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Chapter 1

Introduction

This thesis presents an L3-U3-quotient algorithm for finitely presented groups on two gen-
erators. Given a finitely presented group G = 〈g1, g2 | r1(g1, g2), . . . , rk(g1, g2)〉, it finds all
quotients of G which are isomorphic to one of the groups PSL(3, q), PSU(3, q), PGL(3, q), or
PGU(3, q). This is done simultaneously for any prime power q, so q is not part of the input
of the algorithm, but the algorithm finds all possible choices of q by itself.

The motivation for this algorithm is the desire to understand finitely presented groups. Al-
though these groups are easy to define, they raise a series of hard problems which are un-
solvable in general. One of the most famous problems is the word problem, first formulated
by Dehn ([Deh11]): given a finitely presented group G on generators g1, . . . , gn and a word w
in the gi, decide whether w represents the identity element in G. It was proved by Novikov
[Nov55] and Boone [Boo58] that the word problem is unsolvable in general. In fact, Boone
proves that there exists a finitely presented group on two generators and 32 relations which
has an unsolvable word problem. The unsolvability of the word problem implies in particular
that it is in general not possible to prove whether a finitely presented group G contains any
non-trivial elements at all.

Some historical background

Although one of the fundamental problems, namely deciding equality of two elements, is
undecidable for finitely presented groups in general, there are various methods to investigate
those groups.

Methods for constructing normal forms

One of the oldest methods is the Todd-Coxeter coset enumeration ([TC36]): given a finitely
presented group G which is finite, it will, given enough time and memory, enumerate all
elements of G. It is not an algorithm in the usual sense, since it will not terminate if it is
given an infinite group. Furthermore, there are no complexity bounds on the memory or time
requirements. Another method in this direction is the Knuth-Bendix rewriting ([KB70]). Like
the coset enumeration, it is not guaranteed to terminate, and even if it terminates, it may run
arbitrarily long. Unlike the coset enumeration, it does not enumerate all elements and can
therefore in some cases also handle infinite groups. A third method comprises automatic group
techniques ([EHR91]). These combine Knuth-Bendix rewriting and methods from finite state
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6 CHAPTER 1. INTRODUCTION

automata theory to construct normal forms for elements. As the Knuth-Bendix rewriting,
this approach also can in some cases handle infinite groups.

Quotient algorithms for soluble groups

The methods described so far all try to describe the full group. If this is possible, the word
problem and some of the other problems can be solved. In fact, if the finitely presented group
is in fact finite, it is often possible to determine a composition series for it, cf. e.g. [CHN12].
The quotient algorithms take another approach. Instead of trying to gather information
about the full group, they only check whether the group in question has certain quotients,
i.e., normal subgroups such that the quotient has a certain structure. While this only gives
partial information about the group, it has the advantage that those methods are algorithms
in the usual sense, so they are guaranteed to terminate. In some cases, information about a
quotient already suffices to decide some of the hard problems. For example, if a word does
not represent the identity element in the quotient, it cannot represent the identity element in
the original group.

The simplest of these algorithms is the abelian quotient algorithm. It works by computing the
Smith normal form of a certain integer matrix, and is often taught in undergraduate algebra
courses. More sophisticated methods are several nilpotent quotient algorithms ([Wam74],
[Mac86], [HN80]), finite soluble quotient algorithms ([Ple87], [Nie94]), and polycyclic quotient
algorithms ([BCM81], [Lo96]), which compute the biggest finite nilpotent, finite soluble, or
polycyclic quotient, respectively, in case it exists. But if the group G is perfect, all of those
quotients are trivial.

Quotient algorithms for non-soluble quotients. The L2-quotient algorithm

There is a very easy method to handle non-soluble quotients. Given any finite group H, it is
easy to check whether it is a quotient of G. This works by running over all generator tuples of
H and checking whether the relations of G are satisfied. This naive approach is in principle
independent of H, and works very well for groups of small order. However, if the order of H
becomes reasonably large, it becomes infeasible. Another disadvantage is that it only works
for one group H at a time.

The first approach which tests for an infinite family of non-soluble groups whether they
occur as quotients of a given finitely presented group is the L2-quotient algorithm of Plesken
and Fabiańska ([PF09]). This tests whether L2(q) is a quotient of a given finitely presented
group on two or three generators, and it does this simultaneously for any prime power q. In
particular, it can check whether G has infinitely many quotients which are isomorphic to some
L2(q), and enumerates them all.

The L3-U3-quotient algorithm

Almost all of the groups L2(q) are in fact simple groups, and more generally, the groups
Ln(q) are simple for all n ≥ 2 and all prime powers q, except for (n, q) ∈ {(2, 2), (2, 3)}. So
naturally the next step in the development of quotient algorithms is to design an L3-quotient
algorithm. Note that the groups L3(q

2) contain another finite simple group, namely the group
U3(q). The algorithm works by constructing homomorphisms into L3(q

k) and removing those
homomorphisms which map onto proper subgroups. Since one of those subgroups is U3(q), the
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design of an L3-quotient algorithm inherently involves the design of an U3-quotient algorithm,
leading to an L3-U3-quotient algorithm.

Short description of the L3-U3-quotient algorithm

There are two main ideas of the L2-quotient algorithm and the L3-U3-quotient algorithm. The
first idea is an old idea from representation theory: a lot of information about a representation
can already be read off of the traces of the images, i.e., of the character of the representation.
While in the classical theory this is used primarily for representations of finite groups over fields
of characteristic zero, it still remains an invaluable tool for representations of infinite groups
over arbitrary fields if one restricts to absolutely irreducible representations. Looking at the
character only has the further advantage that the minimal field over which a representation
is realizable can always be read off, since for finite fields it coincides with the field generated
by the character values. The second idea is that of trace polynomials. If ∆: F2 → SL(3,K)
is a representation of the free group of rank 2, then for any word w ∈ F2 the trace of ∆(w)
can be expressed as a polynomial in finitely many traces. Furthermore, this polynomial is
independent of ∆ and of K. This allows to translate the relations of the finitely presented
group into relations of a polynomial ring, thereby translating concepts from non-commutative
group theory to concepts of commutative algebra. Solutions of the system of polynomial
equations then lead to representations of the finitely presented group.

The role of commutative algebra

The main tool in commutative algebra are Gröbner bases. The concept of a Gröbner basis
is very similar to the Knuth-Bendix rewriting: both methods construct normal forms using
certain rewriting rules. But while the Knuth-Bendix rewriting process is never guaranteed
to terminate, there are algorithms to compute Gröbner bases which always terminate. This
already indicates that it is much more pleasant to work in the commutative setting than in
the non-commutative setting.
For the L2-quotient algorithm and the L3-U3-quotient algorithm, the central mechanism from
commutative algebra is an algorithm to compute the minimal associated primes over an poly-
nomial ring with coefficients in the integers. An algorithm to accomplish this was developed
by Fabiańska in [Fab09] for the L2-quotient algorithm. This approach however is too slow for
the L3-U3-quotient algorithm. Therefore, parts of the algorithm are replaced by new methods
in this thesis, which are also of interest outside of group theory.

Generalizing the Ln-quotient algorithms

It is natural to ask whether the algorithms can be generalized in two directions. First, to
allow finitely presented groups on more than two generators, and second, to Ln-quotient
algorithms for n ≥ 4. Unfortunately, both directions seem infeasible. The formulation of
the algorithm needs a presentation for certain invariant rings, cf. Section 4.1. Although these
rings are always finitely generated by a theorem of Donkin ([Don92]), the number of generators
becomes too large for practical purposes. For an L3-quotient algorithm on three generators,
a presentation of the invariant ring K[SL(3,K)3]SL(3,K) is needed, where K is an arbitrary
algebraically closed field and SL(3,K) acts by simultaneous conjugation on SL(3,K)3. Such
a presentation has not been constructed yet, but Lopatin shows in [Lop04] that the invariant
ring K[(K3×3)3]GL(3,K) has a minimal generating set of 48 generators if char(K) 6= 3. The
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ring has Krull dimension 19, so there are a lot of relations among the generators, which are
explicitly computed in [Hog12] for K = C. Although these results concern a bigger ring,
the corresponding results for the ring K[SL(3,K)3]SL(3,K) can be expected to be of a similar
nature.

For an L4-quotient algorithm on two generators, a presentation of K[SL(4,K)2]SL(4,K) is
needed. Here, even less is known. In [DS06], a minimal generating set of K[(K4×4)2]GL(4,K)

consisting of 32 elements is given for K = C, and in [DLS09] some relations are computed.

Considering that the runtime of the L3-U3-quotient algorithm compared to the L2-quotient
algorithm is already fairly high, where the L2-quotient algorithm is based on a presentation of
the invariant ring on three generators without any relations, and the L3-U3-quotient algorithm
is based on a presentation with nine generators and one relation, it is hard to believe that
an L4-quotient algorithm on two generators or an L3-quotient algorithm on three generators
would terminate in reasonable time for any non-trivial examples.

Outline

Here is an outline of this thesis. In Chapter 2, the L2-quotient algorithm by Plesken and
Fabiańska is presented. This serves two purposes. First, it presents the main ideas of the
algorithm, which are the same as for the L3-U3-quotient algorithm, but they are much easier
to present in degree 2. Second, it shows several techniques the proofs of which are specific
to degree 2. This gives the proper motivation to generalize and prove these techniques in
Chapter 3. Although they are used here only for the L3-U3-quotient algorithm, they seem to
be of general interest. For example, an absolutely irreducible representation of an arbitrary
group over an arbitrary field is uniquely determined by its character, and many properties of
the representation can easily be read off of the character.

Chapter 4 presents the L3-U3-quotient algorithm. This chapter parallels the structure of
Chapter 2, which emphasizes the general similarities of both algorithms.

The methods developed for the L3-U3-quotient algorithm can be applied to prove a generaliza-
tion of a theorem of Lubotzky. This is done in Chapter 5. Furthermore, some general results
can be proved about finitely presented groups with infinitely many quotients isomorphic to
some L3(q) or U3(q).

In Chapter 6 the algorithm is applied to several examples of finitely presented groups. The
main focus here are groups with infinitely many quotients of L3-type. Using some general
techniques, a precise enumeration of all quotients can be given.

The next chapter deals with an interesting combinatorial problem first raised by P. Hall in
[Hal36] to count the number of generators of a given group or a family of groups, where the
generators have a prescribed order. Explicit formulæ for four families of groups can be given,
which seem to be unknown up to now.

The last two chapters deal with the implementation of the L2-quotient algorithm and the L3-
U3-quotient algorithm on the computer. Chapter 8 focuses on the group theoretic side, while
Chapter 9 is concerned with the commutative algebra, namely the computation of minimal
associated prime ideals of an ideal in a polynomial ring over an Euclidean domain. These
results are also of general interest outside of quotient algorithms.
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Chapter 2

The L2-quotient algorithm

In this chapter, the L2-quotient algorithm of Plesken and Fabiańska, cf. [PF09], is presented.
Given a finitely presented group G on two generators, it computes all quotients of G which are
isomorphic to one of the groups PSL(2, q) or PGL(2, q) simultaneously for all prime powers q.
Although the results in this chapter are basically all contained in [PF09], I decided to repeat
them in this place for various reasons.

First, the algorithm will be generalized in Chapter 4 to an L3-U3-quotient algorithm. While
many of the ideas of the L2-quotient algorithm can be adapted to the L3-U3-quotient algo-
rithm, there are all kinds of complications and pitfalls to overcome. It is easier to see and to
understand these complications with a thorough understanding of the L2-quotient algorithm.
Moreover, the presentation here details the bare essentials of the algorithm, while in [PF09]
there are already various optimizations which are not adaptable to degree 3. By focusing on
the essential parts, it is easier to see the parallels of the two algorithms. To make the analogies
even more apparent, the structures of Chapter 2 and Chapter 4 are the same, so for each part
of the algorithm one can see directly how the theory translates from degree 2 to degree 3.

Another reason of the presentation here is that several results of [PF09] can be generalized
to representations of arbitrary groups of arbitrary degree, cf. Chapter 3. For example, the
fact that an absolutely irreducible representation F2 → SL(2,K) is uniquely determined by
its character, up to conjugacy, has a direct generalization.

The outline of this chapter is as follows. Every homomorphism G → PSL(2, q) of a finitely
generated group G lifts to a representation Fm → SL(2, q), where Fm is the free group on
m generators. Section 2.1 is a detailed study of these representations, with the primary
focus on the case m = 2. The main result is that the character of these representations can
be calculated by knowing only three prescribed values. Conversely, for any tuple of three
prescribed values there exists a representation whose character affords exactly these values; if
the representation is absolutely irreducible, then it is unique, up to equivalence.

Roughly speaking, the algorithm works by translating the relations of a finitely presented
group to relations of a polynomial ring in such a way that not too much information is
lost. The mechanism to do this is described in Section 2.2. In Section 2.3 various actions
on representations, characters and ideals are defined, which are needed for the rest of the
chapter. Section 2.1 links representations to triples of traces; in Section 2.4 these triples are
used to get information about the image of the representation.

Section 2.5 proves a correspondence between quotients of the finitely presented group and
quotients of the polynomial ring, which finally leads to the formulation of the algorithm in

11
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Section 2.6.

2.1 Representations of free groups

In this section representations of free groups with values in SL(2,K) are studied, where the
main focus is on the case of free groups of rank 2. All of the results can also be generalized to
free groups of rank 3, cf. [Fab09], but since the point of this chapter is to lay the foundations
of the L3-U3-quotient algorithm, which only works for two generator groups, the case of rank 3
is not presented here.

One of the most important ideas of the algorithm is to reduce every statement about a
representation ∆: F2 → SL(2, q) to a statement about the three character values

t := (Tr(∆(g1)),Tr(∆(g2)),Tr(∆(g1g2))),

where g1 and g2 are generators of F2. The results in this section give the theoretical back-
ground to why this is possible.

The character χ∆ : F2 → Fq : g 7→ Tr(∆(g)) can be described by the three values in t. More
precisely, every character value can be expressed as a polynomial of these three values, and
this polynomial is independent of ∆ and q. Actually, this result can be proved in a more
general setting, cf. Theorem 2.1.

Moreover, for any three values t = (t1, t2, t12) ∈ F3
q , there exists a representation ∆: F2 →

SL(2,Fq) with the prescribed character values, and it is unique in case ∆ is absolutely irre-
ducible.

Some of these results have already been studied before. In case of the characters of repre-
sentations of F2 with values in SL(2,C), the results go as far back as 1897, when they were
asserted by Fricke and Klein, cf. [FK65]. Considerable work on the triples of traces was also
done by Macbeath, cf. [Mac69]. Where possible, I tried to list references to existing results
and how they relate to the results given here.

As mentioned above, the following theorem was already asserted by Fricke and Klein in [FK65]
for the case SL(2,C), but the first rigorous proof was given by Horowitz in [Hor72], which is
constructive and valid for SL(2, R), where R is any commutative ring. A considerably shorter
proof was given in [PF09], using the rule

Tr(A2B) = Tr(A) Tr(AB)− Tr(B), (2.1)

which holds for all A,B ∈ SL(2, R). We will also make use of the equation

Tr(ABC) = Tr(A) Tr(BC)+Tr(B) Tr(AC)+Tr(C) Tr(AB)−Tr(A) Tr(B) Tr(C)−Tr(ACB),
(2.2)

which holds for all A,B,C ∈ SL(2, R), cf. [Hor72].

Theorem 2.1 ([Hor72, Theorem 3.1], [PF09, Lemma 2.1]). Let Fn be the free group on the
generators g1, . . . , gn. Let

Φ := {ϕ : {1, . . . , k} → {1, . . . , n} | k ∈ N, ϕ strictly increasing}.

For every ϕ ∈ Φ let xϕ be an indeterminate over Z.
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For every word w ∈ Fn there exists a polynomial pw ∈ S := Z[xϕ |ϕ ∈ Φ], such that for any
commutative ring R and any representation ∆: Fn → SL(2, R) we have

Tr(∆(w)) = ε∆(pw),

where ε∆ : S → R is the evaluation map which sends xϕ to Tr(∆(gϕ(1) · · · gϕ(k))).
Proof (cf. [PF09, Lemma 2.1]). We can assume that w is cyclically reduced. Furthermore,
note that the trace does not change if the letters of w are permuted cyclically. We will
proceed by induction on the length of w. There is nothing to prove if w is of the form
gi1 · · · gik with i1 < · · · < ik. Furthermore, if w = g−1

i for some i, we can set pw := xi,
since Tr(A−1) = Tr(A) for all A ∈ SL(2, R). Assume first that some letter x ∈ {g1, . . . , gn}
occurs with a negative exponent in w; we can assume that w = x−1v = x−2xv for some
v ∈ Fn. Because of equation (2.1) we can set pw := pxpv − pxv, so we are reduced to the
case where all exponents are positive. Next, assume that w is of the form w = xyxv with
x ∈ Fn − {1} and y, v ∈ Fn. Then w = (xy)2y−1v, and again using equation (2.1) we
can set pw := pxypxv − py−1v. We are left to deal with the case where w is of the form
w = gi1 · · · gik where the ij are pairwise distinct. We can assume i1 < ij for all j ∈ {2, . . . , k}.
If i1 < · · · < ik, we are done. Otherwise, let j be the smallest index with ij > ij+1. Set
w1 := gi1 · · · gij−1 , w2 := gij , and w3 := gij+1 · · · gik , so w = w1w2w3. Then by equation (2.2)
we can set pw := pw1pw2w3 + pw2pw1w3 + pw3pw1w2 − pw1pw2pw3 − pw1w3w2 . Either w1w3w2 is
of the desired form, or we repeat this process. This terminates after finitely many steps.

Definition 2.2. The polynomials pw in the last theorem are called generalized Chebyshev

polynomials or trace polynomials.

In general, there are various choices for pw. For example, if n = 3, then p1 can be chosen both
as 2 and as

x2123 + (x1x2x3 − x1x12 − x2x13 − x3x12)x123 + x21 + x22 + x23 + x212 + x223 + x213

− x1x2x12 − x1x3x13 − x2x3x23 + x12x23x13− 2,

cf. [PF09, Theorem 2.3]. The reason is that the trace of a product of three matrices satisfies
a quadratic relation in terms of traces of products of fewer matrices. However, in the case
n = 2 the result is optimal in the following sense.

Theorem 2.3 ([PF09, Theorem 2.2]). For n = 2 and any w ∈ F2, the polynomial pw satisfying
the property of Theorem 2.1 is unique.

Proof ([PF09, Theorem 2.2]). Define a representation ∆: F2 → SL(2,Q(α, β, γ)) by

g1 7→
(
α β
0 α−1

)
, g2 7→

(
0 −1
1 γ

)
,

where Q(α, β, γ) is the function field over Q. Since α + α−1, γ, β + α−1γ are algebraically
independent, this proves the uniqueness.

This uniqueness is the reason that any triple t ∈ F3
q occurs as traces of some representa-

tion. While the proof of the next theorem does not show this reason, it has the advantage
that it gives an explicit representation. The connection between the uniqueness of the trace
polynomials and the existence of representations will be apparent in Chapter 4.
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Definition 2.4. Let K be a field. Then a triple t = (t1, t2, t12) ∈ K3 is called a trace tuple

of K. If ∆: F2 → SL(2,K) is a representation with Tr(∆(g1)) = t1, Tr(∆(g2)) = t2, and
Tr(∆(g1g2)) = t12, then ∆ is said to afford the trace tuple t.

Theorem 2.5 ([Mac69, Theorem 1], [PF09, Proposition 3.1]). Let K be any field, and let
t = (t1, t2, t12) ∈ K3 be a trace tuple. There exists a representation ∆: F2 → SL(2,K)
affording t. Moreover, if ∆ is absolutely irreducible, there exists a representation with values
in SL(2,K) affording t.

Proof ([PF09, Proposition 3.1]). Let α be a root of X2 − t1X + 1. The representation

∆: F2 → SL(2,K) : g1 7→
(
α t2(α− t1) + t12
0 t1 − α

)
, g2 7→

(
0 −1
1 t2

)

satisfies the hypothesis. The last statement is an immediate consequence of Wedderburn’s
Theorem.

Remark 2.6. Macbeath actually proves that there always is a representation over K (not
only over the algebraic closure), ifK is a finite field. However, his prove uses ternary quadratic
forms and some geometric arguments, whereas the proof above is very elementary.

By Wedderburn’s Theorem, the images of an absolutely irreducible representation ∆: F2 →
SL(2,K) form a generating set of K2×2. In degree 2 we can even give a precise description of
the images which will form a basis, which can be used to give a criterion for ∆ to be absolutely
irreducible, based only on the trace tuple.

Lemma 2.7 ([PF09, Proposition 3.1]). Let K be any field and ∆: F2 → SL(2,K) a repre-
sentation. Then ∆ is absolutely irreducible if and only if (I2,∆(g1),∆(g2),∆(g1g2)) is a basis
of K2×2.

Proof. Assume that ∆ is absolutely irreducible. Let Xi := ∆(gi). Then K2×2 has a basis
consisting of words in X1 and X2. Since X1 and X2 do not commute, the triple (I2, X1, X2)
is linearly independent. Suppose (I2, X1, X2, X1X2) is linearly dependent. By the Cayley-
Hamilton Theorem,

0 = (X1+X2)
2−(Tr(X1)+Tr(X2))(X1+X2)+I2 = X1X2+X2X1−Tr(X1)X2−Tr(X2)X1−2I2,

so (I2, X1, X2, X2X1) is linearly dependent. But then every word in X1 and X2 can be reduced
to a linear combination of I2, X1, X2, which is a contradiction.

Theorem 2.8 ([Mac69, Theorem 2], [BH95, Proposition 4.1], [PF09, Proposition 3.1]). Let
∆: F2 → SL(2,K) be a representation with traces t := (t1, t2, t12) := (∆(g1),∆(g2),∆(g1g2)).
Then ∆ is absolutely irreducible if and only if t is not a zero of ρ := x21+x

2
2+x

2
12−x1x2x12−4.

Proof ([PF09, Proposition 3.1]). Write the 2×2-matrices ∆(w) as 4×1-vectors; then ρ is the
determinant of (I2,∆(g1),∆(g2),∆(g1g2)).

Remark 2.9. Macbeath again proves this for finite fields K, and his condition involves the
non-singularity of a ternary quadratic form, which is however equivalent to the condition given
in the theorem. Brumfiel and Hilden consider the more general case whereK is a commutative
ring, where the condition is that ρ specializes to a unit in K.
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Following the motto that properties of representations should be expressed as properties of
the trace tuples, it makes sense to call a trace tuple absolutely irreducible.

Definition 2.10. Let t = (t1, t2, t12) ∈ K9 be a trace tuple. Then t is called absolutely

irreducible if t is not a zero of ρ.

An important result of ordinary representation theory is that the representation of a finite
group is uniquely determined, up to equivalence, by its character. This result holds only in
characteristic zero and is false in general. However, if one assumes that the representation in
question is absolutely irreducible, then the result can be generalized, as in the next theorem.
A further generalization is given in the next chapter.

Theorem 2.11 ([Mac69, Theorem 3], [BH95, Proposition 4.5], [PF09, Proposition 3.1]). Let
∆,∆′ : F2 → SL(2,K) be absolutely irreducible representations with

(t1, t2, t12) := (∆(g1),∆(g2),∆(g1g2)) = (∆′(g1),∆
′(g2),∆

′(g1g2)).

Then ∆ and ∆′ are K-equivalent.

Proof ([PF09, Proposition 3.1]). Let v ∈ K
2×1

be an eigenvector of ∆(g1). Since ∆ is ab-
solutely irreducible, (v,∆(g2)v) is linearly independent. With respect to this basis, ∆ is
equivalent to the representation given in the proof of Theorem 2.5. Similarly, ∆′ is equivalent
to the same representation.

2.2 Representations and ideals

In this section fix a finitely presented group G = 〈g1, g2 | r1, . . . , rk〉 on two generators with the
relations r1, . . . , rk. The aim is to find all epimorphisms of G onto groups of the form PSL(2, q)
or PGL(2, q), where q is a prime power. This is done by translating the group relations into
relations for the polynomial ring Z[x1, x2, x12], yielding the so-called trace presentation ideals.
Proposition 2.13 shows that the trace triples of absolutely irreducible representations are
zeroes of these ideals.
Note that every homomorphism δ : G → PSL(2, q) is induced by a representation ∆: F2 →
SL(2, q) such that ∆(ri) = siI2 with si ∈ {±1} for all i = 1, . . . , k.

Definition 2.12. Let G = 〈g1, g2 | r1, . . . , rk〉 and s ∈ {±1}k. Then the trace presentation

ideal of G with respect to s is defined as

Is(G) := 〈prih − siph |h ∈ {1, g1, g2, g1g2}, i ∈ {1, . . . , k}〉EZ[x1, x2, x12].

An element s ∈ {±1}k is called a sign system for G.

Proposition 2.13 ([PF09, Proposition 3.3]). Let ∆: F2 → SL(2, q) be an absolutely ir-
reducible representation with trace tuple t = (t1, t2, t12). Then ∆ induces a homomorphism
G→ PSL(2, q) if and only if t is a zero of a trace presentation ideal Is(G) for some s ∈ {±1}k.
Proof. ∆ induces a homomorphism G→ PSL(2, q) if and only if all relations are satisfied, i.e.,
if and only if ∆(ri(g1, g2)) = siI2 for some si ∈ {±1} for 1 ≤ i ≤ k. But ∆(ri(g1, g2)) = siI2
is equivalent to S(∆(ri(g1, g2)),∆(h)) = S(siI2,∆(h)) for all h ∈ {1, g1, g2, g1g2}, where
S : K2×2×K2×2 → K is the trace bilinear form, since (I2,∆(g1),∆(g2),∆(g1g2)) is a basis of
K2×2, by Lemma 2.7. This proves the proposition.



16 CHAPTER 2. THE L2-QUOTIENT ALGORITHM

2.3 Actions on representations, trace tuples and ideals

Different epimorphisms F2 → SL(2, q) can lead to the same epimorphism F2 → PSL(2, q),
up to automorphisms of PSL(2, q). To describe which trace tuples lead to equivalent epimor-
phisms F2 → PSL(2, q), it is most convenient to introduce the action of two groups. Roughly
speaking, the action of the sign changes accounts for the fact that we deal with PSL(2, q)
instead of SL(2, q), while the action of the Galois group accounts for the part of the outer
automorphism group of PSL(2, q) which does not come from matrix conjugation.

Definition 2.14. Set Σ := {±1}2, the group of sign changes. If ∆: F2 → SL(2, q) is a
representation, define a representation σ∆ for σ = (σ1, σ2) ∈ Σ by

σ∆: F2 → SL(2, q) : g1 7→ σ1∆(g1), g2 7→ σ2∆(g2).

This defines an action of Σ on the set of representations F2 → SL(2, q) and induces actions on
the set of characters and the set of trace tuples. To be more precise, if t := (t1, t2, t12) ∈ F3

q

is a trace tuple,
σt = (σ1t1, σ2t2, σ1σ2t12).

Furthermore, Σ acts on Z[x1, x2, x12] via ring automorphisms by setting

σx1 := σ1x1,
σx2 := σ2x2,

σx12 := σ1σ2x12,

and this action induces an action on the set of ideals of Z[x1, x2, x12].

Definition 2.15. Let Γ := Gal(Fq). If ∆: F2 → SL(2, q) is a representation, define a repre-
sentation γ∆ for γ ∈ Γ by

γ∆: F2 → SL(2, q) : g 7→ γ(∆(g)).

This defines an action of Γ on the set of representations F2 → SL(2, q) and induces actions
on the set of characters and the set of trace tuples.

Remark 2.16. There is a bijection between the maximal ideals of Z[x1, x2, x12] and the
Gal(Fq)-orbits of trace tuples t = (t1, t2, t12) ∈ F3

q , where q ranges over all prime powers as
follows: Given a trace tuple t = (t1, t2, t12) ∈ F3

q such that t generates Fq/Fp, let t be kernel of
the ring epimorphism defined by Z[x1, x2, x12] → Fq : xi 7→ ti. Conversely, if tEZ[x1, x2, x12] is
a maximal ideal, then Z[x1, x2, x12]/ t ∼= Fq for some prime power q. Let ϕ : Z[x1, x2, x12] → Fq

be the corresponding epimorphism, and set t = (ϕ(x1), ϕ(x2), ϕ(x12)), which is well-defined
up to Gal(Fq)-conjugacy. Note for example that t is a zero of an ideal I EZ[x1, x2, x12] if and
only if I is contained in t.
This bijection respects the action of Σ on the trace tuples and on the ideals of Z[x1, x2, x12].
We will use this correspondence in the following to switch between trace tuples and maximal
ideals, without explicitly mentioning it.

2.4 Detecting epimorphisms onto proper subgroups

Let t = (t1, t2, t12) ∈ Fq be a trace tuple with corresponding representation ∆: F2 → SL(2, q).
The aim of this section is to decide whether ∆ induces an epimorphism onto PSL(2, q) or
PGL(2, q), based solely on t. This can be done using Dickson’s classification of subgroups of
PSL(2, q).
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Proposition 2.17 (Dickson, cf. e.g. [Hup67, Hauptsatz II.8.27]). Let U ≤ SL(2, q) be an
absolutely irreducible subgroup such that the character values generate Fq. Denote by U the
image in PSL(2, q). Then one of the following cases occurs.

1. U is isomorphic to A4, S4, or A5. Following [Hor72], these groups are called excep-

tional.

2. U is a dihedral group.

3. U is isomorphic to PGL(2, r) if q = r2 is a square.

4. U = PSL(2, q).

Absolute irreducibility of ∆ can be decided using Theorem 2.8, so assume in the following that
∆ is absolutely irreducible. By Dickson’s result, this leaves only finitely many possibilities for
the image of the induced projective representation.
For the exceptional groups A4, S4, and A5 one can use the fact that they can be presented by
〈g1, g2 | g21, g32, (g1g2)k〉 with k ∈ {3, 4, 5} and the fact that the order of an element x ∈ SL(2, q)
is already determined by the trace, if (|x|, q) = 1.

Proposition 2.18 ([PF09, Lemmas 3.7 – 3.9]). Let t = (t1, t2, t12) be an absolutely irreducible
trace tuple with corresponding representation ∆: F2 → SL(2, q). Then the induced projective
representation maps onto a group isomorphic to A4 if and only if one of the ti is zero and the
other are ±1, or all ti are ±1 with an even number of −1. Equivalently, t is the zero of one
of the 12 ideals 〈x1 − ζ1, x2 − ζ2, x12 − ζ12〉EZ[x1, x2, x12], where ζ1, ζ2, ζ12 ∈ {−1, 0, 1} such
that either ζ1ζ2ζ12 = −1, or exactly one of them is zero.
Similarly, there are 18 ideals for S4 and 76 ideals for A5.

The connection between element orders and traces also gives a test for the dihedral groups,
since group elements x and y generate a dihedral group if and only if two of the three elements
x, y, xy have order 2.

Proposition 2.19 ([PF09, Lemma 3.6]). Let t = (t1, t2, t12) be an absolutely irreducible
trace tuple with corresponding representation ∆: F2 → SL(2, q). Then the induced projective
representation maps onto a dihedral group if and only if two entries of t are zero. Equivalently,
t is a zero of one of the ideals 〈x1, x2〉, 〈x1, x12〉, 〈x2, x12〉EZ[x1, x2, x12].

Given a representation ∆: F2 → SL(2, q) with trace tuple t = (t1, t2, t12) ∈ Fq such that t
generates Fq/Fp, the results above can be used to decide whether ∆ is absolutely irreducible,
and in case it is, whether the induced projective representation maps onto A4, S4, A5, or
a dihedral group. If q is even or not a square, this implies that the induced projective
representation maps onto PSL(2, q). Otherwise, it is possible that the image of the induced
projective representation is is the full PGL over the subfield of index 2. There are various
criteria to decide which case occurs.

Proposition 2.20 ([PF09, Algorithm 4.2, Remark 4.3]). Let t = (t1, t2, t12) be an absolutely
irreducible trace tuple such that t1, t2, t12 generate Fq/Fp, and assume that q = r2 is an odd
square. Furthermore, assume that the trace tuple is not dihedral (cf. Proposition 2.19). The
following are equivalent:

1. The induced projective representation maps onto a subgroup of PGL(2, r).
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2. There exists a subgroup U = 〈u1, u2, u3〉 ≤ F2 of index 2 such that pui(t) ∈ Fr for
i = 1, . . . , 3, where pui is the trace polynomial of Theorem 2.1.

3. There exists 1 6= σ ∈ Σ such that σt = γt, where γ ∈ Gal(Fq/Fr) is the Frobenius.

4. The maximal ideal of Z[x1, x2, x12] corresponding to t (cf. Remark 2.16) has a non-trivial
stabilizer in Σ.

Remark 2.21. The first three statements of the proposition are equivalent without the as-
sumption that the trace tuple is not dihedral. However, we will use the fourth statement for
the L2-algorithm and the corresponding generalization for the L3-U3-algorithm.

2.5 From ring quotients to group quotients

Let G be a finitely presented group on two generators. The aim of the L2-quotient algorithm
is to enumerate all quotients G/N which are isomorphic to PSL(2, q) or PGL(2, q), for some
prime power q. Now G/N ∼= H if and only if there exists an epimorphism ϕ : G → H with
N = kerϕ, and if ψ : G → H is another epimorphism, kerϕ = kerψ if and only if ψ and
ϕ differ only by an automorphism of H. The results of this section show that the decision
whether two representations lead to the same quotient can again be done based on the trace
tuple alone.

First note that the automorphism groups of the classical groups are well-known.

Remark 2.22. Every automorphism α of PSL(2, q) can be written as α = f ◦ d ◦ i, where
i is an inner, d a diagonal, and f a field automorphism, cf. [Ste60]. Since PSL(2, q) ≤
PGL(2, q)EAut(PSL(2, q)), this also implies the same result if α is an automorphism of
PGL(2, q).

Proposition 2.23. Let ∆i : F2 → SL(2, q) be absolutely irreducible representations inducing
homomorphisms δi : F2 → PSL(2, q), for i = 1, 2. Assume that either both δi are surjective, or
q = r2 is a square and the images of δi are both isomorphic to PGL(2, r). Then ker δ1 = ker δ2
if and only if γ∆1 ∼ σ∆2 for some γ ∈ Γ = Gal(Fq) and σ ∈ Σ. If ti is the trace tuple
corresponding to ∆i, this is equivalent to γt1 =

σt2.

