Correcting Public and Private Errors

Lukas Zobernig

SRC 2019

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction

Working on $\textbf{Cryptography} \Rightarrow interested in <math display="inline">\textbf{Error Correction}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

- Passwords
- Research Question(s)
- Hamming Distance
- Correcting Public Errors
- Correcting Private Errors
- Applications
- Better Error Correction Codes?

Passwords

- ▶ Store them in **cleartext** ⇒ insecure
- Solution: store them hashed

Definition (Cryptographic Hash Function, One-Way Function) Map $H: \{0,1\}^n \to \{0,1\}^m$ (typically $m \ll n$) which is **pre-image resistant**: given $h \in \{0,1\}^m$ it is difficult to find $x \in \{0,1\}^n$ such that H(x) = h.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Research Question(s)

Can we:

- securely encode and match fingerprints ...
- ... as well as other biometric features (iris scans, DNA, etc.)?
- hash passwords in a way that allows for (small) errors?

Example

$$x = (P, a, S, w, o, r, d, 1, 2, 3),$$

$$y = (P, A, s, w, o, r, d, 0, 2, 3)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Hamming Distance

Without loss of generality, work over the **binary** set $\mathbb{F}_2 = \{0, 1\}$. Definition (Hamming Distance)

Let $n \in \mathbb{N}$ and $x, y \in \{0, 1\}^n$ be two binary vectors. The **Hamming distance** between x and y is then given by

$$d_H(x, y) = \#\{i \mid x_i \neq y_i\}.$$

Example

$$\begin{aligned} x &= (1, 0, 1, 1, 1, 0, 0, 1), \\ y &= (1, 1, 0, 1, 1, 0, 0, 0) \\ \Rightarrow d_H(x, y) &= 3 \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hamming Distance

The **Hamming ball** $B_{H,r}(x)$ of radius *r* around a vector *x*:

$$B_{H,r}(x) = \{y \mid d_H(x,y) \leq r\}$$

Example

 $B_{H,1}(000) = \{000, 100, 010, 001\}$ $B_{H,2}(000) = \{000, 100, 010, 001, 110, 101, 011\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Correcting Public Errors

Definition ((Linear) Error Correction Code)

A linear [n, k, d] error correction code is

- ▶ a generator matrix $G \in \mathbb{F}_2^{n \times k}$, together with
- a polynomial time decoding algorithm

such that the minimal Hamming distance between codewords is d.

Example

A k-length input $x \in \mathbb{F}_2^k$ is mapped to an *n*-length codeword $c = Gx \in \mathbb{F}_2^n$. Two distinct codewords $c_1 = Gx_1$ and $c_2 = Gx_2$ have Hamming distance at least $d: d_H(c_1, c_2) \ge d$.

Correcting Private Errors

In cryptography, we reduce to (computationally) hard problems. Definition (Modular Subset Product Problem, MSP) Let $r, n \in \mathbb{N}$, a secret $x \in \{0, 1\}^n$, $(p_i)_{i=1,...,n}$ a sequence of small primes, a prime $q \sim \prod_{r \text{ largest } p_i} p_i$. Given

$$\triangleright X = \prod_{i=1}^{n} p_i^{x_i} \mod q,$$

the problem is to find x.

Example

$$(p_i)_{i=1,\dots,6} = (2, 3, 5, 7, 11, 13),$$

 $q = 389,$
 $X = 2^1 3^1 5^0 7^0 11^1 13^1 \mod 389 = 858 \mod 389 \equiv 80$

Correcting Private Errors

Definition (Fuzzy Hamming Distance, [Galbraith, Z., 2019]) Let $r < n/2 \in \mathbb{N}$. Given $(p_i)_{i=1,...,n}$, q as in (MSP), output X as an **encoding** of a secret $x \in \{0, 1\}^n$.

• Given $y \in B_{H,r}(x)$, compute $Y = \prod_{i=1}^{n} p_i^{y_i} \mod q$, then:

$$E = XY^{-1} \mod q = \prod_{i=1}^n p_i^{x_i - y_i} \mod q = \prod_{i=1}^n p_i^{e_i} \mod q.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► Recover e ∈ {−1,0,1}ⁿ from E by expanding E/q into a continued fraction and factoring.
- Decoding fails if $\sum_{i=1}^{n} |e_i| > r$ as then $\prod_{i=1}^{n} p_i^{e_i} > q$.

Applications

Securely encoding and matching fingerprints ...

- ... as well as other biometric features (iris scans, DNA, etc.).
- Password hashing that allows for errors.

Example

$$x = (P, a, S, w, o, r, d, 1, 2, 3),$$

$$y = (P, A, s, w, o, r, d, 0, 2, 3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Better Error Correction Codes?

Take a step back and consider (MSP) again,

$$arphi: \mathbb{Z}^n o (\mathbb{Z}/q\mathbb{Z})^{ imes}, \ x \mapsto \prod_{i=1}^n p_i^{\mathbf{x}_i} \mod q$$

Algebra tells us that $\Lambda = \ker \varphi$ is a **lattice** [Ducas, Pierrot, 2018].

- Given x = v + e for some v ∈ Λ and a bounded (short) error vector e ∈ Zⁿ, finding v is another hard problem (Bounded Distance Decoding, BDD).
- Future research: find Λ such that encoding and error size are optimal and BDD is easy.

A D N A 目 N A E N A E N A B N A C N

Thank you for your attention!

・ロト・日本・ヨト・ヨー うへの