Cryptographic Trilinear Maps

Lukas Zobernig

SRC 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

Working on $\mbox{Cryptography}, \mbox{Obfuscation} \Rightarrow \mbox{interested in multilinear maps as primitive}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

- DLP & Diffie-Hellman
- Weil Pairing
- Application of the Weil Pairing
- Candidate Trilinear Map

DLP & Diffie-Hellman

Definition (Discrete Logarithm Problem (DLP))

We say the **DLP** is hard in a group G if given a pair $g, g^x \in G$ it is hard to find $x \in \mathbb{Z}$.

Two-Party Key exchange [Diffie-Hellman, 1976]

Alice and Bob want to exchange a key (given a public group and generator g):

- Alice publishes $A = g^a$
- Bob publishes $B = g^b$

Both are able to calculate a shared key:

- Alice finds $k = B^a = g^{ab}$
- Bob finds $k = A^b = g^{ab}$

Weil Pairing on Curves

Definition (Weil pairing [Weil, 1940])

On an projective, non-singular curve C of genus g > 0 exists a non-degenerate, Galois invariant pairing

$$e_m: C[m] imes C[m] o \mu_m$$

such that $\forall P, Q \in C[m]$ and $\forall a \in \mathbb{Z}$:

$$e_m(aP, Q) = e_m(P, aQ) = e_m(P, Q)^a,$$

 $e_m(P, P) = 1$

• $C[m] = \{P \in C | mP = 0\}$ is the *m*-torsion group

- ▶ μ_m is the group of *m*-th roots of unity (≅ cyclic group C_m)
- Pairing can be efficiently computed [Miller, 1986]

Pairing Based Cryptography

Three-Party Key Exchange [Joux, 2000]

Alice, Bob, and Charlie want to exchange a key (given a public curve and point P):

- Alice publishes A = aP
- Bob publishes B = bP
- Charlie publishes C = cP

Everyone is able to calculate a shared key:

- Alice finds $k = e(B, C)^a = e(P, P)^{abc}$
- Bob finds $k = e(A, C)^b = e(P, P)^{abc}$
- Charlie finds $k = e(A, B)^c = e(P, P)^{abc}$

Hardness assumption DLP: given points *P* and Q = xP it is hard to find *x*

Multilinear Maps

Definition (Cryptographic *n*-linear map) A map

$$f: G_1 \times \cdots \times G_n \to G_T$$

for groups G_i, G_T with hard DLP such that $\forall g_i \in G_i$ and $\forall a_i \in \mathbb{Z}$:

$$f(a_1g_1,\cdots,a_ng_n)=f(g_1,\cdots,g_n)^{a_1\cdots a_n}$$

Major open problem, such maps would give:

- Exciting new cryptographic primitives
- Obfuscation (requires at least trilinear map)

[Boneh, Silverberg, 2003] suggest problems with generalising Weil pairing \Rightarrow surprise construction from Weil pairing [Huang, 2017]

Candidate Trilinear Map

Explicit construction

- Start with Weil pairing on (supersingular) high-genus curve C
- Define trilinear map

$$f_m: C[m] \times C[m] \times \text{End}(C) \to \mu_m,$$

(P, Q, \varphi_c) \mapsto e_m(P, \varphi_c(Q))

- Endomorphism φ_c encodes c ∈ Z: φ_c = c + xλ for random x ∈ Z, fixed λ ∈ End(C)
- Points A = λ(B) for random B are public and used to encode a, b ∈ Z via P = aA, Q = bB

Candidate Trilinear Map

Pitfalls

- Private encoding: recover c from φ_c if λ known ⇒ λ needs to be private, not everyone can encode in End(C)
- Possible algebraic attacks:
 - by evaluating φ_c on points in C[m'] for small m'
 - ▶ if $a, b, c \in \mathbb{Z}$ are related \Rightarrow may only encode *uniform* elements

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Current obfuscation constructions at least have some algebraic relations on a, b, c
- Problematic to efficiently represent φ_c (deg φ_c large)

Important research question: how hard is the DLP in End(C)?

Thank you for your attention!

・ロト・日本・ヨト・ヨー うへの