Proof. Assume γ∆1 ∼ σ∆2, i.e., there exists X ∈ GL(2, q) with X · γ∆1(g) ·X−1 = σ∆2(g) for
all g ∈ G Since X can be written as X = D · I with I ∈ SL(2, q) and D ∈ GL(2, q) a diagonal
matrix, this proves that γ∆1 ∼ σ∆2 if and only if δ1 = α ◦ δ2 for some α ∈ Aut(PSL(2, q)),
by the last remark. In particular, γ∆1 ∼ σ∆2 implies ker δ1 = ker δ2.

Now assume conversely ker δ1 = ker δ2. If both δi are surjective, they differ only by an auto-
morphism of PSL(2, q), so γ∆1 ∼ σ∆2 for some γ ∈ Gal(Fq) and some σ ∈ Σ by the argument
above. If the images of both δi are isomorphic to PSL(2, r), they differ by an automor-
phism of PGL(2, r) (there is only one conjugacy class of subgroups of PSL(2, q) isomorphic
to PGL(2, r), so after applying an inner automorphism, we can in fact assume that the im-
ages are equal). We have to show that this automorphism extends to an automorphism of
PSL(2, q). Let α ∈ Aut(PGL(2, r)) with δ1 = α ◦ δ2. Then α = f ◦ d ◦ i, where i is inner, d is
diagonal, and f is a field automorphism of Fr. For i and d the extension to PSL(2, q) is imme-
diate. Furthermore, f extends to an automorphism f̃ of Fq such that

√
f(a) = ±f̃(√a) for
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all a ∈ Fr, where
√
f(a) and

√
a denote arbitrary roots of X2−f(a) and X2−a, respectively.

But PGL(2, r) embeds into PSL(2, q) via

PGL(2, r) → PSL(2, q) : M 7→ 1√
det(M)

M,

so f̃ ◦ d ◦ i is an extension of α = f ◦ d ◦ i.

Corollary 2.24. For every quotient G/N ∼= PSL(2, q) or G/N ∼= PGL(2, q) there exists
exactly one Σ-orbit of maximal ideals of Z[x1, x2, x12], where each ideal contains some trace
presentation ideal Is(G).

Proof. This follows by Remark 2.16 and Propositions 2.13 and 2.23.

Remark 2.25. Let Is(G)EZ[x1, x2, x12] be a trace presentation ideal and tEZ[x1, x2, x12]
a maximal ideal containing it. Then t also contains the radical of Is(G). But the radical is
the intersection of the minimal associated prime ideals, i.e., the set of minimal elements of all
prime ideals containing Is(G). This set is finite and can be computed effectively, cf. Chapter 9.
Since t is prime and contains an intersection of the minimal associated prime ideals, it must
already contain one of those ideals. Thus, no information is lost by considering only the
minimal associated prime ideals of Is(G).
The minimal associated prime ideals give more precise information about the zeroes of Is(G).
For example, it can be read off of the prime ideal whether all zeroes are not absolutely
irreducible, in which case the prime ideal can be disregarded. Similar considerations hold for
the zeroes yielding dihedral or exceptional groups. If all remaining prime ideals are maximal,
this already proves that G has only finitely many quotients which are isomorphic to some
PSL(2, q) or PGL(2, q).

2.6 The algorithms

By Remark 2.16, every maximal ideal of Z[x1, x2, x12] gives rise to a representation ∆: F2 →
SL(2, q), but this representation does not necessarily induce an epimorphism onto PSL(2, q)
or PGL(2,

√
q). It is convenient to have a notation for those ideals which give rise to epimor-

phisms.

Definition 2.26. A prime ideal P EZ[x1, x2, x12] is called an L2-ideal, if it does not contain
the irreducibility indicator ρ of Theorem 2.8 and none of the ideals of Propositions 2.18
and 2.19.
A set Λ of L2-ideals is called minimal, if no ideal of Λ contains a Σ-conjugate of another
element of Λ. In other words, P 6⊇ σQ for all σ ∈ Σ and all P,Q ∈ Λ with P 6= Q.

Algorithm 2.27 (L2-quotients, [PF09, Algorithm 4.1]). Input: A finitely presented group

G = 〈g1, g2 | r1, . . . , rk〉

on two generators.
Output: A minimal set Λ of L2-ideals satisfying the following property. If ∆: F2 → SL(2, q)
with q > 5 is a representation with trace tuple t inducing an epimorphism of G onto PSL(2, q)
or PGL(2,

√
q), then σt is a zero of an ideal in Λ for some σ ∈ Σ.

Algorithm:
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1. Compute the set P ′ of all minimal associated prime ideals of Is(G), where s ∈ {±1}k
ranges over all sign systems. Let P be the set of all minimal elements of P ′ with respect
to inclusion.

2. Choose a set of representatives R of P under the action of Σ.

3. Return all elements of R which do not lead to reducible representations or to epimor-
phisms onto A4, S4, A5, or a dihedral group.

Remark 2.28. 1. The condition q > 5 in the algorithm comes from the fact that L2(2) ∼=
D6 is a dihedral group, L2(3) ∼= A4, and L2(4) ∼= L2(5) ∼= A5. The algorithm could
be adapted to include also these groups, but for the ease of the presentation and the
implementation I decided against this. Furthermore, these small groups can be easily
found by other methods anyway.

2. Although in step 1 the minimal associated primes are calculated, it is again necessary
to take the minimal elements P of P ′. The reason lies in characteristic 2: a prime ideal
which contains 2 can contain two different trace presentation ideals Is(G) and Is′(G).

3. For an efficient implementation, it is not advisable to compute the minimal associated
prime ideals of all trace presentation ideals Is(G), since many of them are removed in
step 2 of the algorithm. Instead, one should try to anticipate the action of Σ in step 2
already in step 1, i.e., compute a set of elements of Σ which are really necessary. See
[PF09] or Chapter 8 for details.

4. An efficient method to compute the minimal associated primes of an ideal in Z[x1, x2, x12]
is presented in Chapter 9 below.

5. Every maximal ideal returned by the algorithm corresponds to a unique L2-quotient.
On the other hand, every prime ideal P which is not maximal corresponds to infinitely
many L2-quotients, but not every maximal ideal t containing P will necessarily give
an L2-quotient. There are still possibilities for t to yield reducible representations, or
quotients isomorphic to A4, S4, A5, or dihedral groups. However, there are infinitely
many maximal ideals giving L2-images, and if P has dimension 1, usually a precise
enumeration of the corresponding L2-quotients can be given. Cf. [PF09, Section 8] for
details or Chapter 5, where the analogous results for the L3-U3-quotient algorithm are
proved.

Every maximal ideal returned by Algorithms 2.27 gives rise to a quotient isomorphic to
PSL(2, q) or PGL(2, q). The following algorithm, based on Proposition 2.20, decides which
case occurs.

Algorithm 2.29 (L2-type, [PF09, Algorithm 4.2]). Input: A maximal ideal tEZ[x1, x2, x12],
such that the image of the corresponding projective representation is isomorphic to either
PSL(2, q) or PGL(2, q) for some prime power q.

Output: The exact isomorphism type of the image.

Algorithm:

1. Let p be the prime contained in t. Compute the dimension n of the Fp-vector space
Fp[x1, x2, x12]/(Fp ⊗ t).
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2. If p = 2, if n is odd or if t has a trivial stabilizer in Σ, return PSL(2, pn). Otherwise,
return PGL(2, pn/2).

Given a maximal ideal tEZ[x1, x2, x12] it is often desirable to construct a corresponding
representation ∆: F2 → SL(2, q), where Fq = Z[x1, x2, x12]/ t. In [Fab09, Algorithm 9], an al-
gorithm is presented to accomplish this. It works by taking the representation of Theorem 2.5;
if X2 − t1X + 1 is irreducible over Fq, a Galois descent is performed to get a representation
over Fq instead of Fq2 .
In Chapter 3, a general algorithm is presented which works for any character of an absolutely
irreducible representation.
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Chapter 3

Characters of group representations

in arbitrary characteristic

The aim of this chapter is to generalize the character theory of Chapter 2 as far as possible.
The question is: given a representation ∆: G → GL(n,K) with character χ∆ : G → K : g 7→
Tr(∆(g)), where G is an arbitrary group, n ∈ N, and K is an arbitrary field, what can be said
about ∆ by knowing χ∆ alone?

For the L2-quotient algorithm, the character of a representation is the fundamental tool. The-
orem 2.11 shows that an absolutely irreducible representation ∆: F2 → SL(2,K) is uniquely
determined, up to equivalence, by its character; this result is generalized in Proposition 3.1.
Later on in Chapter 2, the character is used to determine whether the corresponding projective
representation F2 → PSL(2,K) is surjective, or in case it is not to determine the image.

There are roughly two types of absolutely irreducible subgroups of PSL(2, q). First, there
are the so-called exceptional groups, i.e., groups isomorphic to A4, S4, or A5. For each one
of these groups there is a specific test which checks whether it is isomorphic to the image
of the projective representation, cf. Proposition 2.18. The other subgroups fall into infinite
families of groups. They are the dihedral groups or groups isomorphic to some PGL(2, q′). But
although there are infinitely many dihedral groups, there is a uniform way to detect images
which are dihedral, cf. Proposition 2.19. The generalizations of the dihedral groups are the
imprimitive groups; the result corresponding to Proposition 2.19 is given in Proposition 3.7.
Similarly, there is a uniform test for groups isomorphic to some PGL, cf. Proposition 2.20,
which can be generalized as in Theorem 3.17.

In the study of representations of higher degree, new families of subgroups arise. For example,
the image of a projective representation F2 → PSL(n, q2) for n > 2 can be a subgroup of
PSO(n, q2) or PSU(n, q), i.e., the projective orthogonal group or the projective unitary group,
respectively. These images did not play a role in the L2-quotient algorithm, since PSO(2, q)
is a dihedral group and PSU(2, q) ∼= PSL(2, q). However, for the L3-U3-quotient algorithm,
or if one studies representations of higher degree, these families of subgroups are important.

Note that by Theorem 2.1, the character of a representation ∆: F2 → SL(2,K) is determined
by finitely many character values. In this chapter we will not use this result but instead
assume that the character is given as an abstract map. A generalization of Theorem 2.1 for
representations of degree 3 will be given in Chapter 4.
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3.1 Absolute irreducible representations

The first result is a generalization of Theorem 2.11: it is true in general that an absolutely
irreducible representation is uniquely determined by its character, up to equivalence. As usual,
if ∆: G→ GL(n,K) is a representation, write χ∆ for the corresponding character.

Proposition 3.1. Let G be a group, K a field, and let ∆i : G → GL(n,K) be absolutely
irreducible representations for i = 1, 2 such that χ∆1 = χ∆2. Then ∆1 and ∆2 are equivalent.

Proof. Let χ = χ∆1 = χ∆2 , and denote by rad(χ) the radical of the bilinear form KG ×
KG → K : (x, y) 7→ χ(xy). Denote the extension of ∆i to KG → Kn×n again by ∆i. Then
ker(∆i) ⊆ rad(χ), and since KG/ ker(∆i) is simple, we see that in fact equality holds. Thus
there are isomorphisms KG/ rad(χ) → ∆i(KG) = Kn×n which are induced by x 7→ ∆i(x).
Hence ∆1(x) 7→ ∆2(x) is an automorphism of Kn×n, which has to be inner by the Skolem-
Noether theorem.

This raises the following question: Let ∆: Fm → GL(n,K) be a representation with character
χ∆ =: χ. Can the absolute irreducibility of ∆ be read off of χ? According to Theorem 2.8, this
is possible for representations ∆: F2 → SL(2,K). More precisely, ∆ is absolutely irreducible
if and only if (χ(a), χ(b), χ(ab)) is not a zero of the polynomial ρ := x21+x

2
2+x

2
12−x1x2x12−4.

This can be generalized as follows. Denote by Wm,ℓ the reduced words of Fm of length at
most ℓ, and let {xw |w ∈Wm,ℓ} be indeterminates.

Proposition 3.2. For any m,n ∈ N there exists an ideal ρm,nEZ[xw |w ∈Wm,(n2−1)2 ] such
that for any representation ∆: Fm → GL(n,K) with character χ = χ∆ the following are
equivalent:

1. ∆ is absolutely irreducible.

2. The tuple (χ(w) |w ∈Wm,(n2−1)2) is not a zero of ρm,n.

Proof. ByWedderburn’s Theorem, ∆ is absolutely irreducible if and only if the set {∆(w) |w ∈
Fm} is a generating set for Kn×n as a K-vector space. Note that 〈∆(Wm,i+1)〉 = 〈∆(Wm,i)〉
for some i implies 〈∆(Wm,j)〉 = 〈∆(Wm,i)〉 for all j ≥ i. In particular, the chain

〈∆(Wm,0)〉 ⊆ 〈∆(Wm,1)〉 ⊆ · · ·

stabilizes after at most n2 steps. Thus ∆ is absolutely irreducible if and only if ∆(Wm,n2−1)
is a generating system of Kn×n. This last condition can be tested with the trace bilin-
ear form S : Kn×n × Kn×n → K : (a, b) 7→ χ(ab) as follows. Define the matrix Σ :=
(S(∆(v),∆(w)))v,w = (χ(vw))v,w, where v and w run through Wm,n2−1. Then ∆ is abso-
lutely irreducible if and only if Σ has rank n2, since the trace bilinear form is non-degenerate.
Setting ρm,n to be the ideal generated by the n2 × n2-minors of the matrix (xvw)v,w, where v
and w run through Wm,n2−1, yields the desired result.

Remark 3.3. The last result is only of theoretical value and not very efficient in applications,
since the size ofWm,(n2−1)2 (and therefore the rank of the polynomial ring) grows exponentially
withm and n. However, in special applications, the rank of the polynomial ring can be reduced
to a practical value. Theorem 2.8 already shows that if m = n = 2 and ∆ takes values in
the special linear group, the number of indeterminates can be assumed to be 3. In the next
chapter we will see that if m = 2, n = 3 and ∆ takes values in the special linear group, 9
variables suffice, cf. Proposition 4.2.
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By Proposition 3.1, an absolutely irreducible representation is uniquely determined by its
character, up to equivalence. Hence it would be good to have a method which constructs the
representation, given its character only. Here is a first step into that direction.

Proposition 3.4. Let G be a finitely generated group, K a field, and χ : G→ K the character
of an absolutely irreducible representation ∆: G → GL(n,K). Denote by M = Kn×1 the
corresponding simple module. It is possible to construct Mn =M ⊕ · · · ⊕M using just χ.

Proof. We may assume that G is the free group on m generators g1, . . . , gm. Let (B1, . . . , Bn2)
be any basis of Kn×n. To determine the action of G onMn ≡ Kn×n it is enough to determine
values λijk ∈ K such that ∆(gi)Bj =

∑
k λijkBk, where 1 ≤ i ≤ m and 1 ≤ j, k ≤ n2.

Since the trace bilinear form S is non-degenerate, each λijk is uniquely determined by the n2

equations S(∆(gi)Bj , Bℓ) = S(
∑

k λijkBk, Bℓ), where 1 ≤ ℓ ≤ n2.
As in Proposition 3.2, we can choose a tuple of words w = (w1, . . . , wn2) ∈ G such that
B := (∆(w1), . . . ,∆(wn2)) is a basis of Kn×n, giving the linear equations

χ(gi · wj · wℓ) =
∑

k

λijkχ(wk · wℓ),

which only involve values of χ.

Further techniques have to be applied to decompose the module Mn. For example, if K is a
finite field, the Meat Axe (cf. [Par84], [HR94]) is a powerful and efficient tool.

3.2 Actions on representations and characters

As in Chapter 2, most of the results are best expressed using group actions. There is a direct
generalization of the actions in Section 2.3, but there is also a new action by a cyclic group
of order 2, which acts by inverse transposition.

Definition 3.5. Let ∆: G → GL(n,K) be an absolutely irreducible representation with
character χ.

1. Define an action of Gal(K) on the representations of G into GL(n,K) by

α∆: G→ GL(n,K) : g 7→ α(∆(g))

for α ∈ Gal(K), where α(∆(g)) means to apply α entry-wise, and let αχ be the character
of α∆.

2. Let C2 = 〈τ〉 be a cyclic group of order 2 generated by τ . Then τ acts on the represen-
tations of G into GL(n,K) by

τ∆ = ∆− tr : G→ GL(n,K) : g 7→ ∆(g)− tr;

denote by τχ the character of τ∆.

This gives an action of Gal(K)×C2 on the set of absolutely irreducible representations of G.
If G is a free group, we have an action by roots of unity. Let Fm := Fr(g1, . . . , gm) be the
free group on the generators g1, . . . , gm, and denote by µn(K) the group of n-th roots of unity
contained in K. If K is the finite field Fq, we also write µn(q) instead of µn(K).
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Definition 3.6. Let ∆: Fm → GL(n, q) be a representation with character χ. For σ ∈ µn(q)
m

define
σ∆: Fm → GL(n, q) : gi 7→ σi∆(gi),

where σ = (σ1, . . . , σm), and define σχ to be the character of σ∆.

3.3 Detecting certain subgroups of GL(n,K)

Now we are able to describe several families of subgroups of GL(n,K), based only on the
character. The first result is a generalization of Proposition 2.19. In general, it is possible to
detect imprimitive groups with cyclic factor groups, i.e., the induced action on some vector
space decomposition is cyclic. The dihedral groups correspond to the case where the cyclic
group has order 2.

The next two results concern orthogonal, symplectic and unitary subgroups. They did not
come up in the context of the L2-quotient algorithm, since their image in PSL(2, q) is isomor-
phic to either a dihedral group, or to some PSL(2, q′).

We begin with the imprimitive groups. Let ∆: G → GL(n,K) be an absolutely irreducible
representation over an algebraically closed field K, and let V = Kn×1 be the natural KG-
module. Assume that ∆ is imprimitive, i.e., V =

⊕k
i=1 Vi as vector space such that the action

of G on V permutes the Vi. If the induced permutation group on the Vi is cyclic, this can be
read off of the character.

Proposition 3.7. Let K be an algebraically closed field, and let ∆: G → GL(n,K) be an
absolutely irreducible representation with character χ. Then ∆ is imprimitive with cyclic
permutation group if and only if there exists a non-trivial homomorphism ψ : G → Cn such
that χ(w) = 0 for all w ∈ G with ψ(w) 6= 1.

Proof. Let V = Kn×1 be the natural KG-module.

Assume that ∆ is imprimitive with cyclic permutation group, i.e., V ∼=
⊕k

i=1 Vi, and the
action of G on the Vi induces an epimorphism ψ : G → Ck. Let N := kerψ. Then N is the
stabilizer of V1, so V1 is a KN -module and V ∼= V1 ⊗KN KG. After a suitable conjugation,
the matrices ∆(w) are Kronecker products; in particular, Tr(∆(w)) = 0 for all w ∈ G−N .

Conversely, assume that χ(w) = 0 for all w ∈ G with ψ(w) 6= 1, where ψ : G → Cn is a
non-trivial homomorphism; let N := ker(ψ). Suppose VN is (absolutely) irreducible, so ∆(N)
contains a basis of Kn×n. Let w ∈ G − N , and S : Kn×n × Kn×n → K the trace bilinear
form. Then S(∆(w),∆(x)) = χ(wx) = 0 for all x ∈ N , and since S is non-degenerate, this
implies ∆(w) = 0, which is a contradiction. Hence VN is reducible, so VN = V1 ⊕ · · · ⊕ Vk for
KN -submodules V1, . . . , Vk ≤ VN . Since G/N is cyclic, the Vi are pairwise non-isomorphic
and therefore permuted under the action of G by Clifford’s Theorem.

If the field contains enough roots of unity, a representation is imprimitive with cyclic permu-
tation group if and only if the character has a non-trivial stabilizer under the action by the
roots of unity.

Corollary 3.8. Let K be an algebraically closed field of characteristic coprime to n, and
let ∆: Fm → GL(n,K) be an absolutely irreducible representation of the free group Fm with
character χ. Then ∆ is imprimitive with cyclic permutation group if and only if σχ = χ for
some non-trivial σ ∈ µn(K)m.
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Proof. For σ = (σ1, . . . , σm) ∈ µn(K)m define a homomorphism ψ : Fm → Cn by gi 7→
σi. This gives a bijection between the non-trivial elements of µn(K)m and the non-trivial
homomorphisms Fm → Cn. Furthermore, σχ(w) = ψ(w)χ(w), so χ is invariant under σ if
and only if χ(w) = 0 whenever ψ(w) 6= 1. The result follows by the last proposition.

Specifically for the L3-U3-quotient algorithm, we need the following result. The proof is similar
to the proof of Proposition 3.7.

Proposition 3.9. Let K be an algebraically closed field, and let ∆: G → GL(3,K) be an
absolutely irreducible representation with character χ. Then ∆ is imprimitive with permuta-
tion group S3 if and only if there exists a non-trivial homomorphism ψ : G → S3 such that
χ(w) = 0 for all w ∈ G with |ψ(w)| = 3.

Next are the orthogonal, symplectic and unitary groups.

Proposition 3.10. Let G be a group, K a field of characteristic 6= 2, and ∆: G→ GL(n,K)
an absolutely irreducible representation with character χ such that τχ = χ, i.e., χ(g) = χ(g−1)
for all g ∈ G.
Then there is a symmetric or alternating form on Kn×1 which is invariant under ∆(G), i.e.,
∆ is conjugate to an orthogonal or symplectic representation.

Proof. The representations ∆ and ∆−tr = (g 7→ ∆(g)−tr) are absolutely irreducible with
the same traces, so by Proposition 3.1 they are equivalent. Let y ∈ GL(n,K) such that
y∆(g)y−1 = ∆(g)− tr for all g ∈ G. Then

∆(g) = (∆(g)− tr)− tr = y− try∆(g)y−1ytr

for all g ∈ G, so y− try lies in the centralizer of ∆ by Schur’s Lemma. Hence y− try = λIn for
some λ ∈ K. But ytr = λy = λ2ytr, so either λ = 1, in which case y is symmetric, or λ = −1,
in which case y is skew-symmetric.

Proposition 3.11. Let G be a group and K a field with an automorphism α of order 2. Let
∆: G→ GL(n,K) be an absolutely irreducible representation with character χ such that τχ =
αχ, i.e., χ(g) = α(χ(g−1)) for all g ∈ G. Then ∆ is conjugate to a unitary representation.

Proof. As in the last proposition, there exists y ∈ GL(n,K) with y∆(g)y−1 = α(∆(g)− tr) for
all g ∈ G, and we have y = λα(y)tr for some λ ∈ K. Applying α to this last equation and
transposing gives α(λ)−1 = λ, so λ has norm 1 over the fixed field. By Hilbert’s Theorem 90,
cf. [Lan02], there exists µ ∈ K with λ = α(µ)/µ, and by replacing y with µy we can assume
that y is Hermitian.

3.4 Detecting certain subgroups of PSL(n,K)

This section presents a generalization of Proposition 2.20 to arbitrary degree.
Note that the determinant map gives the following subgroups of GL(n, q) which contain
SL(n, q).

Definition 3.12. For k|(q − 1) define

GLk(n, q) := {A ∈ GL(n, q) | det(A) ∈ F∗k
q },

i.e., those invertible matrices whose determinant is a k-th power in Fq.
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In particular, GL1(n, q) = GL(n, q) and GLq−1(n, q) = SL(n, q). These groups give rise to
the subgroups PGLk(n, q) := GLk(n, q)/Z(GLk(n, q)) of PGL(n, q). But whereas the groups
GLk(n, q) are all pairwise non-isomorphic, the same holds for the groups PGLk(n, q) if and
only if Fq contains a primitive n-th root of unity. More precisely, the following holds, as can
be seen using the lattice of normal subgroups of GL(n, q).

Remark 3.13. Let k1 and k2 be divisors of q − 1. Then PGLk1(n, q) ∼= PGLk2(n, q) if and
only if F∗k1

q F∗d
q = F∗k2

q F∗d
q , where d := (q − 1)/(n, q − 1). In particular, there is a bijection

between the divisors k of (n, q − 1) and the isomorphism classes of PGLk(n, q).

Thus we only have to consider the groups PGLk(n, q) with k|(n, q − 1). These groups can be
embedded into a PSL as follows.

Remark 3.14. Let k|(n, q − 1), and let ℓ ∈ N such that every element in F∗k
q has an n-th

root in F∗
qℓ
. Then PGLk(n, q) embeds into PSL(n, qℓ) via

PGLk(n, q) →֒ PSL(n, qℓ) : M 7→ n
√
Det(M)

−1
M.

We will use this embedding to regard PGLk(n, q) as a subgroup of PSL(n, qℓ).

The action in Definition 3.6 allows us to identify the projective representations into PSL(n, q)
which take values in one of the smaller groups PGLk(n, q′) defined above. To do this, we use
Theorem 3.17 below.

We will need the following elementary lemma.

Lemma 3.15. If f = tℓ − a ∈ Fq[t], then f has a root in Fqℓ.

Proof. Proceed by induction on the number of prime factors of ℓ, where the case ℓ = 1 is
trivial. Let r be a prime dividing ℓ, so ℓ = rm for some m ∈ N. Note first that tr − a has a
root α in Fqr : If (r, q − 1) = 1 then taking r-th powers is an automorphism, so tr − a already
has a root in Fq; otherwise, Fq has a primitive r-th root of unity, in which case this is a
corollary of Hilbert’s Theorem 90. Now tm−α ∈ Fqr [t] is a divisor of tℓ− a, and it has a root
in F(qr)m = Fqℓ by the induction hypothesis.

Recall that Fm := Fr(g1, . . . , gm) is the free group on the generators g1, . . . , gm, and for a
representation ∆: G → SL(n, q), we denote by ∆: G → PSL(n, q) the induced projective
representation. Furthermore, µn(q

ℓ) is the largest subgroup of F∗
qℓ

whose order divides n.

We will also need the norm function defined on µn(q
ℓ)m:

Definition 3.16. Let ℓ ∈ N. Define

N: µn(q
ℓ)m → µn(q)

m : σ = (σ1, . . . , σm) 7→ (NF
qℓ
/Fq

(σ1), . . . ,NF
qℓ
/Fq

(σm)),

where NF
qℓ
/Fq

: F∗
qℓ

→ F∗
q is the norm of Fqℓ/Fq.

Theorem 3.17. Let k|(n, q − 1), and let ∆: Fm → SL(n, qℓ) be an absolutely irreducible
representation with character χ. Then ∆(Fm) is conjugate to a subgroup of PGLk(n, q) if and
only if αχ = σχ for some σ ∈ µn(q

ℓ)m with N(σ) = 1 = (1, . . . , 1) and k|(n/|σ|), where α is
the Frobenius automorphism of Fqℓ/Fq.
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Proof. Assume first that ∆(Fm) is conjugate to a subgroup of PGLk(n, q). We can assume
that it is in fact a subgroup of PGLk(n, q), since we are only interested in the traces. Set
Xi := ∆(gi) for i = 1, . . . ,m; then there exist λi ∈ Fqℓ and X̃i ∈ GLk(n, q) with Xi = λiX̃i.

Furthermore, λni = det(X̃i)
−1 ∈ F∗k

q for all i, so λi is an n-th root of an element in Fq.

Thus α(λi) = σiλi for some σi ∈ µn(q
ℓ). The element σ := (σ1, . . . , σm) ∈ µn(q

ℓ)m satisfies
αχ = σχ, and since λi = αℓ(λi) = N(σi)λi we get N(σ) = 1. Finally, λ

|σ|
i ∈ F∗

q , hence

λni ∈ F∗n/|σ|
q . It is clear that F∗n/|σ|

q is the smallest subgroup of F∗
q containing F∗n

q and all
determinants, so k|(n/|σ|).
Now assume conversely αχ = σχ for some σ ∈ µn(q

ℓ)m with N(σ) = 1 and k|(n/|σ|). By
Proposition 3.1, α∆ and σ∆ are equivalent, so y(σ∆)y−1 = α∆ for some y ∈ GL(n, qℓ). For
every w ∈ Fm there exists ρ ∈ µn(q

ℓ) with σ∆(w) = ρ∆(w), and we get

∆(w) = αℓ−1(yρ∆(w)y−1)

= αℓ−1(ρ)αℓ−1(y)αℓ−2(yρ∆(w)y−1)αℓ−1(y)−1

= αℓ−1(ρ) · · · ρ︸ ︷︷ ︸
=1

αℓ−1(y) · · ·α(y)y∆(w)y−1α(y)−1 · · ·αℓ−1(y)−1.

Since w is arbitrary and ∆ is absolutely irreducible, Schur’s Lemma yields αℓ−1(y) · · ·α(y)y =
λIn for some λ ∈ Fqℓ . Applying α to this equation and conjugating with y−1, we see that λ is

fixed by α, hence λ ∈ Fq; by replacing y with ℓ
√
λ
−1
y ∈ GL(n, qℓ) (which exists according to

the lemma) we can assume αℓ−1(y) · · ·α(y)y = In. But then Hilbert’s Theorem 90 for matrices
applies (see [GH97, Proposition 1.3]), so there exists z ∈ GL(n, qℓ) with y = α(z)−1z. An
easy verification shows α(z∆) = σ(z∆), so for the rest of the proof we can assume α∆ = σ∆
and we will show ∆(Fm) ⊆ PGLk(n, q).
Since α(∆(gi)) = σi∆(gi) for all i and σi has norm 1, there exists λi ∈ Fqℓ with α(∆(gi)) =

α(λi)λ
−1
i ∆(gi) by Hilbert’s Theorem 90. SetXi := ∆(gi) and X̃i := λ−1

i Xi. Then α(X̃i) = X̃i,

hence X̃i ∈ GL(n, q). Furthermore, α(λi) = σiλi, so λ
|σ|
i ∈ F∗

q and λni ∈ F∗n/|σ|
q ≤ F∗k

q , hence

X̃i ∈ GLk(n, q). In other words, for each word w ∈ Fm, the image ∆(w) has the form
n
√
det(W )

−1
W for some W ∈ GLk(n, q). Thus ∆(Fm) ⊆ PGLk(n, q).

In Chapter 4, the last theorem is applied in the following simpler form.

Corollary 3.18. Let n be prime with n ∤ q, and let ∆: Fm → SL(n, qn) be an absolutely irre-
ducible representation with character χ. Then ∆(Fm) is conjugate to a subgroup of PGL(n, q)
if and only if αχ = σχ for some σ ∈ 〈ζ〉m, where α is a generator of Gal(Fqn/Fq) and ζ ∈ Fqn

is a primitive n-th root of unity.



30 CHAPTER 3. CHARACTERS OF GROUP REPRESENTATIONS



Chapter 4

The L3-U3-quotient algorithm

This chapter presents an L3-U3-quotient algorithm. Given a finitely presented group on two
generators, the algorithm finds all quotients isomorphic to PSL(3, q), PSU(3, q), PGL(3, q),
or PGU(3, q), for any prime power q.

The basic ideas of the L3-U3-quotient algorithm are the same as for the L2-quotient algorithm.
First convert the relations of the group into relations of some polynomial ring. Then compute
the minimal associated primes and remove all prime ideals which do not give absolutely
irreducible representations, or which will lead to epimorphisms onto proper subgroups. To
make the analogy of the two algorithms even more apparent, the organization of the sections
of this chapter is the same as in Chapter 2.

Here is a more detailed outline. Section 4.1 studies the representations of a free group into
SL(3,K) for an arbitrary field K, and is the longest section of this chapter. First the trace
polynomials for degree 3 are introduced, which allow the determination of any character value
of a representation ∆: Fm → SL(3,K) by knowing only finitely many values. For m = 2,
the trace polynomials are polynomials in nine variables, but they are not unique. The non-
uniqueness stems from a quadratic relation, which is determined later in the section. If this
relation is satisfied for a tuple t of nine values in Fq, there exists a representation affording t.

The four matrices (I2,∆(g1),∆(g2),∆(g1g2)) always form a basis of K2×2 if the represen-
tation ∆: F2 → SL(2,K) is absolutely irreducible. The analogue for degree 3 is proved in
this first section. Finally, an effective test is developed to decide absolute irreducibility of
representations F2 → SL(3,K).

Section 4.2 defines the trace presentation ideals for degree 3, and Section 4.3 defines various
actions on representations, trace tuples, and ideals, which play an even more important role
than in degree 2.

To decide surjectivity of a projective representation F2 → PSL(3, q), more subgroups have to
be considered than in degree 2; this is done in Section 4.4.

Finally, Section 4.5 draws the connection between ring quotients and group quotients, which
allows the presentation of the algorithms in the last section.

While the basic ideas are the same for the L2-quotient and the L3-U3-quotient algorithm,
there are several complications and new obstacles to overcome on the way to an L3-U3-
quotient algorithm. Some of them are already mentioned above, and others are mentioned
later. One complication however deserves special attention to avoid too much confusion later
on. The center of the groups SL(3, q) plays a central role in the algorithms. It is trivial or
generated by ζI3, where ζ is a primitive third root of unity, in case it exists. To deal with the
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sign systems uniformly for any characteristic, we need to work with a polynomial ring over
Z[ζ] instead of Z. However, we also use a bijection between Gal(Fq)-orbits of trace tuples and
maximal ideals of a polynomial ring, cf. Remarks 2.16 and 4.22, which is best dealt with using
a polynomial ring over Z. This forces us to switch between two polynomial rings, depending
on the context.

4.1 Representations of free groups

The aim of this section is to give a precise description of representations of the free group on
two generators into SL(3, q) for prime powers q.
As seen in Section 2.1, every absolutely irreducible representation ∆: F2 → SL(2, q) is uniquely
determined by the traces of the matrices ∆(g1), ∆(g2), and ∆(g1g2), and for any given triple
of field elements there exists a corresponding representation. The results of this section are
the corresponding analogues in degree 3.
By Proposition 3.1, every absolutely irreducible representation is uniquely determined by its
character, so the first step is to describe the character by finitely many values, using trace
polynomials. This can be done for free groups of arbitrary degree. To get unique trace
polynomials, further work has to be done, resulting in a quadratic relation for the traces.
While in Section 2.1, given a trace tuple (t1, t2, t12) it is easy to write down a representation
affording this tuple, this seems not to be possible in degree 3. Instead, we will use invariant
theory to prove the existence of such a representation, without actually constructing one.
Another important result of Section 2.1 is that (I2,∆(g1),∆(g2),∆(g1g2)) is always a basis if
∆ is absolutely irreducible; this immediately gives a test whether a representation is absolutely
irreducible, based only on the trace tuple. The third part of this section gives a generalization
of this important result. While this also gives a test for absolute irreducibility just as in
degree 2, this is not efficient in practice. So in the last part, an alternative test is developed.
The theory of the trace polynomials has a tight relationship to the invariant theory of tuples
of matrices, acted upon by the general linear group. This topic has a long history, and many
results concerning the case of two matrices of degree 3 have been given. The introduction of
[Law07a] gives a good overview. Despite of this long history and the long list of results on
this topic, I decided to include this section for various reasons. First, the results on this topic
so far mostly consider the case of matrices over an algebraically closed field of characteristic
zero, while for the L3-U3-quotient algorithm a characteristic free approach is needed. Second,
while it should be possible, it is not easy to get a construction for the trace polynomials from
the invariant theoretic results, since they only try to give minimal generating sets and are
not concerned with the question how any invariant can be written as a polynomial in these
generators. And third, the approach presented here seems to be shorter than the results
published so far.

