
Primary decomposition of zero-dimensional ideals

over arbitrary fields

Sebastian Jambor

We present two algorithms to compute the primary decomposition of zero-dimensional ideals. The

algorithms are deterministic and mainly use linear algebra techniques, based on the FGLM approach.

This allows us for the first time to give a complete complexity analysis of a primary decomposition

algorithm. We show that the primary decomposition can be computed in O(nd4) field operations and

d factorizations of univariate polynomials over the ground field, where n is the number of generators of

the polynomial ring and d is the residue class dimension of the ideal. This result and the corresponding

algorithm are valid for all fields. A publicly available computer implementation shows that the

algorithms also perform very well in practice.

1 Introduction

An algorithm to compute a primary decomposition of a polynomial ideal usually has two parts. In the
first, the problem is reduced to a zero-dimensional problem, possibly by enlarging the ground field; this
zero-dimensional problem is solved in the second part. Algorithms for the first part are given in [GTZ88]
and [EHV92]. The second part seems to have received much more attention. Several algorithms exist,
but they usually have some restriction on the ground field K.

Gianni, Trager and Zacharias [GTZ88] propose two algorithms. The first does not have restrictions
on K per se, but requires the factorization of polynomials over finite extensions of K; as outlined by
Steel [Ste05], this may be problematic if K is infinite of positive characteristic. The second algorithm is
restricted to fields of characteristic zero. A similar algorithm is given in [Kre89] and refined in [BW93];
it also requires characteristic zero, but whereas the algorithm in [GTZ88] is probabilistic, this algorithm
is deterministic. Another approach when K has characteristic zero was suggested in [Mon02]. The case
where K is infinite of positive characteristic is solved in [Ste05]. The authors of [EHV92] address the
zero-dimensional problem with a probabilistic approach which requires the field K to be perfect. An
algorithm based on Berlekamp factorization addresses the case of finite fields [GWW09].

All of these approaches have in common that they use Gröbner basis computations at some point.
Unfortunately, this computation can be very slow and often becomes the bottle neck of the algorithm.
This also is true for other commutative algebra algorithms. The approach of [FGLM93] is to replace
the Gröbner basis algorithm by linear algebra algorithms; in that case, it was used for an algorithm
which changes the monomial order of a Gröbner basis. We will follow their approach and consider
primary decomposition from the viewpoint of finite dimensional commutative algebras. We will unify the
approaches of [GTZ88, Kre89, BW93, Ste05] to get an algorithm for primary decomposition, provided
that the ground field is infinite. The methods are deterministic and only use linear algebra and polynomial
factorization. This allows us to provide a complete complexity analysis of the algorithm. Based on these
ideas and the approaches of [EHV92, Mon02] we then present a second algorithm which is independent of
the ground field, provided that there is an algorithm which can factor univariate polynomials over that
field.

The idea to get from ideals to commutative algebras is as follows. Let K[x] := K[x1, . . . , xn] be the
polynomial ring in n indeterminates over a field K. Every zero-dimensional ideal I E K[x] defines a finite
dimensional commutativeK-algebra A by setting A := K[x]/I, and A is generated by the residue classes of
the xi. Conversely, every finite dimensional commutativeK-algebra A generated by a1, . . . , an ∈ A defines
a zero-dimensional ideal I E K[x], namely the kernel of the epimorphism of algebras K[x] → A which
sends xi to ai. In fact, this gives a bijection between zero-dimensional ideals of K[x] and isomorphism

1

classes of finite-dimensional commutative K-algebras with distinguished ordered generating sets of size n.
We can use this bijection to translate problems from commutative algebra to problems of linear algebra or
basic abstract algebra, thereby replacing Buchberger’s or Faugère’s algorithm by the Gaussian algorithm
or other efficient algorithms.

The idea to use FGLM techniques for tasks other than order change is not new. For example, it has
been extended to arbitrary finite-dimensional commutative algebras [MMM93]; this has been extended
to the non-commutative case [BTBQM00]. In [AKR05] it is used to compute the intersection of two
zero-dimensional ideals, and in [Lak90] to develop a Gröbner basis algorithm for zero-dimensional ideals
which has a single-exponential time complexity.

The outline of the paper is as follows. In Section 2 we fix some notations and recall the FGLM
idea. Section 3 lists several algorithms which are used in later sections. Primary decomposition is often
tightly coupled with an algorithm to compute the radical. In Section 4 we translate the algorithms of
[KL91, Kem02] for radical computations to the language of algebras. Sections 5 and 6 form the main
part of the paper; the former presents an algorithm for infinite fields, and the latter one for arbitrary
fields. Several benchmarks are given in Section 7.

2 Preliminaries

We assume throughout the paper that 2 < ω ≤ 3 is a feasible matrix multiplication exponent, that is,
two n × n matrices can be multiplied in O(nω) field operations. Using classical matrix multiplication,
ω = 3; Strassen’s algorithm, which is implemented in Magma, has ω = log2(7) ≈ 2.8074 [Str69]; the
best known value is ω = 2.3727 for William’s variant of the Coppersmith-Winograd algorithm [Wil12].
Note that the complexity to compute the product of two rectangular matrices can also be given in terms
of ω. Let n1, n2, n3 ∈ N, and let {i, j, k} = {1, 2, 3} such that ni ≤ nj ≤ nk. A simple argument, see for
example [Kni95], shows that the product of an n1 × n2 matrix by an n2 × n3 matrix can be computed in
O(nω−2

i njnk) field operations.
All theoretical results in this paper are valid for arbitrary fields, unless stated otherwise. This is

also true for most algorithms, with the following exceptions. As shown in [Kem02, Remark 8(a)] and
[Ste05, Section 5.2], we may always assume that an infinite field of positive characteristic has the form
Fq(t1, . . . , tm) for a prime power q and indeterminates t1, . . . , tm. This assumption is used for the algo-
rithms in Sections 4 and 5. Furthermore, the algorithms in Section 5 are only valid for infinite fields.

We further assume that a monomial order onK[x] is fixed. Denote by Mon(K[x]) the set of monomials
of K[x]. For f ∈ K[x] let lm(f) be the leading monomial of f , and for M ⊆ K[x] let LM(M) := {lm(f) |
f ∈ M} and NM(M) := {m ∈ M | n ∤ m for all m 6= n ∈ M}.

Let f1, . . . , fk be elements of a K-algebra A; we denote by 〈f1, . . . , fk〉 E A the ideal of A generated
by f1, . . . , fk, and by 〈f1, . . . , fk〉K ≤ A the K-span of f1, . . . , fk.

The following result underpins the translation between Gröbner bases and finite-dimensional commu-
tative K-algebras; it is essentially contained in the proof of [FGLM93, Proposition 3.1].

Proposition 2.1. Let I E K[x] be an ideal and A := K[x]/I the residue class algebra; denote by
ν : K[x] → A the canonical epimorphism. Let B := Mon(K[x]) \ LM(I) and L := NM(LM(I)). Since
ν(B) = {ν(b) | b ∈ B} is a K-basis of A, for every f ∈ K[x] there exist unique λb,f ∈ K with ν(f) =∑

b∈B λb,fν(b).
The set G := {M − ∑

b∈B λb,Mb |M ∈ L} is a reduced Gröbner basis of I. Furthermore, B = {b ∈
Mon(K[x]) | ν(b) 6∈ 〈ν(n) | n ∈ Mon(K[x]) with n < b〉K}.

Proof. Clearly, G ⊆ ker(ν) = I, and LM(〈G〉) = LM(I), which proves the first statement. For the
second, note that m ∈ LM(I) if and only if m−∑

n<m µnn ∈ I for some µn ∈ K, which is equivalent to
ν(m) ∈ 〈ν(n) |n < m〉K .

Note that the proposition is valid for arbitrary ideals. However, in the following we will only apply it
to zero-dimensional ideals.

Definition 2.2. Let 0 6= e ∈ K1×d, and let M := (M1, . . . ,Mn) ∈ (Kd×d)n be commuting matrices.
Then A := 〈e · m(M1, . . . ,Mn) | m ∈ Mon(K[x])〉K is a finite-dimensional commutative K-algebra,

2

generated by ai := eMi. We denote this algebra by Alg(M, e). If e = e1 is the first standard basis vector,
we also write Alg(M) instead of Alg(M, e1), and call M the FGLM data of A.

Note that the elements of A are just vectors inK1×d. Every finite-dimensional commutativeK-algebra
can be described in this way. A special case of this representation is used in [FGLM93].

