+λI. Let LA := {La : a ∈ A} ⊆ B(A) and LA×C := {La+λI : a ∈ A, λ ∈ C} ⊆ B(A).

Lemma 16.6. Suppose that (A, ‖ · ‖) is a C∗-algebra. Then,

(i) ‖La‖ = ‖a‖ for all a ∈ A.

(ii) LA is a closed subspace of B(A).
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(iii) LA×C is a closed subspace of B(A).

Proof. For b ∈ A, ‖La(b)‖ = ‖ab‖ 6 ‖a‖‖b‖ so La is bounded and ‖La‖ 6 ‖a‖. It is easy
to see LA is a subspace of B(A). Moreover,

‖a‖2 = ‖aa∗‖ = ‖La(a
∗)‖ 6 ‖La‖‖a∗‖ = ‖La‖‖a‖.

This shows ‖La‖ = ‖a‖. The map A → LA : a → La is surjective and isometric. LA is
the isometric image of a complete space and so is closed. Further, CI := {λI : λ ∈ C} is
a finite dimensional subspace of B(A). It follows LA×C = LA +CI is a closed subspace of
B(A), by Lemma 16.5. ✷

Lemma 16.7. Suppose that (A, ‖ · ‖) is a Banach algebra that is also a ∗-algebra and
satisfies ‖a‖2 6 ‖a∗a‖ for all a ∈ A. Then (A, ‖ · ‖) is a C∗-algebra.

Proof. Let a ∈ A. Then ‖a‖2 6 ‖a∗a‖ 6 ‖a∗‖‖a‖, so ‖a‖ 6 ‖a∗‖. By considering a∗ we
also have ‖a∗‖ 6 ‖a‖ and so ‖a∗‖ = ‖a‖. Then ‖a‖2 6 ‖a∗a‖ 6 ‖a∗‖‖a‖ = ‖a‖2 and so
‖a‖2 = ‖a∗a‖. ✷

Lemma 16.8. Suppose that A is a ∗-algebra and b ∈ A is a left identity for A. Then b
is also a right identity for A, and so b is an identity for A.

Proof. As b is a left identity for A, ba = a for all a ∈ A. Then by taking the involution
of this we get that b∗ is a right identity for A. Therefore, b = bb∗ = b∗ and so b is both a
left and right identity for A, and hence an identity for A. ✷

Define Ã := A×C. On Ã we may define scalar multiplication α(a, λ) := (αa, αλ), addition
(a1, λ1) + (a2, λ2) := (a1 + a2, λ1 + λ2), an involution (a, λ)∗ := (a∗, λ) and multiplication
(a1, λ1)(a2, λ2) := (a1a2 + λ1a2 + λ2a1, λ1λ2).

Then one can check that with these operations Ã is a unital ∗-algebra over C with mul-
tiplicative identity (0, 1). Let π : Ã → B(A) be defined by π((a, λ)) = L(a,λ).

Lemma 16.9. Suppose that (A, ‖ · ‖) is a non-untial C∗-algebra. Then the function
π : Ã → B(A) defined above is an injective homomorphism

Proof. It is easy to see π is linear. Let (a1, λ1), (a2, λ2) ∈ Ã. Then for c ∈ A,

π((a1, λ1)(a2, λ2))(c) = π((a1a2 + λ1a2 + λ2a1, λ1λ2))(c)

= L(a1a2+λ1a2+λ2a1,λ1λ2)(c)

= a1a2c+ λ1a2c + λ2a1c+ λ1λ2c

= L(a1,λ1)(a2c + λ2c)

= L(a1,λ1)L(a2,λ2)(c).

This shows π preserves multiplication and so is a homomorphism. Suppose π((a, λ)) =
L(a,λ) = 0. If λ = 0, then 0 = ‖L(a,λ)‖ = ‖La‖ = ‖a‖ and so a = 0 also. If λ 6= 0, then
ac + λc = 0 for all c ∈ A, so −1

λ
a is a left identity for A and so is an identity for A by

Lemma 16.8 which contradicts A being non-unital. It follows (a, λ) = 0 and so π is an
injective homomorphism. ✷
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If A is non-unital, then from Lemma 16.9 it follows that LA×C is a subalgebra of B(A)
and that π is an isomorphism from Ã onto LA×C. Define |||·||| on Ã by

|||(a, λ)||| := ‖π((a, λ))‖ = ‖L(a,λ)‖.