4.1.1 Trace polynomials

The first result is the analogue of Theorem 2.1, which introduces the trace polynomials for
degree 2 and allows the computation of all character values by the knowledge of only finitely
many.
The proof of Theorem 2.1 relies on the two relations (2.1) and (2.2), so what are the appro-
priate analogues in degree 3? As pointed out to me by Steve Donkin, both (2.1) and (2.2)
are consequences of the Cayley-Hamilton Theorem. This result always holds in characteristic
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zero, i.e., every relation of traces of generic matrices is a consequence of the Cayley-Hamilton
Theorem, cf. [Pro76, Theorem 4.6].

Lemma 4.1. Let R be a commutative ring and X1, X2, X3 ∈ SL(3, R). Set X−i := X−1
i for

i ∈ {1, 2, 3}, and let ti1,...,ik := Tr(Xi1 · · ·Xik) for i1, . . . , ik ∈ {±1,±2,±3}. The following
relations for the traces hold:

t1,2,1,3 = t−1,2t3 + t−1,3t2 + t−1t2,3 + t1,2t1,3 − t−1t2t3 − t−1,2,3 − t−1,3,2

and

t1,2,−1,3+ t−1,2,1,3 = t1(t−1,2,3+ t−1,3,2− t2t−1,3− t3t−1,2)+ t−1(t1,2,3+ t1,3,2− t2t1,3− t3t1,2)

+ t1,2t−1,3 + t1,3t−1,2 + (t1t−1 + 1)(t2t3 − t2,3)

Proof. Assume first that R is an algebraically closed field of characteristic 0. Let Y1, . . . , Y4 ∈
R3×3. For σ ∈ S4 with cycle decomposition σ = (i1, . . . , ik)(ik+1, . . . , iℓ) · · · define

Trσ(Y1, . . . , Y4) := Tr(Yi1 · · ·Yik) Tr(Yik+1
· · ·Yiℓ) · · · .

Then the fundamental trace relation
∑

σ∈S4

sgn(σ) Trσ(Y1, . . . , Y4) = 0

holds, cf. [Pro76, Theorem 4.3]. Setting Yi := Xi for i = 1, 2, 3 and Y4 := X−1
1 yields

the second relation. Setting Yi := Xi for i = 1, 2, 3 and Y4 := X1, and using the relation
A2 = A−1 + Tr(A)A − Tr(A−1)I3 for all A ∈ SL(3, R) yields the first relation. Thus the
relations hold if R is an algebraically closed field of characteristic 0.
Next assume that Xi = (xijk)jk with indeterminates xijk, and

R̂ = Z[xijk | 1 ≤ i, j, k ≤ 3]/〈det(Xi)− 1 | 1 ≤ i ≤ 3〉.

Regard the Xi as elements of SL(3, R̂). Since R̂ is an integral domain (each det(Xi) − 1 is
irreducible, and the variables of the three polynomials are disjoint), it is embeddable into an
algebraically closed field, so the relations hold in this case.
Finally let R and the Xi be arbitrary. We can assume that R is generated as a ring by
the entries of the Xi. But then R is an epimorphic image of R̂, hence the relations hold in
general.

Proposition 4.2. Let Fm be the free group on the generators g1, . . . , gm and g−i := g−1
i for

1 ≤ i ≤ m. Let

Φ := {ϕ : {1, . . . , k} → {±1, . . . ,±m} | k ∈ N, ϕ injective, ϕ(1) < ϕ(i) for all i > 1,

ϕ(i) + ϕ(i+ 1) 6= 0, ϕ(i) < ϕ(j) for all i < j with ϕ(i) + ϕ(j) = 0}.

For every ϕ ∈ Φ let xϕ be an indeterminate over Z.
For every word w ∈ Fm there exists a polynomial pw ∈ S := Z[xϕ |ϕ ∈ Φ], such that for every
commutative ring R and any representation ∆: Fm → SL(3, R),

Tr(∆(w)) = ε∆(pw),

where ε∆ : S → R is the evaluation map which sends xϕ to Tr(∆(gϕ(1) · · · gϕ(k))).
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Proof. The proof is constructive and works by induction on the length |w| of w.
Let w = gi1 · · · gik . Since Tr(XY ) = Tr(Y X) for all X,Y ∈ R3×3, we can assume that i1 < ij
for all j > 1. Define ϕ : {1, . . . , k} → {±1, . . . ,±m} by ϕ(j) := ij . By our assumption
ϕ(1) < ϕ(j) for all j > 1, and we assume that w is reduced, so ϕ(i) +ϕ(i+1) 6= 0 for all i. If
ϕ ∈ Φ, set pw := xϕ. If ϕ is not injective, then the first relation in the preceding lemma can
be used to define pw as a polynomial in the pv with |v| < |w|.
It remains to deal with the case where ϕ(i) + ϕ(j) = 0 for some i < j with ϕ(i) > ϕ(j). Let
i be minimal with this property. By the second relation of the preceding lemma,

Tr(∆(gϕ(1) · · · gϕ(k))) = Tr(gϕ(i)gϕ(i+1) · · · gϕ(j−1)g−ϕ(i)gϕ(j+1) · · · gϕ(k)gϕ(1) · · · gϕ(i−1))

= −Tr(g−ϕ(i)gϕ(i+1) · · · gϕ(j−1)gϕ(i)gϕ(j+1) · · · gϕ(k)gϕ(1) · · · gϕ(i−1)) + q

= −Tr(gϕ(1) · · · gϕ(i−1)g−ϕ(i)gϕ(i+1) · · · gϕ(j−1)gϕ(i)gϕ(j+1) · · · gϕ(k)) + q,

where q is a polynomial in the pv, with v running over words of length smaller than |w|. This
process terminates after finitely many steps.

The pw of Proposition 4.2 are again called trace polynomials.

4.1.2 The quadratic relation

As in Chapter 2, the polynomial pw in Proposition 4.2 is not unique. While in degree 2 there
is at least uniqueness if one restricts to the two generator case, in degree 3 not even this holds.
The reason for this is that the traces are not algebraically independent. Note that pw is a
polynomial in the nine variables

x1, x−1, x2, x−2, x1,2, x−1,2, x−2,1, x−2,−1, x−2,1,2,−1 =: x[1,2],

corresponding to the traces of the two matrices, their inverses, the products of two matrices,
and their commutator. Thus, by Proposition 3.1 an absolutely irreducible representation
∆: F2 → SL(3,K) is uniquely determined, up to equivalence, by the traces of the nine matrices

∆(g1),∆(g−1
1 ),∆(g2),∆(g−1

2 ),∆(g1g2),∆(g−1
1 g2),∆(g−1

2 g1),∆(g−1
2 g−1

1 ),∆([g1, g2]),

which we will always denote by t1, t−1, . . . , t−2,−1, t[1,2] := t−2,1,2,−1. However, given nine
elements t1, . . . , t[1,2] ∈ K, it is not possible in general to find a representation which affords
these traces. In fact, t[1,2] satisfies a quadratic relation in the other eight traces. The aim of
this subsection is to find this quadratic relation, which will give analogues of Theorems 2.3
and 2.5.

As noted in the introduction, the invariant theory of two 3 × 3-matrices has a long history,
and the following relation for the trace of the commutator already occurs in [Nak02] (in a
more general form), and in [Law07b] (for two matrices in SL(3,C)).

Lemma 4.3. Let R be a commutative ring and X1, X2 ∈ SL(3, R). Set X−i := X−1
i for

i ∈ {1, 2}, and let ti1,...,ik := Tr(Xi1 · · ·Xik) for i1, . . . , ik ∈ {1, 2} and t[1,2] := t−2,1,2,−1. The
following relation for the traces holds:

r[1,2] :=t
2
[1,2] − (t1t−1t2t−2 − t−1t−2t1,2 − t1t−2t−1,2 − t−1t2t−2,1 − t1t2t−2,−1

+ t1t−1 + t1,2t−2,−1 + t2t−2 + t−1,2t−2,1 − 3)t[1,2]
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+ t1t−1t
2
2t

2
−2 + t21t

2
−1t2t−2 − t3−1t2t−2 − t1t−1t

3
−2 − t31t2t−2 − t1t−1t

3
2

+ t21(t
2
2t1,2 + t2−2t−2,1) + t2−1(t

2
−2t−2,−1 + t22t−1,2)

− t21(t−1t2t−2,−1 + t−1t−2t−1,2)− t2−1(t1t2t−2,1 + t1t−2t1,2)

− t22(t−1t−2t−2,1 + t1t−2t−2,−1)− t2−2(t−1t2t1,2 + t1t2t−1,2)

− t1t2t−2t1,2t−2,1 − t1t−1t−2t−2,1t−2,−1 − t−1t2t−2t−1,2t−2,−1 − t1t−1t2t1,2t−1,2

+ t21(t−2t1,2 + t−1,2t−2,−1 + t2t−2,1) + t2−1(t−2t−1,2 + t1,2t−2,1 + t2t−2,−1)

+ t22(t1t−1,2 + t−1t1,2 + t−2,1t−2,−1) + t2−2(t1,2t−1,2 + t−1t−2,1 + t1t−2,−1)

+ t21,2(t−1t−1,2 + t−2t−2,1 − 2t1t2) + t2−2,−1(t1t−2,1 + t2t−1,2 − 2t−1t−2)

+ t2−1,2(t−2t−2,−1 + t1t1,2 − 2t−1t2) + t2−2,1(t−1t−2,−1 + t2t1,2 − 2t1t−2)

+ t1t−1(t−1,2t−2,1 + t1,2t−2,−1) + t2t−2(t−1,2t−2,1 + t1,2t−2,−1)

+ t1t−1t2t−2 + t1,2t−1,2t−2,1t−2,−1

+ 3t1(t2t−2,−1 − t1,2t−2,1) + 3t2(t−1t−2,1 − t1,2t−1,2)

+ 3t−1(t−2t1,2 − t−1,2t−2,−1) + 3t−2(t1t−1,2 − t−2,1t−2,−1)

+ t31 + t32 + t3−1 + t3−2 + t31,2 + t3−1,2 + t3−2,1 + t3−2,−1

+ 9 = 0,

Proof. This can be verified with a simple Gröbner basis calculation over Z.

Remark 4.4. Exchanging X1 and X2 gives a new quadratic relation for t[2,1] := t−2,−1,2,1.
But the trace is invariant under cyclic permutation of the products (e.g. t2,1 = t1,2), so in fact
all that changes is that t[1,2] is replaced by t[2,1]. If r[1,2] is regarded as a quadratic polynomial
in the indeterminate t[1,2], this shows that the trace of the commutators and the trace of its
inverse are the two zeroes of a quadratic polynomial in traces of lower degree.

In fact, the last remark gives a way to find the relation r[1,2] in the first place, which is a
considerably harder task than checking its validity. I will outline two approaches how to do
this. Both approaches rely on the following observation. If the trace of the commutator and
the trace of its inverse satisfy a quadratic relation, then it is enough to write the sum and
the product of the two traces as polynomials in traces of lower degree. Furthermore, to find
a candidate of the relation, it is enough to assume that R = C. Note that a relation for the
sum of the traces is already given in Lemma 4.1 if X3 is replaced by X−1

2 , so we now focus
on the product.
The first approach is due to Nakamoto, who constructs a relation for the traces of two matrices
X1, X2 ∈ R3×3, where R is an arbitrary commutative ring in [Nak02]. First assume that
X1 = (aij)i,j and X2 = (bij)i,j are matrices of indeterminates over C. Introduce variables
ti1,...,ik for i1, . . . , ik ∈ {1, 2}, where ti1,...,ik and tj1,...,jℓ are considered equal if k = ℓ and the
j’s are a cyclic permutation of the i’s. Give a bidegree to ti by counting the i’s equal to 1
and 2, respectively; this defines a bigrading on the polynomial ring C[ti | i ∈ {1, 2}k, k ∈ N].
View C3×3 × C3×3 as an affine variety, and identify the coordinate ring C[C3×3 × C3×3] with
the polynomial ring C[aij , bij | 1 ≤ i, j ≤ 3], which is bigraded in an obvious way (i.e., every
aij has bidegree (1, 0), and every bij has bidegree (0, 1)). Let GL(n,C) act by conjugation on
C3×3 × C3×3, then the invariant ring C[C3×3 × C3×3]GL(3,C) is also bigraded and

C[ti | i ∈ {1, 2}k, k ∈ N] → C[C3×3 × C3×3]GL(3,C) : ti 7→ Tr(Xi1 · · ·Xik)
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defines a graded homomorphism. Now a relation for the traces is just an element of the kernel
of this map.

The product Tr(X1X2X
2
1X

2
2 ) Tr(X2X1X

2
2X

2
1 ) has bidegree (6, 6), so any relation involving

this product can be assumed to be homogeneous of bidegree (6, 6). There are 305 monomials
in the ti of bidegree (6, 6), so a relation has to be a linear combination of these monomials. To
find the coefficients of this linear combination, simply specify the aij and bij to values in C.
Every specification gives a linear equation for the ti, and choosing enough specifications gives
a system of linear equations which has a one-dimensional kernel. Solving this equation yields
the relation for the product of the traces (see [Nak02] for more details).

The second approach uses Gröbner bases. As noted above, to find the relation, it is enough
to assume that X1, X2 ∈ SL(3,C). Since the trace is invariant under conjugation, we can
alter the Xi by simultaneous conjugation. Let v be an eigenvector of X1. Assume that
∆: F2 → SL(3,C) : gi 7→ Xi defines an irreducible representation, then (v,X2v) is linearly
independent. We further assume that (v,X2v,X1X2v) is linearly independent, so X1 and X2

can be assumed of the form

X1 =



a1,1 0 a1,3
0 0 a2,3
0 1 a3,3


 , X2 =



0 b1,2 b1,3
1 b2,2 b2,3
0 b3,2 b3,3




with aij , bij ∈ C. Let t1 be the trace of X1, then a3,3 = t1 − a1,1. Also, if t−1 is the trace of
the adjoint of X1, then a2,3 = (t1−a3,3)a3,3− t−1. Similarly, one can replace a1,3, b1,2, b1,3, b2,2
by polynomials in a3,3, b2,3, b3,3, t1, t−1, t2, t−2, t1,2, t−1,2, t−2,1.

Now assume that the aij , bij , and tij are indeterminates. Let

R = Q[a3,3, b2,3, b3,3, t1, t−1, t2, t−2, t1,2, t−1,2, t−2,1, t−2,−1],

and I := 〈det(X1)−1, det(X2)−1,Tr(Xad
2 Xad

1 )− t−2,−1〉. Compute a Gröbner basis of I with
respect to a degree inverse lexicographic ordering. The normal form of

Tr(X1X2X
ad
1 Xad

2 ) Tr(X2X1X
ad
2 Xad

1 )

is a polynomial in the ti, so the relation is found.

There is a possible third approach, using the representation theory of the symmetric group.
By the Procesi-Razmyslov theory, every relation between the traces in characteristic zero is
a consequence of the Cayley-Hamilton Theorem, and there is a tight relationship between
the relation of the traces and the symmetric group as follows. Let X1, . . . , Xm ∈ Kn×n and
σ ∈ Sm. Write σ = (i1, . . . , ik)(j1, . . . , jℓ) · · · in cycle decomposition, including the cycles
of length 1, and define Trσ(X1, . . . , Xm) := Tr(Xi1 · · ·Xik) Tr(Xj1 · · ·Xjℓ) · · · . Furthermore,
let I(n + 1,m)EK Sm be the ideal generated by all simple factors corresponding to Young
diagrams of at least n + 1 rows. Then

∑
σ∈Sm

aσ Trσ(X1, . . . , Xm) is a trace identity (i.e.,∑
σ∈Sm

aσ Trσ(X1, . . . , Xm) = 0 for all possible choices of the Xi) if and only if
∑

σ∈Sm
aσσ ∈

I(n + 1,m), cf. [Pro76, Theorem 4.3]. As in the proof of Lemma 4.1, it is likely that the
relation for the product of the traces comes from an element σ ∈ I(4, 8) such that σ contains
a cycle with cycle structure (4, 4).

This last approach is more general than the other two above, since it would give a relation for
eight arbitrary matrices. However, finding the element in I(4, 8) seems to be harder as well,
and since we are only interested in the two generator case, this will not be pursued here.
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We are now able to prove the uniqueness of the trace polynomials in degree 3. The proof
uses a result in the invariant theory of SL(n,K) for algebraically closed fields of arbitrary
characteristic, given by Steve Donkin, cf. [Don92].

The proof of the following proposition is due to Steve Donkin.

Proposition 4.5 (Donkin, [Don10], [Don92]). Let K be an algebraically closed field. The
invariant ring

K[SL(n,K)× · · · × SL(n,K)︸ ︷︷ ︸
m times

]GL(n,K),

where GL(n,K) acts by simultaneous conjugation, is finitely generated. More specifically, it is
generated by the coefficients of the characteristic polynomials of products of matrices xi1 · · ·xir ,
where the ij ∈ {1, . . . ,m}, and xk is in the kth component of SL(n,K)× · · · × SL(n,K).

Proof. We use the notations and results of [Don92]. Let G be a reductive group acting on an
affine variety V and let A be a closed G-stable subset. Call (V,A) a good pair if K[V ] has a
good filtration and so does the defining ideal IA of A. If (V,A) is a good pair, then the map
K[V ]G → K[A]G is surjective.

In the case of G = GL(n,K), V = GL(n,K) and A = SL(n,K) it is easy to see that (V,A) is a
good pair, since the defining ideal is (det−1)K[G], which is isomorphic to K[G]. On general
ground, if (Vi, Ai) are good pairs, then (V1 × V2, A1 × A2) is a good pair. So the map on
invariants K[GL(n,K)×· · ·×GL(n,K)]G → K[SL(n,K)×· · ·×SL(n,K)]G is surjective.

In the case of n = 3, the coefficients of the characteristic polynomial are just the trace and
the trace of the inverse. This gives a proof of the uniqueness of the trace polynomials, which
is an adaptation of the argument in [Law07b]. Note that we will write x[1,2] for x−2,1,2,−1.

Proposition 4.6. For any word w = w(a, b) ∈ Fr(a, b), there exists a unique polynomial

pw ∈ Z[x1, x−1, x2, x−2, x1,2, x−1,2, x−2,1, x−2,−1, x[1,2]]

with degx[1,2]
(pw) < 2 satisfying the following property. For any representation ∆: F2 →

SL(3, R) over an integral domain R we have

Tr(∆(w)) = pw(Tr(X1),Tr(X
−1
1 ),Tr(X2), . . . ,Tr(X

−1
2 X−1

1 ),Tr([X1, X2])),

where X1 := ∆(g1) and X2 := ∆(g2). Furthermore, for any algebraically closed field K, the
invariant ring K[SL(3,K)× SL(3,K)]GL(3,K) is isomorphic to K[x1, . . . , x[1,2]]/〈r[1,2]〉.

Proof. The existence of pw follows by Proposition 4.2.

Now let K be an algebraically closed field. Then, by Donkin’s Theorem, the map

ϕ : K[x1, . . . , x[1,2]] → K[SL(3,K)× SL(3,K)]GL(3,K)

is surjective. The invariant ring is an integral domain of Krull dimension 8, while the poly-
nomial ring K[x1, . . . , x[1,2]] has Krull dimension 9; thus the kernel is a principal ideal. By
Lemma 4.3 it contains 〈r[1,2]〉 (where the ti are replaced by xi), hence kerϕ = 〈r[1,2]〉. This
also proves the uniqueness of the trace polynomials.
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Definition 4.7. Let t = (t1, t−1, t2, t−2, t1,2, t−1,2, t−2,1, t−2,−1, t[1,2]) ∈ F9
q . Then t is called a

trace tuple, if t[1,2] satisfies the quadratic relation r[1,2] of Lemma 4.3.

If ∆: F2 → SL(3,K) is a representation with Tr(∆(g1)) = t1, Tr(∆(g−1
1 )) = t−1, Tr(∆(g2)) =

t2, etc., then ∆ is a representation affording the trace tuple t.

In degree 2, it is possible to write down for every trace tuple t = (t1, t2, t12) ∈ K a repre-
sentation affording t, cf. Theorem 2.5. There does not seem to be an easy way to do this in
degree 3. However, using invariant theory it is easy to prove that such a representation always
exists.

Theorem 4.8. Let t ∈ K9 be a trace tuple. There exists a representation ∆: F2 → SL(3,K)
affording t.

Proof. Assume without loss of generality that K is algebraically closed. Set G := GL(3,K)
and X := SL(3,K)× SL(3,K). By Proposition 4.6 we have

K[X//G] = K[X]G = K[x1, . . . , x[1,2]]/〈r[1,2]〉,

where X//G denotes the categorical quotient, cf. e.g. [DK02, Section 2.3]. Now t is a zero
of r[1,2] and hence a point of X//G. Since X → X//G is surjective, there is a representation
∆: F2 → SL(3,K) affording t.

4.1.3 A generating set for K3×3

In degree 2, if ∆: F2 → SL(2,K) is absolutely irreducible, then (I2,∆(g1),∆(g2),∆(g1g2))
is a basis of K2×2, cf. Lemma 2.7. This has two important applications. First, it yields the
criterion in Theorem 2.8 for absolute irreducibility in term of the traces. And second, it allows
the definition of the trace presentation ideal. So it is obviously desirable to get an analogous
result in degree 3. Sadly, such a nice tuple does not exist here. The best thing possible is to
give a set of fourteen matrices which form a generating set if the representation is absolutely
irreducible. The corresponding irreducibility criterion is not as useful as in degree 2 and will
be replaced by a better criterion in the next subsection, but the tuple allows the definition of
the trace presentation ideal in Section 4.2.
Unfortunately, the proof of the result is rather technical.

Lemma 4.9. Let K be a field and X1, X2, X3 ∈ SL(3,K). Set X−i := X−1
i for i ∈ {1, 2, 3},

and let ti1,...,ik := Tr(Xi1 · · ·Xik) for i1, . . . , ik ∈ {1, 2, 3}. The following relations for the
matrices hold.

X1X2X1 = −X−1
1 X2 −X2X

−1
1 + t−1X2 + t2X

−1
1 + t1,2X1 + (t−1,2 − t−1t2)I3. (4.1)

X1X2X
−1
1 = −X−1

1 X2X1 + t1(X2X
−1
1 +X−1

1 X2) + t−1(X1X2 +X2X1)

− (t1t2 − t1,2)X
−1
1 − (t1t−1 + 1)X2 − (t−1t2 − t−1,2)X1

+ (t1t−1t2 − t−1t1,2 − t1t−1,2 + t2)I3. (4.2)

X−1
1 X−1

2 X1X2 = X−1
2 X1X2X

−1
1 + t2(X

−1
2 +X−1

1 X2X1)− t−2(X2 +X1X2X
−1
1 )

+ t−2,−1(X1X2 +X2X1)− t−1,2(X1X
−1
2 +X−1

2 X1)
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− (t1t2 − t1,2)X
−1
1 X−1

2 + (t1t−2 − t−2,1)X2X
−1
1

− (t1t−2,−1 − t−2)X2 + (t1t−1,2 − t2)X
−1
2 − (t2t−2,−1 − t−2t−1,2)X1

+ (t1t2t−2,−1 − t1t−2t−1,2 − t1,2t−2,1 + t−2,1t−1,2)I3. (4.3)

Proof. By [Pro76, Corollary 4.4], the relation

0 = −X1X2X3 −X1X3X2 −X2X1X3 −X2X3X1 −X3X1X2 −X3X2X1

+ t1(X2X3 +X3X2) + t2(X1X3 +X3X1) + t3(X1X2 +X2X1)

− (t1t2 − t1,2)X3 − (t1t3 − t1,3)X2 − (t2t3 − t2,3)X1

+ (t1t2t3 − t1,2t3 − t1,3t2 − t2,3t1 + t1,2,3 + t1,3,2)I3.

holds for all matrices in characteristic zero, and since the coefficients are all integers, the
relation holds in general (cf. the proof of Lemma 4.1).
Replacing X3 by X1 and X−1

1 and using the trace polynomials as well as the relation X2
1 =

X−1
1 + t1X1 − t−1I3 yields (4.1) and (4.2), respectively. For the last relation, replace first X3

by X−1
1 X−1

2 and subtract from this equation the equation which arises from replacing X1 by
X−1

2 , X2 by X1, and X3 by X2X
−1
1 .

Proposition 4.10. Let ∆: F2 → SL(3,K) be an absolutely irreducible representation; set
X1 := ∆(g1) and X2 := ∆(g2). Then

(I3, X1, X
−1
1 , X2, X

−1
2 , X1X2, X2X1, X

−1
1 X2, X2X

−1
1 ,

X1X
−1
2 , X−1

2 X1, X
−1
1 X−1

2 , X−1
2 X−1

1 , [X1, X2])

is a generating set of K3×3.

Proof. If ∆ is absolutely irreducible, there exists a basis of K3×3 consisting of words in
X1, X2, X

−1
1 , X−1

2 . By (4.1), every word of length at least 5 can be reduced to a linear
combination of words of smaller length, hence there exists a basis of words of length at
most 4, where every letter occurs at most once. There are eight words of length 4 such that
every letter occurs exactly once, and every one of them can be reduced to linear combination
of X−1

1 X−1
2 X1X2 and words of length at most 3, or to a linear combination of X−1

2 X1X2X
−1
1

and words of length at most 3, using (4.2). By (4.3),

(I3, X1, X
−1
1 , X2, X

−1
2 , X1X2, X2X1, X

−1
1 X2, X2X

−1
1 , X1X

−1
2 , X−1

2 X1, X
−1
1 X−1

2 , X−1
2 X−1

1 ,

X1X2X
−1
1 , X1X

−1
2 X−1

1 , X2X1X
−1
2 , X2X

−1
1 X−1

2 , [X1, X2])

is a generating set of K3×3.
Assume first that (I3, X1, X

−1
1 , X2, X

−1
2 ) is linearly dependent. Then X−1

1 or X−1
2 is a linear

combination of the other matrices. We handle the case X−1
2 ∈ 〈I3, X1, X

−1
1 , X2〉; the other

case is analogous. Using the fact that X−1
2 is a linear combination in the other four matrices

and relations (4.1) and (4.2), it is easy to see that

(I3, X1, X
−1
1 , X2, X1X2, X2X1, X

−1
1 X2, X2X

−1
1 , X−1

1 X−1
2 X1)

is a basis set of K3×3. Multiplying on the right by X2 yields the basis

(X2, X1X2, X
−1
1 X2, X

2
2 , X1X

2
2 , X2X1X2, X

−1
1 X2

2 , X2X
−1
1 X2, [X1, X2]),
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and the first eight elements can be reduced to linear combinations of words of length at most 2,
hence

(I3, X1, X
−1
1 , X2, X1X2, X2X1, X

−1
1 X2, X2X

−1
1 , [X1, X2])

is a basis. This finishes the proof if X−1
2 ∈ 〈I3, X1, X

−1
1 , X2〉, and similarly if X−1

1 ∈
〈I3, X1, X2, X

−1
2 〉.

Now assume that (I3, X1, X
−1
1 , X2, X

−1
2 ) is linearly independent. We prove that there exists a

basis consisting of words of length at most two. Suppose that this is not the case. Then there
is a word w3 of length 3 which cannot be written as a linear combination of words of smaller
length; by relation 4.1 and without loss of generality we can assume that w3 = X1X2X

−1
1 .

Then (I3, X1, X
−1
1 , X2, X

−1
2 , X1X2, X2X

−1
1 ) has to be linearly independent. Suppose

(I3, X1, X
−1
1 , X2, X

−1
2 , X1X2, X2X

−1
1 , w2)

is linearly dependent for every word w2 of length 2. Then the words X1X
−1
2 X−1

1 , X2X1X
−1
2 ,

X2X
−1
1 X−1

2 , and [X1, X2] can be reduced to linear combinations of words of length at most 2,
thus

(I3, X1, X
−1
1 , X2, X

−1
2 , X1X2, X2X

−1
1 , X1X2X

−1
1 )

is a generating system, which is a contradiction. Hence there exists a word w2 of length 2 such
that (I3, X1, X

−1
1 , X2, X

−1
2 , X1X2, X2X

−1
1 , w2) is linearly independent, and since w3 cannot

be written as a linear combination of words of smaller length,

(I3, X1, X
−1
1 , X2, X

−1
2 , X1X2, X2X

−1
1 , w2, X1X2X

−1
1 )

is a basis.
Multiplying this basis with X−1

1 from the left and X1 from the right yields again bases, which
we call B1 and B2, respectively. Every element in B1 except possibly X

−1
1 w2 can be written as

a linear combination of words of length at most 2, hence X−1
1 w2 must be a word which cannot

be written as such a linear combination. The same argument for B2 shows that w2X1 cannot
be shortened. Then X−1

1 w2 = X−1
1 ZX1 for some Z ∈ {X2, X

−1
2 }, and w2X1 = X−1

1 Z ′X1 for
some Z ′ ∈ {X2, X

−1
2 }, which is a contradiction. Hence the initial assumption that there is no

basis of words of length at most 2 is wrong, which proves the proposition.

For the formulation of the L3-quotient algorithm, it is enough to have a generating set for
the matrix algebra. However, to construct a representation from a trace tuple as outlined in
Proposition 3.4, a basis of the matrix algebra is needed. The proposition shows that one of
the

(
14
9

)
= 2002 possible subsets of the 14 matrices form a basis for K3×3, but it would be

expensive to try them all. A careful analysis of the proof shows that this number can actually
be reduced.

Corollary 4.11. Let ∆: F2 → SL(3,K) be an absolutely irreducible representation; set Xi :=
∆(gi). One of the following 72 tuples is a basis of K3×3.

• (I3, X1, X
−1
1 , X2, X1X2, X2X1, X

−1
1 X2, X2X

−1
1 , [X1, X2]).

• (I3, X1, X2, X
−1
2 , X1X2, X2X1, X1X

−1
2 , X−1

2 X1, [X1, X2]).

• (I3, X1, X
−1
1 , X2, X

−1
2 , w1, w2, w3, w4), where

{w1, w2, w3, w4} ⊆ {X1X2, X2X1, X
−1
1 X2, X2X

−1
1 , X1X

−1
2 , X−1

2 X1, X
−1
1 X−1

2 , X−1
2 X−1

1 }

is one of the 70 possible subsets of cardinality 4.
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4.1.4 Deciding absolute irreducibility

In Theorem 2.8, the knowledge of a basis of K2×2 is used to compute the irreducibility
indicator ρ, which has the property that a representation with trace tuple t is absolutely
irreducible if and only if t is a zero of ρ. Since Proposition 4.10 gives a generating set of
K3×3, a similar idea can be applied in degree 3 as follows. Let M be the 14 × 14-matrix
with entries Tr(X · Y ), where X and Y run through the elements of the generating set in
Proposition 4.10. Since the trace bilinear form is non-degenerate, the matrix M has rank 9
if and only if the 14 matrices form a generating set for K. This can be translated into
conditions for determinants of 9× 9-submatrices which generate an ideal ρ of Z[x1, . . . , x[1,2]].
Using Corollary 4.11, the number of generators can be reduced to 72. A representation
∆: F2 → SL(3,K) is absolutely irreducible if and only if the corresponding trace tuple is a
zero of ρ. Unfortunately, the generators are very big, which makes it rather unpleasant to
work with this ideal. For example, it seems that it is not even possible to compute a Gröbner
basis.
Here is another approach to compute small ideal generators which can actually be handled.
Let ∆: F2 → SL(3,K) be a representation. We can assume that K is algebraically closed.
Set X1 := ∆(g1) and X2 := ∆(g2). Then ∆ is not absolutely irreducible if and only if either
X1 and X2 are conjugate to matrices of the form

(
a a′
0 Y1

)
and

(
b b′
0 Y2

)
, respectively, or X1 and

X2 are conjugate to matrices of the form
(

a 0
a′′ Y1

)
and

(
b 0
b′′ Y2

)
, with a, b ∈ K∗, a′, b′ ∈ K1×2,

a′′, b′′ ∈ K2×1, and Y1, Y2 ∈ GL(2,K). For i ∈ {1, 2,−1,−2}k let ti := Tr(Xi1 · · ·Xik) and
si := Tr(Yi1 · · ·Yik). Note that det(Y1) = a−1, so

√
aY1 is a matrix of determinant 1, and

similarly for Y2. Using the trace polynomials of Theorem 2.1 and Proposition 4.2, we see that
the following relations hold:

t1 = a+ s1, t2 = b+ s2, t−1 = a−1 + s1a, t−2 = b−1 + s2b,

t1,2 = s1,2 + ab, t−1,2 = a(s1s2 − s1,2) + a−1b,

t−2,1 = b(s1s2 − s1,2) + b−1a, t−2,−1 = a−1b−1s1,2 + ab,

t[1,2] = as21 + bs22 + abs21,2 − abs1s2s1,2 − 1.

The first four equations can be used to write a, b, a−1, b−1 in terms of the ti and si, leaving five
conditions on the si and ti. Now regard the si and ti as indeterminates, and use an elimination
ordering to remove the si. The corresponding ideal is the analogue of ρ in degree 3.

Proposition 4.12. There exists an ideal ρEZ[x1, . . . , x[1,2]] satisfying the following condi-
tion: a representation ∆: F2 → SL(3,K) with trace tuple t is absolutely irreducible if and only
if t is not a zero of ρ.

Remark 4.13. The ideal ρ can be effectively computed. It can be generated by 10 elements,
and has Krull dimension 6.

Definition 4.14. A trace tuple t ∈ F9
q is called absolutely irreducible if it is not a zero of

the ideal ρ of Proposition 4.12.