Remark 2.3. Let I E K[x] be a zero-dimensional ideal; let A := K[x]/I and ν : K[x] → A the canonical
epimorphism. Set B(I) := B(A) := Mon(K[x]) \ LM(I), the monomial basis of A. We assume that B(I)
is sorted increasingly. For 1 ≤ i ≤ n let Mi ∈ Kd×d be the matrix of the linear map A → A : a 7→ a ·ν(xi)
with respect to the basis ν(B). Then A ∼= Alg((M1, . . . ,Md)). We call M = (M1, . . . ,Mn) the FGLM
data of I.

Note that we can use [FGLM93, Procedure 3.1] to calculate efficiently the FGLM data in O(nd3) field
operations, where d = dimK(K[x]/I).

3 Auxiliary algorithms

Let A = Alg(M, e). A natural generalization of the FGLM algorithm yields an algorithm to compute
the Gröbner basis of ker ν in O(nd3) field operations, where ν : K[x] → A : xi 7→ ai is the natural
epimorphism, see for example [MMM93]. In our applications, the algebras in questions are quotients of
K[x]/I, where a Gröbner basis for I is known. For this case, we can give an algorithm with a better
runtime complexity.

Algorithm 3.1 (IdealBasisToGroebner).
Input: A Gröbner basis G of a zero-dimensional ideal I E K[x] and a K-basis C of an ideal J E K[x]/I.
Output: A Gröbner basis for I ′ := ker(ν′), where ν′ : K[x] → (K[x]/I)/J : xi 7→ (xi + I) + J .

1. Let B := B(I) = {B1, . . . , Bd} be sorted decreasingly, and C = (C1, . . . , Ck). Denote by ν : K[x] →
K[x]/I the canonical epimorphism. Let Γ = (Γij) ∈ Kk×d be the matrix of the coefficients of C in

terms of ν(B), that is, Ci =
∑d

j=1 Γijν(Bj). Compute the echelon form E = (Eij) ∈ Kk×d of Γ.

2. Set L′ := ∅ and G′ := ∅.
For i = k, . . . , 1: Let j be the index of the first non-zero entry of the ith row of E. If Bj is not a

multiple of a monomial in L′, then add Bj to L′ and
∑d

ℓ=1 EiℓBℓ to G′.

3. Let H := {h ∈ G | m ∤ lm(h) for all m ∈ L′}; let ρ(h − lm(h)) ∈ K1×d be the representation of
h− lm(h) with respect to the basis B, and let R ∈ K |H|×d be the matrix with rows ρ(h− lm(h)).
Let P ⊆ {1, . . . , n} be the set of pivot column indices of E, and let R′ ∈ K |H|×k be the matrix of the

P -columns of R. Compute S = R−R′E ∈ K |H|×k and set H ′ := {lm(h) +
∑d

j=1 Sh,jBj | h ∈ H}.

4. Return G′ ∪H ′.

Remark 3.2. Note that in this algorithm we assume that the basis B(I) is sorted decreasingly. In
practice, this can be achieved by simply reversing the order of the columns of all matrices and vectors.

Proposition 3.3. Algorithm 3.1 is correct. It requires O(nkω−2d2) field operations, where k = dimK(J)
and d = dimK(K[x]/I).

Proof. Let B′ = {Bj | (i, j) is not a pivot entry of E for every 1 ≤ i ≤ k}. We first show LM(I ′) =
LM(I)∪ (B \B′) and B(I ′) = B′. Since I ⊆ I ′ we see LM(I) ⊆ LM(I ′). Now let Bj ∈ B \B′, so (i, j) is a

pivot entry of E for some 1 ≤ i ≤ k. Then
∑d

ℓ=1 Eiℓν(Bℓ) ∈ 〈C1, . . . , Ck〉K = J , so
∑d

ℓ=1 Eiℓν
′(Bℓ) = 0.

By definition of I ′ this implies
∑d

ℓ=1 EiℓBℓ = Bj+
∑d

ℓ=j+1 EiℓBℓ ∈ I ′. Since the elements of B are sorted
decreasingly, Bj is the leading monomial, so Bj ∈ LM(I ′). This proves LM(I) ∪ (B \ B′) ⊆ LM(I ′) and
hence B(I ′) = Mon(K[x]) \ LM(I ′) ⊆ Mon(K[x]) \ (LM(I) ∪ (B \ B′)) = B′. By basic linear algebra,
ν′(B′) is a basis of (K[x]/I)/J ∼= K[x]/I ′, so equality holds in both cases by Proposition 2.1.

It is easy to verify that L′ ∪ LM(H) = NM(LM(I) ∪ (B \B′)) = NM(LM(I ′)). Since E is in echelon
form, the elements of G′ are of the form M −∑

b∈B′ λb,Mb with M ∈ L′. The computation in Step 3 is

3

equivalent to reducing the rows of R modulo the row span of E, so the elements in H ′ are the elements of
H reduced modulo J . In particular, every element of H ′ is of the form M−∑

b∈B′ λb,Mb. The correctness
now follows by Proposition 2.1.

The computation of the echelon form in Step 1 requires O(kω−1d) field operations by [Sto94, Theo-
rem 2.10]; Step 2 requires O(kd) field operations. Step 3 is the multiplication of a |H| × k and a k × d
matrix, and the addition of two |H| × k matrices. Note that LM(G) is a subset of x1B(I)∪ · · · ∪xnB(I),
so |H| ≤ |G| ≤ nd. Thus the product costs O(kω−2nd2) field operations and the sum costs O(ndk) field
operations. In total, the algorithm requires O(kω−1d+ kω−2nd2) = O(nkω−2d2) field operations.

The previous algorithm expects a K-basis of the ideal J . In some cases, only a generating set for J
as an ideal is known. The next algorithm computes a K-basis using the generating set {f1, . . . , fm} and
the FGLM data M , by closing the vector space under multiplication with the Mi.

Algorithm 3.4 (IdealBasis).
Input: A finite-dimensional commutative algebra A = Alg(M, e) and f1, . . . , fm ∈ A.
Output: A K-basis of 〈f1, . . . , fm〉 E A.

1. Let E ∈ Kℓ0×d be the echelon form of the matrix with rows f1, . . . , fm, without zero rows. Set
i := 1 and E′ := E.

2. Compute F := E′ · Mi. Reduce the rows of F modulo E, and let E′ be the echelon form of the
resulting matrix, without zero rows. Reduce the rows of E modulo E′, and add the rows of E′ to E.

Repeat this step until E′ is the empty matrix.

3. If i < n, set i := i+ 1, E′ := E, and go to Step 2. Otherwise return the rows of E.

Proposition 3.5. Algorithm 3.4 is correct and requires O(nkd2) field operations using classical matrix
algorithms, where k = max(m, dimK(〈f1, . . . , fm〉)).

Proof. The correctness is easy to verify; we prove the complexity result. The computation of E in Step 1
can be performed using O(m2d) field operations. Step 2 is a loop; assume that it has r iterations. Let
ℓj be the number of rows in E′ at the start of the jth iteration. Then F = E′Mi can be computed using
O(ℓjd

2) field operations. Since E has at most k rows, the reduction of F modulo E requires O(ℓjkd)
field operations, and computation of the echelon form costs O(ℓ2jd) field operations. The reduction of E
modulo E′ can be performed using O(ℓj+1kd) field operations, where ℓr+1 := 0. Thus every iteration in
Step 2 requires O(max(ℓj , ℓj+1)d

2) field operations. Since ℓ1 + · · ·+ ℓr ≤ dimK(〈f1, . . . , fm〉), the whole
of Step 2 requires O(kd2) field operations. But Step 2 is executed n times, which proves the overall
complexity of O(nkd2).

Remark 3.6. The jth iteration in Step 2 can be performed in O(max(ℓj , ℓj+1)
ω−2d2) field operations

using fast matrix multiplication. But in the worst case, for example if ℓj = 1 for all j, this still yields a
complexity of O(d3) for Step 2. To utilize fast matrix multiplication efficiently, Step 2 can be replaced
by the following.

2. For j = 0, . . . , ⌊log2(d)⌋: Set F := E ·M2j . Reduce F mod E, and let E′ be the echelon form of
the result. Reduce E mod E′, and add the rows of E′ to E.

The computation of M2j can be done by a single squaring in each iteration, costing O(dω) field opera-
tions. All other operations can be done in O(kω−2d2) field operations. Thus Step 2 can be performed in
O(dω log(d)) field operations, yielding a O(ndω log(d)) alternative for Algorithm 3.4, which is asymptot-
ically faster if k is close to d.

