The Modular Subset Product Problem and Obfuscation

Lukas Zobernig

The University of Auckland

Outline

- Motivation
- Preliminaries & Obfuscation
- Modular Subset Product Problem

- Constructions
- Post-Quantum Hardness

Motivation

Can we:

- securely encode and match fingerprints ...
- ... as well as other biometric features (iris scans, DNA, etc.)?

Example

$$x = (F, i, N, g, e, r, p, R, i, n, t), y = (F, I, n, g, e, r, p, r, i, n, t)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Some keywords:

- Secure sketch.
- ► Fuzzy extractor.
- ► View as obfuscation problem.

Types of Obfuscators

Denote obfuscator by \mathcal{O} , adversary by \mathcal{A} , simulator by \mathcal{S} , negligible function by ϵ . Definition (Distributional Virtual Black-Box Obfuscator) For every \mathcal{A} , there exists \mathcal{S} , such that for every predicate φ :

$$\left|\Pr_{P \leftarrow D_{\lambda}, \mathcal{O}, \mathcal{A}} \left[\mathcal{A}(\mathcal{O}(P)) = \varphi(P)\right] - \Pr_{P \leftarrow D_{\lambda}, \mathcal{S}} \left[\mathcal{S}^{P}(|P|) = \varphi(P)\right]\right| \leq \epsilon(\lambda).$$

Hence, a VBB obfuscated program $\mathcal{O}(P)$ does not reveal anything more than would be revealed from having **black-box** access to the program P itself.

Definition (Input Hiding Obfuscator)

For every A, there exists ϵ , such that for every $n \in \mathbb{N}$ and for every *auxiliary input* α :

$$\Pr_{P \leftarrow \mathcal{P}_n} \left[P(\mathcal{A}(\alpha, \mathcal{O}(P))) = 1 \right] \le \epsilon(n).$$

Preliminaries

We need a good class of programs to obfuscate.

Definition (Evasive Program Collection)

Let $\mathcal{P} = {\mathcal{P}_n}_{n \in \mathbb{N}}$ be a collection of polynomial-size programs such that every $P \in \mathcal{P}_n$ is a program $P : {0,1}^n \to {0,1}$. The collection \mathcal{P} is called **evasive** if there exists a negligible function ϵ such that for every $n \in \mathbb{N}$ and for every $y \in {0,1}^n$:

$$\Pr_{P \leftarrow \mathcal{P}_n}[P(y) = 1] \le \epsilon(n).$$

Example $(x, y \in \{0, 1\}^n)$

Hamming distance: $d_H(x, y) = \#\{i \mid x_i \neq y_i\}$ Hamming ball of radius r: $B_{H,r}(x) = \{y \mid d_H(x, y) \leq r\}$ When is **Hamming ball membership** evasive?

Preliminaries

Lemma

Let $\lambda \in \mathbb{N}$ be a security parameter and let $r, n \in \mathbb{N}$ such that

$$T \leq rac{n}{2} - \sqrt{\log(2)n\lambda}$$

Fix a point $x \in \{0,1\}^n$. Then the following probability is negligible

$$\Pr_{y \leftarrow \{0,1\}^n} \left[y \in B_{H,r}(x) \right] \leq \frac{1}{2^\lambda}$$

⇒ Hamming ball membership of uniform $y \leftarrow \{0,1\}^n$ is **evasive** for $r \leq \frac{n}{2} - \sqrt{\log(2)n\lambda}$.

Preliminaries

Given secret $x \in \{0,1\}^n$ and random $h \in \{0,1\}^k$, and a random linear error correction code *G*. A secure sketch is then given by

 $s = x \oplus Gh$.

• Given
$$y \in B_{H,r}(x)$$
:

$$s' = y \oplus s = y \oplus x \oplus Gh = e \oplus Gh$$

(where $e = y \oplus x$)

- Decoding s' reveals h (and also x).
- Pitfalls:
 - \blacktriangleright (G, s) can be quite large.
 - Hard to control r, n, k (recall $r \le n/2 \sqrt{\log(2)n\lambda}$).
 - Unclear decoding/reusability.

A Natural Problem

▶ (Modular) Subset Sum Problem: Fix a modulus $q \in \mathbb{N}$, and a set $S \subset \mathbb{Z}/q\mathbb{Z}$. Given $x = \sum_{a \in A} a \pmod{q}$ for a *random* subset $A \subset S$, find A.

These problems are intimately related to the Short Integer Solution (SIS) problem.

Short Integer Solution

Fix dimensions $m, n \in \mathbb{N}$, a modulus q, and a threshold $\beta \in \mathbb{R}$. Given m uniformly random vectors $a_i \in (\mathbb{Z}/q\mathbb{Z})^n$, forming the columns of a matrix $A \in (\mathbb{Z}/q\mathbb{Z})^{n \times m}$, find a nonzero integer vector $z \in \mathbb{Z}^m$ of norm $||z|| \leq \beta$ such that Az = 0.