As π is an isometric isomorphism and LA×C is a closed subspace of the complete space
B(A), it follows that (Ã, ||| · |||) is a Banach algebra.

Theorem 16.10. Suppose that (A, ‖ · ‖) is a non-unital C∗-algebra. Then (Ã, ||| · |||) is a
unital C∗-algebra.

Proof. (Ã, ||| · |||) is a unital Banach algebra that is also a ∗-algebra. It remains to verify
the C∗-condition. Let (a, λ) ∈ Ã. Then,

|||(a, λ)|||2 = ‖L(a,λ)‖2

= sup
‖b‖6 1

‖ab+ λb‖2

= sup
‖b‖6 1

‖(ab+ λb)∗(ab+ λb)‖

= sup
‖b‖6 1

‖b∗(a∗ab+ λa∗b+ λab+ |λ|2b)‖

6 sup
‖b‖6 1

‖b∗‖‖a∗ab+ λa∗b+ λab+ |λ|2b‖

6 sup
‖b‖6 1

‖a∗ab+ λa∗b+ λab+ |λ|2b‖

= ‖L(a∗a+λa∗+λa,|λ|2)‖
= ‖π((a∗a+ λa∗ + λa, |λ|2))‖
= |||(a∗a+ λa∗ + λa, |λ|2)|||
= |||(a, λ)∗(a, λ)|||.

By Lemma 16.7, it follows that the C∗-condition is satisfied and so LA×C is a unital
C∗-algebra. ✷

Lemma 16.11. If (A, ‖ · ‖) is a non-unital C∗-algebra, then A× {0} is a C∗-subalgebra
of (Ã, ||| · |||) and the map iA : A → A × {0} defined by iA(a) := (a, 0) is an isometric
∗-isomorphism.

Proof. It is easy to check that A×{0} is a subspace of Ã that is closed under multiplication
and the involution. It is also easy to check that iA is a linear map which preserves
multiplication and the involution. By Lemma 16.6,

|||iA(a)||| = |||(a, 0)||| = ‖π((a, 0))‖ = ‖L(a,0)‖ = ‖La‖ = ‖a‖.

So iA is isometric and A× {0} is the isometric image of the complete space A, and so is
closed. It follows that A× {0} is a C∗-subalgebra of Ã. Obviously, iA is surjective, so it
follows that iA is an isometric ∗-isomorphism. ✷
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If (A, ‖ · ‖) is a non-unital C∗-algebra, then we call (Ã, ||| · |||) the unitisation of (A, ‖ · ‖).
We can now present the full Gelfand-Naimark Representation Theorem.

Theorem 16.12 (Gelfand-Naimark Theorem∗). Suppose that (A, ‖ · ‖) is a C∗-algebra.
Then there exists an isometric representation of A.

Proof. If (A, ‖ · ‖) is non-unital consider (Ã, ||| · |||), the unitisation of (A, ‖ · ‖). Let (π,H)
be the universal representation of (Ã, ||| · |||). The inclusion ∗-homomorphism iA : A → Ã
is an isometric ∗-homomorphism. The composition of two isometric ∗-homomorphisms is
again an isometric ∗-homomorphism. Therefore, (π ◦ iA, H) is an isometric representation
of A. ✷

We have shown that every C∗-algebra has an isometric representation. Hence, by Lemma 16.1,
we also have the following version of the Gelfand-Naimark Theorem.

Theorem 16.13 (Gelfand-Naimark Theorem∗∗). Suppose (A, ‖ ·‖) is a C∗-algebra. Then
there exists a Hilbert space, (H, 〈·, ·〉), such that A is isometrically ∗-isomorphic to a
C∗-subalgebra of B(H).
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Chapter 17

Compact Operators

Let (X, ‖ ·‖) and (Y, |||·, |||) be normed linear spaces and let T ∈ B(X, Y ). Then T is called
a compact operator if T (BX) is a compact subset of (Y, |||·, |||). Clearly if either X or Y
is finite dimensional, then T is a compact operator. In this section we will show that if
(X, ‖ · ‖) is a Banach space and T ∈ B(X) is compact, then IX − T is 1-to-1 if, and only
if, IX − T is onto. Moreover, both of these conditions are equivalent to IX − T being an
isomorphism from (X, ‖ · ‖) onto (X, ‖ · ‖).