The following algorithm is the inverse of [FGLM93, Procedure 3.1], and a special case of [FGLM93,
Procedure 4.1].

Algorithm 3.7 (FGLMDataToGroebner).
Input: A = Alg(M, e) and B = B(A).
Output: The Gröbner basis of ker ν, where ν : K[x] → A is the canonical epimorphism.

1. Set G := L := ∅ and N := {1}.

4

2. Let m be the smallest element in N ; set N := N \ {m}.

3. If m ∈ B, then add mx1, . . . ,mxn to N . Otherwise, if m is not a multiple of an element in L, write
m = Bixj for some i; let c be the ith row of Mj and add m−∑d

ℓ=1 cℓBℓ to G and m to L.

4. If N 6= ∅, then go to Step 2. Otherwise, return G.

Proposition 3.8. Algorithm 3.7 is correct and requires at most O(nd2) field operations.

Proof. The correctness follows by Proposition 2.1. The only field operations occur in Step 3. Every
Gröbner basis element requires at most d field operations; there are at most nd elements in the Gröbner
basis, thus proving the result.

Definition 3.9. Let A be a finite dimensional K-algebra with basis B, and let f ∈ A. The matrix of
the linear map A → A : a 7→ a · f with respect to B is the representation matrix of f .

For example, the Mi in the FGLM-data is the representation matrix of the ith generator. The
representation matrix of an arbitrary element can be computed as follows.

Algorithm 3.10 (RepresentationMatrix).
Input: A = Alg(M, e), B = B(A), and an element a ∈ A.
Output: The representation matrix of a with respect to B(A).

1. Let R be the d× d zero matrix; set R1 := a, where R1 is the first row of R.

2. For i = 2, . . . , d: Write Bi = Bkxj with k < i and set Ri := RkMj .

3. Return R.

Proposition 3.11. Algorithm 3.10 is correct and requires at most O(d3) field operations.

Proof. The correctness is obvious. Every step of the loop in Step 2 is a vector-matrix multiplication,
which requires O(d2) field operations. Since the loop has d−1 steps, this proves the complexity result.

A central problem in the algorithms is the computation of minimal polynomials of representation
matrices; we will use the classical algorithm, which is very efficient in this case.

Algorithm 3.12 (MinimalPolynomial).
Input: The representation matrix F of an element in a finite-dimensional commutative algebra A =
Alg(M, e).
Output: The minimal polynomial of F .

1. Set v0 := e and r := 1; let E ∈ K1×d be the matrix with row e.

2. Set vr := vr−1F , and let w be the reduction of vr modulo the row span of E. If w = 0, go to Step 3.
Otherwise, add w to E, increment r, and repeat this step.

3. Compute λ0, . . . , λr−1 ∈ K with vr = λ0v0 + · · ·+ λr−1vr−1.

4. Return T r − λr−1T
r−1 − · · · − λ0.

Proposition 3.13. Algorithm 3.12 is correct and requires O(rd2) field operations using classical matrix
algorithms, where r is the degree of the minimal polynomial of F .

Proof. The correctness is easy to verify. The computation and reduction of vr in Step 2 requires O(d2)
field operations; since this step is executed at most r times, its total cost is O(rd2). Step 3 is the solution
of the linear equation λ · V = vr, where V ∈ Kr×d is the matrix with rows v0, . . . , vr−1, which requires
O(rd2) field operations.

Remark 3.14. Using techniques similar to Remark 3.6, a runtime complexity of O(dω log d) can be
achieved.

5

To compute radicals over non-perfect fields, we must use field extensions of the form K[r
√
a] with

a ∈ K. After using linear algebra over the extension field, we need to pull the results back to the ground
field. The following results make this precise and provide the necessary algorithm.

Remark 3.15. Let L = K[α] be an algebraic extension of K such that α has minimal polynomial
T r − a ∈ K[T]. Then (1, α, α2, . . . , αr−1) is a K-basis of L, and L embeds into Kr×r via

η : L → Kr×r : c0 + c1α+ . . .+ cr−1α
r−1 7→




c0 c1 · · · cr−1

acr−1 c0 · · · cr−2

...
. . .

...
ac1 ac2 · · · c0


 .

We denote the natural extension of η to Lk×ℓ → Lrk×rℓ again by η.

Notation 3.16. Let V be a K-vector space; let B = (B1, . . . , Bd) ∈ V d, and let M = (Mij) ∈ Mk×d.
Then M ·B ∈ V k denotes the k-tuple whose i-th entry is Mi1B1 + · · ·+MidBd.

Algorithm 3.17 (FieldContraction).
Input: An algebraic extension L = K[α] of K such that α has minimal polynomial T r − a ∈ K[T], a
basis B of a K-vector space V , and M ∈ Lk×d in row echelon form such that M · ι(B) is a basis of a
subspace W ≤ V ⊗K L, where ι : V → V ⊗K L : v 7→ v ⊗ 1.
Output: A matrix N ∈ Ks×d in row echelon form such that N ·B is a K-basis of ι−1(W) ≤ V .

1. Note that M = M (0) ·1+M (1) ·α+· · ·+M (r−1) ·αr−1 with unique M (ℓ) ∈ Kk×d. Let c1, . . . , cd−k be
the indices of columns of M which are not pivot columns. Set S ∈ Kk×(r−1)(d−k) with Si,j(r−1)+ℓ =

M
(ℓ)
i,cj+1

for all 1 ≤ i ≤ k, 0 ≤ j < d− k, and 1 ≤ ℓ ≤ r − 1.

2. Compute a matrix U in row echelon form whose row span is the kernel of S.

3. Return U ·M (0).

Proposition 3.18. Algorithm 3.17 is correct and requires O(rdω) field operations in K.

Proof. Note that ι(B) = (B1 ⊗ 1, . . . , Bd ⊗ 1) is an L-basis of V ⊗K L, and (B1 ⊗ 1, B1 ⊗ α, . . . , B1 ⊗
αr−1, B2 ⊗ 1, . . . , Bd ⊗ αr) is a K-basis of V ⊗K L. Since the row span of M is isomorphic to W as
L-vector spaces, the row span of η(M) is isomorphic to W as K-vector spaces. An element of W has the
form v⊗1 for some v ∈ V if and only if it corresponds in this isomorphism to a row ρ such that the entry
of ρ corresponding to Bi ⊗αj is zero for all 1 ≤ i ≤ d and 1 ≤ j ≤ r− 1. In other words, ρi must be zero
whenever i 6≡ 1 mod r. Thus, elements of the form v ⊗ 1 correspond to those linear combinations of the
rows of η(M) for which the ith entry is zero for all i 6≡ 1 mod r. This is exactly the kernel of the matrix
consisting of the columns indexed by {i | 1 ≤ i ≤ rd with i 6≡ 1 mod r}. However, if p is the index of a
pivot column of M , then the columns (r−1)p+2, . . . , rp of η(M) are unit vectors, and the corresponding
entries of the kernel elements must be zero. Hence it suffices to compute the kernel of the submatrix of
η(M) consisting of rows 1, r+1, . . . , (k−1)r+1 and columns r(c1−1)+2, . . . , r(c1−1)+r, . . . , r(cm−1)+r;
this is precisely S.

We now prove the complexity result. The matrix S can be computed in O(kr(d−k)) field operations.
Since k ≤ d and d − k ≤ d, Step 1 can be performed in O(rd2) field operations. The kernel of S can
be read off a column echelon form of S, which can be computed in O(k(r − 1)(d − k) rank(S)ω−2) field
operations by [Sto94, Theorem 2.10]. But rank(S) ≤ min(k, (r − 1)(d − k)) ≤ k and k, (d − k) ≤ d, so
Step 2 requires O(rdω) field operations. Finally, the product U ·M (0) requires O(dω) field operations.

We illustrate the algorithm and the proof with an example.

Example 3.19. Let K = F2(t) and L = F2(
√
t) = K[

√
t]. Let V = K1×4 with standard basis B, and let

M =



1 0 0 t

0 1 0
√
t

0 0 1
√
t


 ∈ L3×4; then η(M) =




1 0 0 0 0 0 t 0
0 1 0 0 0 0 0 t
0 0 1 0 0 0 0 1
0 0 0 1 0 0 t 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 t 0


 ∈ K6×8.