4.2 Representations and ideals

Now we are for the first time confronted with the problem that Z does not contain a third
root of unity. Here is a description of the problem. Let G = 〈g1, g2 | r1, . . . , rk〉 be a finitely



42 CHAPTER 4. THE L3-U3-QUOTIENT ALGORITHM

presented group, and let δ : G → PSL(3, q) be a homomorphism. Then there exists a repre-
sentation ∆: F2 → SL(3, q) inducing δ, i.e., ∆(ri) ∈ Z(SL(3, q)) for all i = 1, . . . , k. If Fq

contains a primitive third root of unity ζ then Z(SL(3, q)) = 〈ζI3〉, so ∆(ri) ∈ Z(SL(3, q)) is
equivalent to ∆(ri) = siI3 for some si ∈ 〈ζ〉. Our goal is, as in the L2-quotient algorithm,
to construct all possible representations with this property, for all possible prime powers q.
Thus we have to work with a universal ring which contains a primitive third root of unity ζ.
To do this, we adjoin ζ to Z and work with the ring Z[ζ][x1, . . . , x[1,2]].

Definition 4.15. Let G = 〈g1, g2 | r1, . . . , rk〉 and s ∈ 〈ζ〉k. The trace presentation ideal

of G with respect to s is defined as

Is(G) := 〈prih − siph |h ∈ {1, g1, g−1
1 , g2, g

−1
2 , g1g2, g2g1, g

−1
1 g2, g2g

−1
1 , g1g

−1
2 , g−1

2 g1,

g−1
1 g−1

2 , g−1
2 g−1

1 , [g1, g2]}, i ∈ {1, . . . , k}〉EZ[ζ][x1, . . . , x[1,2]].

An element s ∈ 〈ζ〉k is called a sign system for G.

As in Section 2.2 we get the following result, using Proposition 4.10.

Proposition 4.16. Let ∆: F2 → SL(3, q) be an absolutely irreducible representation with
trace tuple t = (t1, . . . , t[1,2]) ∈ F9

q. Then ∆ induces a homomorphism G → PSL(3, q) if and

only if t is a zero of a trace presentation ideal Is(G) for some s ∈ 〈ζ〉k.

4.3 Actions on representations, trace tuples and ideals

Two important groups acting on various objects in degree 2 are the group of sign changes
acting on representations, trace tuples and ideals, and the Galois group acting on represen-
tations and trace tuples. These two groups together with their actions have direct analogues
in degree 3. However, there are two more groups in degree 3, which do not play a role in
degree 2.

The first one is a cyclic group of order 2, which induces the graph automorphism on SL(3, q),
and acts correspondingly on the ring Z[ζ][x1, . . . , x[1,2]]. This group is not visible in degree 2,
since the graph automorphism of SL(2, q) is an inner automorphism.

The other group is again cyclic of order 2 and acts on Z[ζ] by sending ζ to its inverse.

Note that some of the actions in this section are already defined in the last chapter in a more
general form. They are repeated here for convenience and to fix some notation.

Definition 4.17. Let Σ := 〈ζ〉2, the group of sign changes, where ζ is a primitive third
root of unity. Assume that q is a prime power with q ≡ 1 mod 3.

If ∆: F2 → SL(3, q) is a representation, define a representation σ∆ for σ = (σ1, σ2) ∈ Σ by

σ∆: F2 → SL(3, q) : g1 7→ σ1∆(g1), g2 7→ σ2∆(g2).

This defines an action of Σ on the set of representations F2 → SL(3, q), and induces actions on
the set of characters and the set of trace tuples. To be more precise, if t := (t1, . . . , t[1,2]) ∈ F9

q

is a trace tuple,

σt = (σ1t1, σ
−1
1 t−1, σ2t2, σ

−1
2 t−2, σ1σ2t1,2, σ

−1
1 σ2t−1,2, σ

−1
2 σ1t−2,1, σ

−1
2 σ−1

1 t−2,−1, t[1,2]).
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Furthermore, Σ acts on Z[ζ][x1, . . . , x[1,2]] via ring automorphisms by setting

σx1 := σ1x1,
σx−1 := σ−1

1 x−1,
σx2 := σ2x2,

σx−2 := σ−1
2 x−2,

σx1,2 := σ1σ2x1,2,
σx−1,2 := σ−1

1 σ2x−1,2,
σx−2,1 := σ1σ

−1
2 x−2,1,

σx−2,−1 := σ−1
1 σ−1

2 x−2,−1,
σx[1,2] := x[1,2],

and this action induces an action on the set of ideals of Z[ζ][x1, . . . , x[1,2]].

Definition 4.18. Let T := 〈τ〉 be a cyclic group of order 2. If ∆: F2 → SL(3, q) is a
representation, define a representation τ∆ by

τ∆ = ∆− tr : F2 → SL(3, q) : g 7→ ∆(g)− tr.

This defines an action of T on the set of representations F2 → SL(3, q), and induces actions on
the set of characters and the set of trace tuples. To be more precise, if t := (t1, . . . , t[1,2]) ∈ F9

q

is a trace tuple, then

τ t = (t−1, t1, t−2, t2, t−2,−1, t−2,1, t−1,2, t1,2, t[2,1]),

where

t[2,1] := t1t−1 + t2t−2 + t1,2t−2,−1 + t−1,2t−2,1 − t1t2t−2,−1 − t−1t−2t1,2

− t−1t2t−2,1 − t1t−2t−1,2 + t1t−1t2t−2 − t[1,2] − 3

(cf. Lemma 4.1).

Furthermore, T acts on Z[ζ][x1, . . . , x[1,2]] via ring automorphisms by setting

τx1 := x−1,
τx−1 := x1,

τx2 := x−2,
τx−2 := x2,

τx1,2 := x−2,−1,
τx−1,2 := x−2,1,

τx−2,1 := x−1,2,
τx−2,−1 := x1,2,

τx[1,2] := x[2,1],

where

x[2,1] := x1x−1 + x2x−2 + x1,2x−2,−1 + x−1,2x−2,1 − x1x2x−2,−1 − x−1x−2x1,2

− x−1x2x−2,1 − x1x−2x−1,2 + x1x−1x2x−2 − x[1,2] − 3,

and this action induces an action on the set of ideals of Z[ζ][x1, . . . , x[1,2]]. Similarly, T acts
on Z[x1, . . . , x[1,2]] and its ideals.

Definition 4.19. Let Z := 〈z〉 be a cyclic group of order 2. Z acts on Z[ζ][x1, . . . , x[1,2]] via
ring automorphisms by sending ζ to ζ−1 and fixing all indeterminates. This induces an action
on the set of ideals of Z[ζ][x1, . . . , x[1,2]].

Remark 4.20. Combining the last three actions yields an action of Σ ⋊ (T × Z) via ring
automorphisms on Z[ζ][x1, . . . , x[1,2]] and hence on the set of its ideals, where T and Z both
act by inversion on Σ.



44 CHAPTER 4. THE L3-U3-QUOTIENT ALGORITHM

Definition 4.21. Let Γ := Gal(Fq). If ∆: F2 → SL(3, q) is a representation, define a repre-
sentation γ∆ for γ ∈ Γ by

γ∆: F2 → SL(3, q) : g 7→ γ(∆(g)).

This defines an action of Γ on the set of representations F2 → SL(3, q), and induces actions
on the set of characters and the set of trace tuples.

As in degree 2, we identify trace tuples with maximal ideals.

Remark 4.22. There is a bijection between the maximal ideals t of Z[x1, . . . , x[1,2]] and the
Gal(Fq)-orbits of trace tuples t = (t1, . . . , t[1,2]) ∈ F9

q , where q ranges over all prime powers.
Unfortunately, most of the time we work with ideals in the ring Z[ζ][x1, . . . , x[1,2]], and a
maximal ideal t of Z[x1, . . . , x[1,2]] can split into two maximal ideals of Z[ζ][x1, . . . , x[1,2]].
However, there is a bijection between the Gal(Fq)-orbits of trace tuples t = (t1, . . . , t[1,2]) and
Z-orbits of maximal ideals of Z[ζ][x1, . . . , x[1,2]]. By abuse of notation, such a maximal ideal
is again denoted by t.

Here is an example to illustrate the complications arising from ζ.

Example 4.23. Note that SL(3, 2) is generated by A1 :=
(

1 1 0
0 1 0
0 0 1

)
and A2 :=

(
0 0 1
1 0 0
0 1 0

)
.

Let ∆: F2 → SL(3, 2) : gi 7→ Ai be the corresponding representation with trace tuple t =
(1, 1, 0, 0, 1, 1, 0, 0, 1) ∈ F9

2. Then t is a zero of

t = 〈x1 + 1, x−1 + 1, x2, x−2, x1,2 + 1, x−1,2 + 1, x−2,1, x−2,−1, x[1,2] + 1〉.

But Z[ζ][x1, . . . , x[1,2]]/ t = F4. Thus, unlike in degree 2, the quotient of t is not necessarily
the character field.
Furthermore, set σ := (ζ, 1). Then σ∆ is a representation over F4 with trace tuple σt =
(ζ, ζ2, 0, 0, ζ, ζ2, 0, 0, 1). So the character field of σ∆ is F4; in particular, it is not possible to
conjugate σ∆ to a representation over F2, although the image of the corresponding projective
representation is isomorphic to PSL(3, 2) = SL(3, 2).

To circumvent these complications, one always has to take the Σ-conjugate of t which generates
the smallest field. The corresponding ideal of Z[x1, . . . , x[1,2]] yields the character field.

4.4 Detecting epimorphisms onto proper subgroups

The classification of subgroups of PSL(3, q) was done by Mitchell for odd q and by Hartley
for even q. A more modern treatment will appear in the book [BHRD12] by Bray, Holt, and
Roney-Dougal.

Proposition 4.24 (Mitchell [Mit11], Hartley [Har25]). Let U ≤ SL(3, q) be an absolutely
irreducible subgroup such that the character values generate Fq, and such that no Σ-conjugate
of the character generates a proper subfield of Fq. Denote by U the image in PSL(3, q). Then
one of the following cases occurs.

1. U is isomorphic to one of the groups A6, L2(7), PGU(3, 2), PSU(3, 2), H36 (a subgroup
of index two in PSU(3, 2)), A7 or M10. Following Macbeath [Mac69], these groups are
called exceptional.
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2. U is an imprimitive group.

3. U is isomorphic to PSO(3, q) if q is odd.

4. U is isomorphic to PSU(3, r) if q = r2 is a square.

5. U is isomorphic to PGL(3, r) if q = r3 is a cube.

6. U is isomorphic to PGU(3, r) if q = r6 is a sixth power.

7. U is PSL(3, q).

M10 denotes the Mathieu group on 10 points, i.e., a point stabilizer in the sporadic simple
group M11. The groups PGU(3, 2), PSU(3, 2) and H36 are also called Hessian groups.
Let t = (t1, . . . , t[1,2]) ∈ F9

q be a trace tuple with corresponding representation ∆: F2 →
SL(3, q). We want to decide, as in the case of degree 2, whether ∆ induces an epimorphism
onto some PSL, PGL, PSU, or PGU.
Absolutely irreducibility can be decided using Proposition 4.12, so we assume in the following
that ∆ is absolutely irreducible.
The first thing to decide is whether ∆ induces an epimorphism onto an exceptional group. As
in Proposition 2.18, there is a set of finitely many ideals which accomplishes this.

Proposition 4.25. Let t = (t1, . . . , t[1,2]) ∈ F9
q be an absolutely irreducible trace tuple with

corresponding representation ∆: F2 → SL(3, q). There exist 57 ideals of Z[x1, . . . , x[1,2]] such
that the projective representation induced by ∆ maps onto L2(7) if and only if t is a zero of
one of the 57 ideals. Similarly, there are 53 ideals for A6, 64 ideals for PGU(3, 2), 4 ideals
for PSU(3, 2), 6 ideals for H36, 916 ideals for A7, and 234 ideals for M10.

Proof. Every finite group has only finitely many presentations on two generators; e.g., L2(7)
has 57 presentations, A6 has 53 presentations, etc. For every presentation, construct the trace
presentation ideals with respect to all sign systems and compute the minimal associated prime
ideals. Remove all prime ideals which contain the ideal ρ in Proposition 4.12 and take the
intersection of all remaining ideals. The result is now clear by Proposition 4.16, since none of
the groups has nontrivial absolutely irreducible quotients.

All the work for the other subgroups was essentially done in the last chapter. We only translate
the results to the language of ideals.
Next are the imprimitive groups. The following proposition is the analogue of Proposition 2.19.
First, we need two lemmas, which show that it is not necessary to know all values of the
character, but only finitely many.

Lemma 4.26. Let n ∈ {2, 3} and ∆: Fm → GL(n,K) a representation with character χ.
Furthermore, let ψ : Fm → Cn be a homomorphism. Then χ(w) = 0 for all w ∈ Fm − kerψ if
and only if χ(gϕ) = 0 for all ϕ ∈ Φ with gϕ 6∈ kerψ, where gϕ := gϕ(1) · · · gϕ(k).
Proof. The proofs are similar for degree 2 and 3, so we give only the proof for n = 3.
Let w = gi1 · · · gik with ψ(w) 6= 1. We show χ(w) = 0 by induction on |w|. Assume without
loss of generality that i1 < ij for all j ∈ {2, . . . , k}, and define ϕ : {1, . . . , k} → {±1, . . . ,±m}
by ϕ(j) := ij . If ϕ ∈ Φ, there is nothing to show. Otherwise, ϕ is not injective, or ϕ(j)+ϕ(ℓ) =
0 for some j < ℓ with ϕ(j) > ϕ(ℓ). Consider the first case, so ϕ(j) = ϕ(ℓ) for some j < ℓ. Set

w1 := gϕ(j), w2 := gϕ(j+1) · · · gϕ(ℓ−1), and w3 := gϕ(ℓ+1) · · · gϕ(k)gϕ(1) · · · gϕ(j−1).
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Furthermore, set Xi := ∆(wi), so χ(w) = Tr(X1X2X1X3). There are only finitely many
possibilities for ψ(wi) such that ψ(w) = ψ(w1)

2ψ(w2)ψ(w3) 6= 1. Assume for example that
ψ(w1) 6= 1 and ψ(w2) = ψ(w3) = 1. Using the notation of Lemma 4.1 this implies

t−1,2 = t−1,3 = t−1 = t1,2 = t−1,2,3 = t−1,3,2 = 0,

since ψ(w−1
1 w2), ψ(w

−1
1 w3), ψ(w

−1
1 ), . . . are non-trivial. Hence χ(w) = t1,2,1,3 = 0 by

Lemma 4.1. Similar arguments show χ(w) = 0 for the other possible choices of ψ(wi), thus
proving the result if ϕ is not injective. The other case is analogous.

Lemma 4.27. Let ∆: Fm → GL(3,K) be an absolutely irreducible representation with char-
acter χ and ψ : Fm → S3 an epimorphism. Then χ(w) = 0 for all w ∈ Fm with |ψ(w)| = 3 if
and only if χ(gϕ) = 0 for all ϕ ∈ Φ with |ψ(gϕ)| = 3 and χ(gϕ)χ(g

−1
ϕ ) = 1 for all ϕ ∈ Φ with

|ψ(gϕ)| = 2, where gϕ := gϕ(1) · · · gϕ(k).

Proof. Assume first that χ(w) = 0 for all w ∈ Fm with |ψ(w)| = 3. Then clearly χ(gϕ) = 0
for all ϕ ∈ Φ with |ψ(gϕ)| = 3. It remains to show that χ(gϕ)χ(g

−1
ϕ ) = 1 for all ϕ ∈ Φ with

|ψ(gϕ)| = 2. Set w1 := gϕ, and choose w2 ∈ Fm such that |ψ(w2)| = 2 and |ψ(w1w2)| = 3.
Set Xi := ∆(wi) and use the notation of Lemma 4.1. Then

ti,i,i,j = ti,j(t
2
i − t−i) + tj(1− tit−i) + t−i,jti

for all i, j ∈ {±1,±2}. Since |ψ(w3
iwj)| = |ψ(wiwj)| = |ψ(w−1

i wj)| = 3 whenever |i| 6= |j|,
this implies tj(1 − tit−i) = 0. In particular, either tit−1 − 1 = 0 for all i or ti = 0 for all i.
Suppose the latter case occurs. Let N := kerψ, and let H be the subgroup of index 2 in G
containing N . Note that every w ∈ Fm with |ψ(w)| = 2 differs from either w1 or w2 only by
a kernel element, so replacing w1 or w2 by w in the argument above shows χ(w) = 0. Denote
by V := K3×1 the natural KG-module. Since V has dimension 3, the KH-module VH must
be absolutely irreducible as well, so ∆(H) contains a basis of K3×3. But ψ(hw1) has order 2
for every h ∈ H, so χ(hw1) = 0 for all h ∈ H, and as in the proof of Proposition 3.7 this
yields a contradiction. Hence t1t−1 = χ(gϕ)χ(g

−1
ϕ ) = 1.

Conversely, assume that χ(gϕ) = 0 for all ϕ ∈ Φ with |ψ(gϕ)| = 3 and χ(gϕ)χ(g
−1
ϕ ) = 1 for

all ϕ ∈ Φ with |ψ(gϕ)| = 2. As in the last corollary, one proves that this implies χ(w) = 0 for
all w ∈ Fm.

Proposition 4.28. Let t = (t1, . . . , t[1,2]) ∈ F9
q be an absolutely irreducible trace tuple with

corresponding representation ∆: F2 → SL(3, q). Then ∆ is imprimitive if and only if t is a
zero of one of the seven ideals

〈x1, x−1, x1,2, x−1,2, x−2,1, x−2,−1〉, 〈x2, x−2, x1,2, x−1,2, x−2,1, x−2,−1〉,
〈x1, x−1, x2, x−2, x1,2, x−2,−1〉, 〈x1, x−1, x2, x−2, x−1,2, x−2,1〉,

〈x1x−1 − 1, x2x−2 − 1, x1,2, x−1,2, x−2,1, x−2,−1, x[1,2]〉,
〈x1x−1 − 1, x2, x−2, x1,2x−2,−1 − 1, x1x1,2 + x−1,2, x−1x−2,−1 + x−2,1, x[1,2]〉,
〈x1, x−1, x2x−2 − 1, x1,2x−2,−1 − 1, x−2x−2,−1 + x−1,2, x2x1,2 + x−2,1, x[1,2]〉.

Proof. This follows from Propositions 3.7 and 3.9 and the last two lemmas. The first four ideals
correspond to the four epimorphisms of F2 onto C3, the last three to the three epimorphisms
of F2 onto S3.



4.4. DETECTING EPIMORPHISMS ONTO PROPER SUBGROUPS 47

The results of the last chapter show that many properties of a representation can already be
read off of its character. The last result shows that for imprimitivity it suffices to look at
the trace tuple, not at the whole character. The aim of the next lemma goes into the same
direction. It shows that the stabilizers of the characters under various actions is the stabilizer
of the corresponding trace tuple, so it can be easily computed. This will be used to detect
epimorphisms onto other subgroups.

Lemma 4.29. Let ∆: F2 → SL(3,K) be a representation with character χ and trace tuple
t = (t1, . . . , t[1,2]) ∈ K9.

1. If τ t = t, then τχ = χ.

2. Assume that q = r2 is a square. Let γ be the generator of Gal(Fq/Fr). If γt = τ t, then
γχ = τχ.

3. Assume that q = r3 is a cube and Fq contains a primitive third root of unity ζ. Let γ be
the generator of Gal(Fq/Fr) and σ ∈ Σ. If γt = σt, then γχ = σχ.

Proof. We prove the first point, the other two points are proved analogously. Note that
τχ = χ clearly implies τ t = t; so assume now τ t = t. By Proposition 4.2, we have to show that
pw = pw−1 for all w ∈ F2, where pw is the trace polynomial of w. The proof is by induction
on |w|, where the cases

w ∈ {1, g±1
1 , g±1

2 , g1g2, g
−1
1 g2, g

−1
2 g1, g

−1
2 g−1

1 , [g1, g2], [g2, g1]}

are covered by the hypothesis. Now assume that w is not in this set. Then the construction
of pw is based on the two relations in Lemma 4.1. The first relation is

t1,2,1,3 = t−1,2t3 + t−1,3t2 + t−1t2,3 + t1,2t1,3 − t−1t2t3 − t−1,2,3 − t−1,3,2,

and it is easy to check that t−3,−1,−2,−1 = t1,2,1,3, provided t−1,2 = t−2,1, t3 = t−3, etc. Similar
considerations apply for the second relation of Lemma 4.1, which proves the first point.

Note that the projective representation induced by ∆ maps into PSO(3, q) if and only if a
Σ-conjugate of ∆ maps into SO(3, q). Together with Proposition 3.10 and the last lemma this
proves the following result.

Proposition 4.30. Let t = (t1, . . . , t[1,2]) ∈ F9
q be an absolutely irreducible trace tuple with

corresponding representation ∆: F2 → SL(3, q). Then the induced projective representation
maps into PSO(3, q) if and only if some Σ-conjugate of t is a zero of the ideal

〈x1 − x−1, x2 − x−2, x1,2 − x−2,−1, x−1,2 − x−2,1, x[1,2] − x[2,1]〉,

where x[2,1] is defined in Definition 4.18.

This only leaves the possibilities PSL(3, q), PGL(3, r), PSU(3, r), and PGU(3, r), for appro-
priate r. To check whether the induced projective representation maps into PGL(3, r), we use
the following result, which is the analogue of Proposition 2.20.
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Proposition 4.31. Assume q = r3 with 3 ∤ r. Let t = (t1, . . . , t[1,2]) ∈ F9
q be an abso-

lutely irreducible trace tuple with corresponding ideal tEZ[ζ][x1, . . . , x[1,2]] and representation
∆: F2 → SL(3, q), such that ∆ is not imprimitive. The image of the induced projective repre-
sentation is isomorphic to a subgroup of PGL(3, r) if and only if t has a non-trivial stabilizer
in Σ.

Proof. Let χ be the character of ∆ and γ a generator of Gal(Fq/Fr). By Theorem 3.17, the
projective representation induced by ∆ maps into PGL(3, r) if and only if γχ = σχ for some
σ ∈ Σ. By Lemma 4.29 this is the case if and only if γt = σt. But t and γt are both zeroes
of t, so γt = σt implies σ

t = t. Conversely, if σ
t = t, then both t and σt are zeroes of t.

But all zeroes of t are Galois conjugate, hence σt = γ′

t for some Galois automorphism γ′ of
order 3.

Maps into PSU(3, r) are detected as follows.

Proposition 4.32. Assume q = r2. Let t = (t1, . . . , t[1,2]) ∈ F9
q be an absolutely irre-

ducible trace tuple with corresponding ideal tEZ[ζ][x1, . . . , x[1,2]] and representation ∆: F2 →
SL(3, q). The induced projective representation maps into PSU(3, q) if and only if T fixes a
Z-orbit of a Σ-conjugate of t.

Proof. Let ∆: F2 → SL(3, q) be a representation affording t. Then the induced projective
representation maps into PSU(3, r) if and only if a Σ-conjugate of ∆ maps into SU(3, r). By
Proposition 3.11 this is the case if and only if T induces an action by the Galois group on a
Σ-conjugate of t. Using the bijection of Remark 4.22 between Gal(Fq)-orbits of trace tuples
and Z-orbits of maximal ideals of Z[ζ][x1, . . . , x[1,2]], this is equivalent to the fact that T fixes
a Z-orbit of a Σ-conjugate of t.

The results in this section show that properties of a projective representation correspond to
properties of an associated trace tuple. For example, an absolutely irreducible representation
is imprimitive if and only if the trace tuple is a zero of one of seven ideals. It is convenient to
give the trace tuples the corresponding names.

Definition 4.33. Let t ∈ F9
q be a trace tuple.

1. If t is a zero of one of the seven ideals in Proposition 4.28, then t is called imprimitive.

2. If σt is a zero of the ideal in Proposition 4.30 for some σ ∈ Σ, then t is called orthogonal.

3. Assume that q = r2 is a square and γ is a generator of Gal(Fq/Fr). If γ(σt) = σt for
some σ ∈ Σ, then t is called unitary.

4. Assume that q = r3 is a cube and γ is a generator of Gal(Fq/Fr). If γt = σt for some
σ ∈ Σ, then t is called pgl.

5. If t is both unitary and pgl, it is called pgu.
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4.5 From ring quotients to group quotients

Remark 4.34. Every automorphism α of PSL(3, q) or PSU(3, q) can be written as α =
g ◦f ◦d◦ i, where i is an inner, d a diagonal, f a field and g a graph automorphism, cf. [Ste60].
Since PSL(3, q) ≤ PGL(3, q)EAut(PSL(3, q)) and PSU(3, q) ≤ PGU(3, q)EAut(PSU(3, q)),
this also implies the same result if α is an automorphism of PGL(3, q) or PGU(3, q).

The proof of the following result is almost the same as the proof of Proposition 2.23.

Proposition 4.35. Let ∆i : F2 → SL(3, q) be absolutely irreducible representations inducing
homomorphisms δi : F2 → PSL(3, q), for i = 1, 2. Assume that either both δi are surjective,
or q = r2 and both δi map onto PSU(3, r), or q = r3 and both δi map onto PGL(3, r), or
q = r6 and both δi map onto PGU(3, r). Then ker δ1 = ker δ2 if and only if γ∆1 ∼ α∆2 for
some γ ∈ Γ = Gal(Fq) and α ∈ Σ ⋊ T . If ti is the trace tuple corresponding to ∆i, then this
is equivalent to γt1 =

αt2.

Corollary 4.36. For every quotient G/N isomorphic to PSL(3, q), PGL(3, q), PSU(3, q), or
PGU(3, q) there exists exactly one Σ⋊ (T × Z)-orbit of maximal ideals of Z[ζ][x1, . . . , x[1,2]],
where each ideal contains some trace presentation ideal Is(G).

Proof. This follows by Remark 4.22 and Propositions 4.16 and 4.35.

4.6 The algorithms

Definition 4.37. A prime ideal P EZ[ζ][x1, . . . , x[1,2]] is called an L3-ideal, if it does not
contain the irreducibility indicator ρ of Proposition 4.12 and none of the ideals of Proposi-
tions 4.28 and 4.25, and no Σ-conjugate contains the ideal of Proposition 4.30.
A set Λ of L3-ideals is called minimal, if no ideal of Λ contains a Σ-conjugate of another
element of Λ. In other words, P 6⊇ σQ for all σ ∈ Σ and all P,Q ∈ Λ with P 6= Q.
A finite group H is called a group of L3-type, if it is isomorphic to a group PSL(3, q),
PGL(3, q), PSU(3, q), or PGU(3, q), for some prime power q > 2.

Algorithm 4.38 (L3-Quotients). Input: A finitely presented group G = 〈g1, g2 | r1, . . . , rk〉
on two generators.
Output: A minimal set Λ of L3-ideals satisfying the following property. If ∆: F2 → SL(3, q)
is a representation with trace tuple t inducing an epimorphism of G onto a group of L3-type,
then σt is a zero of an ideal in Λ for some σ ∈ Σ.
Algorithm:

1. Compute the set P ′ of all minimal associated prime ideals of Is(G), where s ∈ 〈ζ〉k
ranges over all sign systems. Let P be the set of all minimal elements of P ′ with respect
to inclusion.

2. Choose a set of representatives R of P under the action of Σ⋊ (Z × T ).

3. Return all elements of R which do not lead to reducible representations or to epimor-
phisms onto A6, L2(7), PGU(3, 2), PSU(3, 2), H36, A7, or M10, or onto orthogonal or
imprimitive groups.

Remark 4.39. 1. As in the L2-quotient algorithm, the groups L3(2) ∼= L2(7), U3(2) and
PGU(3, 2) are excluded, for ease of presentation and implementation.
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2. As in the L2-quotient algorithm, one should avoid to iterate over all possible trace
presentation ideals, cf. Chapter 8.

As in degree 2, we need a decision routine to get the isomorphism type of the maximal ideals
constructed by Algorithm 4.38.

Algorithm 4.40 (L3-Type). Input: A maximal ideal tEZ[ζ][x1, . . . , x[1,2]], such that the
image of the corresponding projective representation is isomorphic to a group of L3-type.

Output: The exact isomorphism type of the image.

Algorithm:

1. Let p be the prime contained in t and compute

n := min{dimFp

(
Z[x1, . . . , x[1,2]]/(Fp ⊗ (σ t∩Z[x1, . . . , x[1,2]]))

)
|σ ∈ Σ}.

2. If p = 3, return PSU(3, pn/2) if t is fixed by T and PSL(3, pn) otherwise.

If 3 ∤ (pn − 1) return PSL(3, pn).

Otherwise let S be the stabilizer of t in Σ.

(a) If S is trivial, return PSU(3, pn/2) if the Z-orbit of some Σ-conjugate of t is fixed
by T and PSL(3, pn) otherwise.

(b) If S is non-trivial, return PGU(3, pn/6) if the Z-orbit of some Σ-conjugate of t is
fixed by T and PGL(3, pn/3) otherwise.

Proof. If 3 ∤ pn − 1, the groups PGL(3, pn) and PSL(3, pn) as well as the groups PGU(3, pn)
and PSU(3, pn) are isomorphic. Furthermore, if p 6= 3 and 3 ∤ pn − 1, then n is odd, so
PSL(3, pn) has no unitary subgroup. This explains the first two rows of step 2. In the other
cases, Z[ζ][x1, . . . , x[1,2]]/ t ∼= Fpn , so the rest is an immediate application of Propositions 4.31
and 4.32.

Given an absolutely irreducible trace tuple t ∈ Fq, it is possible to construct a corresponding
representation. The algorithm is based on Proposition 3.4.

Algorithm 4.41 (L3-Generators). Input: A maximal ideal tEZ[x1, . . . , x[1,2]], such that the
corresponding trace tuple t is absolutely irreducible.

Output: A representation ∆: F2 → SL(3, q) affording t, where Fq = Z[x1, . . . , x[1,2]]/ t.
Algorithm:

1. Let χ : F2 → Fq be the character encoded by t. Choose a tuple w = (w1, . . . , w9) ∈ F2

such that the matrix (χ(wiwj))i,j=1,...,9 is non-singular.

2. For i = 1, 2 and j = 1, . . . , 9 solve the system of nine linear equations

χ(giwjwℓ) =

9∑

k=1

λijkχ(wkwℓ), 1 ≤ ℓ ≤ 9

in the variables λijk.
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3. Use the Meat Axe (cf. [Par84]) to decompose the representation

∆̃ : F2 → SL(9, q) : gi 7→ (λijk)j,k=1,...,9

into ∆̃ = Diag(∆,∆,∆), where ∆: F2 → SL(3, q) is an absolutely irreducible represen-
tation. Return ∆.

Note that by Corollary 4.11 there are at most 72 tuples to consider in step 1 of the algorithm
(in reality, it usually suffices to test only a few).

4.6.1 Handling non-maximal prime ideals

It often happens that Algorithm 4.38 returns a prime ideal P which is not maximal. In this
case, the finitely presented group has infinitely many L3-images; in particular, it is infinite.
However, it is not immediately clear which L3(q) or U3(q) occur as images. For example, it
might happen that for some maximal ideal t ⊇ P , the corresponding representation is not
absolutely irreducible. Since there are infinitely many maximal ideals containing P , it would
be nice to know beforehand which of those lead to absolutely irreducible representations and
which do not. Similar considerations apply for the other types of subgroups of L3(q). The
algorithms in this section accomplish exactly this.

Algorithm 4.42 (L3-IrreducibilityCondition). Input: An L3-ideal P which is not maximal.
Output: A set of prime ideals P satisfying the following property. If tEZ[ζ][x1, . . . , x[1,2]] is
a maximal ideal containing P with corresponding representation ∆: F2 → SL(3, q), then ∆ is
not absolutely irreducible if and only if t contains some ideal in P.
Algorithm: Return the set of minimal associated prime ideals of P + ρ, where ρ is the ideal
of Proposition 4.12.

Algorithm 4.43 (L3-ImprimitiveCondition). Input: An L3-ideal P which is not maximal.
Output: A set of prime ideals P satisfying the following property. If tEZ[ζ][x1, . . . , x[1,2]] is
a maximal ideal containing P with corresponding representation ∆: F2 → SL(3, q) such that
∆ is absolutely irreducible, then ∆ is imprimitive if and only if t contains some ideal in P.
Algorithm: Let I1, . . . , I7 be the ideals of Proposition 4.28. Compute the set of minimal
associated primes P i of P +Ii for i = 1, . . . , 7. Return the set of minimal elements of

⋃7
i=1 P i.

Algorithm 4.44 (L3-OrthogonalCondition). Input: An L3-ideal P which is not maximal.
Output: A set of prime ideals P satisfying the following property. If tEZ[ζ][x1, . . . , x[1,2]] is a
maximal ideal containing P with corresponding representation ∆: F2 → SL(3, q) such that ∆
is absolutely irreducible, then the induced projective representation maps into an orthogonal
group if and only if t contains some ideal in P.
Algorithm: Let I1, . . . , I9 be the set of all Σ-conjugates of the ideal in Proposition 4.30.
Compute the set of minimal associated primes P i of P + Ii for i = 1, . . . , 9. Return the set of
minimal elements of

⋃9
i=1 P i.

Algorithm 4.45 (L3-ExceptionalCondition). Input: An L3-ideal P which is not maximal.
Output: A set of prime ideals P satisfying the following property. If tEZ[ζ][x1, . . . , x[1,2]] is
a maximal ideal containing P with corresponding representation ∆: F2 → SL(3, q) such that
∆ is absolutely irreducible, then the induced projective representation maps onto one of the
exceptional groups A6, L2(7), PGU(3, 2), PSU(3, 2), H36, A7, or M10, if and only if t contains
some ideal in P.
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Algorithm: Let Ii run through all the ideals of Proposition 4.25. Compute the set of minimal
associated primes P i of P + Ii for all i. Return the set of minimal elements of

⋃
i P i.

If P EZ[ζ][x1, . . . , x[1,2]] is an L3-ideal which is not maximal, it gives rise to infinitely many
L3-quotients. As is shown in Chapter 6, one can study those quotients by imposing further
conditions, e.g. by adding relations to the ideal. This new ideal is not prime any more in
general, so it is handy to have the following algorithm which computes all zeroes of the new
ideal.