Theorem 17.1. Given a compact operator T on a Banach space (X, ‖ · ‖), if IX − T is
1-to-1, then IX −T has a continuous inverse on (IX −T )(X). In particular, (IX −T )(X)
is a closed subspace of (X, ‖ · ‖).

Proof. Let m := inf{‖(IX − T )(x)‖ : x ∈ SX}. Claim: m > 0. To prove this let us
suppose, in order to obtain a contradiction, that m = 0. Then there exists a sequence
(xn : n ∈ N) in SX such that lim

n→∞
‖(IX − T )(xn)‖ = 0. Since

{T (xn) : n ∈ N} ⊆ T (BX),

(xn : n ∈ N) possesses a subsequence (xnk
: k ∈ N) such that y := lim

k→∞
T (xnk

). Then,

lim
k→∞

xnk
= lim

k→∞
IX(xnk

) = lim
k→∞

(IX − T )(xnk
) + lim

k→∞
T (xnk

) = 0 + y = y

and so y ∈ SX , since {xnk
: k ∈ N} ⊆ SX . On the other hand,

‖(IX − T )(y)‖ =
∥∥∥(IX − T )

(
lim
k→∞

xnk

)∥∥∥ = lim
k→∞

‖(IX − T )(xnk
)‖ = 0.

Therefore, y ∈ Ker(IX − T ) ∩ SX = ∅, as Ker(IX − T ) = {0}. Hence, we have obtained
our desired contradiction and so it must be the case that m > 0.

Now, ‖(IX − T )(x)‖ > m‖x‖ for all x ∈ X and so (IX − T ) is an isomorphism onto
(IX −T )(X). For the justification for this, see the first “fact” in the chapter on conjugate
mappings. ✷
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Let (X, ‖·‖) be a Banach space. We shall denote by K(X) the set of all compact operators
on (X, ‖ · ‖). It is easy to show that K(X) is an ideal in B(X), that is, (i) K(X) is a
vector subspace of B(X); (ii) T ◦ S ∈ K(X) for all T ∈ B(X) and all S ∈ K(X) and
S ◦ T ∈ K(X) for all S ∈ K(X) and all T ∈ B(X). Note that: (i) IX ∈ K(X) if, and
only if, X is finite dimensional and (ii) if (H, 〈·, ·〉) is a Hilbert space, then K(X) is closed
under the adjoint operation on B(H). This follows from the original definition of the
adjoint operation and Schauder’s Theorem, see Exercise 11.6.

Lemma 17.2. Given a compact operator T on a Banach space (X, ‖ · ‖), for each n ∈ N,
(IX − T )n = IX − Sn, where, Sn is a compact operator on (X, ‖ · ‖).

Proof. Let n ∈ N, then

(IX − T )n =

n∑

j=0

(−1)j
(
n

j

)
T j = IX − Sn, where, Sn :=

n∑

j=1

(−1)(j−1)

(
n

j

)
T j.

Now, Sn is compact, since K(X) is an ideal in B(X). ✷

Theorem 17.3. Given a compact operator T on a Banach space (X, ‖ · ‖), if IX − T is
1-to-1, then IX − T is onto, and so an isomorphism on (X, ‖ · ‖).

Proof. For each n ∈ N, let Xn := (IX − T )n(X). Then clearly,

· · · ⊆ Xn+1 ⊆ Xn ⊆ · · ·X2 ⊆ X1 ⊆ X.

Suppose that Xn+1 is a proper subspace of Xn for all n ∈ N. By Theorem 17.1, Xn+1 is a
closed subspace of Xn, so by Riesz’s Lemma (Lemma 2.16) there exists an xn ∈ SXn

such
that dist(xn, Xn+1) > 1/2. Now, for any n > m we have

‖T (xm)− T (xn)‖ = ‖xm − [(IX − T )(xm) + xn − (IX − T )(xn)]‖ > 1/2

since [(IX − T )(xm) + xn − (IX − T )(xn)] ∈ Xm+1. Also, {xn : n ∈ N} ⊆ BX , but
(T (xn) : n ∈ N) has no convergent subsequences; which is impossible since T is a compact
operator. Hence, there must be some m ∈ N such that Xm+1 = Xm.

