Modular Subset Products

Lukas Zobernig

The University of Auckland

Post-Quantum Cryptography Workshop

A Natural Problem

▶ Subset Sum Problem: Fix a set $S \subset \mathbb{Z}$. Given $x = \sum_{a \in A} a$ for a *random* subset $A \subset S$, find A.

Modular version: Fix a modulus q ∈ N, and a set S ⊂ Z/qZ. Given x = ∑_{a∈A} a (mod q) for a random subset A ⊂ S, find A.

These problems are intimately related to the Short Integer Solution (SIS) problem.

Short Integer Solution

Fix dimensions $m, n \in \mathbb{N}$, a modulus q, and a threshold $\beta \in \mathbb{R}$. Given m uniformly random vectors $a_i \in (\mathbb{Z}/q\mathbb{Z})^n$, forming the columns of a matrix $A \in (\mathbb{Z}/q\mathbb{Z})^{n \times m}$, find a nonzero integer vector $z \in \mathbb{Z}^m$ of norm $||z|| \leq \beta$ such that Az = 0.

A Natural Problem

- ► The SIS problem is a *lattice* problem.
- It is believed to be post-quantum secure for appropriate parameters.
- Some more buzzwords: LWE, SIS, BDD, CVP, SVP,
- Virtually all of the NIST PQ competition entries are based on lattices/codes.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Modular Subset Products

Think of a multiplication version of the subset sum problem.

Modular Subset Product Problem (MSP)

- ▶ Fix $r < n/2 \in \mathbb{N}$, distinct primes $(p_i)_{i=1,...,n}$,
- ▶ a prime q such that $\prod_{i \in I} p_i < q$ for all subsets $I \subset \{1, ..., n\}$ of size r,
- ▶ and an integer $X = \prod_{i=1}^{n} p_i^{x_i} \pmod{q}$ for a secret vector $x \in \{0, 1\}^n$.
- ► The problem is to find *x*.

We call the **decisional version** of the problem the *decisional modular subset product problem*: Distinguish between a modular subset product instance and a uniformly random element of $(\mathbb{Z}/q\mathbb{Z})^*$. MSP is related to problems studied by Contini et al. [1] for constructing their *very smooth hash* (VSH).

Post-Quantum Hardness

Consider adversary with quantum computer for computing discrete logarithms.

• Given encoding $((p_i)_{i=1,...,n}, q, X)$ of a secret $x \in \{0,1\}^n$.

Transform it into a modular subset sum instance (by taking logs wrt. to some g)

$$\log_g(X) = \sum_{i=1}^n x_i \log_g(p_i) \pmod{q-1}.$$

Nodular subset sum problem may be classified by **density** $d = n/\log_2(q)$ [2, 4]. Know **polynomial time algorithms** for low-density subset sum instances where d < 0.645 and d < 0.941, respectively [2, 4] given access to lattice oracle [5]. In our case, we can give an estimate for when we expect post-quantum security.
By the prime number theorem, we have q ~ (n log n)^r, i.e. d ~ n/(r log₂(n log n)).
To ensure density of d > 1 we require

$$r < \frac{n}{\log_2(n\log n)} = r_{\mathrm{PQ}}(n).$$

Hence we conjecture post-quantum hardness of the modular subset product problem when $r < r_{PQ}(n)$, and potentially even for slightly larger values for r.

The Relation Lattice

Consider parameters as before and the following group morphism:

$$\phi: \mathbb{Z}^n
ightarrow (\mathbb{Z}/q\mathbb{Z})^*, \ (x_1, \ldots, x_n) \mapsto \prod_{i=1}^n p_i^{x_i} \pmod{q}.$$

• The kernel of ϕ defines the **relation lattice**

$$\Lambda = \left\{ x \in \mathbb{Z}^n \, \middle| \, \prod_{i=1}^n p_i^{\mathrm{x}_i} = 1 \pmod{q}
ight\}.$$

▶ This lattice has been studied by Ducas et al. [3] for constructing BDD lattices.

Correcting Private Errors

Fuzzy Hamming Distance

Let $r < n/2 \in \mathbb{N}$. Given $(p_i)_{i=1,...,n}$, q as in (MSP), output X as an **encoding** of a secret $x \in \{0,1\}^n$.

• Given y which is r-close to x, compute $Y = \prod_{i=1}^{n} p_i^{y_i} \pmod{q}$, then:

$$E = XY^{-1} \pmod{q} = \prod_{i=1}^{n} p_i^{x_i - y_i} \pmod{q} = \prod_{i=1}^{n} p_i^{e_i} \pmod{q}.$$

► Recover e ∈ {−1,0,1}ⁿ from E by expanding E/q into a continued fraction and factoring.

• On the other hand, decoding fails if $||e||_1 > r$ (i.e. if y was not r-close to x).

Applications

Securely encoding and matching fingerprints ...

... as well as other biometric features (iris scans, DNA, etc.).

Password hashing that allows for errors.

Example

$$x = (P, a, S, w, o, r, d, 1, 2, 3),$$

$$y = (P, A, s, w, o, r, d, 0, 2, 3)$$

Are there any other applications?

References

- Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. Vsh, an efficient and provable collision-resistant hash function. In *EUROCRYPT 2006*, pages 165–182. Springer, 2006.
- [2] Matthijs J Coster, Antoine Joux, Brian A LaMacchia, Andrew M Odlyzko, Claus-Peter Schnorr, and Jacques Stern. Improved low-density subset sum algorithms. *Computational Complexity*, 2(2):111–128, 1992.
- [3] Léo Ducas and Cécile Pierrot. Polynomial time bounded distance decoding near minkowski's bound in discrete logarithm lattices. *Designs, Codes and Cryptography*, 87(8):1737–1748, 2019.
- [4] Jeffrey C Lagarias and Andrew M Odlyzko. Solving low-density subset sum problems. *Journal of the ACM*, 32(1):229–246, 1985.
- [5] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with rational coefficients. *Mathematische Annalen*, 261(4):515–534, 1982.

Modular Subset Products

Parameter Ranges

injective: given X		decisional: impossible
then x is unique	both assumed hard	search: not unique
$q \gg 2^n$	$qpprox 2^n$	$q \ll 2^n$

Assumed Hardness



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●