Algorithm 4.46 (L3-ideals). Input: An ideal I EZ[ζ][x1, . . . , x[1,2]].
Output: A minimal set Λ of L3-ideals satisfying the following property. If ∆: F2 → SL(3, q)
with q > 2 is a representation with trace tuple t inducing an epimorphism of G onto PSL(3, q),
PSU(3, 2

√
q), PGL(3, 3

√
q), or PGU(3, 6

√
q), where t is a zero of I, then σt is a zero of an ideal

in Λ for some σ ∈ Σ.
Algorithm:

1. Compute the set P of minimal associated prime ideals of I.

2. Choose a set of representatives R of P under the action of Σ.

3. Return all elements of R which do not lead to reducible representations or to epimor-
phisms onto A6, L2(7), PGU(3, 2), PSU(3, 2), H36, A7, or M10, or onto orthogonal or
imprimitive groups.



Chapter 5

Theoretical consequences

The theory developed for the L3-U3-quotient algorithm has some interesting consequences
which are not of an algorithmic nature. First of all, it leads to a generalization of a theorem
on matrix groups by Lubotzky for degree 3. Furthermore, if a finitely presented group G on
two generators has infinitely many quotients of L3-type, this infiniteness still has a certain
structure. For example, if G has quotients of L3-type in infinitely many characteristics, then
it has quotients of L3-type in almost every characteristic, cf. Theorem 5.8. In certain cases
there is even a bound on the degree of the finite fields, cf. Proposition 5.6.

5.1 A generalization of Lubotzky’s One For Almost All Theo-

rem

Fix some n ∈ N. For a prime p denote by πp : SL(n,Z) → SL(n, p) the reduction mod p. In
[Lub99], Lubotzky proves the following theorem.

Theorem 5.1 ([Lub99, Proposition 1]). Let A ⊆ SL(n,Z). Assume that 〈πp(A)〉 = SL(n, p)
for some prime p with (n, p) 6∈ {(2, 2), (2, 3), (3, 2), (4, 2)}. Then 〈πq(A)〉 = SL(n, q) for almost
all primes q, i.e., for all but finitely many primes.

Using the results of the preceeding chapter, we can give a generalization of Lubotzky’s The-
orem for the case n = 3. If R is a ring and P ER a prime ideal, denote by πP : SL(3, R) →
SL(3, R/P ) the reduction mod P . Furthermore, for a subgroup U ≤ SL(3, q) denote by
U ≤ PSL(3, q) the corresponding projective subgroup.

Theorem 5.2. Let R be an order of a number field or a univariate polynomial ring over a
finite field, and A ⊆ SL(3, R). Assume that there exists a prime ideal {0} 6= P ER such that
〈πP (A)〉 is a group of L3-type not isomorphic to L3(2), U3(2), or PGU(3, 2). Then 〈πQ(A)〉
is a group of L3-type for almost all prime ideals {0} 6= QEO.

We will need the following elementary lemma.

Lemma 5.3. Let R be a Noetherian domain of Krull dimension 1 and P an infinite set of
prime ideals of R. Then

⋂P = {0}.

Proof. Let I =
⋂P. Then I is a radical ideal, and since R is Noetherian, we can write

I = Q1 ∩ · · · ∩ Qk for finitely many prime ideals Q1, . . . , Qk ER. Choose pairwise distinct

53
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P1, . . . , Pk+1ER; for every 1 ≤ i ≤ r + 1 we have Q1 ∩ · · ·Qk ⊆ Pi, and since Pi is prime
there exists some j with Qj ⊆ Pi. In particular, there exists some j with Qj ⊆ Pi ∩ Pk for
some 1 ≤ i 6= k ≤ r + 1. But then Qj must have Krull dimension 1, i.e. Qj = {0}, which
shows I = {0}.

Proof of Theorem 5.2. By adjoining a primitive third root of unity ζ to R if necessary, we can
assume that R is a residue class ring of Z[ζ][x1, . . . , x[1,2]]. In particular, we can regard trace
tuples in R as zeroes of ideals in Z[ζ][x1, . . . , x[1,2]].
Assume 〈πP (A)〉 ∼= G(q), where G(q) is one of the groups L3(q), U3(q), PGL(3, q), or
PGU(3, q), for some prime power q > 2. Since G(q) is finite, we can assume that A is fi-
nite, so A = {a1, . . . , ak}. Furthermore, G(q) can be generated by two elements (cf. [Ste62]),
so in particular there exist words w1, w2 ∈ Fk, the free group of rank k, such that

〈πP (w1(a1, . . . , ak)), πP (w2(a1, . . . , ak))〉 ∼= G(q).

Since 〈w1(a1, . . . , ak), w2(a1, . . . , ak)〉 ≤ 〈A〉 we can assume in fact |A| = 2. Let t be the trace
tuple corresponding to the representation F2 → SL(3, R) : gi 7→ ai. For every prime ideal
QER let tQ ∈ R/Q be the image of the trace tuple in R/Q. Then tQ is the trace tuple of
the representation F2 → SL(3, R/Q) : gi 7→ πQ(ai), whose image is 〈πQ(A)〉. It is enough to
show that for all but finitely many prime ideals {0} 6= QER, tQ is an absolutely irreducible
trace tuple which is not imprimitive or orthogonal, and which does not lead to an exceptional
group.
Let {0} 6= I = 〈f1, . . . , fk〉EZ[ζ][x1, . . . , xn], and let Q be the set of prime ideals {0} 6= QER
such that tQ is a zero of I, i.e., fi(t) ∈ Q for all 1 ≤ i ≤ k. If Q is infinite, this implies
fi(t) ∈

⋂Q = {0} by Lemma 5.3, i.e., fi(t) = 0, so t is a zero of I.
Now let I run through the ideals of Propositions 4.12, 4.25, 4.28, and 4.30 to see that there are
only finitely many prime ideals {0} 6= QER such that tQ is absolutely irreducible, imprimitive,
orthogonal or exceptional. This proves the theorem.

5.2 L3-ideals of positive Krull dimension

A finitely presented group on two generators has infinitely many quotients of L3-type if and
only if it has an L3-ideal of positive Krull dimension. There are roughly three types which
behave quite differently. The first kind leads to L3-quotients in a single characteristic, but
of arbitrary high degree of the field. The second kind leads to L3-quotients in almost every
characteristic, but of bound degree of the fields. And the third kind exhibits both phenomena,
i.e., it leads to L3-quotients in almost every characteristic, and of arbitrary high degree of the
field.

Definition 5.4. Let P EZ[ζ][x1, . . . , x[1,2]] be an L3-ideal which is not maximal. Let d be
the Krull dimension of P and P ∩ Z = 〈p〉 for some p ∈ Z≥0.

1. If p 6= 0, then P is called an ideal of type L3(p
∞d

). If d = 1, we also write L3(p
∞).

2. If p = 0 and d = 1, set k := DimQ(Q[ζ][x1, . . . , x[1,2]]/P ⊗Z Q). Then P is called an

ideal of type L3(∞k).

3. If p = 0 and d > 1, P is called an ideal of type L3(∞∞d−1
). If d = 2, we also write

L3(∞∞).
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The ∞ in L3(p
∞) indicates that there are infinitely many choices for the exponent, cf. Propo-

sition 5.5. Similarly, L3(∞k) indicates that there are infinitely many choices for the prime,
cf. Proposition 5.6. Finally, L3(∞∞) indicates that there are infinitely many choices for the
prime as well as for the exponent. A higher Krull dimension allows an even higher degree of
freedom.

Proposition 5.5. Let G be a finitely presented group on two generators, and let P be an
L3-ideal of G of type L3(p

∞d
). There exist infinitely many k ∈ N such that G has quotients

isomorphic to L3(p
k), U3(p

k), PGL(3, pk), or PGU(3, pk). Furthermore, for every k ∈ N there
exist at most finitely many quotient of G of L3-type over Fpk which come from zeroes of P .

Proof. Set R := Z[ζ][x1, . . . , x[1,2]]/P ; then R has characteristic p and Krull dimension d.
Thus there exist infinitely many k ∈ N such that there exist epimorphisms ϕ : R → Fpk .
Every such epimorphism yields a trace tuple t ∈ F9

pk
, by setting ti := ϕ(xi). We show that

the set of those trace tuples such that the corresponding quotient is not of L3-type are zeroes
of an ideal of dimension at most d− 1.

The argument is analogous to the one given in the proof of Theorem 5.2. Note that t yields a
group of L3-type if and only if it is not a zero of some ideal of Propositions 4.12, 4.25, 4.28,
or 4.30. Let I be the intersection of all of those ideals, so t yields a group of L3-type if and
only if t is not a zero of I. We show I 6⊆ P . For suppose I ⊆ P . Since I is an intersection of
ideals I1 ∩ · · · ∩ Ir and P is prime, this implies Ij ⊆ P for some j. But then P contains one
of the ideals of the propositions, hence it is not an L3-ideal, which is a contradiction.

Now t is a zero of I if and only if ϕ factors over I + P . But I + P % P shows that I + P has
dimension at most d− 1. Thus there are infinitely many zeroes of P which are not zeroes of
I + P , i.e., giving quotients of L3-type.

For the last statement notice that every finitely generated ring R has only finitely many
epimorphisms onto Fpk for any given k.

This result indicates that there is no qualitative difference between the L3-ideals of type
L3(p

∞) and L3(p
∞2

), in the sense that they exhibit the same type of quotients of L3-type.
There is however a quantitative difference, in the sense that for a given k ∈ N, there are more
quotients coming from ideals of the latter type than from ideals of the former type. This
observation can be made more precise by defining so called growth parameters, cf. [PF09,
Proposition 3.14].

Proposition 5.6. Let G be a finitely presented group on two generators, and let P be an L3-
ideal of G of type L3(∞k). For almost all primes p there exists ℓ|k such that G has quotients
of L3-type over Fpℓ. Furthermore, for every prime p there exist at most finitely many quotients
of L3-type in characteristic p which come from zeroes of P .

Proof. Set R := Z[ζ][x1, . . . , x[1,2]]/P ; then R has characteristic 0 and Krull dimension 1. As
in the proof of Proposition 5.5 one shows that almost all primes occur, and that for every
prime p there are at most finitely many quotients of L3-type in characteristic p.

It remains to show the statement about ℓ. To see this, let K be the quotient field of R and
O ⊆ K the maximal order. Then for almost all primes p we have O〈p〉 = R〈p〉; in particular,
the residue class fields of O and R in characteristic p are the same. But for all primes p the
degree of the residue class field of O is a divisor of k.
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Corollary 5.7. Let G be a finitely presented group on two generators, and let P be an L3-ideal
of G of type L3(∞∞d

). For almost all primes p there exists infinitely many k ∈ N such that
G has quotients of L3-type over Fpk .

Proof. Set R := Z[ζ][x1, . . . , x[1,2]]/P ; then R has characteristic 0 and Krull dimension d+ 1.
Let QEZ[ζ][x1, . . . , x[1,2]] be a prime ideal containing P of Krull dimension 1 such that R/Q
has characteristic 0. The Q-dimension of Q⊗Z(R/Q) can be arbitrarily high. By the argument
in the proof of Proposition 5.5, some choice of Q will yield an L3-ideal of type L3(∞k) for
some k.

The next theorem is similar to Lubotzky’s Theorem.

Theorem 5.8. Let G be a finitely presented group on two generators which has quotients of
L3-type in infinitely many characteristics. Then G has quotients of L3-type in almost every
characteristic.

Proof. Let P be the set of characteristics where quotients of L3-type occur. For any p ∈ P
choose a trace tuple tp ∈ Fp

9
leading to a quotient of L3-type. Then every tp is a zero of some

trace presentation ideal of G. Since there are only finitely many trace presentation ideals, and
every trace presentation ideal has only finitely many minimal associated prime ideals, there
exists a prime ideal P such that tp is a zero of P for infinitely many p ∈ P. In particular, P

must be an L3-ideal of type L3(∞k) for some k ∈ N or L3(∞∞d
) for some d ∈ N, so the result

follows by Proposition 5.6 or Corollary 5.7.

The results of this section can be made more precise for any given P . This is done in Chapters 6
and 7, where the infinite set of L3-quotients is explicitly enumerated.



Chapter 6

Examples

Now the algorithm will be applied to several finitely presented groups. For this, an imple-
mentation in the computer algebra system Magma ([BCP97]) is used. There are roughly
two types of examples: finitely presented groups which have only finitely many quotients of
L3-type, and the others which have infinitely many such quotients.

In the first case, the algorithm gives no information on whether the group in question is
finite or infinite. It does however give an infinite list of simple groups which do not occur as
quotients. While this might seem trivial at first, there appears to be no other method to get
a similar result without determining the isomorphism type of the group, or proving it finite.
Furthermore, often a group is proved finite by finding a small simple quotient, and then using
coset enumeration; the algorithm shows which groups can not be used.

In the second case, the algorithm proves that the group is infinite. But the output of the
algorithm can be used for much more than a mere proof of infinity; it gives a lot of structural
information about the group. The groups with infinitely many quotients of L3-type can be
further divided. Those groups which have quotients in infinitely many characteristics, and
those which have only quotients in a single characteristic, or in finitely many characteristics.
The former type seems to occur much more often than the latter.

In a lot of cases, a detailed enumeration of all quotients of L3-type can be given. The easiest
cases where this is possible are the ones where all prime ideals returned by the algorithm have
Krull dimension 0 or 1. However, even if the Krull dimension is bigger, definite results can be
given. This is done in the next chapter, where all quotients of L3-type of the group C2 ∗C3

are counted.

6.1 Groups with finitely many quotients of L3-type

There are various examples of finitely presented groups which only have finitely many quotients
of L3-type. The examples given in this section come from two different sources. The first is
by altering known presentations of finite simple groups; the second is the family of group
presentations defined by Coxeter.

6.1.1 A detailed example

The first example is used to illustrate the algorithm step by step.

57
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Example 6.1. Let G = 〈a, b|a2, b4, (ab)11, (ab2)5〉. In theory, there are 34 = 81 sign systems
to consider, but as explained in Section 8.1 it suffices to handle the five sign systems

s1 := (1, 1, 1, 1), s2 := (1, 1, ζ, 1), s3 := (1, 1, 1, ζ), s4 := (1, 1, ζ, ζ), s5 := (1, 1, ζ, ζ2).

In step 1 of Algorithm 4.38, the various minimal associated prime ideals are calculated. For
Is1(G) they are

P1 := 〈x1 − 3, x−1 − 3, x2 − 3, x−2 − 3x1,2 − 3, x−1,2 − 3, x−2,1 − 3, x−2,−1 − 3, x[1,2] − 3, 〉

and

P2 := 〈881, x1 + 1, x−1 + 1, x2 + 880, x−2 + 880,

x1,2 + 604, x−1,2 + 604, x−2,1 + 604, x−2,−1 + 604, x[1,2] + 245〉,

for Is2(G) they are

P3 := 〈3, ζ + 2, x1, x−1, x2, x−2, x1,2, x−1,2, x−2,1, x−2,−1, x[1,2]〉

and

P4 := 〈5081, x1 + 1, x−1 + 1, x2 + 5080, x−2 + 5080, x1,2 + 338ζ + 3225, x−1,2 + 338ζ + 3225,

x−2,1 + 4743ζ + 2887, x−2,−1 + 4743ζ + 2887, x[1,2] + 1467〉

and Isi(G) for i = 3, 4, 5 only have the one associated prime ideal P3. So P ′ = {P1, P2, P3, P4},
but P3 ⊇ P1, hence P = {P1, P2, P4} is the list of minimal prime ideals computed in step 1.

Since the three ideals all contain different integers, or no integer at all, it is obvious that they
can not lie in the same orbit under Σ⋊ (Z × T ), so R = P in step 2.

In step 3, the various subgroups are tested. The ideal P1 contains the ideal ρ of Propo-
sition 4.12, so it does not lead to an absolutely irreducible representation and is therefore
removed. The other two ideals pass the irreducibility test; however the ideal P2 gives a rep-
resentation into PSO(3, 881), and hence is also removed. This leaves the ideal P4, which is
neither orthogonal nor imprimitive. Furthermore, G has no epimorphisms onto one of the
exceptional groups, so P4 is an L3-ideal.

The algorithm returns the set {P4}.
Now Algorithm 4.40 can be called to compute the L3-type of P4. In step 1, n is computed to
be 2. The stabilizer of P4 in Σ is trivial, and zP4 =

τP4, so P4 corresponds to an epimorphism
onto PSU(3, 5081). This also can be readily seen by looking at the corresponding trace tuple

t = (−1,−1, 1, 1, 1856 + 4743ζ, 1856 + 4743ζ, 2194 + 338ζ, 2194 + 338ζ,−1467) ∈ F9
50812 .

It is obvious that no Σ-conjugate of t lies in the proper subfield F5081 by looking at the entries
t1 and t2. These entries also already show that the stabilizer in Σ is trivial. Finally τ t = αt,
where α : F50812 → F50812 : x 7→ x5081 is the Galois automorphism of order 2, which proves
that the corresponding representation is unitary.
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6.1.2 The Coxeter presentations (2,m, n; k)

For a quadruple (ℓ,m, n, k) of positive integers, Coxeter defined the presentation

(ℓ,m, n; k) := 〈a, b | aℓ, bm, (ab)n, [a, b]k〉,

cf. [Cox39]. These groups were extensively studied, see e.g. [EJ08] for an overview and refer-
ences.
If ℓ = 2, for almost every choice of m,n, k there are at most finitely many L3-images. To
see this, note that the trace presentation ideal of the free group F2 has dimension 9. Assume
that ∆: F2 → SL(3, k) is an absolutely irreducible representation such that the corresponding
projective representation factors over (2,m, n; k), and let t = (t1, . . . , t[1,2]) ∈ F9

q be the trace
tuple of ∆. Acting by sign changes we can assume that ∆(a) has order 2, so the characteristic
polynomial is (X − 1)(X + 1)2 = X3 + X2 − X − 1, i.e., t1 = t−1 = 1. Furthermore,
∆(ab) = ∆(a−1b) and ∆(ab−1) = ∆(a−1b−1), hence t1,2 = t−1,2 and t−2,1 = t−2,−1. Therefore,
any trace presentation ideal of 〈a, b | a2〉 has dimension 5. Specifying the order of b and of ab
imposes conditions on t2, t−2, t1,2 and t−2,−1, since X

3− t2X2+ t−2X = 1 is the characteristic
polynomial of ∆(b), and similarly for ∆(ab); so a trace presentation ideal of 〈a, b | a2, bm, (ab)n〉
has dimension at most 1.
The trace of the commutator (and of its inverse) satisfies a quadratic relation in the other
traces. Hence it can happen that the specification of the order of [a, b] does not reduce the
dimension of the trace presentation ideal; however, this phenomenon is rather exceptional,
and usually a further specification of the order of [a, b] yields an ideal which is either trivial
or of dimension 0.

Example 6.2. We study the groups (2, 4, 7; k) for various k ∈ N.
For k ≤ 4 there are no L3 quotients at all, and (2, 4, 7; 5) has the quotient L3(2

2). For k = 14,
there are infinitely many quotients, which is further studied in Section 6.2.
For k = 40 the group has the L3 quotients L3(2

2), L3(11
2), U3(17), U3(41), and L3(79). For

k = 41 the group has the single quotient L3(39067496161).
The algorithm also works for fairly high values of k and big primes. For example, for k = 1009,
there are two quotients, namely U3(889937) and

U3(7126291964399716597269439176114252605431079948546916017267023942898534

3426124406869126623955204418221333668825258752849859764421237905628513

7970159077576473552582997041352457436153386373455607350428505193613884

32729481102530544469023852885383845223228045690286655883153).

6.1.3 Modifying presentations of simple groups

Interesting examples of finitely presented groups with only finitely many L3 quotients can be
constructed by taking presentations of simple groups and modifying the relations. In fact, the
example in Section 6.1.1 is of this kind. Here are some other examples.

Example 6.3. The Mathieu group M22 can be presented as

〈a, b | r1, . . . , r7〉 := 〈a, b | a2, b4, (ab)11, (ab2)5, [a, b]6, [a, bab]3, (ababab−1)5〉,

where the relation r5 = [a, b]6 is redundant, cf. [WWT+]. The group 〈a, b | r1, r2, r3, r4〉 has
a single quotient isomorphic to U3(5081) (cf. Section 6.1.1), and 〈a, b | r1, r2, r3, r5〉 has a
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single quotient isomorphic to U3(27191). While 〈a, b | r1, r2, r3, r7〉 has no L3 or U3 quotients,
〈a, b | r1, r2, r4, r7〉 has quotients isomorphic to L3(4) and L3(151). Moreover, L3(31), U3(5)
and U3(41) are quotients of 〈a, b | r1, r2, r5, r7〉, and L3(3319) is a quotient of 〈a, b | r1, r2, r6, r7〉.
A modification of the relations can give fairly big quotients. For instance, by altering the
relation r6 and computing the quotients of 〈a, b | r1, r2, r3, [a, bab]i〉 for various i ∈ N yields
quotients U3(23) and L3(199) for i = 4, quotients U3(419) and U3(746957111) for i = 5, and
quotients U3(769), U3(9437) and U3(133078695023) for i = 7.

Example 6.4. The Mathieu group M23 can be presented as

〈a, b | r1, . . . , r9〉 := 〈a, b | a2, b4, (ab)23, (ab2)6, [a, b]6, (abab−1ab2)4,

(ab)3ab−1ab2(abab−1)2(ab)3(ab−1)3, (abab2ab2)6, (abab2)3(ab2ab−1)2abab2abab−1ab2〉,

where r8 is redundant, cf. [WWT+]. The group 〈a, b | r1, r2, r4, r6, r8〉 has a quotient iso-
morphic to U3(11), and 〈a, b | r1, r2, r4, r5, r8〉 has a quotient isomorphic to U3(23), while the
groups 〈a, b | r1, r2, r7〉 and 〈a, b | r1, r2, r9〉 have no L3 or U3 quotients.

6.2 Groups with finitely many quotients of L3-type in almost

every characteristic

If the algorithm returns prime ideals which are not maximal, this proves that the finitely
presented group has infinitely many quotients of L3-type. If furthermore the prime ideal
has Krull dimension 1, a very precise description of all quotients can be given. There are
two types of such prime ideals which demand different techniques to describe the quotients,
cf. Section 5.2. The first type contains a prime number, and the second type does not. The
former case is treated in the next section, this section is concerned with the latter. In this
case, the description is based on some results from algebraic number theory. Assume that P
is a prime ideal of Z[ζ][x1, . . . , x[1,2]] of dimension 1, and P ∩Z = {0}. Then almost all zeroes
of P are images of a trace tuple with values in the order of a number field (or a localization
thereof). Hence the action of the Galois group in characteristic p is determined by the action
of the Galois group of the number field. More precisely, the Galois group in characteristic p
is determined by an element of the Galois group in characteristic zero, called the Frobenius
automorphism, which is unique up to conjugation (cf. e.g. [Neu99, Section I.§8]). Thus the
study of infinitely many primes is reduced to the study of finitely many conjugacy classes.
This section gives two examples.

6.2.1 One-relator quotients of the modular group

The authors of [CHN12] study one-relator quotients of the modular group. More precisely,
they study the groups 〈a, b | a2, b3, r〉, for all words r of length up to 36. The number of
relators to consider can be reduced by utilizing the automorphism group of 〈a, b | a2, b3〉. Using
coset enumeration, Knuth-Bendix completion and automatic groups, they can decide for most
groups if they are infinite or finite, and compute the order in the finite case, cf. [CHN12,
Section 3]. Only 48 groups are left, which are dealt with later in the paper.
We will now focus on these 48 groups and study them using the L3-U3-quotient algorithm.
All of the 48 relators are given in [CHN12, Section 5]; the corresponding quotient groups are
labeled Q1, . . . , Q48. All but four of them have no L3 or U3 quotients at all. Set u := ab and
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v := ab−1. The groups Q7 = 〈a, b | a2, b3, u3vu3vu2v3u2〉 and Q12 = 〈a, b | a2, b3, u10v2uvuv2〉
have the single quotient L3(3), which is already noted in [CHN12]; in fact, they show that
both groups are finite.
The group Q28 is proved infinite. We can prove the stronger result:

Proposition 6.5. Let G = Q28 = 〈a, b | a2, b3, u4vuvuvuv4u2v2〉, where u = ab and v = ab−1.
For every prime p 6= 2, 13 there exists exactly one quotient of G of L3-type in characteristic p.
More precisely, let K/Q be the splitting field of X6 − 11X3 + 27 with Galois group Γ :=
Gal(K/Q) ∼= D12 = 〈(3, 4)(5, 6), (1, 5)(2, 3)(4, 6)〉. For any prime p 6= 2, 3, 11 denote by
ϕp ∈ Γ the Frobenius automorphism mod p. The quotient in characteristic p is isomorphic to
L3(p), U3(p), PGL(3, p), or PGU(3, p), depending on whether ϕp has a fixed point, is a fixed
point free element of order 2, has order 3, or has order 6, respectively.
Furthermore, the quotient in characteristic 3 is isomorphic to L3(3); there are no quotients of
L3-type in characteristic 2 and characteristic 13. There is a single L2 quotient PGL(2, 13).

Each of the quotients L3(p), U3(p), PGL(3, p), and PGU(3, p) occurs for infinitely many
primes p. More precisely, we have

Corollary 6.6. The set of all primes p such that L3(p) is a quotient of Q28 is infinite and has
a density, namely 1/3. Similarly, there are infinitely many primes such that U3(p), PGL(3, p),
and PGU(3, p) are quotients of Q28, with densities 1/3, 1/6, and 1/6, respectively.

All of these cases can be distinguished using the knowledge of the decomposition of X6 −
11X3 + 27 mod p alone, without knowing the Frobenius automorphism. Using Gauß reci-
procity, some of these cases can still be distinguished by weaker equivalence conditions.

Corollary 6.7. Let p 6= 2, 13 be a prime. The isomorphism type of the L3 quotient of Q28 in
characteristic p is given in the following table.

p3 ≡ ±1 mod 13 p3 6≡ ±1 mod 13

p ≡ 1 mod 3 L3(p) or PGL(3, p) U3(p)
p 6≡ 1 mod 3 L3(p) U3(p) or PGU(3, p)

Proof of Proposition 6.5. The L2-quotient algorithm verifies the statement about the single
quotient PGL(2, 13).
The L3-U3 quotient algorithm returns the single prime ideal

P = 〈x1 + 1, x−1 + 1, x2, x−2, x1,2 + 8x−1,2 + x5−2,−1 − 11x2−2,−1, x
3
−1,2 + x3−2,−1 − 11,

3x2−1,2 + x4−2,−1 − 11x−2,−1, x−1,2x−2,−1 − 3, 9x−1,2 + x5−2,−1 − 11x2−2,−1,

x−2,1 − x−2,−1, x[1,2] − 2, x6−2,−1 − 11x3−2,−1 + 27〉,

which has Krull dimension 1, so it is of type L3(∞12). Let p be a prime, and let t =
(t1, . . . , t[1,2]) ∈ Fp be a zero of P . Using Algorithms 4.42, 4.43 and 4.44 one checks that t
is always absolutely irreducible, it is imprimitive if and only if p = 2, and orthogonal if and
only if p = 13 (the degeneration in characteristic 13 to an orthogonal trace tuple explains the
single L2 quotient PGL(2, 13), since PSO(3, q) ∼= PGL(2, q) for every prime power q). The
exceptional groups do not occur in any characteristic.
We deal with the case p = 3 separately. Computing the minimal associated primes of P + 〈3〉
and taking orbits under T using Algorithm 4.46 shows that there is a single quotient isomorphic
to L3(3).
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Now assume p 6∈ {2, 3, 13}. Then α := t−2,−1 is a zero of µ := X6 − 11X3 + 27, and since
p 6= 3 we see α 6= 0, so

t = (−1,−1, 0, 0, 3/α, 3/α, α, α, 2).

The discriminant of µ is 312133. Since we assume p 6= 3, 13, there are six different choices
for α, giving six different choices for the trace tuple. But if α is a root of µ, then 3/α and ζα
is also a root of µ. Hence all six trace tuples lie in a single orbit under Σ ⋊ T , and in every
characteristic there is at most one L3 or U3 quotient.

Assume first that ϕp has a fixed point. Then µ has a root in Fp, so we can assume that t ∈ F9
p

which shows that the quotient is isomorphic to L3(p).

For the other cases the action of the Galois group is important. Note that the zeroes of µ are α,
3ζ/α, ζα, 3/α, ζ2α, and 3ζ2/α. Labeling these roots by 1, . . . , 6, respectively, the Galois group
is given by Γ ∼= 〈(1, 2, 3, 4, 5, 6), (1, 4)(2, 3)(5, 6)〉; representatives of the conjugacy classes are
(), (2, 6)(3, 5), (1, 2)(3, 6)(4, 5), (1, 4)(2, 5)(3, 6), (1, 3, 5)(2, 4, 6) and (1, 2, 3, 4, 5, 6). The first
two elements are already taken care of. Now assume ϕp = (1, 2)(3, 6)(4, 5). Then

ϕp((1,ζ
2)t) = (−1,−1, 0, 0, ζα, ζα, 3ζ2/α, 3ζ2/α, 2) = τ ((1,ζ

2)t),

so the quotient in characteristic p is isomorphic to U3(p), cf. Proposition 4.32. If ϕp =
(1, 4)(2, 5)(3, 6) then ϕpt = τ t, which also yields U3(p).

If ϕp = (1, 3, 5)(2, 4, 6),

ϕpt = (−1,−1, 0, 0, 3ζ2/α, 3ζ2/α, ζα, ζα, 2) = (1,ζ2)t,

hence the quotient in characteristic p is isomorphic to PGL(3, p), cf. Proposition 4.31.

Finally, if ϕp = (1, 2, 3, 4, 5, 6) then ϕ3
p = (1, 4)(2, 5)(3, 6) shows that the trace tuple is unitary,

and ϕ2
p shows that the tuple is pgl, hence the quotient is isomorphic to PGU(3, p).

Proof of Corollary 6.6. This is an application of Chebotarev’s Density Theorem, cf. [Neu99,
Theorem VII.13.4]. The conjugacy classes of the dihedral group

Γ := D12 = 〈(3, 4)(5, 6), (1, 5)(2, 3)(4, 6)〉

are ()Γ of size 1 and (3, 4)(5, 6)Γ of size 3, both resulting in the L3-type quotient L3(p),
(1, 2)(3, 5)(4, 6)Γ of size 1 and (1, 2)(3, 6)(4, 5)Γ of size 3 yielding U3(p), and (1, 3, 4)(2, 5, 6)Γ

and (1, 5, 4, 2, 3, 6)Γ both of size 2 yielding PGL(3, p) and PGU(3, p), respectively.

Proof of Corollary 6.7. First note that if ζ ∈ Fp, then µ must be reducible. To see this,
suppose that µ is irreducible; let γ be a generator of the Galois group. Then γ(α) = 3ζ/α,
and, since ζ is in the ground field, γ(3ζ/α) = α. Thus, γ has order 2, which is a contradiction.
Hence µ splits into linear factors, into three quadratic factors, or into two cubic factors, if
3|p− 1.

Next note that µ can be written as (X3 − β1)(X
3 − β2) for some β1, β2 ∈ Fp if and only if

X2 = 13 has a solution in Fp.

Finally note that if ζ 6∈ Fp, then X
3 − β has always a solution in Fp.

By the Gauss reciprocity law, X2 = 13 has a solution in Fp if and only if p ≡ ±1,±3,±4
mod 13. Summing up these results shows that the quotients occur as given in the table.
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The fourth group in the list of [CHN12] which has L3-type quotients is Q30; this group also
has finitely many quotients in any characteristic, but here the decomposition of a polynomial
mod p is not enough to distinguish all cases. The proof is omitted, it is similar to the proof
of Proposition 6.5.

Proposition 6.8. Let G = Q30 = 〈a, b | a2, b3, u4vuv2u2vuv4uv〉, where u = ab and v = ab−1.
The only L2-type quotient of G is PGL(2, 11). The L3-type quotients in characteristic 3, 5,
11, and 37 are L3(3

2), PGU(3, 5), PGU(3, 11), and PGL(3, 372).
Let K/Q be the splitting field of X12 − 9X9 + 27X6 − 21X3 + 1 with Galois group

Γ := Gal(K/Q)
∼= 〈(7, 12)(8, 11)(9, 10), (1, 9)(2, 10)(3, 7)(4, 8)(5, 11)(6, 12), (3, 5)(4, 6)(7, 9)(8, 10)〉.

For any prime p 6= 3, 5, 11, 37 denote by ϕp ∈ Γ the Frobenius automorphism mod p. Table 6.1
lists the L3-type quotients of G in characteristic p, and the density of primes and the smallest
prime for every Frobenius automorphism.

representative of ϕΓ
p L3-type quotients density of primes smallest p

() L3(p), L3(p) 1/144 2269
(1, 2)(3, 6)(4, 5) U3(p), L3(p) 6/144 79
(1, 3, 5)(2, 4, 6) PGL(3, p), L3(p) 4/144 379

(1, 3)(2, 4)(7, 9)(8, 10) L3(p), L3(p) 9/144 59
(1, 2)(3, 4)(5, 6)(7, 9)(8, 10) U3(p), L3(p) 6/144 131
(1, 3)(2, 4)(7, 10, 11, 8, 9, 12) L3(p), PGU(3, p) 12/144 29

(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12) U3(p), U3(p) 1/144 401
(1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11) U3(p), U3(p) 9/144 31
(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12) L3(p

2) 6/144 67
(1, 7)(2, 8)(3, 11)(4, 12)(5, 9)(6, 10) L3(p

2) 6/144 23
(1, 2)(3, 6)(4, 5)(7, 9, 11)(8, 10, 12) U3(p),PGL(3, p) 12/144 19
(1, 2)(3, 4)(5, 6)(7, 12, 9, 8, 11, 10) U3(p),PGU(3, p) 4/144 191
(1, 3, 5)(2, 4, 6)(7, 9, 11)(8, 10, 12) PGL(3, p),PGL(3, p) 4/144 199
(1, 7, 2, 8)(3, 9, 6, 12)(4, 10, 5, 11) U3(p

2) 18/144 7
(1, 7, 2, 8)(3, 11, 6, 10)(4, 12, 5, 9) U3(p

2) 18/144 2
(1, 7, 3, 9, 5, 11)(2, 8, 4, 10, 6, 12) PGL(3, p2) 12/144 97
(1, 7, 3, 11, 5, 9)(2, 8, 4, 12, 6, 10) PGL(3, p2) 12/144 47
(1, 4, 5, 2, 3, 6)(7, 10, 11, 8, 9, 12) PGU(3, p), PGU(3, p) 4/144 89

Table 6.1: The L3-type quotients of Q30 in characteristic p 6= 3, 5, 11, 37

6.2.2 Coxeter presentations

This section is a continuation of Example 6.2, where the groups

(2, 4, 7; k) = 〈a, b | a2, b4, (ab)7, [a, b]k〉

for various k ∈ N are studied. The algorithm can compute the quotients of L3-type for any
fixed value k. By looking at the group 〈a, b | a2, b4, (ab)7〉 instead, a uniform answer for any
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value of k can be given. Furthermore, the infinite number of quotients for k = 14 can be
explained.