- The SIS problem is a *lattice* problem.
- It is believed to be post-quantum secure for appropriate parameters.
- Some more buzzwords: CVP, SVP, LWE, BDD,

Modular Subset Products

Think of a **multiplication version** of the subset sum problem.

Modular Subset Product Problem

- ▶ Fix $r < n/2 \in \mathbb{N}$, distinct primes $(p_i)_{i=1,...,n}$, and
- ▶ a prime q such that $\prod_{i \in I} p_i < q$ for all subsets $I \subset \{1, ..., n\}$ of size r.
- Given an integer $X = \prod_{i=1}^{n} p_i^{x_i} \pmod{q}$ for a secret vector $x \in \{0, 1\}^n$,
- ▶ the problem is to find *x*.

Imagine a **decisional version**, the *decisional modular subset product problem*: Distinguish between a modular subset product instance and a uniformly random element of $(\mathbb{Z}/q\mathbb{Z})^*$.

There is a relation to problems studied by Contini et al. [2] for constructing their *very smooth* hash.

Computational Assumptions

Problem (Modular Subset Product Problem, $MSP_{r,n,D}$)

Let $r, n \in \mathbb{N}$, a distribution D over $\{0, 1\}^n$, a secret $x \leftarrow D$, $(p_i)_{i=1,...,n}$ a sequence of small primes, a prime $q \sim \prod_{r \text{ largest } p_i} p_i$. Given

$$\triangleright X = \prod_{i=1}^{n} p_i^{x_i} \mod q,$$

the problem is to find x.

Problem (**D**ecisional **MSP**, D-MSP_{r,n,D})

This problem is to distinguish the distribution of $MSP_{r,n,D}$ samples from uniformly random over \mathbb{Z}_q .

Computational Assumptions: Reduction

Conjecture

Let $r, n, (p_i)_{i=1,...,n}, q$ be as before, with the extra condition that $q \leq 2^n$. Let D be the uniform distribution on $\{0,1\}^n$. Then the statistical distance of the distribution $\prod_{i=1}^n p_i^{x_i} \mod q \text{ over } x \leftarrow D$ and the uniform distribution on $(\mathbb{Z}/q\mathbb{Z})^*$ is negligible.

Theorem

Fix $r, n \in \mathbb{N}$ such that r < n/2. Let q be prime such that $q \leq 2^n$ and $(p_i)_{i=1,...,n}$ be a sequence of distinct primes such that $p_i \in [2, O(n \log(n))]$. Assume above conjecture holds and suppose $MSP_{r,n,D}$ can be solved with probability 1 in time T. Then there is an algorithm to solve the DLP in $(\mathbb{Z}/q\mathbb{Z})^*$ with expected time $\tilde{O}(nT)$.

Computational Assumptions: Summary

Search vs Decision

injective: given X decisional: impossible
then x is unique both assumed hard search: not unique
$$q \gg 2^n$$
 $q \approx 2^n$ $q \ll 2^n$

• Hardness
$$(r \le n/2 - \sqrt{\log(2)n\lambda})$$

non-neg. gap conjectured
easy
$$\sqrt{\log(2)n\lambda}$$
 hard as hard as DLOG
 $r = n$ $r = n/2$ $r = \frac{n}{\log_2(n\log(n))}$ $r = 1$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Fuzzy Matching

Definition (Hamming Ball Membership)

Let $r < n/2 \in \mathbb{N}$. Given $(p_i)_{i=1,...,n}$, q as in MSP_{r,n,D}, output $X = \prod_{i=1}^{n} p_i^{x_i} \mod q$ as an **encoding** of a secret $x \in \{0,1\}^n$.

• Given $y \in B_{H,r}(x)$, compute $Y = \prod_{i=1}^{n} p_i^{y_i} \mod q$, then:

$$E = XY^{-1} \mod q = \prod_{i=1}^n p_i^{x_i - y_i} \mod q = \prod_{i=1}^n p_i^{e_i} \mod q.$$

► Recover e ∈ {−1,0,1}ⁿ from E by expanding E/q into a continued fraction and factoring.

• **Decoding fails** if $\sum_{i=1}^{n} |e_i| > r$ as then $\prod_{i=1}^{n} p_i^{|e_i|} > q$.

Example

 $\exists s \in \mathbb{Z} : ED = N + sq \Rightarrow s/D$ is a convergent of E/q

q = 751,	$(p_i) = (2, 3, 5, 7, 11, 13, 17, 19)$
x = (1, 0, 0, 1, 0, 1, 1, 0),	X = 90
y = (0, 1, 1, 1, 1, 1, 1, 0),	Y = 666

Continued fraction expansion of $XY^{-1}/q = 264/751$ yields convergents h_i/k_i ; factor $XY^{-1}k_i \mod q$ and k_i :

(日) (四) (日) (日) (日) (日)