6

Let ρ ∈ K1×6. Then ρ ·η(M) in the row space of η(M) corresponds to an element v⊗1 of W if and only if
the entries in the columns with even indices are zero. However, the columns 2, 4, and 6 are unit vectors,

which forces ρ2 = ρ4 = ρ6 = 0. Hence it suffices to compute the kernel of the matrix S =
(
0 1 1

)tr
,

which is the row span of U =

(
1 0 0
0 1 1

)
. The result is

UM (0) =

(
1 0 0
0 1 1

)

1 0 0 t
0 1 0 0
0 0 1 0


 =

(
1 0 0 t
0 1 1 0

)
.

Thus
〈(1, 0, 0, t), (0, 1, 0,

√
t), (0, 0, 1,

√
t)〉L ∩K1×4 = 〈(1, 0, 0, t), (0, 1, 1, 0)〉K .

(This computation is an intermediate step in Algorithm 4.8 to compute the radical of 〈x2
1 + t, x2

2 + t〉 E
F2(t)[x1, x2].)

Finally, we provide an algorithm which, given a decomposition A = A1⊕ · · ·⊕Ak as algebras and the
FGLM data of A, computes the FGLM data of all Ai. This is an adaptation of [FGLM93, Proposition 3.1].
We need the following two technical results. The first concerns the complexity of an algorithm which is
split into sub-algorithms on smaller input; the second states that the monomial basis of a direct summand
of an algebra is contained in the monomial basis of the bigger algebra.

Lemma 3.20. Let f : N → R>0 with f(d) ∈ O(ds) for some s ≥ 1; let g(d1, . . . , dr) = f(d1)+ · · ·+f(dr)
for some r ∈ N. There exists M > 0 such that |g(d1, . . . , dr)| ≤ M(d1 + . . .+ dr)

s for all d1, . . . , dr ∈ N.

Proof. As f(d) ∈ O(ds), there exists M ′ > 0 and d0 > 0 such that |f(d)| ≤ M ′ds for all d > d0. Set
M := max{M,f(1), . . . , f(d0)}. Then

|g(d1, . . . , dr)| ≤ |f(d1)|+ · · ·+ |f(dr)| ≤ Mds1 + · · ·+Mdsr ≤ M(d1 + · · ·+ dr)
s.

Lemma 3.21. Let A,A1, . . . , Ak be finite-dimensional commutative K-algebras such that A ∼= A1⊕· · ·⊕
Ak; let ν : K[x] → A and νi : K[x] → Ai be the canonical epimorphisms. Then

B(Ai) = {b ∈ B(A) | νi(b) 6∈ 〈νi(n) | n ∈ B(A) with n < b〉K}.

Proof. For M ⊆ Mon(K[x]) and m ∈ Mon(K[x]) set M<m := {n ∈ M | n < m}. Assume without loss of
generality A = A1 ⊕ · · · ⊕Ak. Then ν = ν1 + · · ·+ νk, hence

〈ν(n) | n ∈ Mon(K[x])<m〉K = 〈ν1(n) | n ∈ Mon(K[x])<m〉K ⊕ · · · ⊕ 〈νk(n) | n ∈ Mon(K[x])<m〉K

for all m ∈ Mon(K[x]). Note that 〈ν(n) | n ∈ Mon(K[x])<m〉K = 〈ν(n) | n ∈ B(A)<m〉K by Proposi-
tion 2.1, so in particular 〈νi(n) | n ∈ Mon(K[x])<m〉K = 〈νi(n) | n ∈ B(A)<m〉K . Thus using Proposi-
tion 2.1 again,

B(Ai) = {b ∈ Mon(K[x]) | νi(b) 6∈ 〈νi(n) | n ∈ Mon(K[x])<b〉K}
= {b ∈ Mon(K[x]) | νi(b) 6∈ 〈νi(n) | n ∈ B(A)<b〉K}.

But if νi(b) 6∈ 〈νi(n) | n ∈ B(A)<b〉K , then ν(b) 6∈ 〈ν(n) | n ∈ B(A)<b〉K , thus proving the lemma.

Algorithm 3.22 (MatphiDirectSum).
Input: A = Alg(M, e) and A1, . . . , Ak E A such that A = A1 ⊕ · · · ⊕Ak.
Output: A list (M1, B1), . . . , (Mk, Bk) such that Ai

∼= Alg(Mi) and B(Ai) = Bi.

1. Let Si be a basis of Ai; set Bi := (), Ci := (), and let M(i) := (0, . . . , 0) be a list of n zero matrices
in Kdim(Ai)×dim(Ai), for i = 1, . . . , k.

Set N := [1] and NF := [e].

2. Remove the first elements of N and NF ; let m and v be the removed elements, respectively.

7

3. Note that v = w1 + · · ·wk with wi ∈ Ai. Let ci be the coordinates of wi with respect to Si.

For all m′ ∈ Bi and xj such that m = m′xj , set the ℓ-th row of M(i)
j to ci, where ℓ is the index of

m′ in Bi. If ci 6∈ 〈Ci〉, then add m to Bi and ci to Ci.

4. If ci 6∈ 〈Ci〉 for some i in Step 3, then compute mxj for all j = 1, . . . , n. If mxj 6∈ N , then insert it
such that N stays sorted, and insert v ·Mj at the corresponding position in NF .

5. If N 6= ∅, then go to Step 2. Otherwise, let Ti be the matrix with rows Ci; compute F (i) :=

(M(i)
1 T−1

i , . . . ,M(i)
n T−1

i). Return the F (i) and Bi.

Proposition 3.23. Algorithm 3.22 is correct and requires O(nd3) field operations.

Proof. The Bj are monomial bases of Aj by Lemma 3.21. Let ϕ : V → V be a linear map of a vector
space V over K of dimension d and let X and V be bases of V . Then XϕY ∈ Kd×d denotes the matrix
whose ith row are the coordinates of ϕ(Xi) with respect to Y . In this notation, Mj = ν(B(A))ρi

ν(B(A)),

where ρi : A → A : a 7→ a · ai and B(A) is the monomial basis of A. Moreover, M(j)
i = νj(B(Aj))σi

Cj and

Tj =
νj(B(Aj))(idAj

)Cj , where σi = (ρi)|Aj
, hence F (j)

i = νj(B(Aj))σi
νj(B(Aj)). That is, F (j) are the FGLM

data of Aj . This proves the correctness.
Steps 1 and 2 do not involve field operations. Let S be the matrix whose rows are the elements of the

Si. The ci in Step 3 can be computed as v · S−1. The computation of S−1 costs O(dω) field operations,
and has to be performed only once during the course of the algorithm. The computation of (c1, . . . , ck)
can be performed in O(d2) field operations, and must be computed in every iteration of the loop. The

total number of entries of all M(i)
j is at most nd3, so the setting of the matrix entries costs O(nd3)

field operations. By keeping an echelon form for a basis of 〈Ci〉, we can check ci ∈ 〈Ci〉 in O(d2i) field
operations, where di = dim(Ai). By Lemma 3.20, the decision ci ∈ 〈Ci〉 for all i can be performed in
O(d2) field operations. Since the loop has at most nd iterations, Step 3 has a total cost of O(nd3) field
operations. The cost for v · Mj in Step 4 is O(nd2); this step is only executed if ci 6∈ 〈Ci〉 for some i,
which occurs precisely d times. Thus Step 4 has a total cost of O(nd3). The computation of F−1

i and
F (i) can be performed in O(ndωi) field operations, for every i, so Step 5 can be performed in O(ndω) field
operations, by Lemma 3.20. This concludes the complexity analysis.

4 An algorithm to compute the radical

Our algorithm to compute the radical of a zero-dimensional ideal over perfect fields is based on the
method of Krick and Logar [KL91], which in turn is based on a result by Seidenberg. This method was
extended by Kemper [Kem02] to zero-dimensional ideals over arbitrary fields. In this section, we translate
the theoretical results and the algorithms to the language of linear algebra.

The idea of the algorithm to compute the radical is used in the primary decomposition algorithm in
Section 5. Furthermore, it can be used to compute the prime ideal associated to a primary ideal. But an
algorithm to compute the radical is also of independent interest. For instance, it can be used to compute
all zeroes of an ideal. A different method to do this efficiently is described in [Rou99].

4.1 Theoretical results

We are dealing with two notions of radicals. On the one hand, the radical of I E K[x] is defined as√
I := {f ∈ K[x] | fm ∈ I for some m ∈ N}. On the other hand, the (Jacobson) radical of a finite

dimensional commutative K-algebra A, is defined as rad(A) := {a ∈ A | am = 0 for some m ∈ N}. Note
that rad(A) E A. The two notions are connected by the following remark, which is apparent from the
definitions.

Remark 4.1. Let I E K[x] be a zero-dimensional ideal and A := K[x]/I. Then K[x]/
√
I ∼= A/ rad(A).