Since (IX − T ) is 1-to-1, (IX − T )m is 1-to-1. Now let x be any element of X . Then
(IX − T )m(x) ∈ Xm = Xm+1 = (IX − T )m+1(X) and so there is some y ∈ X such that

(IX − T )m(x) = (IX − T )m+1(y) = (IX − T )m((IX − T )(y)).

However, since (IX − T )m is 1-to-1, x = (IX − T )(y) ∈ X1. Therefore, X1 = X , i.e.,
(IX − T ) is onto. The fact that IX − T is an isomorphism now follows from the Open
Mapping Theorem, see Theorem 6.2. ✷

Theorem 17.4. Given a compact operator T on a Banach space (X, ‖ · ‖), if IX − T is
onto, then IX − T is 1-to-1, and so an isomorphism on (X, ‖ · ‖).
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Proof. Since IX − T is onto, its conjugate (IX − T )′ = IX∗ − T ′ is 1-to-1 on X∗, see
the second “fact” in the conjugate mapping chapter. Since T is compact, by Schauder’s
Theorem, its conjugate T ′ is also compact. It then follows from Theorem 17.3 that IX∗−T ′

is an isomorphism on (X∗, ‖ · ‖), and so from Theorem 8.4, IX − T is an isomorphism on
(X, ‖ · ‖). ✷

Corollary 17.5 (Fredholm Alternative). For a compact operator on a Banach space
(X, ‖ ·‖) the following are equivalent: (i) IX −T is 1-to-1; (ii) IX −T is onto; (iii) IX −T
is an isomorphism on (X, ‖ · ‖).

Given a linear operator T on a vector space X , over K, an eigenvalue of T is element λ
of K such that T (x) = λx for some nonzero vector x ∈ X , i.e., λ is an eigenvalue of T if
Ker(T−λIX) 6= {0}. A nonzero vector x ∈ X is called an eigenvector of T if there exists
an element λ ∈ K such that T (x) = λx. The eigenspace corresponding to an eigenvalue
λ is equal to the kernel of (T − λIX), i.e., it is the set of all eigenvectors (corresponding
to the eigenvalue λ) plus the zero vector.

Theorem 17.6. Let T be a compact operator defined on a Banach space (X, ‖ · ‖). Then
each element of σ(T ) \ {0} is an eigenvalue of T .

Proof. Suppose that λ ∈ σ(T )\{0}, then T−λIX = −λ(IX−λ−1T ) is not an isomorphism.
Therefore, IX − λ−1T is not an isomorphism. Now, as λ−1T is a compact operator, we
have by Corollary 17.5, that IX −λ−1T is not an isomorphism if, and only if, IX −λ−1T is
not 1-to-1, i.e., if, and only if, there exists a nonzero x ∈ X such that (IX −λ−1T )(x) = 0,
i.e., T (x) = λx. ✷

Theorem 17.7. Let T be a compact normal operator defined on a nontrivial Hilbert space
(H, 〈·, ·〉), over C. Then T has an eigenvalue λ ∈ C, such that |λ| = ‖T‖.

Proof. First, if ‖T‖ = 0, then the result is obvious. Hence we may assume that that
‖T‖ > 0. Since T is a normal operator r(T ) = ‖T‖ > 0. Thus we may choose λ ∈ σ(T )
such that |λ| = r(T ) > 0. Then, by Theorem 17.6, λ is an eigenvalue of T . ✷

More facts concerning compact operators

Theorem 17.8. For a compact operator T on a Banach space (X, ‖ · ‖), Ker(IX − T )
is finite dimensional. In particular, for each nonzero eigenvalue λ of T , the eigenspace
corresponding to λ is finite dimensional.

Proof. Let Y := Ker(IX − T ). Then Y is a closed subspace of (X, ‖ · ‖). Notice that if
y ∈ Y , then T (y) = IX(y) = y. That is, T |Y = IY . However, T |Y is a compact operator
and so BY = IY (BY ) = T |Y (BY ) ⊆ T |Y (BY ); which is compact. Therefore, Y is finite
dimensional. ✷

Theorem 17.9. Let T be a linear operator defined on a vector space X. If {e1, e2, . . . , en}
are eigenvectors of T corresponding to distinct eigenvalues of T , then {e1, e2, . . . , en} is a
linearly independent set.
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Proof. The proof of this is left as an exercise for the reader. ✷

Theorem 17.10. Let T be a compact operator defined on a Banach space (X, ‖·‖). Then
σ(T ) is at most countable. Moreover, if σ(T ) has infinitely many elements, then they may
be listed as a sequence that converges to 0.

