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Abstract

We provide the first examples of words in the free group of rank 2
that are not proper powers and for which the corresponding word maps
are non-surjective on an infinite family of finite non-abelian simple
groups.

1 Introduction

The theory of word maps on finite non-abelian simple groups – that is, maps
of the form (x1, . . . , xk) → w(x1, . . . , xk) for some word w in the free group
Fk of rank k – has attracted much recent attention. It was shown in [6, 1.6]
that for a given nontrivial word w, every element of every sufficiently large
finite simple group G can be expressed as a product of C(w) values of w in
G, where C(w) depends only on w; and this has been dramatically improved
to C(w) = 2 in [4, 5, 11]. Improving C(w) to 1 is not possible in general, as
is shown by power words xn1 , which cannot be surjective on any finite group
of order non-coprime to n.

Certain words are surjective on all groups – namely, those in cosets of
the form xe1

1
....xekk F ′

k where the ei are integers with gcd(e1, ..., ek) = 1 (see
[10, 3.1.1]). The word maps for a small number of other words have been
shown to be surjective on all finite simple groups. These include the com-
mutator word [x1, x2] (the Ore conjecture [7]), the words xp

1
xp
2
(for a prime

p) and variants [3, 8]. Other studies have restricted the simple groups under
consideration to families such as PSL2(q) (see, for example, [1]). Motivating
some of this work is a conjecture of Shalev, stated in [1, Conjecture 8.3]: if
w(x1, x2) is not a proper power of a non-trivial word, then the corresponding
word map is surjective on PSL2(q) for all sufficiently large q.

Theorem 1 gives a family of words that are counterexamples to Shalev’s
conjecture. We believe these are the first non-power words to be proved
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non-surjective on an infinite family of finite simple groups.

Theorem 1. Let k ≥ 2 be an integer such that 2k+1 is prime, and let w be

the word x21[x
−2
1

, x−1
2

]k. Let p 6= 2k+1 be a prime of inertia degree m > 1 in

Q(ζ + ζ−1), where ζ is a primitive (2k+1)-th root of unity, and
(

2

p

)

= −1.

Then the word map (x, y) → w(x, y) is non-surjective on PSL2(q) for all

q = pn where n is a positive integer not divisible by 2 or by m.

Corollary 2. Let k ≥ 2 be an integer such that 2k + 1 is prime, and let

w be the word x21[x
−2
1

, x−1
2

]k. Let p 6= 2k + 1 be an odd prime such that

p2 6≡ 1 mod 16 and p2 6≡ 1 mod (2k + 1), and let m be the smallest positive

integer with p2m ≡ 1 mod (2k + 1). Then the word map (x, y) → w(x, y) is

non-surjective on PSL2(q) for all q = pn where n is a positive integer not

divisible by 2 or by m.

The corollary will be deduced from Theorem 1 at the end of the paper.
Taking k = 2 we obtain the following.

Corollary 3. If w = x21[x
−2
1

, x−1
2

]2, then the word map (x, y) → w(x, y) is

non-surjective on PSL2(p
2r+1) for all non-negative integers r and all odd

primes p 6= 5 such that p2 6≡ 1 mod 16 and p2 6≡ 1 mod 5.

2 Proof of Theorem 1

Let K be a field and G = SL2(K), and let χ : G → K be the trace map. A
classical result of Fricke and Klein implies for every word w ∈ F2, the free
group of rank 2, there is a unique polynomial τ(w) ∈ Z[s, t, u] such that for
all x, y ∈ G, χ(w(x, y)) is equal to τ(w) evaluated at s = χ(x), t = χ(y),
u = χ(xy). We call τ(w) the trace polynomial of w. A proof of this fact,
providing a constructive method of computing τ(w) for a given word w, can
be found in [9, 2.2]. The method is based on the following identities for
traces of 2× 2 matrices A,B of determinant 1:

Tr(AB) = Tr(BA)
Tr(A−1) = Tr(A)
Tr(A2B) = Tr(A)Tr(AB)− Tr(B).

Lemma 2.1. For k ∈ N and w ∈ F2,

(−1)k +
k

∑

i=1

(−1)k−iτ(wi) =
k
∏

i=1

(τ(w) + ζi + ζ−i),

where ζ is a primitive (2k + 1)-th root of unity.

Proof. We adapt the proof of [9, Proposition 2.6]. Assume first that

w = x1. Let A :=

(

0 1
−1 s

)

. By the uniqueness of the trace polynomial,
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τ(wi) = Tr(Ai) = Tr

(

yi 0
0 y−i

)

= yi + y−i, where y + y−1 = s. Hence

∑k
i=1

(−1)k−iτ(wi) + (−1)k =
∑k

i=1
(−1)k−iyi +

∑k
i=1

(−1)k−iy−i + (−1)k

= y−k
∑

2k
i=0

(−1)iyi

= y−k
∏

2k
i=1

(y + ζi)

=
∏k

i=1
(y + ζi)(1 + ζ−iy−1)

=
∏k

i=1
(s+ ζi + ζ−i).

Note that for v, v1, v2 ∈ F2,

τ(v(v1, v2)) = τ(v)(τ(v1), τ(v2), τ(v1v2)),

so the general case is derived from the special case w = x1 by polynomial
evaluation at s = τ(w), i.e., setting v = xi1, v1 = w, v2 = 1.