Proposition 6.9. Let k ∈ N. The group G = (2, 4, 7; k) = 〈a, b | a2, b4, (ab)7, [a, b]k〉 has
infinitely many quotients of L3-type if and only if 14|k.
More precisely, let P be the set of primes > 7 such that (X2 − (α − 1)X + 1)|(Xk − 1) for
some root α ∈ Fp2 of X2 − 5X + 1. Then P is finite, and for any p ∈ P, the group (2, 4, 7; k)
has L3-quotients in characteristic p as specified in the following table.

p3 ≡ 1 mod 7 p3 6≡ 1 mod 7

p ≡ 1 mod 3 L3(p)
2 L3(p

2)
p 6≡ 1 mod 3 L3(p

2) U3(p)
2

If 7|k, the group has the additional quotients L3(2
2) and U3(2

3).
If 14 ∤ k, this is a complete list of quotients of L3-type of (2, 4, 7; k). If 14|k, there is the
additional quotient L3(7), and for any prime p 6= 2, 3, 7 there is an additional finite number
of quotients of L3-type, given in the following table.

p ≡ ±1 mod 7 p 6≡ ±1 mod 7

p ≡ 1 mod 3 L3(p)
3 L3(p

3)
p 6≡ 1 mod 3 U3(p)

3 U3(p
3)

For the proof we need the following technical lemma.

Lemma 6.10. Let O be a Noetherian integral domain of Krull dimension 1 and f, g ∈ O[X]
with f monic. For a prime ideal P EO denote by fP and gP the reduction of f and g to
(O /P )[X]. If fP |gP in (O /P )[X] for infinitely many prime ideals P EO, then f |g in O[X].

Proof. Let P be an infinite set of prime ideals P EO such that fP |gP ; define R :=
∏

P∈P O /P .
By Lemma 5.3, the canonical homomorphism α : O → R is injective, and α(f)|α(g) in R[X].
Now f |g in O[X] follows by applying division with remainder, where care has to be taken
since R is not an integeral domain. The hypotheses of the proposition are still satisfied if g is
replaced by the polynomial g − lc(g)Xdeg(g)−deg(f)f , which has a smaller degree. Eventually,
we arrive at a polynomial g′ of degree less than deg(f) which is divisible by f . Since f is
monic, this is only possible if g′ = 0. This shows that the cofactor of α(f) in α(g) has a
preimage in O[X], so f |g.

Proof of Proposition 6.9. The L3-U3-quotient algorithm for the group 〈a, b | a2, b4, (ab)7〉 re-
turns the two prime ideals

P1 := 〈x1 + 1, x−1 + 1, x2 − 1, x−2 − 1, x1,2 + x−2,−1ζ + x−2,−1, x−1,2 + x−2,−1ζ + x−2,−1,

x−2,1−x−2,−1, x
3
−2,−1+2x2−2,−1ζ+2x2−2,−1−x−2,−1ζ+1, x[1,2]+x

2
−2,−1ζ+x

2
−2,−1+x−2,−1ζ〉

and

P2 := 〈x1+1, x−1+1, x2−1, x−2−1, x1,2−x−2,−1ζ−x−2,−1+ζ, x−1,2−x−2,−1ζ−x−2,−1+ζ,

x−2,1 − x−2,−1, x
2
−2,−1 − x−2,−1ζ − x−2,−1 + 2ζ, x[1,2] − x−2,−1ζ − 2x−2,−1 + ζ − 2〉,

which both have Krull dimension 1. We start with the first ideal. Let t ∈ F9
q be a zero of P1,

and let ∆: F2 → SL(3, q) be a representation affording t. Then t[2,1] = t[1,2] =: α is a zero of
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X3−4X2+3X+1, so the characteristic polynomial of ∆([a, b]) is χ = X3−αX2+αX−1. The
discriminant of χ is −α2+11α−23, and 〈−A2+11A−23, A3−4A2+3A+1〉 = 〈7, A+1〉EZ[A]
shows that χ has no multiple roots if 7 ∤ q. In particular, it is also the minimal polynomial of
∆([a, b]), so ∆([a, b]) is conjugate to the companion matrix of χ. Thus the order of ∆([a, b])
is the order of X + 〈χ〉 in (Fq[X]/〈χ〉)∗.
Since χ|X14 − 1, the order of ∆([a, b]) divides 14. Obviously, the order cannot be 1 or 2; the
remainder of X7 − 1 by χ is −2, so ∆([a, b]) has order 7 if 2|q and order 14 otherwise.
Note that t1,2 is a root of X6+2X5+5X4+3X2+X+1 which has discriminant −33 ·74 ·132.
If q is not a power of 3, 7, or 13, the trace tuple t has the form

t = (−1,−1, 1, 1, ζβ, ζβ, ζ2β, ζ2β, β2 − β),

where β is one of the three roots of g = X3 − 4X2 + 3X + 1. The polynomial g has discrim-
inant 72 and Galois group C3, so modulo p 6= 7 it is either irreducible or splits completely.
Moreover, it is irreducible mod p if and only if p 6= ±1 mod 7. To see this, note that
Q(β) = Q(ζ7 + ζ−1

7 ), where ζ7 is a primitive seventh root of unity, so the claim follows by the
decomposition of primes in cyclotomic fields, cf. e.g. [Neu99, Theorem I.10.3].
As in the proof of Proposition 6.5 one checks that for p 6= 2, 3, 7, 13 the quotients occur as
listed in the table. Running Algorithm 4.46 for P1 + 〈p〉, where p ∈ {2, 7, 13}, shows that the
prime p = 13 fits into this scheme, and that p = 7 yields L3(7) and p = 2 yields U3(2

3). For
p = 3, the trace tuple is orthogonal. This completes the analysis of the ideal P1.
Now let t ∈ F9

q be a zero of P2, and let ∆: F2 → SL(3, q) be a representation affording t.
We first determine the quotients of L3-type of 〈a, b | a2, b4, (ab)7〉 in any characteristic. Algo-
rithm 4.45 shows that for p = 3 the quotient is isomorphic to L2(7), and for p = 5 the quotient
is isomorphic to A7. Furthermore, for p = 7 the trace tuple t is also a zero of P1, so it is
already taken care of. In fact, p = 7 is the only characteristic where P1 and P2 have common
zeroes, since

P1 + P2 = 〈7, x1 + 1, x−1 + 1, x2 + 6, x−2 + 6, x1,2 + 4ζ, x−1,2 + 4ζ,

x−2,1 + 3ζ + 3, x−2,−1 + 3ζ + 3, x[1,2] + 1〉.

Now let p 6= 3, 5, 7; let β := t1,2. Then β is a zero of X4 − X3 − X2 − 2X + 4, which has
discriminant 22 · 32 · 72. For any prime p 6= 2, 3, 5, 7, the trace tuple is of the form

t = (−1,−1, 1, 1, β, β,−ζ − βζ2,−ζ − βζ2, (β − 1)(ζ + 2)),

and it is easy to show that the quotients occur as listed in the first table. Algorithm 4.46
shows that the quotient in characteristic 2 is L3(2

2), and the image of [a, b] in L3(2
2) is 7.

We now check what happens if the order of the commutator is specified. The characteristic
polynomial of ∆([a, b]) is χ = X3 − αX2 + αX − 1, where α is a root of X2 − 5X + 1. As
above, one checks that χ has no multiple roots if q is not a power of 5 or 7, so in this case χ
is also the minimal polynomial.
Furthermore, there is no exponent e such that ∆([a, b])e = ζiI3 for some i ∈ {1, 2}, since
the characteristic polynomial of ∆([a, b])e is X3 − βX2 + βX − 1, where β is a polynomial
in α, and the characteristic polynomial of ζiI3 is X3 − 3ζiX2 + 3ζ2iX − 1. Hence the order
of ∆([a, b]) ∈ SL(3, q) and of ∆([a, b]) ∈ PSL(3, q) coincide.
For any value of k ∈ N, there are only finitely many characteristics such that χ|Xk − 1 by
Lemma 6.10. Since χ = (X − 1)(X2 − (α− 1)X + 1), and χ is square-free, this is equivalent
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to (X2 − (α− 1)X + 1)|(Xk − 1), which proves the proposition (the primes 2, 3, 7 have to be
treated separately, since they are ramified in Z[ζ][x1, . . . , x[1,2]]/P2).

The set P in the last proposition can easily be computed. Here is an example.

Example 6.11. Let k = 36. Let p be a prime and α ∈ Fp2 a root of X2 − 5X + 1. Then

X36 − 1 ≡ (2782610343194293206α− 580764594358284687)X

− 793655541988654716α+ 165645556529530167 mod χ̃,

so χ̃|X36 − 1 if and only if

c1 := 2782610343194293206α− 580764594358284687 = 0

and
c0 := −793655541988654716α+ 165645556529530167 = 0.

The list of primes for which this is satisfied can now be computed by elementary methods, for
example by computing the minimal associated primes of the ideal 〈c1, c0, α2 − 5α+1〉EZ[α],
where α is regarded as an indeterminate. In this case, the minimal associated primes are

〈3, α+ 2〉, 〈5, α+ 3〉, 〈37, α+ 4〉, 〈109, α+ 66〉, 〈127, α+ 113〉,

so P = {37, 109, 127}, and the complete list of L3-type quotients of (2, 4, 7; 36) is given by
L3(37), L3(109), and L3(127).

6.3 Groups with infinitely many quotients of L3-type in a sin-

gle characteristic

In the previous section, groups with infinitely many quotients of L3-type are studied, where
in every characteristic there are only finitely many quotients. These quotients arise from
prime ideals of Krull dimension 1 in Z[ζ][x1, . . . , x[1,2]] such that the residue class ring has
characteristic zero. In this section, an example of a prime ideal of Krull dimension 1 is studied,
where the residue class ring has positive characteristic.
Let

G := 〈a, b | a2, b3, [a, b]5, [a, babab]3〉.
Running the algorithm on the group G yields the ideal

P := 〈2, x1+1, x−1+1, x2, x−2, x[1,2]+ζ+1, x1,2+x−1,2, x−2,1+x−2,−1, x−1,2x−2,−1+x[1,2]+1〉,

which has Krull dimension 1. So G has infinitely many L3 and U3 quotients, but all of them
are defined in characteristic 2. We will analyze this example from two different perspectives.

6.3.1 Counting quotients

There are infinitely many L3 and U3 quotients of G, but only finitely many of any given order.
For any given n ∈ N, the number of quotients of G which are isomorphic to one of the groups
PSL(3, 2n), PGL(3, 2n), PSU(3, 2n), and PGU(3, 2n) can be given explicitly.
We first fix some notation.
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Definition 6.12. Let G be a finitely presented group on two generators, p a prime and n ∈ N.
Denote by pslG(3, p

n) the number of normal subgroups N EG with G/N ∼= PSL(3, pn), and
define psuG(3, p

n) similarly. Furthermore, if pn ≡ 1 mod 3, define pglG(3, p
n) to be the

number of normal subgroups N EG with G/N ∼= PGL(3, pn), and if pn ≡ −1 mod 3 define
pguG(3, p

n) similarly.

We restrict to the case pn ≡ 1 for pglG(3, p
n), since PGL(3, pn) ∼= PSL(3, pn) if pn 6≡ 1 mod 3,

and similarly, PGU(3, pn) ∼= PSU(3, pn) if pn 6≡ −1 mod 3.

To simplify notation later on, define pslG(3, p
x) = psuG(3, p

x) = pglG(3, p
x) = pguG(3, p

x) = 0
if x ∈ Q is not a positive integer. Furthermore, define pgl(3, pn) = 0 if pn 6≡ 1 mod 3 and
pgu(3, pn) = 0 if pn 6≡ −1 mod 3.

The aim is to derive formulæ for pslG(3, p
n), etc. We will make extensive use of the Möbius

µ-Function and of

χ : Q → {0, 1} : x 7→
{
1, if x ∈ Z,

0, otherwise,

the characteristic function of Z in Q. Here is the main result.

Proposition 6.13. Let G = 〈a, b | a2, b3, [a, b]5, [a, babab]3〉 and n ∈ N.

1. pguG(3, 2
n) = 0.

2. If n is odd, pglG(3, 2
n) = 0. If n is even. Then

pglG(3, 2
n) =

2

3n

∑

r|n

µ
(n
r

)
(1− χ

( n
3r

)
)χ

(r
2

)
(2r − 1).

3. If n is odd, psuG(3, 2
n) = 0. If n is even, then

psuG(3, 2
n) =

1

n

∑

r|n

µ
(n
r

)(
1− χ

( n
2r

))
2r.

4. If n is odd or n = 2, pslG(3, 2
n) = 0. If n = 2m is even, two cases occur. If m is even,

then

pslG(3, 2
n) =

1

3n

∑

r|n

µ
(n
r

)
2r − 1

2
psuG(3, 2

m)− 1

3
pglG(3, 2

n/3),

and if m is odd,

pslG(3, 2
n) =

1

3n

∑

r|n

µ
(n
r

)
2r +

1

3n

∑

r|m

µ
(m
r

)
2r − 1

3
pglG(3, 2

n/3).

Furthermore, pslG(3, p
n) = psuG(3, p

n) = pglG(3, p
n) = pguG(3, p

n) = 0 for all odd primes p.

A special case of these formulæ merits particular attention. The complexity of the formulæ
stems one the one hand from the fact that certain case distinctions have to be made based
on the divisors of n, and on the other hand from the subfield structure of F2n . All of these
complications vanish if m > 3 is prime; in this case the formulæ have nice forms.
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pslG(3, 2
2m) psuG(3, 2

2m) pglG(3, 2
2m)

m = 1 0 2 1
2 0 4 2
3 3 10 7
4 8 32 20

Table 6.2: Number of quotients of L3-type of G isomorphic to L3(2
2m), U3(2

2m) and
PGL(3, 22m) for small values of m

Corollary 6.14. Let m > 3 be prime. Then

pslG(3, 2
2m) =

22m − 22

6m
, psuG(3, 2

2m) =
22m − 22

2m
, and pglG(3, 2

2m) =
22m − 22

3m
.

Example 6.15. The first few values of the formulæ are given in Table 6.2.

The remainder of this section is concerned with the proof of Proposition 6.13, which is done
in several steps.
Assume q = 2n, and let t ∈ F9

q be a zero of P . By abuse of notation, we denote a fixed

primitive third root of unity of Fq again by ζ. This introduces a little subtlety, since there
are two epimorphisms of Z[ζ] onto F2[ζ], so t has one of the following forms: either

t = (1, 1, 0, 0, α, α, ζ/α, ζ/α, ζ2),

or
t = (1, 1, 0, 0, α, α, ζ2/α, ζ2/α, ζ)

for some 0 6= α ∈ Fq. We will always argue with the first form, the arguments for the second
form are analogous.
The following well-known lemma is often used implicitly.

Lemma 6.16. Let p be a prime and k,m ∈ N. There exist
∑

r|m µ
(
m
r

)
pkr tuples α ∈ Fk

pm

such that Fpm = Fp[α1, . . . , αk].

Proof. This is a standard inclusion-exclusion argument.

Lemma 6.17. Let t ∈ F9
2n be a zero of P such that F2[t] = F2n. Then n is even. Furthermore,

t is absolutely irreducible if and only if n ≥ 4.

Proof. Let t = (1, 1, 0, 0, α, α, ζ/α, ζ/α, ζ2). Clearly n must be even, since ζ ∈ F2[t]. Further-
more, Algorithm 4.42 shows that t is absolutely irreducible if and only if α 6∈ {1, ζ, ζ2}. The
same argument applies for the other form for t.

Lemma 6.18. Let t ∈ F9
22m be a zero of P such that t is unitary. Then m is even.

Proof. Let t = (1, 1, 0, 0, α, α, ζ/α, ζ/α, ζ2), and let γ2 be a generator of Gal(F22m/F2m). Then
t is unitary if and only if γ2(α) = ζ/α. But then

α = γ22(α) = (γ2(ζ)/ζ)α,

hence ζ lies in the fixed field of γ2, which is F2m . Thus m must be even.
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Proof of Proposition 6.13, 1. Suppose that there is a tuple t ∈ F6n
2 leading to a quotient

isomorphic to PGU(3, 2n). Then t is in particular unitary. By Lemma 6.18, all unitary zeroes
of P generate a field whose degree is divisible by four. But then 2|n, so 2n ≡ 1 mod 3. In
this case, PGU(3, pn) ∼= PSU(3, pn), so we set pguG(3, p

n) = 0.

Lemma 6.19. Let t ∈ F2n be a zero of P . Then t is never imprimitive, and it does not lead
to an exceptional group.

Proof. Apply Algorithms 4.43 and 4.45 to P .

Lemma 6.20. Let β ∈ F2m such that X3 − β ∈ F2m [X] is irreducible. Then F2[ζ, β] = F2[β].

Proof. Suppose ζ 6∈ F2[β] =: F2ℓ . Then 3 ∤ (2ℓ − 1); in particular, x 7→ x3 is a bijection on
F∗
2ℓ
, so β is a cube. This is a contradiction to the fact that X3 − β is irreducible.

We will need the next lemma later on for arbitrary primes, so we formulate and prove it in
this generality.

Lemma 6.21. Let p be a prime and n ∈ N such that pn ≡ 1 mod 3. There exist

2

3

∑

r|n

µ
(n
r

)
(1− χ

( n
3r

)
)χ

(
pr − 1

3

)
(pr − 1)

elements β ∈ F∗
pn such that Fp[β] = Fpn and X3 − β ∈ Fpn [X] is irreducible.

Proof. There are 2/3(pn − 1) elements in F∗
pn which are non-cubes. However, not all of these

elements generate the field, some lie in proper subfields. So assume that β lies in a subfield
Fpr for some r|n. If 3 ∤ pr − 1, then every element in F∗

pr is a cube. If 3|pr − 1 and the index
of Fpr in Fpn is divisible by three, then every element of F∗

pr is a cube in Fpn , by Hilbert’s
Theorem 90. Finally, if 3|pr − 1 and the index of Fpr in Fpn is not divisible by three, then
β ∈ F∗

pr is a cube in Fpr if and only if it is a cube in Fpn . A standard inclusion-exclusion
argument yields the result.

Note that χ
(
pr−1
3

)
= χ

(
r
2

)
if p ≡ −1 mod 3 and χ

(
pr−1
3

)
= 1 if p ≡ 1 mod 3.

Lemma 6.22. Let n be even. The number of pgl zeroes t ∈ F23n of P such that F2[t] = F23n

is
4
∑

r|n

µ
(n
r

)
(1− χ

( n
3r

)
)χ

(r
2

)
(2r − 1)

Proof. Let t = (1, 1, 0, 0, α, α, ζ/α, ζ/α, ζ2); then t is pgl if and only if the minimal polynomial
of α over F2n is X3 − β, cf. Proposition 4.31, and every choice for β gives three choices
for α. Furthermore, F2[α, ζ] = F23n if and only if F2[β, ζ] = F2n . Similar arguments hold
for the other form for t. The result now follows by Lemmas 6.21 and 6.20 and a standard
inclusion-exclusion argument.

Proof of Proposition 6.13, 2. Lemma 6.22 lists the number of pgl tuples in Fp3n which generate
the field. No subgroups have to be considered. However, we have to consider the action of
Σ⋊ (Gal(F23n)× T ) to account for the fact that different choices for the trace tuple can give
the same quotient, cf. Proposition 4.35. Note that the stabilizer of P in Σ is 〈(1, ζ)〉, so it
suffices to consider this subgroup. Since the action of 〈(1, ζ)〉 induces a Galois action, it is in
fact enough to consider Gal(F23n)×T . This group however acts regularly. Hence, the number
of different trace tuples has to be divided by |Gal(F23n)×T | = 6n, which yields the result.
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Lemma 6.23. Let n ∈ N be even. There exist
∑

r|n

µ
(n
r

)(
1− χ

( n
2r

))
2r−1

elements β ∈ F2n such that F2[ζ, β] = F2n and X2 + βX + ζ ∈ F2n [X] is irreducible.

Proof. Assume F2[β, ζ] = F2r . Then X2 + βX + ζ is reducible over F2r if and only if there
exists α ∈ F∗

2r with X2 + βX + ζ = (X + α)(X + ζ/α). Note that α = ζ/α if and only
if α = ζ2, in every other case the polynomial has two different roots. Hence there are
(2r − 1 − 1)/2 + 1 = 2r−1 reducible polynomials of the form X2 + βX + ζ, and also 2r−1

irreducible polynomials. Such a polynomial is irreducible over F2n if and only if the index of
F2r in F2n is odd. A standard inclusion-exclusion principle counting the number of irreducible
polynomials in F2n which are not defined over a smaller field yields the result.

Lemma 6.24. Let n be even. The number of unitary zeroes t ∈ F9
22n such that F2[t] = F22n

is
6
∑

r|n

µ
(n
r

)(
1− χ

( n
2r

))
2r

Proof. Let t = (1, 1, 0, 0, α, α, ζ/α, ζ/α, ζ2) and γ2 a generator of Gal(F22n/F2n). Then t is
unitary if and only if a Σ-conjugate t′ of t satisfies γ2(t

′
1,2) = γ2(t

′
−2,−1). Since γ2 fixes

ζ, only one element in the Σ-orbit has this property, and we can assume without loss of
generality that this element is t, so γ2(α) = ζ/α. The minimal polynomial over Fpn is
(X − α)(X − ζ/α) =: X2 + βX + ζ, and F2[α, ζ] = F22n if and only if F2[β, ζ] = F2n .
Lemma 6.23 lists the number of such β, and every choice gives two choices for α. Similar
arguments apply for the other choice for t.

Proof of Proposition 6.13, 3. Lemma 6.24 lists the number of unitary trace tuples. Since n is
even, PGU(3, 2n) = PSU(3, 2n), so no subgroups have to be considered.
However, only one element in every Σ ⋊ (Gal(F22n) × T )-orbit has to be counted. Since T
induces a Galois action, and the stabilizer of P in Σ is 〈(1, ζ)〉, the number of tuples counted
above has to be divided by 6n.

Lemma 6.25. Let n = 2m ≥ 4 be even. The number of zeroes t ∈ F2n of P such that
F2[t] = F2n is {

2
∑

r|n µ
(
n
r

)
2r if m is even,

2
∑

r|n µ
(
n
r

)
2r + 2

∑
r|m µ

(
m
r

)
2r if m is odd.

Proof. Let t = (1, 1, 0, 0, α, α, ζ/α, ζ/α, ζ2). Then F2[t] = F2[ζ, α]. Ifm is even, then F2[ζ, α] =
F2n if and only if F2[α] = F2n , so the formula counts the number of generators of F2n . This
formula is multiplied by two to account for the other form for t.
If m is odd, then F2[ζ, α] = F2n if and only if F2[α] = F2n of F2[α] = F2m . The same argument
applies as above.

Proof of Proposition 6.13, 4. Lemma 6.17 shows that n must be even and at least four. Now
Lemma 6.25 counts the number of trace tuples which generate the field. Some of these tuples
can be unitary or pgl, so they have to be subtracted. Furthermore, the group Σ⋊(Gal(Fpn)×T )
acts regularly on the remaining tuples, so the result has to be divided by 6n. This yields the
result.
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6.3.2 Adding relators

From a theoretical point of view, the counting in the last section is done by taking quotients
of the ring Z[ζ][x1, . . . , x[1,2]]. Another way to continue the example is by taking quotients of
the group G instead, by adding another relator. Adding the relation (ab)13 to G yields the
quotient U3(2

2); in fact, the resulting group is isomorphic to U3(2
2), cf. [WWT+]. We will

now try to add the relator (ab)i for some i ∈ N to get some of the other groups as quotients.

First note that adding a relator (ab)i will always give only finitely many quotients.

Proposition 6.26. Let i ∈ N. The group 〈a, b | a2, b3, [a, b]5, [a, babab]3, (ab)i〉 has only finitely
many quotients of L3-type.

Proof. Let t = (1, 1, 0, 0, α, α, ζ/α, ζ/α, ζ2) ∈ F22k be a trace tuple, and ∆: F2 → SL(3, 22k) a
representation realizing it. Then ∆(ab) has the characteristic polynomial

χ = X3 − t1,2X
2 + t−2,−1X − 1 = X3 − αX2 − ζ/αX − 1.

The resultant of χ and χ′ is ζ, so χ has no multiple roots for any value of α; in par-
ticular, χ is the minimal polynomial of ∆(ab). Now if t is a trace tuple for the group
〈a, b|a2, b3, [a, b]5, [a, babab]3, (ab)i〉, then |∆(ab)|

∣∣3i, hence χ|X3i−1. But there are only finitely
many choices for α such that this is true.

Proposition 6.27. Let m ∈ N with m ≥ 2, let α ∈ F24m be a primitive element of norm ζ
over F22m, and let i be the order of X+〈χ〉 ∈ (F24m [X]/〈χ〉)∗, where χ = X3−αX2+ζ/αX−1.
Then U3(2

2m) is a quotient of 〈a, b | a2, b3, [a, b]5, [a, babab]3, (ab)ki〉 for any k ∈ N.
Furthermore, if 〈a, b | a2, b3, [a, b]5, [a, babab]3, (ab)j〉 has a quotient isomorphic to U3(2

2m),
then j = ki for some k ∈ N and some i as above.

Proof. Let t = (1, 1, 0, 0, α, α, ζ/α, ζ/α, ζ2) ∈ F24m and ∆: F2 → SL(3, 22k) a representation
realizing t. Then t is a zero of P , so ∆ factors over 〈a, b | a2, b3, [a, b]5, [a, babab]3〉, where
∆ is the corresponding projective representation. The minimal polynomial of α over F22m is
X2+βX+ζ, so t is unitary (see proof of Lemma 6.24. Since χ is squarefree, ∆(ab) is conjugate
to the companion matrix of χ. Hence |∆(ab)| = |X + 〈χ〉| = i. Furthermore, PSU(3, 22m) =
SU(3, 22m), so |∆(ab)| = |∆(ab)|; hence ∆ factors over 〈a, b | a2, b3, [a, b]5, [a, babab]3, (ab)ki〉.
Now assume that U3(2

2m) is a quotient of 〈a, b | a2, b3, [a, b]5, [a, babab]3, (ab)j〉 for some j ∈ N.
Any unitary trace tuple corresponding to a quotient of 〈a, b | a2, b3, [a, b]5, [a, babab]3〉 has the
form t = (1, 1, 0, 0, α, α, ζ/α, ζ/α, ζ2) ∈ F24m for some α of norm ζ, and the order of the image
of ab is |X + 〈χ〉|.

Example 6.28. Let m = 2. We first compute the possible minimal polynomials X2+βX+ζ
of α, where β is given implicitly by its minimal polynomial. The possible minimal polynomials
for β such that [F2[ζ, β] : F2] = 4 are

µ1 = X2 +X + ζ, µ2 = X2 + ζX + ζ, µ3 = X2 + ζ2X + 1,

µ4 = X2 + ζ2X + ζ2, µ5 = X2 +X + ζ2, µ6 = X2 + ζX + 1,

but for µ5 and µ6 the polynomialX2+βX+ζ is reducible, so they are of no interest. For each of
the other choices, the order of X+〈χ〉 can be computed. For µ2 it is 17, for µ1 and µ3 it is 241,
and for µ4 it is 255. This shows that U3(2

4) is a quotient of 〈a, b|a2, b3, [a, b]5, [a, babab]3, (ab)i〉



72 CHAPTER 6. EXAMPLES

if and only if i is a multiple of 17, 241, or 255. Note also that, by the formulæ in Propo-
sition 6.13, 〈a, b|a2, b3, [a, b]5, [a, babab]3〉 has four quotients isomorphic to U3(2

4), so they
correspond to the four choices of the µj .
The same calculations can be done for the quotients U3(2

2m) for different m. For example,
the smallest orders i of ab such that U3(2

2m) appears as a quotient are 65, 257, 205, 4097,
3277 and 65537 for m = 3, . . . , 8, respectively.

Similar considerations can be applied to the quotients PGL(3, 22k) and PSL(3, 22k). For
example, the quotients PGL(3, 22), PGL(3, 24) and PGL(3, 26) occur for i = 21, 153 and 189,
respectively.



Chapter 7

Counting generators

In this chapter we apply the algorithm to a combinatorial problem, namely to count the
number of different ways to generate a group of L3-type by two elements of prescribed order.
The most interesting case is the generation by an element of order 2 and an element of order 3;
these are the smallest possible values, since two elements of order 2 generate a dihedral group.

The first results on this problem are given by P. Hall in [Hal36], where he counts the number
of ways to generate the groups PSL(2, p) for a prime p by an element of order 2 and an
element of order 3. This was subsequently generalized by Plesken and Fabiańska in [PF09] to
the groups PSL(2, q) and PGL(2, q) for an arbitrary prime power q.

Here, the groups PSL(3, q), PSU(3, q), PGL(3, q), and PGU(3, q) are considered for an ar-
bitrary prime power q. Note that this amounts to counting the quotients of L3-type of the
group C2 ∗C3.

Remember the notation from Section 6.3.1:

Definition 7.1. Let G be a finitely presented group on two generators, p a prime and n ∈ N.
Denote by pslG(3, p

n) the number of normal subgroups N EG with G/N ∼= PSL(3, pn), and
define psuG(3, p

n) similarly. Furthermore, if pn ≡ 1 mod 3, define pglG(3, p
n) to be the

number of normal subgroups N EG with G/N ∼= PGL(3, pn), and if pn ≡ −1 mod 3 define
pguG(3, p

n) similarly.

Define pslG(3, p
x) = psuG(3, p

x) = pglG(3, p
x) = pguG(3, p

x) = 0 if x ∈ Q is not a positive
integer. Furthermore, define pgl(3, pn) = 0 if pn 6≡ 1 mod 3 and pgu(3, pn) = 0 if pn 6≡ −1
mod 3.

Furthermore, µ is the Möbius µ-function and

χ : Q → {0, 1} : x 7→
{
1, if x ∈ Z,

0, otherwise,

the characteristic function of Z in Q.

7.1 Generator pairs of order 2 and order 4

The results for the case C2 ∗C4 are both easier to state and to prove, so we do this first.
This will already show the general strategy for the case C2 ∗C3, so we can focus on the
complications arising in that case in the next section. Here are the main results.

73
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Proposition 7.2. Let p be a prime and n ∈ N an integer. Assume n ≥ 2. Then

psuC2 ∗C4
(3, pn) =

1

2n

(∑

r|2n

µ

(
2n

r

)
pr − red(pn)

)
,

where

red(pn) =





0, if p = 2,∑
r|n µ

(
n
r

) (
1− χ

(
n
2r

))
(pr − 1), if pn ≡ 1 mod 4,

3
∑

r|n µ
(
n
r

)
(pr − 1), if pn ≡ −1 mod 4.

If n = 1, then

psuC2 ∗C4
(3, p) =





0, if p ∈ {2, 3},
1, if p = 5,

13, if p = 7,
1
2(p

2 − 2p+ 1− (1−
(
−7
p

)
)− (1−

(
−3
p

)
)(2 +

(
5
p

)
)), if p ≡ 1 mod 4,

1
2(p

2 − 4p+ 5− (1−
(
−7
p

)
)− (1−

(
−3
p

)
)(2 +

(
5
p

)
)), if p ≡ −1 mod 4,

where
(
a
p

)
is the Legendre symbol.

Proposition 7.3. Let p be a prime and n ∈ N an integer. Assume n ≥ 3. Then

pslC2 ∗C4
(3, pn) =

1

2n

(
irr(pn)− n psuC2 ∗C4

(3, pn/2)−
∑

r|n

µ
(n
r

)
pr
)
,

where

irr(pn) =





∑
r|n µ

(
n
r

)
(p2r − pr), if p = 2,

∑
r|n µ

(
n
r

)
(p2r − 3(pr − 1)), if p ≡ 1 mod 4,

∑
r|n µ

(
n
r

)
(p2r − (1− χ

(
r
2

)
)(pr + 1)− χ

(
r
2

)
3(pr − 1)), if p ≡ −1 mod 4.

If n = 1, then

pslC2 ∗C4
(3, p) =





1, if p = 2,

2, if p = 3,

17, if p = 7,
1
2(p

2 − 4p+ 5− (1 +
(
−7
p

)
)− (1 +

(
−3
p

)
)(2 +

(
5
p

)
)), if p ≡ 1 mod 4,

1
2(p

2 − 2p+ 1− (1 +
(
−7
p

)
)− (1 +

(
−3
p

)
)(2 +

(
5
p

)
)), if p ≡ −1 mod 4,

and if n = 2, then

pslC2 ∗C4
(3, p2) =





1, if p = 2,

11, if p = 3,

126, if p = 5,
1
4(p

4 − 6p2 + 6p− 5 + 2(1 +
(
5
p

)
)), otherwise,

where
(
a
p

)
is the Legendre symbol.
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As in Section 6.3.1, the formulæ greatly simplify if the allowed exponents are not arbitrary.

Corollary 7.4. Let n be an odd prime. Then

pslC2 ∗C4
(3, pn) =





(p2n − pn − p2 + p)/2n, if p = 2,

(p2n − 2pn − p2 + 2p)/2n, if p ≡ 1 mod 4,

(p2n − 4pn − p2 + 4p)/2n, if p ≡ −1 mod 4,

and

psuC2 ∗C4
(3, pn) =





(p2n − pn − p2 + p)/2n, if p = 2,

(p2n − 4pn − p2 + 4p)/2n, if p ≡ 1 mod 4,

(p2n − 2pn − p2 + 2p)/2n, if p ≡ −1 mod 4.