Proof. To prove the statement of the theorem it is sufficient to show that for each ε > 0,
{z ∈ σ(T ) : ε < |z|} is finite. To this end, fix ε > 0 and suppose that there is an infinite
sequence (λn : n ∈ N) of distinct elements of σ(T ) \ εBC. For each n ∈ N, let Mn :=
span{e1, e2, . . . en}, where ek is an eigenvector of T (with unit length) corresponding to the
eigenvalue λk. Next, for each n > 1, choose xn ∈ SX∩Mn such that dist(xn,Mn−1) > 1/2.
Then note that xn − λ−1

n T (xn) ∈ Mn−1, since if xn =
∑n

k=1 ckek, then

xn − λ−1
n T (xn) =

∑n
k=1ck(1− λ−1

n λk)ek =
∑n−1

k=1ck(1− λ−1
n λk)ek ∈ Mn−1.

Hence, dist(λ−1
n T (xn),Mn−1) = dist(xn,Mn−1) > 1/2. Thus,

dist(T (xn),Mn−1) > |λn|/2 > ε/2.

Notice that if n > m, then ‖T (xn) − T (xm)‖ > ε/2, since T (xm) ∈ Mm ⊆ Mn−1. Now,
{xn : n ∈ N} ⊆ BX , but (T (xn) : n ∈ N) has no convergent subsequences; which is
impossible since T is a compact operator. Therefore, {z ∈ σ(T ) : ε < |z|} is finite. ✷

Let (X, ‖ · ‖) be a Banach space and suppose that T ∈ B(X). Then T is called a finite

rank operator if dim(T (X)) < ∞. We shall denote by F(X) the set of all finite rank
operators defined on (X, ‖ · ‖). Clearly, F(X) ⊆ K(X) since bounded subsets of finite
dimensional spaces are relatively compact.

Exercise 17.11. Let (X, ‖ · ‖) be a Banach space. Show that both F(X) and K(X) are
ideals in B(X).

Theorem 17.12. Let (X, ‖ · ‖) be a Banach space. Then K(X) is a closed ideal in B(X).

Proof. Let (Tn : n ∈ N) be a sequence in K(X) and suppose that T = limn→∞ Tn. We need
to show that T (BX) is compact. Since (X, ‖ · ‖) is a Banach space it will be sufficient to
show that for every ε > 0 there exists a compact set K in X such that T (BX) ⊆ K+εBX,
see Corollary 11.2. To this end, fix ε > 0 and choose n ∈ N such that ‖T −Tn‖ < ε. Then

T (BX) ⊆ Tn(BX) + εBX ⊆ Tn(BX) + εBX ;

which completes the proof, since Tn(BX) is compact. ✷

Exercise 17.13. Let K be a compact subset of a Banach space (X, ‖ · ‖) and let (Tn : n ∈
N) be a sequence in B(X). Show that if (Tn : n ∈ N) converges pointwise to T ∈ B(X) on
X, then (Tn : n ∈ N) converges uniformly to T on K. Hint: Use the Uniform Boundedness
Theorem.

Theorem 17.14. Let (X, ‖ · ‖) be a Banach space with a Schauder basis. Then K(X) =
F(X).
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Proof. It follows from the fact that (i) F(X) ⊆ K(X) and (ii) K(X) is closed, see Theorem
17.12, that F(X) ⊆ K(X). So we need only show the reverse set-inclusion. To this end,
let T ∈ K(X). Let (en : n ∈ N) be a Schauder basis for (X, ‖ · ‖) and let (Pn : n ∈ N)
be the canonical projections. Then for each n ∈ N, (Pn ◦ T ) ∈ F(X). Now, (Pn : n ∈ N)
converge pointwise to IX ∈ B(X) on X and T (BX) is compact. Therefore, by Exercise
17.13, (Pn : n ∈ N) converges uniformly to IX on T (BX). Thus,

lim
n→∞

(Pn ◦ T ) = T with respect to the operator norm on B(X).