Lemma 2.2. Let k ∈ N. The trace polynomial of w = x21[x
−2
1

, x−1
2

]k factors

over Z[ζ + ζ−1] as

(s2 − 2)
k
∏

i=1

(s4 − s3tu+ s2t2 + s2u2 − 4s2 + 2 + ζi + ζ−i),

where ζ is a primitive (2k + 1)-th root of unity.

Proof. Let c = [x−2
1

, x−1
2

]. We claim that

τ(x21c
k) = (τ(x1)

2 − 2)(
k

∑

i=1

(−1)k−iτ(ci) + (−1)k).

The result then follows by Lemma 2.1, since τ(x1) = s and τ(c) = s4 −

s3tu+ s2t2 + s2u2 − 4s2 + 2.

The proof is by induction on k. The claim is easily verified for k = 1, 2.
For k > 1 it is equivalent to τ(x21c

k) = (τ(x1)
2 − 2)τ(ck)− τ(x21c

k−1). Using
the rule τ(x2y) = τ(x)τ(xy) − τ(y) for all x, y ∈ F2 and the fact that
x−2
1

x−1
2

= x−1
2

x−2
1

c, we deduce that

τ(x21c
k) = (τ(x1)

2 − 1)τ(ck)− τ(x1)τ(x1x2x
−2
1

x−1
2

ck−1)

= (τ(x1)
2 − 1)τ(ck)− τ(x1)τ(x

−1
1

ck)

= (τ(x1)
2 − 1)τ(ck)− τ(x−2

1
ck)− τ(ck).

Thus it suffices to prove that τ(x−2
1

ck) = τ(x21c
k−1). Now τ(x−2

1
ck) =

τ(c)τ(ck−1x−2
1

) − τ(ck−2x−2
1

). By induction, for k ≥ 3 this is equal to
τ(c)τ(x21c

k−2)− τ(x21c
k−3), which is equal to τ(x21c

k−1).

Proof of Theorem 1

Let q = pn be as in the hypothesis of the theorem, let K = Fq, and let w
be the word x21[x

−2
1

, x−1
2

]k. The ring of integers of Q(ζ + ζ−1) is Z[ζ + ζ−1]
(see [12, Proposition 2.16]). Since 2k + 1 is prime, Z[ζ + ζ−1] = Z[ζi + ζ−i]
for every 1 ≤ i ≤ k. Let P E Z[ζi + ζ−i] be a prime above p. Then
Z[ζi+ ζ−i]/P = Fpm , in particular ζi+ ζ−i is a primitive element of Fpm for
every 1 ≤ i ≤ k.
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Suppose that some triple (s, t, u) ∈ F3
q is a zero of the trace polynomial

τ(w). By Lemma 2.2, τ(w) factors as

(s2 − 2)
k
∏

i=1

(s4 − s3tu+ s2t2 + s2u2 − 4s2 + 2 + ζi + ζ−i),

over Fpm , so (s, t, u) ∈ F3
q ⊆ F3

qm must be a zero of one of the factors. Since
s2 − 2 is irreducible over Fq, (s, t, u) must be a zero of s4 − s3tu + s2t2 +
s2u2 − 4s2 + 2+ ζi + ζ−i for some i. This implies that ζi + ζ−i ∈ Fq, which
is a contradiction. Hence no element of SL2(q) of the form w(x, y) can have
trace zero.

Proof of Corollary 2

Let q = pn be as in the hypothesis of the corollary. The hypothesis p2 6≡

1 mod 16 is equivalent to
(

2

p

)

= −1. By the cyclotomic reciprocity law (see

for example [12, Theorem 2.13]), the inertia degree of p in Q(ζ) is m or 2m.
In the former case, m must be odd. Thus in both cases the inertia degree
of p in Q(ζ + ζ−1) is m, since Q(ζ + ζ−1) is a subfield of index 2 in Q(ζ).
Now p2 6≡ 1 mod (2k + 1) implies m > 1, and the conclusion follows from
Theorem 1.

Remark. Our search for non-surjective words was assisted by [2], which
lists representatives of minimal length for certain automorphism classes of
words in F2.
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[9] W. Plesken and A. Fabiańska, An L2-quotient algorithm for finitely
presented groups, J. Algebra 322 (2009), 914–935.

[10] D. Segal, Words: notes on verbal width in groups, London Math.
Soc. Lecture Note Series 361, Cambridge University Press, Cambridge,
2009.

[11] A. Shalev, Word maps, conjugacy classes, and a noncommutative
Waring-type theorem, Annals of Math. 170 (2009), 1383–1416.

[12] L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in
Mathematics, Vol. 83, Springer-Verlag, New York, 1982.

Sebastian Jambor, Department of Mathematics, University of Auckland,
New Zealand. Email: jambor@math.auckland.ac.nz

Martin W. Liebeck, Department of Mathematics, Imperial College, London
SW7 2AZ, UK. Email: m.liebeck@imperial.ac.uk

E.A. O’Brien, Department of Mathematics, University of Auckland, New
Zealand. Email: e.obrien@auckland.ac.nz

5


	Introduction
	Proof of Theorem 1