We recall the definition of square-free and separable polynomials.

Definition 4.2. Let f ∈ K[T] with factorization f = fe1
1 · · · fer

r into irreducibles. Then f is square-free
if ei = 1 for all i, and f is separable if it is square-free over every extension field of K.

8

Note that the notions of square-free and separable are the same if K is perfect.
We begin by translating the results of Seidenberg and Kemper to the language of algebras. (Seiden-

berg’s formulation of the next result uses square-free polynomials instead of separable polynomials.)

Lemma 4.3 ([Sei74, Lemma 92]). Let A be a finite-dimensional commutative K-algebra generated by
a1, . . . , an, and let µi ∈ K[T] be the minimal polynomial of ai for i = 1, . . . , n. If µi is separable for all i,
then rad(A) = {0}.

Proof. Note that A = K[a1, . . . , an]; proceed by induction on n. If n = 1 then A = K[a1] ∼= K[T]/〈µ1〉
and the result is trivial, so assume now n > 1. Let µ1 = h1 · · ·hℓ be a factorization into irreducibles,
so A = A1 ⊕ · · · ⊕ Aℓ with Ai = ker(hi(a1)). Since rad(A) = rad(A1) ⊕ · · · ⊕ rad(Aℓ), we can assume
that A = A1 and µ1 is irreducible, so K[a1] is a field. But A = K[a1][a2, . . . , an], so A is a K[a1]-algebra
generated by a2, . . . , an. The minimal polynomial of aj over K[a1] is a divisor of µj , hence in particular
separable, so the result follows by induction.

Thus to compute the radical of an ideal it is enough to ensure that the minimal polynomials of the
generators are separable.

If K is a perfect field, this can be accomplished by computing the square-free part of the polynomials,
since square-free polynomials over perfect fields are separable. This yields the algorithms of Krick and
Logar [KL91]. If K is a non-perfect field, there are square-free polynomials which are non-separable.
This problem is overcome by Kemper by using the separable part of a polynomial, which requires the use
of extension fields.

Definition 4.4. Let f ∈ K[T]. If f =
∏k

i=1(T −αi)
ei , where αi are the distinct roots of f in an algebraic

closure of K, then sep(f) :=
∏k

i=1(T − αi) is the separable part of f .

Proposition 4.5 ([Kem02, Theorem 7]). Let A be a finite-dimensional commutative K-algebra generated
by a1, . . . , an, and let µi ∈ K[T] be the minimal polynomial of ai for i = 1, . . . , n. Let L/K be an
extension field such that σi := sep(µi) ∈ L[T] for all i. Then rad(A⊗K L) = 〈σ1(a1⊗1), . . . , σn(an⊗1)〉.
Furthermore, ι−1(rad(A⊗K L)) = rad(A), where ι : A → A⊗K L : a 7→ a⊗ 1.

Proof. Let J := 〈σ1(a1 ⊗ 1), . . . , σn(an ⊗ 1)〉. Clearly σi(ai ⊗ 1) ∈ rad(A ⊗K L), so J ⊆ rad(A ⊗K L).
Since rad(A⊗K L/J) = {0} by Lemma 4.3, equality holds, proving the first part of the proposition. The
second part is easily verified.

4.2 Algorithms

Kemper gives an algorithm to compute the separable part of a polynomial [Kem02, Algorithm 1], which
is a variant of [KR00, Proposition 3.7.12]. We follow [vzGG99, Exercise 14.27] instead, which results in
an algorithm with better runtime complexity.

Algorithm 4.6 (SeparablePart).
Input: A polynomial f ∈ K[T] of degree d.
Output: A field extension E/K and the separable part sep(f) ∈ E[T].

1. Compute g := gcd(f, f ′) and h := f/g. If char(K) = 0 or g = 1, then return K and h. Otherwise,
replace g by g/ gcd(g, hn).

2. Let p := char(K). If K is finite, then set E := K; if K = Fq(t1, . . . , tm) for indeterminates
t1, . . . , tm, then set E := Fq(

p
√
t1, . . . ,

p
√
tm). Compute a pth root s of E[T] and compute E and

sep(s) recursively.

3. Return E and h · sep(s).

If |K| = q < ∞ has characteristic p, then the pth root of α ∈ K is αq/p, which can be computed in
log(q/p) field operations. But if K = Fq(t1, . . . , tm), then the pth root of α =

∑
i∈Nm αit

i1
1 · · · timm ∈ K is

∑
α
q/p
i

p
√
t1

i1 · · · p
√
tm

im ; thus the complexity to compute a pth root cannot be measured in field operations,
since it depends on the number of terms of α, which is unbounded. We therefore have to treat the
computation of pth roots separately in the following complexity analysis.

9

Note that Fq(
p
√
t1, . . . ,

p
√
tm) ∼= Fq(t1, . . . , tm). Thus field operations in Fq(

p
√
t1, . . . ,

p
√
tm) are just as

expensive as field operations in Fq(t1, . . . , tm).
Let M : N → R be a multiplication time for K[T]; that is, two polynomials f, g ∈ K[T] of degree at

most d can be computed in O(M(d)) field operations.

Proposition 4.7. Algorithm 4.6 is correct. If char(K) = 0, the algorithm requires O(M(d) log(d)) field
operations; if |K| = q < ∞ has characteristic p, it requires O(M(d) log(d) + d log(q/p)) field operations;
and if K = Fq(t1, . . . , tm), it requires O(M(d) log(d)) field operations and at most d+ 1 computations of
pth roots of elements in K. Moreover, if K is perfect, then E = K, and if K = Fq(t1, . . . , tm), then
E = Fq(

r
√
t1, . . . ,

r
√
tm) with r ≤ υp(d), where υp is the p-adic valuation on Z.

Proof. This is an easy exercise. (Note that gcd(g, hn) = gcd(g, hn mod g), and hn mod g can be computed
in O(log(d)) polynomial multiplications using repeated squaring.)

Algorithm 4.8 (Radical).
Input: The Gröbner basis of a zero-dimensional ideal I E K[x].
Output: The Gröbner basis of

√
I.

1. Let M be the FGLM data of I. For 1 ≤ i ≤ n compute the minimal polynomial µi ∈ K[T] of Mi.

2. Compute the separable parts σi := sep(µi) ∈ L[T], where L = K if K is perfect and L =
Fq(

r
√
t1, . . . ,

r
√
tm) for some p-power r if K = Fq(t1, . . . , tm).

3. Compute an L-basis C ′ for the ideal J = 〈σ1(x1 ⊗ 1), . . . , σn(xn ⊗ 1)〉/I ⊗K L E A ⊗K L using
IdealBasis.

4. If K is perfect, set C := C ′ and go to Step 5. Otherwise, apply FieldContraction m times to
compute a basis C for ι−1(J), where ι : A → A⊗K L : a 7→ a⊗ 1.

5. Return IdealBasisToGroebner(I, C).

Remark 4.9. The tensor product A⊗K L is just an extension of the base field. In particular, a Gröbner
basis for I is also a Gröbner basis for I⊗KL, and the FGLM data for I is also the FGLM data for I⊗KL.

Proposition 4.10. Algorithm 4.8 is correct. If char(K) = 0, then it requires O(nd3) field operations; if
char(K) = p and |K| = q, then it requires O(nd3+nd log(q/p)) field operations; and if K = Fq(t1, . . . , tm),
then it requires at most O(nd3 + mdω+1) field operations and at most nd computations of pth roots of
elements in K.

Proof. Note that J = rad(A⊗K L) and 〈C〉K = ι−1(J) = rad(A) by Proposition 4.5. Since A/ rad(A) ∼=
K[x]/

√
I by Remark 4.1, the algorithm is correct. We prove the complexity statement. The FGLM data

can be computed in O(nd3) field operations, and each minimal polynomial can be computed in O(d3)
field operations; thus Step 1 can be computed in O(nd3) field operations. Using classical polynomial
multiplication, Step 2 can be performed using O(nd2 log(d)), O(nd2 log(d)+nd log(q/p)), or O(nd2 log(d))
field operations plus nd computations of pth roots, respectively, depending on the field, by Proposition 4.7.
Let σi = c0 + c1T + · · · + ckT

k. Then σi(xi ⊗ 1) = ed(c0Id + c1Mi + · · · + ckM
k
i), where ed is the dth

standard basis vector. Thus σi(xi⊗1) can be computed in at most k vector-matrix multiplications and k
vector additions. Since k ≤ d, the n elements σ1(x1 ⊗ 1), . . . , σn(xn ⊗ 1) can be computed using O(nd3)
field operations. The basis computation costs again O(nd3) operations by Proposition 3.5, so Step 3
can be performed in O(nd3) field operations. Step 4 is O(1) if K is perfect and O(mrdω) otherwise by
Proposition 3.18. But r ≤ max{deg(µi) | 1 ≤ i ≤ n} ≤ d; thus Step 4 costs O(mdω+1) field operations if
K = Fq(t1, . . . , tm). Finally, Step 5 can be performed using O(nd3) field operations by Proposition 3.3,
which finishes the proof.

