Obfuscated Fuzzy Hamming Distance and Conjunctions from Subset Product Problems

Steven D. Galbraith and Lukas Zobernig

TCC 2019

Introduction

Outline

- Motivation
- Preliminaries
- Secure Sketches from Error Correction Codes

- Computational Assumptions
- Our Scheme
- Obfuscation Notions
- Security
- Conjunctions
- Conclusion

Motivation

Can we:

securely encode and match fingerprints ...

... as well as other biometric features (iris scans, DNA, etc.)?

Example

$$x = (F, i, N, g, e, r, p, R, i, n, t),$$

$$y = (F, I, n, g, e, r, p, r, i, n, t)$$

Keywords:

Fuzzy extractor

Preliminaries

We need a good class of programs to obfuscate.

Definition (Evasive Program Collection)

Let $\mathcal{P} = {\mathcal{P}_n}_{n \in \mathbb{N}}$ be a collection of polynomial-size programs such that every $P \in \mathcal{P}_n$ is a program $P : {0,1}^n \to {0,1}$. The collection \mathcal{P} is called **evasive** if there exists a negligible function ϵ such that for every $n \in \mathbb{N}$ and for every $y \in {0,1}^n$:

$$\Pr_{P \leftarrow \mathcal{P}_n}[P(y) = 1] \le \epsilon(n).$$

Hamming distance: $d_H(x, y) = \#\{i \mid x_i \neq y_i\}$ Hamming ball: $B_{H,r}(x) = \{y \mid d_H(x, y) \leq r\}$ When is *fuzzy Hamming distance* evasive?

Preliminaries

Lemma

Let $\lambda \in \mathbb{N}$ be a security parameter and let $r, n \in \mathbb{N}$ such that

$$r \leq rac{n}{2} - \sqrt{\log(2)n^2}$$

Fix a point $x \in \{0,1\}^n$. Then the following probability is negligible

$$\Pr_{y \leftarrow \{0,1\}^n} \left[y \in B_{H,r}(x) \right] \leq \frac{1}{2^{\lambda}}$$

⇒ Hamming ball membership of uniform $y \leftarrow \{0,1\}^n$ is **evasive** for $r \leq \frac{n}{2} - \sqrt{\log(2)n\lambda}$.

Preliminaries

Given secret $x \in \{0,1\}^n$ and random $h \in \{0,1\}^k$, and a random linear error correction code *G*. A secure sketch is then given by

 $s = x \oplus Gh$.

• Given
$$y \in B_{H,r}(x)$$
:

$$s' = y \oplus s = y \oplus x \oplus Gh = e \oplus Gh$$

 $e = y \oplus x$

- Decoding s' reveals h (and also x).
- Pitfalls:
 - ► (G, s) can be quite large
 - ► Hard to control r, n, k (recall $r \le n/2 \sqrt{\log(2)n\lambda}$)
 - Unclear decoding/reusability

Computational Assumptions

Problem (Modular Subset Product Problem, $MSP_{r,n,D}$)

Let $r, n \in \mathbb{N}$, a distribution D over $\{0, 1\}^n$, a secret $x \leftarrow D$, $(p_i)_{i=1,...,n}$ a sequence of small primes, a prime $q \sim \prod_{r \text{ largest } p_i} p_i$. Given

$$\triangleright X = \prod_{i=1}^{n} p_i^{x_i} \mod q,$$

the problem is to find x.

Problem (**D**istributional **MSP**, D-MSP_{r,n,D})

This problem is to distinguish the distribution of $MSP_{r,n,D}$ samples from uniformly random over \mathbb{Z}_q .

Computational Assumptions

Search vs Decision

injective: given X decisional: impossible
then x is unique both assumed hard search: not unique
$$q \gg 2^n$$
 $q \approx 2^n$ $q \ll 2^n$

• Hardness
$$(r \le n/2 - \sqrt{\log(2)n\lambda})$$

non-neg. gap conjectured
easy
$$\sqrt{\log(2)n\lambda}$$
 hard as hard as DLOG
 $r = n$ $r = n/2$ $r = \frac{n}{\log_2(n\log(n))}$ $r = 1$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Our Scheme

Definition (Fuzzy Hamming Distance)

Let $r < n/2 \in \mathbb{N}$. Given $(p_i)_{i=1,...,n}$, q as in MSP_{r,n,D}, output $X = \prod_{i=1}^{n} p_i^{x_i} \mod q$ as an **encoding** of a secret $x \in \{0,1\}^n$.