This completes the proof. ✷

Example 17.15. Suppose that K ∈ CC([0, 1]× [0, 1]). Then the mapping

T : (L2[0, 1], ‖ · ‖2) → (CC[0, 1], ‖ · ‖∞) defined by,

T (x)(t) :=

∫

[0,1]

K(t, s)x(s) ds for all t ∈ [0, 1]

is a compact operator.

Proof : By the continuity of K and the compactness of [0, 1]× [0, 1], we have

M := sup{|K(t, s)| : (t, s) ∈ [0, 1]× [0, 1]} < ∞

and hence for any x ∈ BL2[0,1] and any t ∈ [0, 1] we get

|T (x)(t)| =

∣∣∣∣
∫

[0,1]

K(t, s)x(s) ds

∣∣∣∣ 6
∫

[0,1]

|K(t, s)||x(s)| ds

6

(∫

[0,1]

|K(t, s)|2 ds

) 1
2

‖x‖2 6
(∫

[0,1]

M2 ds

) 1
2

‖x‖2 6 M.

Given 0 < ε, it follows from the continuity of K and compactness of [0, 1]×[0, 1] that there
exists a 0 < δ such that if t1, t2 ∈ [0, 1] and |t1 − t2| < δ, then |K(t1, s)−K(t2, s)| < ε for
all s ∈ [0, 1]. Consequently, for every x ∈ BL2[0,1] and every t1, t2 ∈ [0, 1] with |t1− t2| < δ
we have

|T (x)(t1)− T (x)(t2)| =

∣∣∣∣
∫

[0,1]

K(t1, s)x(s) ds−
∫

[0,1]

K(t2, s)x(s) ds

∣∣∣∣

6

∫

[0,1]

|K(t1, s)−K(t2, s)||x(s)| ds

6

(∫

[0,1]

|K(t1, s)−K(t2, s)|2 ds

) 1
2

‖x‖2

6

(∫

[0,1]

ε2 ds

) 1
2

‖x‖2 6 ε.

Therefore, T (x) ∈ CC[0, 1]. In fact, we also showed that T (BL2[0,1]) is a uniformly bounded
(by M) and an equicontinuous subset of CC[0, 1]. Hence, by the Arzelà-Ascoli Theorem,
T (BL2[0,1]) is relatively compact in (CC[0, 1], ‖ · ‖∞). �
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Remarks 17.16. If we let I : (CC[0, 1], ‖ · ‖∞) → (L2[0, 1], ‖ · ‖2) be the natural inclusion
map, then we see that I ◦ T : (L2[0, 1], ‖ · ‖2) → (L2[0, 1], ‖ · ‖2) is a compact operator too,
since I is a continuous linear operator. Hence T : (L2[0, 1], ‖ · ‖2) → (L2[0, 1], ‖ · ‖2), as
defined above, may be directly viewed as a compact operator on (L2[0, 1], ‖ · ‖2).

Exercise 17.17. Suppose that K ∈ CC([a, b]× [a, b]). Show that the mapping

T : (L2[a, b], ‖ · ‖2) → (L2[a, b], ‖ · ‖2) defined by,

T (x)(t) :=

∫

[a,b]

K(t, s)x(s) ds for all t ∈ [a, b]

is a compact operator.
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Chapter 18

Spectral Mapping Theorem

Lemma 18.1. For a normal operator T defined on a Hilbert space (H, 〈·, ·〉), λ is an
eigenvalue of T if, and only if λ is an eigenvalue of T ∗. Moreover, λ and λ have the same
eigenspace.

Proof. For any x ∈ H and normal operator N of H ,

‖N∗(x)‖2 = 〈N∗(x), N∗(x)〉 = 〈NN∗(x), x〉 = 〈N∗N(x), x〉
= 〈N(x), N(x)〉 = ‖N(x)‖2.

That is, ‖N∗(x)‖ = ‖N(x)‖. Therefore, ‖(T − λI)(x)‖ = ‖(T ∗ − λI)(x)‖ since T − λI is
also a normal operator. ✷

Theorem 18.2 (Spectral Mapping Theorem). Let (H, 〈·, ·〉) be a complex infinite dimen-
sional separable Hilbert space. If T is a compact normal operator on H, then there exists
an orthonormal basis (en)

∞
n=1 of H where each ei is an eigenvector corresponding to an

eigenvalue λi of T , such that for each x ∈ H we have

T (x) =
∞∑

n=1

λn〈x, en〉en

Moreover, for every λ /∈ σ(T ) and x ∈ H we have that

R(λ)(x) =

∞∑

n=1

〈x, en〉en
λn − λ

.