5 Primary decomposition over infinite fields

In this section, we describe an algorithm for the primary decomposition of zero-dimensional ideals over
infinite fields. The algorithm is based on the following basic fact.

10

Proposition 5.1. Let A be a finite-dimensional commutative K-algebra and a ∈ A with minimal polyno-
mial µa. Assume that µa factors as µa = µ1 · · ·µℓ such that the µi are pairwise coprime (not necessarily
irreducible). Set Ai := ker(µi(a)) (the kernel of multiplication by µi(a)). Then Ai E A for all i, and
A = A1 ⊕ · · · ⊕Aℓ is a direct sum decomposition of algebras.

Also note that if I E K[x] is a zero-dimensional ideal with primary decomposition I =
⋂k

i=1 Qi, then

A := K[x]/I ∼= K[x]/Q1 ⊕ · · · ⊕K[x]/Qk =: A1 ⊕ · · · ⊕Ak

by the Chinese Remainder Theorem. Thus computing the primary decomposition of I is equivalent
to decomposing A into a direct sum of algebras which are not decomposable any further. The key
component of the algorithm is the computation and factorization of the minimal polynomial of an element
a := λ1x1+· · ·+λnxn+I ∈ K[x]/I, with λ ∈ Kn. If a suitable element is found, then the ideal is split into
ideals of smaller residue class dimension using Proposition 5.1; the smaller ideals are handled recursively.
This idea was already used in [GTZ88], [Kre89], [BW93], and [Ste05], where the first three algorithms
assume that the field has characteristic zero, and the last algorithm assumes positive characteristic. In
[GTZ88] and [Ste05] the vector λ is chosen at random until a suitable element is found, whereas [Kre89]
and [BW93] choose λ in a deterministic manner. In [Kre89], no approximation is given to how many

elements will suffice, but [BW93] show that at most
∏n

i=1

((
di

2

)
+ 1

)
choices are necessary.

We will develop all results in the language of algebras. This allows us to give relatively short proofs
and unify the description for characteristic zero and positive characteristic. Our approach is deterministic,
and we show that (d−1)2+1 choices suffice to find a suitable element. This enables us to give a complete
complexity analysis of the algorithms.

5.1 Theoretical results

To estimate the number of necessary choices for a ∈ A, we need the following combinatorial lemma.

Lemma 5.2. Let A/K be a separable extension of fields with [A : K] = d < ∞. There are at most d− 1
maximal subfields F/K of A/K.

Proof. Let N/K be the normal closure of A/K with Galois group G := AutK(N), and let H :=
AutA(N) ≤ G; there is a Galois correspondence between the subfields of A/K and the subgroups of G
containing H. In particular, the maximal subfields of A/K are in bijection to the subgroups of G which
contain H minimally, that is, the U ≤ G with H � U such that there is no V ≤ G with H � V � U .
Thus it suffices to prove that there are at most d− 1 subgroups of G which contain H minimally.

Let G act on Ω := G/H by left multiplication; then H is the stabilizer of the coset 1 · H. There is
a bijection between the subgroups of G which contain H minimally, and the minimal blocks of Ω which
contain H, see for example [DM96, Theorem 1.5A]. The minimal blocks of Ω containing H are generated
by H and one other element of Ω. Thus there are at most |Ω| − 1 = [G : H]− 1 = d− 1 minimal blocks
of Ω containing H.

Let A be a finite-dimensional commutative K-algebra. Recall that A is semi-simple if rad(A) = {0},
or equivalently, if A is isomorphic to a direct sum of field extensions of K. A semi-simple algebra is
separable if all of those field extensions are separable.

Definition 5.3. Let A = F1 ⊕ · · · ⊕ Fk for finite field extensions Fi/K. Let K ≤ L ≤ F1 be a subfield,
and let σi : L → Fi be field monomorphisms for i = 2, . . . , k; set σ := (σ2, · · · , σk). Then

∆(L, σ) := {x+ σ2(x) + · · ·+ σk(x) | x ∈ L} ⊆ A

is the twisted diagonal with respect to L and σ.

Note that a twisted diagonal is a subalgebra of A.

Theorem 5.4. Let I E K[x] be a zero-dimensional ideal and A = K[x]/I such that A/ rad(A) is
separable. Let ν : K[x] → A be the natural epimorphism and d := dimK(A). For λ = (λ1, . . . , λn) ∈ Kn

denote by µλ the minimal polynomial of ν(λ1x1 + · · ·λnxn).

11

1. If I is a prime ideal, then C = {λ ∈ Kn | deg(µλ) < d} is a finite union of at most d − 1 proper
subspaces of Kn.

2. If I is a primary ideal but not prime, then C = {λ ∈ Kn |µλ is irreducible} is a proper subspace
of Kn.

3. If I is not primary, then C = {λ ∈ Kn |µλ is the power of an irreducible polynomial} is a finite
union of proper subspaces of Kn, and is contained in a finite union of at most d−1 proper subspaces
of Kn.

Proof. Let ϕ : Kn → A : λ 7→ ∑n
i=1 λiν(xi).

To prove 1, note that a zero-dimensional prime ideal is a maximal ideal, so A is a field. Clearly,
deg(µλ) < d if and only if ϕ(λ) lies in a proper subfield F of A/K, so C =

⋃
ϕ−1(F), where F/K runs

over all maximal subfields of A/K. Since A is generated by ν(x1), . . . , ν(xn) we see ϕ−1(F) � Kn for
all F , and by Lemma 5.2 there are at most d− 1 possibilities for F ; this proves part 1.

We now prove part 2. By the Wedderburn-Malcev Theorem, see for example [Jac89, pp. 374-375],
there exists a subalgebra S of A with S ∼= A/ rad(A) such that A = S ⊕ rad(A) as a vector space;
moreover, every separable subalgebra T of A is contained in S. Thus the elements of A with irreducible
minimal polynomial are precisely the elements of S, hence C = ϕ−1(S).

It remains to prove part 3. Consider ρ : A → A/ rad(A). The minimal polynomial of a := ν(λ1x1 +
· · ·+ λnxn) ∈ A is a power of an irreducible polynomial if and only if the minimal polynomial of ρ(a) is
irreducible. Hence we can assume that A is semi-simple, so A = F1⊕· · ·⊕Fk is a direct sum of separable
field extensions of K.

Let a = a1 + · · · + ak with ai ∈ Fi for all i; then µa = lcm(µa1
, . . . , µak

), and since µa is irreducible
this yields µai

= µa for all i. In particular, K[a1] ∼= K[ai] for all i, and there exist field isomorphisms
σi : K[a1] → K[ai] with σi(a1) = ai. Thus a = a1 + σ2(a1) + · · · + σk(a1), that is, a lies in a twisted
diagonal of A. Clearly there are only finitely many twisted diagonals. Taking preimages under ϕ as in
the other cases shows that C is a finite union of proper subspaces.

We conclude the proof by showing that C is contained in a union of at most d− 1 proper subspaces.
We may assume [F1 : K] ≤ d/2. Assume first F1

∼= F2. Then every twisted diagonal is contained in some
subalgebra Aσ := {a1 + σ(a1) + a3 + · · · + ak | ai ∈ Fi}, where σ : F1 → F2 is an isomorphism. There
are at most d/2 isomorphisms, hence at most d/2 ≤ d − 1 subalgebras Aσ. Since Aσ is a subalgebra,
ϕ−1(Aσ) � Kn.

Now assume that F1 is isomorphic to a proper subfield of F2. Then every twisted diagonal is contained
in some subalgebra F1 ⊕M2 ⊕ F3 ⊕ · · · ⊕ Fk, where M2 is a maximal subfield of F2/K. By Lemma 5.2,
there are at most d− 2 maximal subfields of F2/K.

Finally, assume that F1 is not isomorphic to a subfield of F2. Then every twisted diagonal is contained
in some subalgebra M1 ⊕ F2 ⊕ · · · ⊕ Fk, where M1 is a maximal subfield of F1/K, of which there are at
most d/2− 1 < d− 1.