▶
$$i = 0$$
: $1/2 \Rightarrow 223, 2 4$

▶ i = 1: $1/3 \Rightarrow 41, 3 \Leftarrow$

▶
$$i = 2: 6/17 \Rightarrow 2 * 3^2, 17 4$$

▶
$$i = 3$$
: $13/37 \Rightarrow 5, 37$

▶
$$i = 4$$
: $45/128 \Rightarrow 3, 2^7$

▶ $i = 5: 58/165 \Rightarrow 2, 3 * 5 * 11 \checkmark \Rightarrow e = (1, 1, 1, 0, 1, 0, 0, 0)$

Security

Theorem

Let $(n(\lambda), r(\lambda))$ be a sequence of parameters for $\lambda \in \mathbb{N}$. Let $D = \{D_{\lambda}\}_{\lambda \in \mathbb{N}}$ be an ensemble of Hamming distance evasive distributions with auxiliary information. Suppose that entropic D-MSP_{r,n,D} is hard. Then the Hamming distance obfuscator \mathcal{O}_H is a distributional VBB obfuscator for D in the random oracle model.

(Note that the distribution of secrets and the computational problem in the assumptions above are **entropic** to make the VBB proof work.)

Theorem

Let $(n(\lambda), r(\lambda))$ be be a sequence of parameters for $\lambda \in \mathbb{N}$. Let $D = \{D_{\lambda}\}_{\lambda \in \mathbb{N}}$ be an ensemble of Hamming distance evasive distributions. Suppose that $MSP_{r,n,D}$ is hard. Then the Hamming distance obfuscator \mathcal{O}_H is input hiding.

Conjunctions

- **Conjunctions** on Boolean variables $(b_i)_{i=1,...,n}$: $\bigwedge_{i=1}^n (\neg) b_i$
- Equivalent to pattern matching with wildcards: vector $x \in \{0, 1, \star\}^n$ where \star symbolises a *wildcard*.

- ▶ To encode pattern x, use the map $\sigma : \{0, 1, \star\} \rightarrow \{-1, 0, 1\}$ that acts as $0 \mapsto -1, 1 \mapsto 1, \star \mapsto 0$. Publish then $X = \prod_{i=1}^{n} p_i^{\sigma(x_i)} \mod q$.
- Same parameters and scheme as for Hamming distance if we choose r = |{i | x_i = ★}|.
- We prescribe the possible error positions.

The Relation Lattice

Consider parameters as before and the following group morphism:

$$\phi:\mathbb{Z}^n o (\mathbb{Z}/q\mathbb{Z})^*, \ (x_1,\ldots,x_n)\mapsto \prod_{i=1}^n p_i^{x_i} \pmod{q}.$$

• The kernel of ϕ defines the **relation lattice**

$$\Lambda = \left\{ x \in \mathbb{Z}^n \, \middle| \, \prod_{i=1}^n p_i^{x_i} = 1 \pmod{q}
ight\}.$$

- ▶ This lattice has been studied by Ducas et al. [4] for constructing BDD lattices.
- Similar ideas have been considered by Brier et al. [1] to construct a number theoretic error correction code.

Post-Quantum Hardness

Consider adversary with **quantum computer** for computing discrete logarithms.

• Given encoding $((p_i)_{i=1,...,n}, q, X)$ of a secret $x \in \{0,1\}^n$.

Transform it into a modular subset sum instance (by taking logs wrt. to some g)

$$\log_g(X) = \sum_{i=1}^n x_i \log_g(p_i) \pmod{q-1}.$$

Nodular subset sum problem may be classified by **density** $d = n/\log_2(q)$. Know **polynomial time algorithms** for low-density subset sum instances where d < 0.645 and d < 0.941, respectively [3, 5] given access to a lattice oracle. In our case, we can give an estimate for when we expect post-quantum security.
By the prime number theorem, we have q ~ (n log n)^r, i.e. d ~ n/(r log₂(n log n)).
To ensure density of d > 1 we require

$$r < \frac{n}{\log_2(n\log n)} = r_{\mathrm{PQ}}(n).$$

Hence we conjecture post-quantum hardness of the modular subset product problem when $r < r_{PQ}(n)$, and potentially even for slightly larger values for r.

Thank you!

References

- Eric Brier, Jean-Sébastien Coron, Rémi Géraud, Diana Maimuţ, and David Naccache. A number-theoretic error-correcting code. In *International Conference for Information Technology* and Communications, pages 25–35. Springer, 2015.
- [2] Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. Vsh, an efficient and provable collision-resistant hash function. In EUROCRYPT 2006, pages 165–182. Springer, 2006.
- [3] Matthijs J Coster, Antoine Joux, Brian A LaMacchia, Andrew M Odlyzko, Claus-Peter Schnorr, and Jacques Stern. Improved low-density subset sum algorithms. *Computational Complexity*, 2(2):111–128, 1992.
- [4] Léo Ducas and Cécile Pierrot. Polynomial time bounded distance decoding near minkowski's bound in discrete logarithm lattices. *Designs, Codes and Cryptography*, 87(8):1737–1748, 2019.
- [5] Jeffrey C Lagarias and Andrew M Odlyzko. Solving low-density subset sum problems. Journal of the ACM, 32(1):229–246, 1985.