Example 7.5. The first few values of the formulæ are given in Table 7.1.

pslC2 ∗C4
(3, pn) n = 1 2 3 4

p = 2 1 1 9 27
3 2 11 112 766
5 5 126 2520 48378
7 17 536 19488 718836
11 49 3495 294800 26783970

psuC2 ∗C4
(3, pn) n = 1 2 3 4

p = 2 0 3 9 30
3 0 16 104 800
5 1 144 2560 48672
7 13 576 19376 720000
11 38 3600 294360 26791200

Table 7.1: Values of pslC2 ∗C4
(3, pn) and psuC2 ∗C4

(3, pn) for small n and p

The remainder of this section is concerned with the proof of the two propositions.
The L3-U3-quotient algorithm for the group C2 ∗C4 returns the ideal

P := 〈x1+1, x−1+1, x2−1, x−2−1, x1,2−x−1,2, x−2,−1−x−2,1, x[1,2]−x−1,2x−2,1−x−2,1−x−1,2〉

which is of Krull dimension 3. Every zero of P has the form

t = (−1,−1, 1, 1, α, α, β, β, αβ + α+ β) ∈ F9
pn ,

where α, β ∈ Fpn are arbitrary. Furthermore, Algorithm 4.42 shows that t is not absolutely
irreducible if and only if it is a zero of

ρ := (x−2,1 + 2 + x−1,2)(x−2,1
2 − 2x−2,1 − 2x−1,2 + 2 + x−1,2

2).

The strategy for both proofs is the same; count the number of absolutely irreducible trace
tuples which are zeroes of P , and remove those which yield epimorphisms onto proper sub-
groups.
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7.1.1 The formula for psuC2 ∗C4
(3, pn)

The next two lemmas are used to count unitary trace tuples.

Lemma 7.6. Let p be prime and n = 2m ∈ N; denote by Tr the trace function of Fpn/Fpm.
For any ϑ ∈ Fp there exist

∑

r|m

µ
(m
r

)(
1− χ

(m
2r

))
(pr − 1)

elements α ∈ Fpn such that Fpn = Fp[α] and Tr(α) = ϑ.

Proof. The function Tr: Fpn → Fpm is linear, so ϑ has pn/pm = pm pre-images in Fpn . One
of those pre-images already lies in Fpm , so there are pm − 1 elements of trace ϑ in Fpn which
do not lie in a subfield of even index. This leaves the odd-index subfields, for which the
same reasoning applies, so a standard inclusion-exclusion argument yields the formula in the
statement.

Lemma 7.7. Let p be an odd prime and m ∈ N. If pm ≡ −1 mod 4, there are

∑

r|m

µ
(m
r

)
(pr − 1)

elements ϑ ∈ Fpm such that Fpm = Fp[ϑ] and X
2 − ϑX + ((ϑ − 1)2 + 1)/2 is irreducible. If

pm ≡ 1 mod 4, no such elements exist.

Proof. The discriminant of X2 − ϑX + ((ϑ − 1)2 + 1)/2 is −(ϑ − 2)2, so the polynomial is
irreducible if and only if ϑ 6= 2 and −1 6∈ F∗2

pm . So if pm ≡ −1 mod 4, the formula just
describes the number of generators 6= 2 of Fpm , cf. Lemma 6.16.

Lemma 7.8. Let p be a prime and n ∈ N. If n > 1, the number of absolutely irreducible
unitary zeroes t ∈ Fp2n of P such that Fp[t] = Fp2n is

∑

r|2n

µ

(
2n

r

)
pr − red(pn),

with red(pn) defined as in Proposition 7.2. If n = 1, the number is





2, if p = 2,

p2 − 2p+ 1, if p ≡ 1 mod 4,

p2 − 4p+ 5, if p ≡ −1 mod 4.

Proof. Let t = (−1,−1, 1, 1, α, α, β, β, αβ+α+β) ∈ F9
p2n be a zero of P and γ2 the generator

of Gal(Fp2n/Fpn). Then t is unitary if and only if β = γ2(α). Thus, there is a bijection
between generators of Fp2n and unitary trace tuples which are zeroes of P .
Let ρ1 := (x−2,1 + 2 + x−1,2) and ρ2 := (x−2,1

2 − 2x−2,1 − 2x−1,2 + 2 + x−1,2
2). Then t is

absolutely irreducible if and only if it is not a zero of ρ = ρ1ρ2. Assume first p = 2. Then
ρ2 = ρ21, and t is a zero of ρ if and only if α+ β = 0, i.e., α = β. But this implies α = γ2(α),
which is not possible since α is a primitive element. Hence in characteristic 2, all unitary
trace tuples are absolutely irreducible.
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Now assume that p is odd. If t is a zero of ρ1, then Tr(α) = −2, where Tr is the trace of
Fp2n/Fpn . The number of trace tuples satisfying this is given in Lemma 7.6. If t is a zero of
ρ2, then (Tr(α) − 1)2 − 2N(α) + 1 = 0, where N is the norm on Fp2n/Fpn . Since γ2(α) 6= α,
the minimal polynomial of α over Fpn is

X2 − Tr(α)X +N(α) = X2 − Tr(α)X +
(Tr(α)− 1)2 + 1

2
.

Note that α generates Fp2n if and only if Tr(α) generates Fpn ; Lemma 7.7 lists the number
of possible values of generators Tr(α) such that the polynomial is irreducible; each of those
choices yields two choices for α.

Note that the resultant of ρ1 and ρ2 with respect to x−1,2 is 2(x2−2,1 + 2x−2,1 + 5), which has

discriminant −26. Thus ρ1 and ρ2 have two common zero if n = 1 and
√
−1 6∈ Fp.

There is no need to consider imprimitive representations, by the following lemma.

Lemma 7.9. Let t ∈ F9
pn be an imprimitive zero of P . Then t is orthogonal.

Proof. Apply Algorithm 4.28 to P .

The next few lemmas deal with the exceptional groups.

Lemma 7.10. The number of zeroes t ∈ Fpn of P such that the corresponding projective
representation maps onto L2(7) and Fpn = Fp[t] is





1, if n = 1 and p = 7,

2, if n = 1 and
√
−7 ∈ F∗

p or n = 2 and
√
−7 6∈ F∗

p,

0, otherwise.

Furthermore, such a tuple is unitary if and only if n = 2 and
√
−7 6∈ Fp, and orthogonal if

and only if p = 7.

Proof. Algorithm 4.45 returns the ideal

〈x2−1,2 + x−1,2 + 2, x−1,2 + x−2,1 + 1〉

for L2(7), and x
2
−1,2 + x−1,2 + 2 has discriminant −7.

Lemma 7.11. The number of zeroes t ∈ Fpn of P such that the corresponding projective
representation maps onto A6 and Fpn = Fp[t] is





2, if n = 2 and p = 5,

4, if n = 1 and ζ ∈ Fp and
√
5 ∈ Fp

or n = 2 and ζ 6∈ Fp or
√
5 6∈ Fp

0, otherwise.

Furthermore, such a tuple is unitary if and only if n = 2, p 6= 2 and
√
5 ∈ Fp.
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Proof. Algorithm 4.45 returns the two ideals

〈x2−1,2 − ζx−1,2 − ζ2, x−2,1 − ζx−1,2〉 and
〈x2−1,2 − ζ2x−1,2 − ζ, x−2,1 − ζ2x−1,2〉,

for A6, and the discriminants of the quadratic polynomials are 5ζ2 and 5ζ4, respectively.

Lemma 7.12. The number of zeroes t ∈ Fpn of P such that the corresponding projective
representation maps onto the Hessian group H36 of order 36 and Fpn = Fp[t] is





2, if n = 1 and p ≡ 1 mod 3

or n = 2 and p ≡ −1 mod 3,

0, otherwise.

Furthermore, such a tuple is unitary if and only if n = 2 and ζ 6∈ Fp.

The other Hessian groups PGL(3, 2) and PSU(3, 2) do not occur.

Proof. Algorithm 4.45 returns the two ideals

〈x−1,2 − ζ, x−2,1 − ζ2〉 and
〈x−1,2 − ζ2, x−2,1 − ζ〉,

for H36; furthermore, Algorithm 4.42 shows that a zero of those ideals is not absolutely
irreducible if and only if p = 3.

Lemma 7.13. The number of zeroes t ∈ Fpn of P such that the corresponding projective
representation maps onto A7 or M10 and Fpn = Fp[t] is

{
4, if n = 2 and p = 5,

0, otherwise.

Every such tuple is unitary.

Proof. Algorithm 4.45 returns the ideals

〈x−1,2 + ζ + 3, x−2,1 + ζ2 + 3〉, 〈x−1,2 + ζ2 + 3, x−2,1 + ζ + 3〉,
〈x−1,2 + 2ζ + 3, x−2,1 + 2ζ2 + 3〉, 〈x−1,2 + 2ζ2 + 3, x−2,1 + 2ζ + 3〉,

for A7 and

〈x−1,2 + ζ + 2, x−2,1 + ζ2 + 2〉, 〈x−1,2 + ζ2 + 2, x−2,1 + ζ + 2〉,
〈x−1,2 + 2ζ + 1, x−2,1 + 2ζ2 + 1〉, 〈x−1,2 + 2ζ2 + 1, x−2,1 + 2ζ + 1〉,

for M10.

We are now able to proof the first proposition.
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Proof of Proposition 7.2. Note that the group PSU(3, pn) occurs as subgroup of PSL(3, p2n),
so we have to count the unitary tuples in Fp2n which are absolutely irreducible and do not
lead to epimorphisms onto proper subgroups.
From the list of all trace tuples we remove those which are not absolutely irreducible, orthog-
onal, imprimitive, or lead to exceptional groups.
The formula for the absolutely irreducible unitary trace tuples is given in Lemma 7.8.
An orthogonal trace tuple is never unitary, and by Lemma 7.9 neither are imprimitive tuples.
Lemmas 7.10 – 7.13 list the number of trace tuples yielding exceptional groups, which is easily
rewritten to be as in the statement.
Finally, the action of the group Σ⋊(Gal(Fp2n)×T ) has to be accounted for. But the stabilizer
of t in Σ is trivial, and T acts by a Galois automorphism, so it is enough to consider the action
of Gal(Fp2n), which acts regularly. This explains the division by 2n.

7.1.2 The formula for pslC2 ∗C4
(3, pn)

For the second proposition, two more results are needed.

Lemma 7.14. Let p be a prime and n ∈ N. The number of absolutely irreducible zeroes
t ∈ Fp2n of P such that Fp[t] = Fp2n is

∑
r|n µ

(
n
r

)
(p2r−pr) if p = 2,

∑
r|n µ

(
n
r

)
(p2r−3(pr−1))

if p ≡ 1 mod 4, and

∑

r|n

µ
(n
r

)
(p2r − (1− χ

(r
2

)
)(pr + 1)− χ

(r
2

)
3(pr − 1))

if p ≡ −1 mod 4.

Proof. Let t = (−1,−1, 1, 1, α, α, β, β, αβ + α + β) ∈ F9
pn be a zero of P . By Lemma 6.16

the number of tuples (α, β) ∈ Fpn such that Fp[α, β] = Fpn is
∑

r|n µ
(
n
r

)
p2r. We now

count the number of such tuples which are zeroes of ρ. Set ρ1 := (x−2,1 + 2 + x−1,2) and
ρ2 := (x−2,1

2 − 2x−2,1 − 2x−1,2 + 2 + x−1,2
2). Clearly there are pn zeroes of ρ1, hence∑

r|n µ
(
n
r

)
pr zeroes of ρ1 which generate the field. If p = 2, then ρ2 = ρ21, which yields the

result. So assume in the following that p is odd.
The discriminant of ρ2 regarded as a polynomial in x−2,1 is −4(x−1,2−1)2, so ρ2 has one zero in
Fpn if pn ≡ −1 mod 4, and 2(pn−1)+1 zeroes in Fpn if pn ≡ 1 mod 4. Note that it is possible
that ρ1 and ρ2 have common zeroes. This is the case if and only if x2−2,1 + 2x−2,1 + 5 = 0.
This polynomial has discriminant −16, so there are two common zeroes if pn ≡ 1 mod 4, and
none otherwise. In total there are 3(pn−1) zeroes in Fpn if pn ≡ 1 mod 4, and pn+1 zeroes if
pn ≡ −1 mod 4. Note that pn ≡ −1 mod 4 if and only if p ≡ −1 mod 4 and n is odd. This
explains the distinction of those two cases and the occurrence of χ

(
r
2

)
in the formula.

Lemma 7.15. The number of irreducible orthogonal zeroes t ∈ Fpn of P such that Fpn = Fp[t]
is 




0, if p = 2,

p− 2, if n = 1 and p 6= 2,∑
r|n µ

(
n
r

)
pr, if n > 1 and p 6= 2.

Proof. Let t = (−1,−1, 1, 1, α, α, β, β, αβ + α + β) ∈ F9
pn be a zero of P . The trace tuple is

orthogonal if and only if α = β. In this case, t is not absolutely irreducible if and only if
ρ(α, α) = 4(α+ 1)(α− 1)2 = 0, which proves the lemma.
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Proof of Proposition 7.3. The proof is analogous to the proof of Proposition 7.2. Count all
trace tuples (cf. Lemma 6.16); then remove the ones which are not absolutely irreducible
(cf. Lemma 7.14), unitary (if n is even, giving the term n psuC2 ∗C4

(3, n/2)), orthogonal
(cf. Lemma 7.15) or exceptional (cf. Lemmas 7.10 – 7.13). Finally, divide by 2n to account
for the action of Gal(Fpn)× T .
The cases p = 2, 3, 5, 7 are treated separately for n = 1, 2 to account for the different behavior
of the orthogonal groups (p = 2), the groups L2(7) (p = 7), A6 (p = 3 and p = 5), and H36

(p = 3). Note however that for p = 5 and n = 1 the value of pslC2 ∗C4
(3, p) is expressible by

the abstract formula, and similarly for p = 7 and n = 2 for pslC2 ∗C4
(3, p2).

7.2 Generator pairs of order 2 and order 3

Proposition 7.16. Let p be a prime and n ∈ N such that pn ≡ −1 mod 3. Then

pguC2 ∗C3
(3, pn) =

1

3n

∑

r|n

µ
(n
r

)
(1− χ

( n
3r

)
)(p2r − pr − 2).

Proposition 7.17. Let p be a prime and n ∈ N such that pn ≡ 1 mod 3. Then

pglC2 ∗C3
(3, pn) =

pn

3n

∑

r|n

µ
(n
r

)
(1− χ

( n
3r

)
)χ

(
pr − 1

3

)
(pr − 1)− 1

2
pguC2 ∗C3

(3, pn/2).

Proposition 7.18. Let p > 2 be a prime and n ∈ N an integer. Assume n ≥ 2. If pn 6≡ −1
mod 3, then

psuC2 ∗C3
(3, pn) =

1

2n

(∑

r|2n

µ

(
2n

r

)
pr −

∑

r|n

µ
(n
r

)(
1− χ

( n
2r

))
2(pr − 1)

)
.

If pn ≡ −1 mod 3, then

psuC2 ∗C3
(3, pn) =

1

6n

(∑

r|2n

µ

(
2n

r

)
pr −

∑

r|n

µ
(n
r

)
6(pr − 1)

)
− 1

3
pguC2 ∗C3

(3, pn/3).

If p = 2 and n > 1 then

psuC2 ∗C3
(3, pn) =

1

6n

(∑

r|2n

µ

(
2n

r

)
pr −

∑

r|n

µ
(n
r

)
(3pr − 2)

)
− 1

3
pguC2 ∗C3

(3, pn/3),

if n is odd, and

psuC2 ∗C3
(3, pn) =

1

2n

(∑

r|2n

µ

(
2n

r

)
pr −

∑

r|n

µ
(n
r

)
(1− χ

( n
2r

)
)pr

)
,

if n is even. If n = 1, then

psuC2 ∗C3
(3, p) =





0, if p = 2,

15, if p = 7,
1
6(p

2 − 7p+ 16− 3(1−
(
−7
p

)
)), if p ≡ −1 mod 3,

1
2(p

2 − 3p+ 2− (1−
(
−7
p

)
)), otherwise.
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Proposition 7.19. Let p be a prime and n ∈ N an integer. Assume n ≥ 3. If p = 3, then

pslC2 ∗C3
(3, pn) =

1

2n

(∑

r|n

µ
(n
r

)
(p2r − 3pr)− n psuC2 ∗C3

(3, pn/2)
)
;

if pn ≡ 1 mod 3, then

pslC2 ∗C3
(3, pn) =

1

6n

(
irr(pn)− 3n psuC2 ∗C3

(3, pn/2)

− 2n pglC2 ∗C3
(3, pn/3)− n pguC2 ∗C3

(3, pn/6)
)

where

irr(pn) :=





∑
r|n µ

(
n
r

)
(p2r − 7pr), if p ≡ 1 mod 3,

∑
r|n µ

(
n
r

)
(p2r − 2pr − χ

(
r
2

)
2(pr − 1))

−∑
r|n

2
µ
(
n
2r

)
2(p2r − 2pr), if p = 2 and (n, 4) = 2,

∑
r|n µ

(
n
r

)
(p2r − 2pr − χ

(
r
2

)
2(pr − 2)), if p = 2 and (n, 4) = 4,

∑
r|n µ

(
n
r

)
(p2r − 5pr − χ

(
r
2

)
2(pr − 2))

−∑
r|n

2
µ
(
n
2r

)
2(p2r − 2pr), if p ≡ −1 mod 3 and (n, 4) = 2,

∑
r|n µ

(
n
r

)
(p2r − 5pr − χ

(
r
2

)
2(pr − 2)), if p ≡ −1 mod 3 and (n, 4) = 4;

and if pn ≡ −1 mod 3, then

pslC2 ∗C3
(3, pn) =

{
1
2n

∑
r|n µ

(
n
r

)
(p2r − 2pr), if p = 2,

1
2n

∑
r|n µ

(
n
r

)
(p2r − 3pr), otherwise.

If n = 1, then

pslC2 ∗C3
(3, p) =





1, if p = 2,

3, if p = 7,
1
6(p

2 − 7p+ 18− 3(1 +
(
−7
p

)
)), if p ≡ 1 mod 3,

1
2(p

2 − 3p+ 4− (1 +
(
−7
p

)
)), otherwise,

and if n = 2, then

pslC2 ∗C3
(3, p2) =





0, if p = 2,

13, if p = 3,
1
12(p

4 − 11p2 + 16p− 10), if p ≡ −1 mod 3,
1
12(p

4 − 11p2 + 16p− 6), otherwise,

Again, the following special cases are noteworthy for their simplicity.

Corollary 7.20. Let n > 3 be prime. Then

pslC2 ∗C3
(3, pn) =





(p2n − 2pn − p2 + 2p)/2n, if p = 2,

(p2n − 7pn − p2 + 7p)/6n, if p ≡ 1 mod 3,

(p2n − 3pn − p2 + 3p)/2n, otherwise
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and

psuC2 ∗C3
(3, pn) =





(p2n − 4pn − p2 + 4p)/6n, if p = 2,

(p2n − 7pn − p2 + 7p)/6n, if p ≡ 2 mod 3,

(p2n − 3pn − p2 + 3p)/2n, otherwise

If p ≡ 1 mod 3, then
pglC2 ∗C3

(3, pn) = (p2n − pn+1)/3n,

and if p ≡ −1 mod 3,

pguC2 ∗C3
(3, pn) = (p2n − pn − p2 + p)/3n.

Example 7.21. The first few values of the formulæ are given in Table 7.2.

pslC2 ∗C3
(3, pn) n = 1 2 3 4

p = 2 1 0 8 7
3 2 13 108 762
5 7 35 2540 16006
7 3 164 6398 239132
11 45 1123 294580 8924990

psuC2 ∗C3
(3, pn) n = 1 2 3 4

p = 2 0 2 2 28
3 0 14 108 790
5 0 138 818 48594
7 15 564 19432 719700
11 10 3570 97888 26789370

Table 7.2: Values of pslC2 ∗C3
(3, pn) and psuC2 ∗C3

(3, pn) for small n and p

The case G := C2 ∗C3 is more involved than the case C2 ∗C4. The additional complications
are:

1. Since not every finite field contains a third root of unity ζ, it can happen that the trace
tuple t ∈ Fpn generates Fpn/Fp, while another element σt in the orbit under Σ does not.
These orbits have to be excluded.

2. We will get imprimitive groups, PGL, and PGU as images, so three more families of
groups have to be considered.

On the other hand, a lot of the arguments are similar in both cases, so the arguments can be
kept brief there.
Again, there is only one ideal which is not rejected by the irreducibility test, namely

P := 〈x1 + 1, x−1 + 1, x2, x−2, x1,2 − x−1,2, x−2,−1 − x−2,1, x[1,2] − x−1,2x−2,1 + 1〉,

which again is of Krull dimension 3. Every zero of P is of the form

t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fpn ;
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the reducible trace tuples are the zeroes of

ρ := (x−2,1 + 2 + x−1,2)(x
2
−2,1 − 2x−2,1 − x−1,2x−2,1 − 2x−1,2 + 4 + x2−1,2).

Furthermore, t is imprimitive but not orthogonal if and only if αβ = 1.
Note that P is fixed under the action of Σ′ := 〈(1, ζ)〉 ≤ Σ.

7.2.1 The formula for pguC2 ∗C3
(3, pn)

A pgu tuple is always absolutely irreducible; we prove this more generally for pgl tuples, which
is needed later.

Lemma 7.22. Let t ∈ F9
p3n be a zero of P which is pgl. Then t is absolutely irreducible.

Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fp3n be a zero of P . By Proposition 4.31, t

is pgl if and only if (1,ζ)t = γt, where γ ∈ Gal(Fp3n/Fpn) is a Galois automorphism of order 3.
This is the case if and only if (α, β) has one of the following three forms:

(α, β) = (
3
√
δ, 0), (α, β) = (0,

3
√
δ), or (α, β) = (

3
√
δ, λ

3
√
δ
2
),

where δ ∈ Fpn is a generator of Fpn which is not a cube, and λ ∈ Fpn . One easily checks that

the first two forms cannot be zeroes of ρ. For the third form, note that (1, 3
√
δ, 3
√
δ
2
) is a basis

of Fp3n/Fpn ; using this, it is again easily checked that (α, β) cannot be a zero of ρ.

Lemma 7.23. Let p be a prime such that p ≡ −1 mod 3 and n an odd integer. The number
of absolutely irreducible pgu zeroes t ∈ F9

p6n of P such that Fp6n = Fp[t] is

2
∑

r|n

µ
(n
r

)
(1− χ

(
2n

3r

)
)(p2r − 1).

Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fp6n be a zero of P and γ2 ∈ Gal(Fp6n/Fpn)
be the Galois automorphism of order 2. For t to be pgu and Fp6n = Fp[t] it is necessary and

sufficient that α = 3
√
δ and β = γ2(α) for some δ ∈ Fp2n such that Fp2n = Fp[δ] and δ is not

a third power in Fp2n . Here, 3
√
δ is one of the three roots of X3 − δ. The result follows from

Lemma 6.21, using that χ
(
pr−1
3

)
= χ

(
r
2

)
.

Lemma 7.24. Let p be a prime such that p ≡ −1 mod 3 and n an odd integer. There exist

2

3

∑

r|n

µ
(n
r

)
(1− χ

(
2n

3r

)
)(pr + 1)

elements δ ∈ Fp2n with Fp[δ] = Fp2n such that δ has norm 1 over Fpn and X3 − δ ∈ Fp2n [X]
is irreducible.

Proof. Let N: F∗
p2n → F∗

pn denote the norm. Since N is surjective, there exist (p2n − 1)/(pn −
1) = pn + 1 elements of norm 1. However, some of those are cubes. So assume x3 ∈ ker(N).
Then N(x)3 = 1, so N(x) = ζi for some 0 ≤ i ≤ 2. Since N(x) ∈ Fpn and pn 6≡ 1 mod 3,
we must have i = 0, so x ∈ ker(N). In other words, F∗3

p2n ∩ ker(N) = ker(N)3, so 1/3 of all
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elements in ker(N) are cubes. Let x ∈ ker(N) be a non-cube. Then x can lie in a proper
subfield. But it cannot lie in a subfield of odd degree or in a subfield whose index is divisible
by three (cf. proof of Lemma 6.21). Hence there are

∑

r|2n

µ

(
2n

r

)
χ
(r
2

)
(1− χ

(
2n

3r

)
)(pr/2 + 1) =

∑

r|n

µ
(n
r

)
(1− χ

( n
3r

)
)(pr + 1)

generators of Fp2n of norm 1 which are not cubes.

Lemma 7.25. Let p be a prime such that p ≡ −1 mod 3 and n an odd integer. The number
of zeroes t ∈ F9

p6n of P such that Fp6n = Fp[t] and t is both pgu and imprimitive is

2
∑

r|n

µ
(n
r

)
(1− χ

(
2n

3r

)
)(pr + 1).

Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fp6n be a zero of P . As stated above, t is
imprimitive if and only if αβ = 1. Since t is unitary, this is equivalent to the fact that α has
norm 1. This obviously implies that δ has norm 1, but in fact it is equivalent, so if δγ(δ) = 1,
then 3

√
δγ2(

3
√
δ) = 1. For suppose 3

√
δγ2(

3
√
δ) = ζ. Then ζ lies in the field Fp3n ; but 3 ∤ p3n − 1

by our assumption, which is a contradiction. The result follows by Lemma 7.24.

Proof of Proposition 7.16. Lemma 7.23 lists the number of absolutely irreducible pgu tuples.
The only subgroups to consider are the imprimitive ones, which are handled by Lemma 7.25.
Finally, the action of Σ′ ⋊ (Gal(Fp6n)× T ) has to be accounted for. But since the tuples are
unitary and pgl, the action has a kernel of order 6. The factor group however acts regularly,
so the number of trace tuples has to be divided by 6n.

7.2.2 The formula for pglC2 ∗C3
(3, pn)

Lemma 7.26. Let p be a prime and n ∈ N such that pn ≡ 1 mod 3. The number of absolutely
irreducible pgl zeroes t ∈ F9

p3n of P such that Fp3n = Fp[t] is

2(pn + 1)
∑

r|n

µ
(n
r

)
(1− χ

( n
3r

)
)χ

(
pr − 1

3

)
(pr − 1).

Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fp3n be a zero of P . Then t is pgl with
Fp[t] = Fp3n if and only if (α, β) is of one of the forms

(α, β) = (
3
√
δ, 0), (α, β) = (0,

3
√
δ), or (α, β) = (

3
√
δ, λ

3
√
δ
2
),

where λ ∈ F∗
pn , X

3 − δ ∈ Fpn [X] is irreducible and 3
√
δ is one of the three roots in Fp3n . The

formula now follows by Lemma 6.21.

Lemma 7.27. Let p be a prime and n ∈ N such that pn ≡ 1 mod 3. The number of zeroes
t ∈ F9

p3n of P such that Fp3n = Fp[t] and t is both pgl and imprimitive is

2
∑

r|n

µ
(n
r

)
(1− χ

( n
3r

)
)χ

(
pr − 1

3

)
(pr − 1).
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Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fp3n be a zero of P . As stated above, t is

imprimitive if and only if αβ = 1. This implies that (α, β) = ( 3
√
δ, λ 3

√
δ
2
) in the notation of

the proof of Lemma 7.26, and 1 = αβ = λδ. Hence λ = δ, i.e., every choice of δ gives three
possibilities for tuples which are both pgl and imprimitive.

Proof of Proposition 7.17. Lemma 7.26 lists the number of absolutely irreducible pgu tuples.
The only subgroups to consider are the imprimitive ones, which are handled by Lemma 7.27.
The action of Σ′⋊ (Gal(Fp3n)×T ) has a kernel of order 3, but the factor group acts regularly.
so the number of trace tuples has to be divided by 6n.

7.2.3 The formula for psuC2 ∗C3
(3, pn)

Lemma 7.28. Let p 6= 3 be a prime and m ∈ N. If pm ≡ −1 mod 3, there are
∑

r|m

µ
(m
r

)
(pr − 1)

elements β ∈ Fpm such that Fpm = Fp[β] and X
2 − βX + ((β − 1)2 + 3)/3 is irreducible. If

pm ≡ 1 mod 3, no such elements exist.

Proof. We use a different method than in Lemma 7.7 to incorporate the case p = 2. Assume
ζ ∈ Fpn ; then the polynomial factors as

(X +
1

3
(β − 1)(ζ − 1) + ζ2)(X +

1

3
(β − 1)(ζ2 − 1) + ζ).

This shows that the polynomial is irreducible if and only if β 6= 4 and ζ 6∈ Fpn . A standard
argument yields the formula.

Lemma 7.29. Let p be an odd prime and n ∈ N. If n > 1, the number of absolutely irreducible
unitary zeroes t ∈ Fp2n of P such that Fp[t] = Fp2n is

{∑
r|2n µ

(
2n
r

)
pr −∑

r|n µ
(
n
r

)
(1− χ

(
n
2r

)
)(pr − 1), if pn 6≡ −1 mod 3,

∑
r|2n µ

(
2n
r

)
pr −∑

r|n µ
(
n
r

)
3(pr − 1), otherwise.

If n = 1, the number is {
p2 − 2p+ 1, if p 6≡ −1 mod 3,

p2 − 4p+ 5, otherwise.

Furthermore, if p = 2, the number is
{∑

r|2n µ
(
2n
r

)
pr −∑

r|n µ
(
n
r

)
2(pr − 1), if n is odd,

∑
r|2n µ

(
2n
r

)
pr, if n is even.

Proof. This is analogous to the proof of Lemma 7.8, using Lemmas 7.6 and 7.28.

Lemma 7.30. Let p be an odd prime and n ∈ N such that pn ≡ −1 mod 3. If n > 1,
the number of absolutely irreducible unitary zeroes t ∈ Fp2n of P such that Fp[t] = Fp2n and
Fp[

σt] = Fpn for some σ ∈ Σ is

2
∑

r|n

µ
(n
r

)
(pr − 1);

if n = 1, this number is 2p− 6. If p = 2, no such tuples exist.
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Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fp3n be a unitary zero of P . Note that

Fp[
(1,ζ)t] = Fpn if and only if α = ζ2α′ for some non-zero generator α′ of Fpn , and similarly

for (1, ζ2) instead of (1, ζ). Hence, every non-zero generator α′ of Fpn gives two choices for α.
Let γ2 be the generator of Gal(Fp2n/Fpn); then (α, γ2(α)) is a zero of ρ if and only if α ∈
{−ζ,−ζ2, 2ζ, 2ζ2}. These cases can only occur if n = 1.

Lemma 7.31. Let p be prime and n ∈ N. There are

{∑
r|n µ

(
n
r

) (
1− χ

(
n
2r

))
pr, if p = 2,

∑
r|n µ

(
n
r

) (
1− χ

(
n
2r

))
(pr − 1), otherwise

elements α ∈ Fp2n such that Fp[α] = Fp2n and N(α) = 1, where N is the norm function of
Fp2n/Fpn.

Proof. There are (p2n − 1)/(pn − 1) = pn + 1 elements of norm 1 in Fp2n , but two of them
are ±1 (one, if p = 2), and some lie in odd-index subfields. The formula follows by an
inclusion-exclusion argument.

Lemma 7.32. Let p be a prime and n ∈ N. If n > 1, the number of absolutely irreducible
unitary zeroes t ∈ F9

p2n such that t is imprimitive, Fp[t] = Fpn and Fp[
σt] is not a proper

subfield for any σ ∈ Σ′

{∑
r|n µ

(
n
r

) (
1− χ

(
n
2r

))
pr, if p = 2,

∑
r|n µ

(
n
r

) (
1− χ

(
n
2r

))
(pr − 1), otherwise

If n = 1, the number is 



0, if p = 2,

p− 5 if p ≡ −1 mod 3,

p− 1 otherwise.

Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fpn be a zero of P . Then t is imprimitive if
and only if αβ = 1. Since t is also unitary, this is equivalent to the fact that α has norm 1.
Lemma 7.31 lists the number of such tuples. If {α, β} = {−ζ,−ζ2}, then the tuple is not
absolutely irreducible, and if {α, β} = {ζ, ζ2}, the tuple can be conjugated into a proper
subfield. These cases occur only if p ≡ −1 mod 3 and n = 1.

Lemma 7.33. The number of zeroes t ∈ Fpn of P such that the corresponding projective
representation maps onto L2(7) and Fpn = Fp[t] is





3, if n = 1 and p = 7,

2, if n = 2 and p = 3 or n = 1 and
√
−7 ∈ F∗

p and p ≡ −1 mod 3,

6, if n = 2 and
√
−7 6∈ F∗

p or n = 1 and
√
−7 ∈ F∗

p and p ≡ 1 mod 3,

0, otherwise.

If n = 2,
√
−7 6∈ F∗

p and p ≡ 1 mod 3, two of those tuples satisfy γ(t−1,2) = t−2,1, where γ2
is a generator of Gal(Fp2/Fp); if n = 2,

√
−7 6∈ F∗

p and p ≡ −1 mod 3, all six tuples satisfy
γ(t−1,2) = t−2,1. If p = 7, the tuples are orthogonal.
The other exceptional groups do not occur as quotients of C2 ∗C3.
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Proof. This is analogous to the proof of Lemma 7.10.

Proof of Proposition 7.18. Lemma 7.29 lists the number of absolutely irreducible unitary ze-
roes. If pn ≡ −1 mod 3, some of them can be conjugated into a proper subfield (Lemma 7.30).
Furthermore, the tuples can be imprimitive (Lemma 7.32) or pgu (the latter case can only

occur if pn ≡ −1 mod 3). If n = 1 and
(
−7
p

)
= −1, there are also two tuples yielding L2(7),

cf. Lemma 7.33.

Finally, the acting group has to be taken into account. Since we only count the unitary tuples
with β = γ2(α), where γ2 is a generator of Gal(Fp2n/Fpn), the group is Gal(Fp2n) × T if
pn ≡ −1 mod 3 and Σ′ ⋊ (Gal(Fp2n) × T ) otherwise. Both actions have a kernel of order 2,
thus in the first case we have to divide by 2n, in the second by 6n.

7.2.4 The formula for pslC2 ∗C3
(3, pn)

Lemma 7.34. Let p be a prime and n ∈ N. The number of absolutely irreducible zeroes
t ∈ F9

p3n of P such that Fpn = Fp[t] is





∑
r|n µ

(
n
r

) (
p2r − (1− χ

(
r
2

)
)pr − χ

(
r
2

)
(3pr − 2)

)
, if p = 2,

∑
r|n µ

(
n
r

) (
p2r − pr

)
, if p = 3,

∑
r|n µ

(
n
r

) (
p2r − 3(pr − 1)

)
, if p ≡ 1 mod 3,

∑
r|n µ

(
n
r

) (
p2r − (1− χ

(
r
2

)
)(pr + 1)− χ

(
r
2

)
3(pr − 1)

)
, if p ≡ −1 mod 3.

Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ−1) ∈ Fpn be a zero of P . Set ρ1 := x−2,1+2+x−1,2

and ρ2 := x2−2,1 − 2x−2,1 − x−1,2x−2,1 − 2x−1,2 + 4+ x2−1,2. Then t is absolutely irreducible if
and only if ρ(αβ) 6= 0. For odd p the argument is the same as in Lemma 7.14, using that the
discriminant of ρ2 with respect to x−2,1 is −3(x−1,2 − 2)2.

For p = 2 a new argument is needed. Note that ρ2 factors over F4 = F2[ζ] as (x−1,2 +
ζx−2,1)(x−1,2+ ζ

2x−2,1). Thus ρ2 has 2(pn− 1)+1 zeroes in Fpn if n is even and one zero if n
is odd. Furthermore, ρ1 and ρ2 have the zero α = β = 0 in common. Now the result follows
again by a standard argument.

Lemma 7.35. Let p be a prime with p ≡ −1 mod 3 and let n ∈ N be odd. If n > 1, there
are ∑

r|n

µ
(n
r

)
2(p2r − pr − 1)

absolutely irreducible zeroes t ∈ F9
p2n of P with Fp[t] = Fp2n but Fp[

σt] = Fpn for some σ ∈ Σ′.

If n = 1 and p 6= 2 there are 2p2 − 2p − 4 such zeroes, and if n = 1 and p = 2 there are
2p2 − 2p such zeroes.

Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fp2n be a zero of P . Then Fp[t] = Fp2n

but Fp[
σt] = Fpn if and only if α = ζα′ and β = ζ2β′ or α = ζ2α′ and β = ζβ′, where

Fp[α
′, β′] = Fpn . Thus every choice of generators (α′, β′) 6= (0, 0) of Fpn gives two choices for

(α, β), yielding
∑

r|n µ
(
n
r

)
2(p2r − 1) choices in total. However, some of these choices are not

absolutely irreducible.

So assume that (α, β) = (ζα′, ζ2β′) is a zero of ρ. Assume it is a zero of ρ1 = x−1,2+x−2,1+2.
Then α′ = ζ(2−β′)+2, which is only possible if β′ = α′ = 2; in particular, this only happens
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if n = 1. Now assume that it is a zero of ρ2 := x2−2,1−2x−2,1−x−1,2x−2,1−2x−1,2+4+x2−1,2.
Then

0 = ζβ′2 − 2ζ2β′ − α′β′ − 2ζα′ + 4 + ζ2α′2 = −(α′ + β′ + 2)(ζα′ + α′ − 2− ζβ′).

There are
∑

r|n µ
(
n
r

)
pr possibilities for α′ + β′ + 2 = 0. If ζα′ + α′ − 2 − ζβ′ = 0, then

β′ = α′ + ζ2(α′ − 2), which is only possible if α′ = β′ = 2; but this case is already handled
above. The case (p, n) = (2, 1) has to be handled separately, to account for the fact that
2 = 0.

Lemma 7.36. Let p be an odd prime and n ∈ N. The number of absolutely irreducible
orthogonal zeroes t ∈ F9

pn such that Fp[t] = Fpn and Fp[
σt] is not a proper subfield for any

σ ∈ Σ′ is 



p− 1 if p = 3 and n = 1,

p− 2 if p ≡ −1 mod 3 and n = 1,

3p− 8 if p ≡ 1 mod 3 and n = 1,∑
r|n µ

(
n
r

)
pr if p = 3 and n > 1

or p ≡ −1 mod 3 and n > 1 odd,∑
r|n µ

(
n
r

)
(3pr − 2) otherwise.

Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fpn be a zero of P . Then t is orthogonal if
and only if α = β, α = ζβ, or α = ζ2β, so if ζ ∈ Fpn there are 3(pn − 1) + 1 such tuples,
and if ζ 6∈ Fpn there are only pn such tuples. However, not all of those tuples are absolutely
irreducible. The six exceptions are

(α, β) ∈ {(−1,−1), (2, 2), (2ζ, 2ζ2), (−ζ,−ζ2), (2ζ2, 2ζ), (−ζ2,−ζ)},

which can be easily seen using ρ. Furthermore, if p ≡ −1 mod 3 and (n, 4) = 2, some of
those tuples have Σ′-conjugates which lie in a proper subfield. These are exactly the tuples
(α, β) = (ζα′, ζ2α′) and (α, β) = (ζ2α′, ζα′) for some generator α′ of Fpn/2 , so they are already
taken care of above. A standard inclusion-exclusion principle now yields the result.

Lemma 7.37. Let p be a prime and n ∈ N. The number of absolutely irreducible imprimitive
zeroes t ∈ F9

pn such that Fp[t] = Fpn and Fp[
σt] is not a proper subfield for any σ ∈ Σ′ and t

is not orthogonal is





0 if p = 2 and n = 1,

p− 3 if p 6≡ 1 mod 3 and n = 1,

p− 7 if p ≡ 1 mod 3 and n = 1,∑
r|n µ

(
n
r

)
pr if p 6≡ −1 mod 3 and n > 1

or p ≡ −1 mod 3 and (n, 4) 6= 2,∑
r|n µ

(
n
r

)
pr − 2

∑
r|n

2
µ
(
n
2r

)
(pr − 1) if p ≡ −1 mod 3 and (n, 4) = 2.

Proof. Let t = (−1,−1, 0, 0, α, α, β, β, αβ − 1) ∈ Fpn be a zero of P . Using Algorithms 4.43
and 4.44 one sees that t is imprimitive and absolutely irreducible but not orthogonal if and only
if βα = 1 with α 6∈ {±1,±ζ,±ζ2}. The argument is now the same as in the last lemma.
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Proof of Proposition 7.19. Lemma 7.34 lists the number of absolutely irreducible trace tuples
which generate the field. However, if p ≡ −1 mod 3 and (n, 4) = 2, a Σ′-conjugate could
generate a proper subfield, cf. Lemma 7.35. Now the subgroups have to be handled. The
tuple can be orthogonal (Lemma 7.36) or imprimitive (Lemma 7.37), and if n ∈ {1, 2}, it can
lead to an exceptional group (Lemma 7.33). Furthermore, it can be unitary, pgl or pgu.
Finally, if ζ ∈ Fpn , the acting group is Σ′ ⋊ (Gal(Fpn)× T ), otherwise it is Gal(Fpn)× T . In
the first case, the number of trace tuples has to be divided by 6n, in the latter case by 2n.
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Chapter 8

Implementation of the quotient

algorithms

The purpose of this short chapter is to highlight parts of the algorithms which can be optimized
for run-time efficiency. These results are not needed to understand the algorithms presented in
Chapters 2 and 4. However, they are crucial for an efficient implementation on the computer.
The optimizations presented here are independent of each other, so they should be combined
to get the optimal performance.

In addition to the four methods described here, a further optimization concerns the compu-
tation of the minimal associated prime ideals. Since this is also of independent interest, it is
presented in a separate chapter.

8.1 Orbits of sign systems

The aim of this section is to reduce the number of sign systems to consider in the L2-quotient
and the L3-U3-quotient algorithms.

Let G = 〈g1, g2 | r1, . . . , rk〉 be a finitely presented group, and assume that δ : G→ PSL(2, q) is
a projective representation. Then there exists a representation ∆: F2 → SL(2, q) inducing δ,
i.e., ∆(ri) = siI2 with si ∈ {±1} for all i ∈ {1, . . . , k}. For the L2-algorithm this means
in theory that the trace presentation ideals Is(G) for all s ∈ {±1} have to be considered.
However, for every σ ∈ Σ, the representation σ∆ also induces δ, and σ∆(ri) = ri(σ1, σ2)siI2.
So usually σ∆ belongs to a different trace presentation ideal than ∆, which means that only
one of them has to be considered.

The present section will make these ideas precise. For the L2-algorithm, the results are taken
from [PF09, Remark 3.4]. For the L3-algorithm, similar considerations hold. Additionally,
there is the action of the group Z, which further reduces the set of sign systems.

8.1.1 Degree 2

Definition 8.1. Let G = 〈g1, g2 | r1, . . . , rk〉 be a finitely presented group. For σ ∈ Σ and
s ∈ {±1}k set

σs := (r1(σ1, σ2)
−1s1, . . . , rk(σ1, σ2)

−1sk);

this defines an action of Σ on the set of sign systems {±1}k.
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The action of Σ on the sign systems induces an action on the trace presentation ideals. This
is exactly the action of Σ on ideals given in Definition 2.14.

Proposition 8.2. Let G = 〈g1, g2 | r1, . . . , rk〉 be a finitely presented group and s ∈ {±1}k.
Then

σ(Is(G)) = Iσs(G)

for all σ ∈ Σ. In particular, any minimal associated prime of Iσs(G) is a Σ-conjugate of a
minimal associated prime of Is(G).

Proof. Let σ ∈ Σ and w ∈ F2. An easy induction on |w| using the construction of the trace
polynomials in Theorem 2.1 shows σpw = w(σ1, σ2)pw. Remember that

Is(G) := 〈prih − siph |h ∈ {1, a, b, ab}, i ∈ {1, . . . , k}〉EZ[x1, x2, x12].

Now σIs(G) is generated by the elements

σ(prih − siph) = ri(σ1, σ2)h(σ1, σ2)prih − sih(σ1, σ2)ph.

Multiplying by scalars one gets the elements prih − siri(σ1, σ2)
−1ph, which are the generators

of Iσs(G).

This can be used to speed up the L2-quotient algorithm. If two trace presentation ideals Is(G)
and Is′(G) lie in the same Σ-orbit, then every minimal associated prime of Is(G) is Σ-conjugate
to a minimal associated prime of Is′(G) and will be eliminated in step 2 of Algorithm 2.27.
Hence step 1 and step 2 of Algorithm 2.27 can be replaced by:

0. Compute the kernel K and a set of orbit representatives S of the action of Σ on the
sign systems {±1}k.

1. Compute the set P ′ of all minimal associated prime ideals of Is(G), where s ranges
over all elements in S. Let P be the set of all minimal elements of P ′ with respect to
inclusion.

2. Choose a set of representatives R of P under the action of K.

8.1.2 Degree 3

As in the degree 2 case, the action by sign changes can be used to reduce the number of
sign systems to consider. Since the automorphism group of 〈ζ〉 is non-trivial, there is the
additional action of the group Z, which further reduces the number of sign systems.
As everything is completely analogous to degree 2, here are only the results.

Definition 8.3. Let G = 〈g1, g2 | r1, . . . , rk〉 be a finitely presented group. The group Σ⋊ Z
acts on the set 〈ζ〉k by

σs := (r1(σ1, σ2)
−1s1, . . . , rk(σ1, σ2)

−1sk)

and
zs := (s−1

1 , . . . , s−1
k ),

where s ∈ 〈ζ〉k, σ ∈ Σ, and Z = 〈z〉.
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Proposition 8.4. Let G = 〈g1, g2 | r1, . . . , rk〉 be a finitely presented group and s ∈ 〈ζ〉k. Then
α(Is(G)) = Iαs(G)

for all α ∈ Σ⋊Z. In particular, any minimal associated prime of Iαs(G) is a Σ⋊Z-conjugate
of a minimal associated prime of Is(G).

Now the first steps of the quotient algorithm can be adapted as in the degree 2 case. However,
since Σ ⋊ Z is no longer abelian, the stabilizers of the different sign systems may differ, so
this has to be taken care of.

0. Compute a set of orbit representatives S of the action of Σ⋊Z on the sign systems 〈ζ〉k.

1. For every s ∈ S compute the set of minimal associated prime ideals of Is(G) and choose
a set of orbit representatives under the action of the stabilizer of s in Σ⋊Z. Let R′ be
the set of all representatives for all s ∈ S.

2. Let R be the set of minimal elements of R′.

8.2 Split up words

It is obvious from the proof of Theorem 2.1 that the effort to construct the trace polynomial
pw grows exponentially with |w|. Furthermore, the degree of pw is proportional to the length
of w, which has effects on the Gröbner basis algorithms. It is therefore desirable to keep
the word lengths small. As already mentioned in [PF09], if a relation ri can be written as
ri = viwi, then ∆(ri(g1, g2)) = siI2 is equivalent to ∆(vi(g1, g2)) = si∆(w−1

i (g1, g2)). So
instead of working with the generators prih − siph of the trace presentation ideal Is(G), it is
more efficient to work with pvih − sipw−1

i h, where the words vi and wi are about half as long
as ri.

8.3 Words with powers

As mentioned in the previous section, the time complexity to compute the trace polynomial
pw with the algorithm in Theorem 2.1 is exponential in the length of the word w. However,
if w is of the form w = w1(w2)

nw3 for sub-words w1, w2, w3 ∈ F2 and n > 1, the following
lemma can give a huge performance boost.

Lemma 8.5. Let X,Y ∈ SL(2, R) and j ≥ 1. Then

Tr(X2j−1Y ) = Tr(XY )

j−1∑

i=0

(−1)i+j−1

(
j + i− 1

j − i− 1

)
Tr(X)2i

+Tr(Y )

j−2∑

i=0

(−1)i+j−1

(
j + i− 1

j − i− 2

)
Tr(X)2i+1

and

Tr(X2jY ) = Tr(XY )

j−1∑

i=0

(−1)i+j−1

(
j + i

j − i− 1

)
Tr(X)2i+1
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+Tr(Y )

j−1∑

i=0

(−1)i+j

(
j + i− 1

j − i− 1

)
Tr(X)2i.

Proof. This is an elementary induction on j using the relation (2.1).

An analogous reduction holds in degree 3.

Lemma 8.6. Let X,Y ∈ SL(3, R) and n ≥ 1. Then

Tr(XnY ) = cnTr(XY ) + cn−1Tr(X
−1Y ) + dnTr(Y ),

where

cn :=

⌊n−1
2

⌋∑

j=0

⌊n−j−1
2

⌋∑

i=0

(−1)i+j

(
i

j

)(
n− i− j − 1

i

)
Tr(X−1)i−j Tr(X)n−2i−j−1

and

dn :=

⌊n−2
2

⌋∑

j=0

⌊n−j−2
2

⌋∑

i=0

(−1)i+j+1

(
i+ 1

j

)(
n− i− j − 2

i

)
Tr(X−1)i+1−j Tr(X)n−2i−j−2.

Proof. By the first relation of Lemma 4.1, for all 3× 3-matrices of determinant 1 the relation

Tr(X2Y ) = Tr(X) Tr(XY )− Tr(Y ) Tr(X−1) + Tr(X−1Y )

holds. Therefore it suffices to show

cn+1 = Tr(X)cn − Tr(X−1)cn−1 + cn−2

and
dn+1 = Tr(X)dn − Tr(X−1)dn−1 + dn−2,

which is a technical but elementary induction.

8.4 Presentations with short and long relations

The optimization in this section is based on two observations. The first is that Gröbner basis
algorithms usually cope better with polynomials of small degree. For the second observation
assume G = 〈g1, g2 |R1 ∪ R2〉 with sets of relations R1 and R2; set Gi := 〈g1, g2 |Ri〉 for
i = 1.2. Then t ∈ F3

q is a zero of Is(G) for some sign system s of G if and only if t is a zero
of Is1(G1) + Is2(G2), where si is a sign system of Gi for i = 1, 2 such that the concatenation
of s1 and s2 is s.
These observations can be applied if the finitely presented group has both short and long
relations. Let G = 〈g1, g2 | r1, . . . , rℓ, rℓ+1, . . . , rk〉, where r1, . . . , rℓ are “short” relations, and
rℓ+1, . . . , rk are “long” relations. Let R1 := {r1, . . . , rℓ} and R2 := {rℓ+1, . . . , rk}. First call
Algorithm 2.27 with input G1; let R be the output.
Now for every sign system s2 of G2, instead of using the trace presentation ideal Is2(G2) in
step 1 of the algorithm, use the ideals Is2(G) + P , where P runs over R. To be more precise,
when computing the generators of Is2(G2) using Theorem 2.1 and Lemma 8.5, compute the
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normal form with respect to P after each step. This will keep the degree of the generators low,
which has a positive impact on the Gröbner basis algorithms and hence on the computation
of the minimal associated primes.
Of course, the distinction between short and long relations depends on the particular example.
In the Magma implementation of the L2-quotient algorithm, by default a relation is considered
short if it is of length ≤ 50 and long otherwise, and for the L3-U3-quotient algorithm, words
of length ≤ 20 are considered short, but these bounds can be set arbitrarily by the user.
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Chapter 9

Computation of minimal associated

primes

In this chapter, an algorithm to compute the minimal associated primes of an ideal in
Z[x1, . . . , xn] is presented. This is the main tool from commutative algebra for the L2-quotient
and L3-U3-quotient algorithms, and therefore a very efficient algorithm is needed. The one
described here is a variation of the algorithm by Gianni, Trager and Zacharias, cf. [GTZ88],
which is commonly called the GTZ algorithm. The latter is implemented in many computer
algebra systems for ideals in K[x1, . . . , xn], where K is a field of characteristic zero, although
the original algorithm allows arbitrary ground fields. The main difference between the GTZ
algorithm and the algorithm presented here is that a saturation is replaced by a Gröbner
basis computation with coefficients in a Euclidean ring, cf. Remark 9.5. Furthermore, the
algorithms here only achieve a reduction to the zero-dimensional case. For the primary de-
composition of zero-dimensional ideals one of the known algorithms is used, e.g. [GTZ88] for
ideals in characteristic zero, and [Ste05] for ideals in positive characteristic.
Note that Sections 9.1 and 9.2 are basically contained in [Fab09], where they are used for
the L2-quotient algorithm. However, the algorithms in Section 9.2 are often too slow for the
L3-U3-quotient algorithm. The bottleneck is a Gröbner basis computation over the integers.
The novel approach presented in this chapter is a replacement of the Gröbner basis calculation
over the integers by several Gröbner basis computations over the rationals in Section 9.3, or
more generally where the integers are replaced by a Euclidean domain and the rationals by
the quotient field.
In Section 9.4 some remarks are made which concern the special application of the quotient
algorithms.

9.1 Theoretical background

Let R be a Euclidean domain. For an ideal I ER[x1, . . . , xn] let MinAss(I) denote the set of
minimal associated prime ideals of I. Furthermore, for any q ∈ R set

MinAssq(I) := {P ∈ MinAss(I) |P ∩R = 〈q〉}.

Note that MinAssq(I) 6= ∅ implies q = 0 or q prime. A prime q with MinAssq(I) 6= ∅ is called
necessary. Since MinAss(I) is a finite set, there are only finitely many necessary primes, up
to multiplication with units in R. The first result gives a computational method to obtain a
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finite set which contains all necessary primes; such a set is called a sufficient set of primes.
Similar results already appear in [GTZ88, Proposition 3.7], [Fab09, Lemma 1.3.7] and [PSS11,
Lemma 2.2]. In Section 9.3, an alternative method is presented to compute such a finite set,
which in some instances is much faster.

Proposition 9.1. Let I ER[x1, . . . , xn] be an ideal with Gröbner basis G. Let P be the set
of all prime divisors of leading coefficients of elements of G. Then

MinAss(I) = MinAss0(I) ∪
⋃

p∈P

MinAssp(I).

Proof. Let P̃ := {p ∈ R | p prime,MinAssp(I) 6= ∅}. It suffices to show P̃ ⊆ P. Let
I =

⋂r
i=1Qi be a primary decomposition of I and Pi :=

√
Qi. Assume that the Qi are

numbered such that Pm+1, . . . , Pr meet P̃ but P1, . . . , Pm do not. Let S̃ be the multiplica-
tively closed set generated by P̃ and S the multiplicatively closed set generated by P. By
[AM69, Proposition 4.9], S̃ is minimal with the property

S̃−1I ∩R[x1, . . . , xn] =
m⋂

i=1

Qi = (K ⊗R I) ∩R[x1, . . . , xn],

where K denotes the quotient field of R. But by [AL94, Proposition 4.4.4],

S−1I ∩R[x1, . . . , xn] = (K ⊗R I) ∩R[x1, . . . xn],
hence S̃ ⊆ S and therefore P̃ ⊆ P.

The computation of MinAssq(I) can be reduced to a computation to a computation of minimal
associated prime ideals in a polynomial ring over a field. Note that this reduces the dimension
of the polynomial ring.

Proposition 9.2. Let I ER[x1, . . . , xn].

1. Let K denote the quotient field of R. Then

MinAss0(I) = {P ′ ∩R[x1, . . . , xn] |P ′ ∈ MinAss(K ⊗R I)}.

2. Let p ∈ R be a prime element. Then

MinAssp(I) = {ν−1
p (P̃ ) | P̃ ∈ MinAss(νp(I)) with P̃ 6⊇ νp(P

′) for all P ′ ∈ MinAss0(I)},
where νp : R[x1, . . . , xn] → R/〈p〉[x1, . . . , xn] denotes the natural epimorphism.

Proof. The first point is well-known, cf. e.g. [AM69, Proposition 4.9]. The second point is
proved in [Fab09, Lemma 1.3.11]; since it is reasonably short, the proof is repeated here.
Let P1, . . . , Pr be the minimal associated primes of I, and P̃1, . . . , P̃s the minimal associated
primes of νp(I). Then for any i ∈ {1, . . . , s} we have

P1 ∩ · · · ∩ Pr =
√
I ⊆ ν−1

p

(√
νp(I)

)
⊆ ν−1

p

(
P̃i

)
,

so ν−1
p

(
P̃i

)
contains some minimal associated prime of I.

Now let j ∈ {1, . . . , r} such that p ∈ Pj . Then P̃1 ∩ · · · ∩ P̃s ⊆ νp(Pj), so P̃i ⊆ νp(Pj) for

some i, and hence ν−1
p

(
P̃i

)
⊆ Pj . But we proved above that Pk ⊆ ν−1

p

(
P̃i

)
for some k, and

hence Pk = ν−1
p

(
P̃i

)
= Pj , by the minimality of Pj .
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9.2 The algorithms

Although the next two algorithms are based on the same theoretical background and therefore
could be regarded as one algorithm, they are split here. This is done one the one hand so
that it matches the implementation, and on the other hand for the convenience of the reader,
since the description as a single algorithm would require a more technical approach.

The first algorithm reduces the computation of minimal associated primes of an ideal in
Z[x1, . . . , xn] to the computation of minimal associated primes of ideals defined over fields.
Again, this could be easily done in a more general context where Z is replaced by an arbitrary
Euclidean domain, but since Z is the most important ring for the L2-quotient and L3-U3-
quotient algorithms, we restrict to this case.

Algorithm 9.3. Input: An ideal I EZ[x1, . . . , xn].
Output: The set of minimal associated prime ideals of I.

Algorithm:

1. Compute a Gröbner basis G of I, and let P be the set of all prime divisors of leading
coefficients of G.

2. Call Algorithm 9.4 with input Q⊗Z I to get MinAss(Q⊗Z I). Compute

MinAss0(I) = {P ′ ∩ Z[x1, . . . , xn] |P ′ ∈ MinAss(Q⊗Z I)}.

3. For every prime p ∈ P let νp : Z[x1, . . . , xn] → Fp[x1, . . . , xn] be the natural epimorphism.
Call Algorithm 9.4 with input νp(I) to get MinAss(νp(I)). Compute

MinAssp(I) = {ν−1
p (P̃ ) | P̃ ∈ MinAss(νp(I)) with P̃ 6⊇ νp(P

′) for all P ′ ∈ MinAss0(I)}.

4. Return MinAss0(I) ∪
⋃

p∈P MinAssp(I).

The second algorithm reduces the computation of minimal associated primes of ideals of
arbitrary dimension to the computation of minimal associated primes of ideals of dimension
zero.

Algorithm 9.4. Input: An ideal I EK[x1, . . . , xn], where K is a field.

Output: The set of minimal associated prime ideals of I.

Algorithm:

1. If I is zero-dimensional, call one of the well-known algorithms to compute MinAss(I)
and return. Otherwise, let xi be a variable such that I ∩K[xi] = {0}.

2. Compute a Gröbner basis G of I regarded as an ideal in K[xi][x1, . . . , xi−1, xi+1, . . . , xn],
i.e., an ideal in a polynomial ring of rank n − 1 over the coefficient ring K[xi]. Let P
be the set of all prime divisors of leading coefficients of G.

3. Call the algorithm recursively with input K(xi)⊗K[xi] I to get MinAss(K(xi)⊗K[xi] I).
Compute

MinAss0(I) = {P ′ ∩K[x1, . . . , xn] |P ′ ∈ MinAss(K(xi)⊗K[xi] I)}.
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4. (If K is a number field or a finite field) For every prime p let L := K[xi]/〈p〉 and
νp : K[x1, . . . , xn] → L[x1, . . . , xi−1, xi+1, . . . , xn] the natural epimorphism. Call the
algorithm recursively with input νp(I) to get MinAss(νp(I)). Compute

MinAssp(I) = {ν−1
p (P̃ ) | P̃ ∈ MinAss(νp(I)) with P̃ 6⊇ νp(P

′) for all P ′ ∈ MinAss0(I)}.

(If K is not a number field or a finite field) For every prime p call the algorithm recur-
sively with input I + 〈p〉 to get MinAss(I + 〈p〉). Compute

MinAssp(I) = {P ∈ MinAss(I + 〈p〉 |P 6⊇ P ′ for all P ′ ∈ MinAss0(I)}.

5. Return MinAss0(I) ∪
⋃

p∈P MinAssp(I).

Remark 9.5. 1. There is a distinction in step 4 of Algorithm 9.4, based on the ground
field K. This is done since there is a fast arithmetic in Magma for number fields
and for finite fields, but e.g. no arithmetic for fields of the form K(x, y)[z]/〈p〉, where
p ∈ K(x, y)[z] is an irreducible polynomial.

2. The algorithms terminate since in every step the dimension of the polynomial ring or of
the ideal is reduced. This is the case since

dim(k[x1, . . . , xn]) = dim(R[x1, . . . , xn])− dim(R),

where k is either the quotient field of R or a residue class field R/〈p〉 for a non-zero
prime p ∈ R, and

dim(I + 〈p〉) = dim(I)− 1

if p ∈ K[xi] is a prime where K[xi] ∩ I = {0}.
3. The correctness of the algorithms follows by Proposition 9.2.

4. The main difference to the algorithm by Gianni, Trager and Zacharias in [GTZ88] is
step 2 of Algorithm 9.4. They compute a polynomial f ∈ K[xi] such that ((K(xi)⊗K[xi]

I) ∩ K[x1, . . . , xn]) ∩ (I + 〈f〉) = I; this is done using a saturation process. Then in
step 4 the algorithm is called recursively with input I + 〈f〉. Furthermore, they do not
use field extensions, so they only use the second branch in step 4.

9.3 An alternative method to compute the necessary primes

The method presented in Proposition 9.1 to compute the necessary primes is based on a
Gröbner basis computation with coefficients in a Euclidean domain. This computation can
be very expensive compared to a Gröbner basis with coefficients in the quotient field. Some
recent changes in Magma implemented by Allan Steel address these problems, but for some
examples the Gröbner basis computation is still very slow, to the extent that it becomes the
bottle neck of the algorithm. This seems to be especially the case if the coefficients of the
Gröbner basis are very large.
The methods in this section replace the Gröbner basis computation with coefficients in the
Euclidean domain R by several Gröbner basis computations with coefficients in the quotient
field, thereby eliminating one possible bottle neck of the algorithm. The results have been
published in [Jam11].
The next result is based on the fact that MinAssp(I) 6= 0 for a prime p ∈ R if and only if
(I : p) 6= I.
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Proposition 9.6. Let I ER[x1, . . . , xn] and K the quotient field of R; let G be a reduced
Gröbner basis of K ⊗R I =: KI. Let S ⊆ R be the multiplicatively closed subset generated by
all prime divisors of denominators which occurred during Buchberger’s algorithm applied to
any generating set of I, and T ⊆ S the multiplicatively closed subset generated by all prime
divisors of denominators of G. Then:

1. For any prime p ∈ R − S we have (I : p) = I. In particular, the prime numbers which
occur in associated primes of I are contained in S.

2. Assume that T is generated by p1, . . . , pℓ, and that S is generated by p1, . . . , pm. Then

T−1(I : (pℓ+1 · · · pm)∞) = 〈G〉T−1R[x1,...,xn].

Proof. Let I = 〈f1, . . . , fr〉. Then any g ∈ G can be written as g =
∑r

i=1
zi
si
fi with zi ∈

R[x1, . . . , xn] and si ∈ S, for all i.

1. Let f ∈ (I : p) ⊆ KI. Then f ∈ KI ∩ R[x1, . . . , xn], so f =
∑

g∈G λgg with λg ∈
T−1R[x1, . . . , xn] since all g ∈ G are monic; thus sf ∈ I for a suitable s ∈ S. But
pf ∈ I, and p and s are coprime, hence f ∈ I.

2. By the first statement, we have KI ∩ R[x1, . . . , xn] = S−1I ∩ R[x1, . . . , xn] = (I :
(p1 · · · pm)∞), so localizing gives

T−1(I : (pℓ+1 · · · pm)∞) = T−1(KI ∩R[x1, . . . , xn]) = QI ∩ T−1R[x1, . . . , xn].

But G is a Gröbner basis of KI ∩T−1R[x1, . . . , xn]ET−1R[x1, . . . , xn], which yields the
result.

A key fact of the last result is that it is independent of the monomial order. In particular, the
necessary primes occur as denominators in every Gröbner basis computation. This has two
important consequences which address the following problems. The denominators during the
Gröbner basis computation can become very big, so factorization becomes a problem. And
even if they can be factored, the set of all prime divisors might be big, although the set of
necessary primes is small.

Corollary 9.7. Let D1, D2 be the set of denominators occurring during two Gröbner basis
computations of KI with respect to different monomial orders. Set

D := {gcd(d1, d2) | d1 ∈ D1, d2 ∈ D2}.

Then any necessary prime divides some element of D.

Thus computing Gröbner bases with respect to different monomial orders can give a pre-
factorization of the denominators and at the same time reduce the number of primes to
consider.

The set of primes computed in this way is usually still redundant, i.e., there are primes p
which occur as divisors of denominators for every Gröbner basis computation, but they do
not occur as elements of associated prime ideals. The next result gives an easy test for almost
all primes to check whether they are necessary.
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Lemma 9.8. Let I ER[x1, . . . , xn] and let p ∈ R be prime. Then (I : p∞) % I if and only
if νp((I : p∞)) % νp(I), where νp : R[x1, . . . , xn] → R/〈p〉[x1, . . . , xn] denotes the canonical
epimorphism.

Proof. Assume (I : p∞) % I and let ℓ ∈ N be minimal with (I : pℓ) = (I : p∞). Choose
f ∈ (I : pℓ) − (I : pℓ−1) and suppose νp(f) ∈ I. Then νp(f) = νp(g) for some g ∈ I, so

p|(f − g); in particular, f−g
p ∈ (I : p∞). But pℓ f−g

p = pℓ−1f − pℓ−1g 6∈ I, by the choice of f ,
which is a contradiction.

Proposition 9.9. Let G, S and T be as in Proposition 9.6, and let p be a prime not contained
in T . Then p is contained in an associated prime of I if and only if

〈
νp(G)

〉
R/〈p〉[x1,...,xn]

%
νp(I).

Proof. We may assume p ∈ S. Then

〈
νp(G)

〉
R/〈p〉[x1,...,xn]

= νp(〈G〉T−1R[x1,...,xn]) = νp((I : p∞))

by the second statement of Proposition 9.6. The claim now follows by the lemma.

We can now formulate a new method to compute a sufficient set of primes.

Algorithm 9.10. Input: An ideal I EZ[x1, . . . , xn].
Output: A finite set P ⊆ R of primes such that any prime p ∈ R with MinAssp(I) 6= ∅ is
associated to an element in P.
Algorithm:

1. Compute a Gröbner basis G of KI, where K is the quotient field of R, and let D be the
set of denominators occurring during the Gröbner basis computation. Try to compute
the set S of prime divisors.

2. If the factorization of the elements in D is not possible, or if the set S is too big,
compute a Gröbner basis with respect to some other monomial order; let D′ be the
set of denominators occurring during this computation. Replace D by {gcd(d, d′) | d ∈
D, d′ ∈ D′} and try again to compute S. Repeat this step until S can be computed and
is small enough.

3. Return the set of primes p ∈ S which either divide a denominator of G or which satisfy
〈νp(G)〉 % νp(I).

This algorithm replaces step 1 of Algorithm 9.3 and step 2 of Algorithm 9.4.

9.4 Minimal associated prime ideals in the quotient algorithms

For the L2-quotient algorithm, the trace presentation ideals are ideals of Z[x1, x2, x1,2], i.e.,
the polynomial ring over Z in three variables. For the L3-U3-quotient algorithm, the ring
Z[ζ][x1, . . . , x[1,2]] has to be considered, i.e., the polynomial ring over Z[ζ] in nine variables.
In practice, for the latter ring we do not work with Gröbner bases with coefficients in Z[ζ], but
instead we regard ζ as an indeterminate and work with the polynomial ring Z[ζ, x1, . . . , x[1,2]]
in ten variables and add the relation ζ2+ζ+1 to every ideal. This way, no prime factorization
over Z[ζ] is needed, and we can work with Gröbner basis algorithms over Z.
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Both rings have a natural grading. In the ring Z[x1, x2, x1,2], the variables x1 and x2 corre-
spond to traces of single matrices, while x1,2 corresponds to the trace of a product. Therefore
it seems natural to regard x1 and x2 as variables of degree 1, and x1,2 as a variable of de-
gree 2. Furthermore, for Gröbner basis computations, we use the graded degrevlex order on
Z[x1, x2, x1,2]. Example computations show that a graded degrevlex order can be much faster
than an ungraded degrevlex order, although for the L2-quotient algorithm both methods are
reasonably fast.
For the L3-U3-quotient algorithm the commutative algebra is often the bottle neck. Here we
regard x1, x−1, x2, x−2 as variables of degree 1, x1,2, x−1,2, x−2,1, x−2,−1 as variables of degree 2,
and x[1,2] as a variable of degree 4, and give the ring Z[ζ][x1, . . . , x[1,2]] the graded degrevlex
order. In this case, the order has an even bigger impact, and there are several examples which
are not computable using an ungraded degrevlex order.
On the other hand, the choice of whether x1 < x2 or x2 < x1 does not seem to have an effect
on the runtime, and similarly for the other variables. Thus in this application there are some
good choices to alter the monomial order in Algorithm 9.10. In the Magma implementation,
the algorithm tries up to five different monomial orders until the largest element in D is
smaller than 1050, at which a factorization is started, and until the set S has at most 30
elements. This seems to work well in practice.
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