Note that in the last part, C is not necessarily a union of at most d−1 proper subspaces. For example,
let F1 = · · · = Fk be a quadratic extension of K and A = F1 ⊕ · · · ⊕ Fk. Then d = dimK(A) = 2k, but
there are 2k−1 twisted diagonals. However, C is always contained in a union of at most d − 1 proper
subspaces.

Corollary 5.5. Let Λ ⊆ Kn be a set of size (d − 1)2 + 1 such that any subset of size n is linearly
independent. If I is prime, then µλ has degree d for at least one λ ∈ Λ; if I is primary but not prime,
then µλ is a proper power for at least one λ ∈ Λ; if I is not primary, then µλ has at least two coprime
factors for at least one λ ∈ Λ.

Proof. It suffices to show that Λ cannot be a subset of a union of d− 1 proper subspaces of Kn. Suppose
this statement is false, so Λ ⊆ ⋃d−1

i=1 Vi with (n−1)-dimensional subspaces Vi ≤ Kn. Then |Vi∩Λ| ≤ d−1

by assumption on Λ, hence |Λ| ≤ ∑d−1
i=1 |Vi ∩ Λ| ≤ (d− 1)2, a contradiction.

The following two results show how to construct such sets Λ if K is an infinite field.

Proposition 5.6. Let K be a field of characteristic zero and n ∈ N. Let λ(i) := (
(
i
0

)
, . . . ,

(
i

n−1

)
) for

i ∈ N; set Λ := {λ(i) | i ∈ N}. Then every n-element subset of Λ is linearly independent.

12

Proof. This follows by [GV85, Corollary 2].

Remark 5.7. The sequence λ(0), λ(1), . . . is Pascal’s triangle, truncated after n entries, so λ(i+1) =

(1, λ
(i)
1 +λ

(i)
2 , λ

(i)
2 +λ

(i)
3 , . . . , λ

(i)
n−1+λ

(i)
n). Thus λ(i+1) can be computed from λ(i) in O(n) field operations.

Proposition 5.8. Let K be a field of positive transcendence degree, and let n ∈ N; let x ∈ K be
transcendent over the prime field of K. For i ∈ N let λ(i) := (mi1, . . . ,min) ∈ Kn, where

mij =

{
x(j−1)(i−j) if i ≥ j,

0 otherwise;

set Λ := {λ(i) | i ∈ N}. Then every n-element subset of Λ is linearly independent.

Proof. For I = {r1 < · · · < rn} ⊆ Λ let MI := (mrij)i,j ∈ Kn×n. We prove deg(det(MI)) =
∑n

j=1(j −
1)(rj − j) by induction on n. The claim is trivially true for n = 1, so assume now n > 1. By Laplace
expansion, det(MI) =

∑n
i=1(−1)n−imrin det(MI\{ri}). If mrin 6= 0, then

deg(mrin det(MI\{ri})) =
i−1∑

j=1

(j − 1)(rj − j) +
k−1∑

j=i

(j − 1)(rj+1 − j) + (k − 1)(ri − k),

so if i < n, then

deg(mrnn det(MI\{rn}))− deg(mrin det(MI\{ri})) =

k−1∑

j=i

(j − 1)(rj − rj+1) + (k − 1)(rk − ri)

> (k − 1)
k−1∑

j=i

(rj − rj+1) + (k − 1)(rk − ri) = 0.

Thus the last term in the Laplace expansion is the unique term of maximal degree
∑n

j=1(j−1)(rj−j).

Remark 5.9. Note that λ(i+1) = (1, λ
(i)
1 xi−1, . . . , λ

(i)
n−1x

i−n+1), so λ(i+1) can be computed from λ(i) in
O(n+ i) field operations.

Example 5.10. Although Theorem 5.4 is valid for arbitrary fields, its application to finite fields is
limited. The problem is that C = Kn is possible. Let K = F2, and let b1, b2, b3 be primitive elements
of F22 , F23 , F25 , respectively; set a1 := b1 + b3 and a2 := b2 + b3. Then A := K[a1, a2] = F230 , but the
elements 0, a1, a2, a1 + a2 all lie in proper subfields.

Theorem 5.4 is the basis for the primary decomposition algorithm. If K is an infinite perfect field,
it asserts that if A is decomposable, then we will always find an element yielding a decomposition; and
if A is not decomposable, then we will always find an element which proves this fact. This is no longer
true over non-perfect fields, since there exist algebraic field extensions which are not primitive. This
problem was first successfully overcome by Steel [Ste05], by moving the inseparable parts of K[x]/I into
the field K. We follow this approach, and again formulate and prove the results in terms of algebras.

For an algebraic extension F/K let Fs/K be the maximal separable subfield of F/K and Fi/K the
maximal purely inseparable subfield of F/K. Let [F : K]s := [Fs : K] be the separable degree of F/K,
and [F : K]i := [F : K]/[F : K]s the inseparable degree of F/K. Recall that if N/K is a normal field
extension then N = Ns ·Ni (see for example [Jac89, Theorem 8.19]); in particular, [N : K]i = [Ni : K].

Proposition 5.11. Let A/K be a field generated by a1, . . . , an, and let N/K be the normal closure
of A/K. Let µi ∈ K[T] be the minimal polynomial of ai, and let L/K be minimal with sep(µi) ∈ L[T]
for all i. Then L = Ni.

Proof. Set σi := sep(µi). Since every root of µi in a splitting field has the same multiplicity, there

exist ℓi ∈ N with µi = σpℓi

i . It follows that L/K is purely inseparable, since it is generated by the
coefficients of the µi, so L ⊆ Ni; in particular, [L : K] ≤ [N : K]i. On the other hand, N/L is the
splitting field of the separable polynomials σ1, . . . , σn, hence separable; so [N : L] ≤ [N : K]s. Thus
[N : K] = [N : L][L : K] ≤ [N : K]s[N : K]i = [N : K], so [L : K] = [N : K]i = [Ni : K]. This proves
L = Ni.

13

Theorem 5.12. Let A be a finite-dimensional commutative K-algebra, generated by elements a1, . . . , an;
let µi ∈ K[T] be the minimal polynomial of ai. Let E/K be a purely inseparable extension such that
sep(µi) ∈ E[T]. Set B := A⊗K E/ rad(A⊗K E), and let ε : A → B : a 7→ a⊗ 1 + rad(A⊗K E).

1. Write A/ rad(A) = F1⊕· · ·⊕Fk with finite field extensions Fi/K. Let Si/K be the maximal separable
subfield of Fi/K. Then B ∼= S1 · E ⊕ · · · ⊕ Sk · E, where Si · E is the compositum of Si and E.
In particular, B/E is separable. Furthermore, ε factors over ε̃ : A/ rad(A) → B : a + rad(A) 7→
a⊗ 1 + rad(A⊗K E), and ε̃ is an embedding.

2. Let a ∈ A; let µ ∈ K[T] be the minimal polynomial of a over K, and let µ̃ ∈ E[T] be the minimal
polynomial of ε(a) over E. Then µ̃ = sep(µ). In particular, µ is the power of an irreducible
polynomial if and only if µ̃ is irreducible, and µ has at least two coprime factors if and only if µ̃
has at least two coprime factors.

Proof. We prove part 1. Since A⊗K E/ rad(A⊗K E) ∼= A/ rad(A)⊗K E/ rad(A/ rad(A)⊗K E), we may
assume that A is semi-simple. If K is perfect, then E = K, and the results are trivial. So assume in the
following that K is a field of positive characteristic p. Assume first k = 1, so A = F1 is a field. Since B
is semi-simple, it is a direct sum of fields. But every element of A⊗K E is either invertible or nilpotent,
see for example [Jac89, Theorem 8.46], so B has no non-trivial zero-divisors, which shows that B is a
field. The map A ⊗K E → A · E : a ⊗ ℓ 7→ a · ℓ is clearly surjective and factors over the radical, so it
induces an isomorphism. It remains to prove that A · E = S1 · E. Let N/K be the normal closure of
A/K, and let Ni/K be the maximal purely inseparable subfield of N/K. Since Ni ≤ A ·Ni ≤ N we see
[Ni : K] ≤ [A ·Ni : K]i ≤ [N : K]i = [Ni : K], so [A ·Ni : K]i = [Ni : K]. On the other hand, S1 is the
maximal separable subfield of A ·Ni : K, so [A ·Ni : K]s = [S1 : K]. Since S1 and Ni are linearly disjoint,
[S1 ·Ni : K] = [S1 : K][Ni : K] = [A ·Ni : K], hence A ·Ni = S1 ·Ni. But E/K is an extension of Ni/K
by Proposition 5.11, thus A · E = (A ·Ni) · E = (S1 ·Ni) · E = S1 · E. This completes the case k = 1.