Proof. Let U be a maximal (with respect to set inclusion) family of orthonormal eigen-
vectors of H . To prove the first part of the theorem it is sufficient to show that if
X := span(U), then H = X .

Suppose, in order to obtain a contradiction that X 6= H . Then X⊥ 6= {0}. Next, let us
show that T |X⊥ : X⊥ → X⊥ and T ∗|X⊥ : X⊥ → X⊥. To see this, first note that both T
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and T ∗ map X into X , since the members of U are eigenvectors for both T and T ∗. Fix
y ∈ X⊥, then for any x ∈ X

〈T (y), x〉 = 〈y, T ∗(x)〉 = 0 and 〈T ∗(y), x〉 = 〈y, T (x)〉 = 0.

Therefore, T (y) ∈ X⊥ and T ∗(y) ∈ X⊥. Moreover, it is easy to check that T |X⊥ is also a
compact normal operator. Hence, by Theorem 17.7, T |X⊥ has an eigenvector e ∈ X⊥ of
unit length. But then U ∪ {e} is an orthonormal family of eigenvectors which is strictly
bigger than U . However, this contradicts the maximality of U . Hence, it must be the
case that X = H . Now, because H is separable, we have, by Exercise 3.12 that U is at
most countable, since ‖u− v‖ =

√
2, for each u, v ∈ U with u 6= v. Note also that U is an

infinite set, because otherwise, H = span(U) = span(U), would be finite dimensional.

Hence, we may enumerate U as {en : n ∈ N}. For each n ∈ N, let λn denote the eigenvalue
of T , corresponding to the eigenvector en.

Then for any x ∈ H , x = lim
n→∞

n∑

k=1

〈x, ek〉ek =
∞∑

k=1

〈x, ek〉ek. Therefore,

T (x) = T

(
lim
n→∞

n∑

k=1

〈x, ek〉ek
)

= lim
n→∞

T

(
n∑

k=1

〈x, ek〉ek
)

= lim
n→∞

n∑

k=1

〈x, ek〉T (ek)

= lim
n→∞

n∑

k=1

λk〈x, ek〉ek

=
∞∑

k=1

λk〈x, ek〉ek.

Next, suppose x ∈ H and λ 6∈ σ(T ) then for some y ∈ H we have that:

x = (T − λI)(y) = (T − λI)

(
∞∑

n=1

〈y, en〉en
)

=

∞∑

n=1

(λn − λ)〈y, en〉en.

Therefore, for each n ∈ N, 〈x, en〉 = (λn − λ)〈y, en〉 and so

〈y, en〉 =
〈x, en〉
λn − λ

for all n ∈ N.

On the other hand, y = (T − λI)−1(x) = R(λ)(x). Therefore,

R(λ)(x) =

∞∑

n=1

〈x, en〉en
λn − λ

.

This completes the proof ✷
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Hahn-Banach Theorem, 25
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Hilbert space, 16
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inner product, 15
invertible, 65
involution, 83
isometric representation, 94
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James’ Theorem, 49

largest element, 1
lattice, 55
left ideal, 94
linear combination, 3
linear operator, 4
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Minkowski functional, 26
multiplication operation, 63
multiplicative linear functional, 76

natural embedding, 40
natural embedding mapping, 40
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normed linear space isomorphism, 12
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Parseval’s Identity, 21
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Schauder’s Theorem, 61
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Separation Theorem, 28
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Spectral Mapping Theorem, 111
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Spectral Radius Formula, 75
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Square Root Theorem, 88
∗-algebra, 83
state, 76
Stone-Weierstrass Theorem, 57
Strong Separation Theorem, 28
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28
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The GNS construction, 95
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topology of pointwise convergence, 77
totally bounded, 9, 59
totally ordered set, 1
transformation, 4
two-point approximation property, 56
2-sided ideal, 77

Uniform Boundedness Theorem, 39
unital representation, 94
unitisation, 104
universal representation, 100

vector addition, 2
vector space, 2
vectors, 2
Volterra integral equation, 69
Volterra operator, 70

weak∗ topology, 77
weak∗-open, 77
weakly bounded, 40
Wiener’s Theorem, 81

zero vector, 2
Zorn’s Lemma, 2
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