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Introduction

I General purpose program obfuscation is hard.

I Generic VBB obfuscation is impossible.

I Indistinguishability obfuscation seems infeasible (at least for now).

I Should we just give up and stop caring about obfuscation altogether?

I Consider special purpose obfuscation: Bite-sized problems which we can solve.

I Buzzwords: Point functions, hyperplane membership, conjunctions, pattern
matching with wildcards, fuzzy Hamming distance matching, compute and
compare programs, etc.



A Few Open Problems

We know how to obfuscate:

I Point functions,

I which are generalised by conjunctions.

I Fuzzy Hamming distance matching, yielding secure sketches, fuzzy extractors.

Open Obfuscation Problems

I Finite automata,

I regular expressions,

I substring matching.



A Few Open Problems

I Genise et al. [2] gave an interactive solution for finite automata,

I they mention antivirus signatures as an application.

I The idea is to use fully homomorphic encryption (FHE) to evaluate a secret
automaton on a public input.

I This produces an encrypted state vector, which a server can decrypt and then
answer about a virus infection.

I Can learn an automaton from accept/reject behaviour (we will fix this).

I Desmoulins et al. [1] describe a flip-side scheme, matching public automata on
encrypted inputs.



A Common Theme

All of the aforementioned problems were evasive!

Definition (Evasive Program Collection)

Let P = {Pn}n∈N be a collection of polynomial-size programs such that every P ∈ Pn
is a program P : {0, 1}n → {0, 1}. The collection P is called evasive if there exists a
negligible function ε such that for every n ∈ N and for every y ∈ {0, 1}n:

Pr
P←Pn

[P(y) = 1] ≤ ε(n).

Focus on evasive problems for now, as many of those have special purpose obfuscators.



Evasive Finite Automata

In the same spirit, we shall consider evasive finite automata.

Definition (Evasive Finite Automata Collection)

Let {Mr}r∈N be a collection of finite automata such that every automaton in Mr has
r states. The collection is called evasive if there exists a negligible function ε such that
for every r ∈ N and for every polynomial-size input y ∈ Σ∗:

Pr
M←Mr

[M(y) = 1] ≤ ε(r).

Observations
I Limit to polynomial size inputs y ∈ Σ∗ or else y could be a string that contains all

possible substrings of a certain length.

I Can possibly learn structure of non-evasive finite automata from
input/accept/reject behaviour.



The Key Idea(s)

I Represent a deterministic finite automaton (DFA) by transition matrices.

I This ensures that states are represented by canonical basis vectors.

I Use a matrix graded encoding scheme to encrypt the transition matrices.

I This allows us to evaluate the hidden DFA on plaintext input by multiplying
encoded matrices.

I But how do we get a plaintext answer?

Limited Zero Testing

The matrix encoding scheme needs to support limited zero testing: In our case, decide
whether the last coordinate of an encrypted vector is 0.



Transition Matrices

I Every DFA with r ∈ N states on input symbols σ ∈ Σ can be represented by
|Σ|-many transition matrices Mσ ∈ {0, 1}r×r , acting on a state vector v ∈ {0, 1}r .

I We can choose the matrices such that they have the following form:

Mσ1 =

(
∗ ∗
0 0

)
, . . . , Mσm−1 =

(
∗ ∗
0 0

)
, Mσm =


∗ · · · ∗ 0 0
...

. . .
...

...
...

∗ · · · ∗ 0 0
0 · · · 0 1 1

 ,

where Σ = {σ1, . . . , σm}.
I We identify the r -th canonical basis vector er with the accepting state r .

I The limited zero-test can detect this vector.



HAO15 With Limited Zero Testing

We use the HAO15 matrix FHE scheme by Hiromasa et al. [3] over the ring Z/qZ.

Matrix & Vector Encoding

Given matrix M ∈ {0, 1}r×r or vector v ∈ {0, 1}r , HAO15 encodings C ∈ (Z/qZ)N×N

or c ∈ (Z/qZ)N , respectively, satisfy:

SC = MSG + E ,

Sc = βv + e,

for gadget matrix G , secret matrix S , noise E ,e, and scaling constant β.

Homomorphisms

Multiply encoded matrices C1,C2 via C1 � C2 := C1G
−1(C2) and apply encoded

matrices to encoded vectors via C � c := CG−1(c).



HAO15 With Limited Zero Testing

Limited Zero Testing

Let sr by the last row of the secret S . Then the last entry vr of v is equal to

vr =

⌈
sr · c mod q

β

⌋
.

Maximal Grading

I Every multiplication of encoded objects accumulates noise.

I We have a maximal grading κ (number of possible multiplications):

κ ≤ q

4
√
n(n + r)dlog(q)e

.



Correctness
Given an input word w ∈ Σ∗, we compute

cw =

 1⊙
i=|w |

Cwi

G−1(c).

This corresponds to the plaintext computation

t =

 1∏
i=|w |

Mwi

 e1.

The automaton accepts the input if t = er . We see that cw is an encoding of t such
that Scw = βt + e for some noise vector e. Given only sr , we have(

0(r−1)×(n+r)

sr

)
cw = β

(
0r−1

tr

)
+

(
0r−1

e ′

)
.



Security

DFA Security for HAO15

We assume that given encodings of two matrices M,M ′ ∈ {0, 1}r×r which differ by at
most one entry in some row but not the last row

SC = MSG + E ,

SC ′ = M ′SG + E ′,

the following two distributions are computationally indistinguishable:

(sr , (Cσ)σ∈Σ, α)
c
≈ (sr , (C

′
σ)σ∈Σ, α),

where sr is the last row of the secret key S , and α is auxiliary information.



Security

Assuming HAO15 is DFA secure, we show that our obfuscator for evasive DFAs is a
virtual black box (VBB) obfuscator.

Theorem
Let D = {Dλ}λ∈N be an efficiently samplable DFA evasive distribution with auxiliary
information. Assume that for every λ ∈ N it holds that HAO15 with security parameter
λ is DFA secure for Dλ. Then the obfuscator O is a VBB obfuscator for D.



Conclusion

I We started from the HAO15 matrix FHE scheme,

I which we extended by a limited zero-testing primitive.

I We represent finite automata by transition matrices, these are encoded using the
HAO15 scheme.

I We can evaluate the hidden automaton on plaintext input by multiplying
encoded matrices.

I We needed to restrict to evasive DFAs, otherwise black-box access suffices to
learn the DFA structure.

I Finally, we obtain a VBB obfuscator for evasive DFAs.

I This solves the problem of obfuscated substring matching.
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