• Given $y \in B_{H,r}(x)$, compute $Y = \prod_{i=1}^{n} p_i^{y_i} \mod q$, then:

$$E = XY^{-1} \mod q = \prod_{i=1}^n p_i^{\mathsf{x}_i - y_i} \mod q = \prod_{i=1}^n p_i^{e_i} \mod q.$$

► Recover e ∈ {−1,0,1}ⁿ from E by expanding E/q into a continued fraction and factoring.

• **Decoding fails** if $\sum_{i=1}^{n} |e_i| > r$ as then $\prod_{i=1}^{n} p_i^{|e_i|} > q$.

Example

 $\exists s \in \mathbb{Z} : ED = N + sq \Rightarrow s/D$ is a convergent of E/q

q = 751,	$(p_i) = (2, 3, 5, 7, 11, 13, 17, 19)$
x = (1, 0, 0, 1, 0, 1, 1, 0),	X = 90
y = (0, 1, 1, 1, 1, 1, 1, 0),	Y = 666

Continued fraction expansion of $XY^{-1}/q = 264/751$ yields convergents h_i/k_i ; factor $XY^{-1}k_i \mod q$ and k_i :

(日) (四) (日) (日) (日) (日)

$$\blacktriangleright i = 0: 1/2 \Rightarrow 223, 2 4$$

► i = 1: $1/3 \Rightarrow 41, 3 \neq$

▶
$$i = 2: 6/17 \Rightarrow 2 * 3^2, 17 4$$

$$\blacktriangleright i = 3: 13/37 \Rightarrow 5,37 4$$

▶
$$i = 4$$
: $45/128 \Rightarrow 3, 2^7$

▶ $i = 5: 58/165 \Rightarrow 2, 3 * 5 * 11 \checkmark \Rightarrow e = (1, 1, 1, 0, 1, 0, 0, 0)$

Obfuscation Notions

Denote obfuscator by \mathcal{O} , adversary by \mathcal{A} , simulator by \mathcal{S} , negligible function by ϵ . Definition (Distributional Virtual Black-Box Obfuscator) For every \mathcal{A} , there exists \mathcal{S} , such that for every predicate φ :

$$\left|\Pr_{P \leftarrow D_{\lambda}, \mathcal{O}, \mathcal{A}} \left[\mathcal{A}(\mathcal{O}(P)) = \varphi(P)\right] - \Pr_{P \leftarrow D_{\lambda}, \mathcal{S}} \left[\mathcal{S}^{P}(|P|) = \varphi(P)\right]\right| \leq \epsilon(\lambda).$$

Definition (Input Hiding Obfuscator)

For every A, there exists ϵ , such that for every $n \in \mathbb{N}$ and for every auxiliary input α :

$$\Pr_{P \leftarrow \mathcal{P}_n} [P(\mathcal{A}(\alpha, \mathcal{O}(P))) = 1] \leq \epsilon(n).$$

Security

Theorem

Let $(n(\lambda), r(\lambda))$ be a sequence of parameters for $\lambda \in \mathbb{N}$. Let $D = \{D_{\lambda}\}_{\lambda \in \mathbb{N}}$ be an ensemble of Hamming distance evasive distributions. Suppose that D-MSP_{r,n,D} is hard and that \mathcal{O}_{PT} is a dependent auxiliary input distributional VBB point function obfuscator. Then the Hamming distance obfuscator \mathcal{O}_{H} is a distributional VBB obfuscator.

Theorem

Let $(n(\lambda), r(\lambda))$ be parameters satisfying $r > r_f(n)$. Let $D = \{D_\lambda\}_{\lambda \in \mathbb{N}}$ be an ensemble of Hamming distance evasive distributions. Suppose that $MSP_{r,n,D}$ is hard. Then the Hamming distance obfuscator \mathcal{O}_H is input hiding.

Conjunctions

- **Conjunctions** on Boolean variables $(b_i)_{i=1,...,n}$: $\bigwedge_{i=1}^n (\neg) b_i$
- Equivalent to pattern matching with wildcards: vector $x \in \{0, 1, \star\}^n$ where \star symbolises a *wildcard*.

- ▶ To encode pattern x, use the map $\sigma : \{0, 1, \star\} \rightarrow \{-1, 0, 1\}$ that acts as $0 \mapsto -1, 1 \mapsto 1, \star \mapsto 0$. Publish then $X = \prod_{i=1}^{n} p_i^{\sigma(x_i)} \mod q$.
- Same parameters and scheme as for Hamming distance if we choose r = |{i | x_i = ★}|.
- We prescribe the possible error positions.

Conclusion

- New computational assumption: Modular Subset Product Problem
- ► Obtain fuzzy Hamming distance obfuscator for full parameter range $r \le n/2 \sqrt{\log(2)n\lambda}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Obtain conjunction obfuscator, same parameter range
- Separate security notions: VBB and input hiding obfuscation

Thank you for your attention!