Now let k be arbitrary. Let πj : A → Fj be the jth projection map. Then Fj is generated by
πj(a1), . . . , πj(an), and the minimal polynomial of πj(ai) divides µi. Thus Fj⊗KE/ rad(Fj⊗KE) ∼= Sj ·L
follows by the above. But rad(A⊗KE) = rad(F1⊗KE⊕· · ·⊕Fk⊗KE) = rad(F1⊗KE)⊕· · ·⊕rad(Fk⊗KE),
which completes the proof of part 1.

We now prove part 2. Let ε : A → A/ rad(A) be the natural epimorphism. Then it is easy to see that
the minimal polynomial of ε(a) is the square-free part of µ, so we may assume that A is semi-simple.
Again, if K is perfect, then the statements are obvious, so we may assume that K is a field of positive
characteristic p. Assume first that A is a field. Set σ := sep(µ) ∈ L[T]. As in the proof of Proposition 5.11,

there exists ℓ ∈ N such that µ = σpℓ

. Since 0 = µ(a) = (σ(a))p
ℓ

we see σ(ε(a)) = ε(σ(a)) = 0, so µ̃|σ.
But σ is irreducible; for if σ = σ1 · σ2 then µ = σpℓ

1 · σpℓ

2 . Hence σ = µ̃.
In the general case, write A = F1 ⊕ · · · ⊕ Fk for field extensions Fj/K and a = a1 + · · · + ak with

aj ∈ Fj . Then µ = lcm(µ1, . . . , µk) and µ̃ = lcm(µ̃1, . . . , µ̃k), where µi is the minimal polynomial of
ai over K and µ̃i is the minimal polynomial of ε(ai) over L. But µ̃i = sep(µi) by the field case, hence
µ̃ = sep(µ), which finishes the proof.

5.2 Algorithms

Our first primary decomposition algorithm is split into two smaller algorithms. The first algorithm, Is-
Primary, decides whether a zero-dimensional ideal is primary; if this is not the case, then it finds an
element a which can be used to split the ideal, using Proposition 5.1. The second algorithm, Primary-
DecompositionInfinite, is the main algorithm. It uses IsPrimary to find an element which splits the
ideal and then handles the smaller ideals recursively.

Algorithm 5.13 (IsPrimary).
Input: The Gröbner basis of a zero-dimensional ideal I E K[x] for an infinite field K; if char(K) > 0, we
assume K = Fq(t1, . . . , tm) for a prime power q and indeterminates t1, . . . , tm.
Output: true if I is a primary ideal. Otherwise false, together with the representation matrix F of an
element in K[x]/I whose minimal polynomial has at least two coprime factors.

14

1. Let M be the FGLM data of A := K[x]/I and d := dimK(K[x]/I). Compute the minimal polyno-
mials µi of Mi. If some µi has at least two coprime factors, return false and Mi. If some µi has
degree d and is the power of an irreducible polynomial, then return true.

2. Compute the separable parts σi := sep(µi) ∈ L[T], where L = K if K is perfect and L =
Fq(

r
√
t1, . . . ,

r
√
tm) for some p-power r if K = Fq(t1, . . . , tm).

3. Compute an L-basis C for the ideal J = 〈σ1(x1 ⊗ 1), . . . , σn(xn ⊗ 1)〉/I ⊗K L E A ⊗K L using
IdealBasis.

4. Let H := IdealBasisToGroebner(I ⊗K L,C), and let N be the FGLM data of H. Set d :=
dimL(L[x]/〈H〉). If deg(σj) = d for some j, return true. Otherwise, set i := 2.

5. Let λ := λ(i), with λ(i) as in Proposition 5.6 if char(K) = 0 and as in Proposition 5.8 if char(K) > 0;
set F := λ1N1 + · · ·+ λnNn. Compute the minimal polynomial µ ∈ L[T] of F .

6. If µ is the power of an irreducible polynomial and deg(µ) = d, then return true. If µ has two
coprime factors, then return false and λ1M1 + · · · + λnMn. Otherwise set i := i + 1 and go to
Step 5.

If K is not finite, then the cost of factoring a polynomial cannot be measured in field operations. We
therefore list the number of required factorizations separately in the complexity analysis.

Proposition 5.14. Algorithm 5.13 is correct. It requires O((n + d)d4) field operations and at most
n + (d − 1)2 factorizations of univariate polynomials of degree at most d. If K = Fq(t1, . . . , tm), then it
additionally requires at most nd computations of pth roots of elements in K.

Proof. The algorithm terminates by Corollary 5.5. We show that the output is correct. This is clear
if the algorithm returns in Step 1. In Steps 2–4 we compute a Gröbner basis for the kernel of L[x] →
B := A ⊗K L/ rad(A ⊗K L) (see Algorithm 4.8, Proposition 4.10 and Theorem 5.12). Note that all σi

are irreducible, since the algorithm did not return in Step 1. Thus if σi has degree d = dimL(B), then B
is a field, hence A/ rad(A) is a field, so I is primary. Hence the output is correct if the algorithm returns
in Step 4. The correctness of the output in Step 6 follows by Theorem 5.12.

The computation of the FGLM data and the minimal polynomials in Step 1 can be done using O(nd3)
field operations. The cost for Steps 2 and 3 is O(nd3) field operations, plus nd computations of pth roots if
char(K) > 0, see the proof of Proposition 4.10. Step 4 costs O(nd3) field operations. The computation of
λ(i) costs O(n+ i) field operations, by Remarks 5.7 and 5.9; the sum can be computed using O(nd2) field
operations and the minimal polynomial in O(d3) field operations. Note that i ≤ d2, so every iteration
of Step 5 requires O(nd2 + d3) field operations. Since Step 5 is executed at most d2 times, the total
cost for Step 5 is O((n + d)d4). Finally, there are at most (d − 1)2 factorizations. The matrix sum and
product are both only computed once in the algorithm, costing O(nd2) and O(dω+1) field operations,
respectively.

Remark 5.15. Steps 2–4 are not necessary for the correctness of the algorithm; in fact, the algorithm
can be replaced by the following simpler version.

1. Let M be the FGLM data of A := K[x]/I and d := dimK(K[x]/I). Set i := 1.

2. Let λ := λ(i), with λ(i) as in Proposition 5.6 if char(K) = 0 and as in Proposition 5.8 if char(K) > 0;
set F := λ1M1 + · · ·+ λnMn. Compute the minimal polynomial µ ∈ L[T] of F .

3. If µ is reducible and has at least two coprime factors, return false and F . If µ = d has degree d and
is the power of an irreducible polynomial, return true. Otherwise set i := i+1. If i > (d−1)2+1,
then return true. Otherwise go to Step 2.

The algorithm clearly terminates. Furthermore, if I is not primary, then at least one F out of (d−1)2+1
must have a minimal polynomial with two coprime factors, by Corollary 5.5 and Theorem 5.12. This
shows that the algorithm is correct. It is easy to see that it has a runtime complexity of O((n+d)d4) field
operations and (d − 1)2 + 1 factorizations, so it has a better runtime complexity than Algorithm 5.13.

15

However, Algorithm 5.13 has two practical advantages. First, it only has to check at most (d′ − 1)2 + 1
elements in the loop, where d′ = dimL[x]/

√
L⊗K I; this may be considerably smaller than d. Secondly,

if I is primary, then L[x]/
√
L⊗ I always has a primitive element, which may allow the algorithm to

terminate early. Such an element need not exist for K[x]/I. For example, if I = 〈xℓ
1, x

ℓ
2〉 E Q[x1, x2],

then I is primary and d = 2ℓ, but every element λ1x1 + λ2x2 has minimal polynomial of degree at most
2ℓ−1. Thus the variant presented here has to compute and factorize (d−1)2+1 minimal polynomials to
conclude that I is primary, whereas Algorithm 5.13 establishes this fact after three minimal polynomials.

Algorithm 5.16 (PrimaryDecompositionInfinite).
Input: The Gröbner basis of a zero-dimensional ideal I E K[x] for an infinite field K; if char(K) > 0, we
assume K = Fq(t1, . . . , tm) for a prime power q and indeterminates t1, . . . , tm.
Output: The primary decomposition of I, that is, a list of ideals Q1, . . . , Qk given by Gröbner bases, such
that each Qi is a primary ideal,

√
Qi 6=

√
Qj for i 6= j, and

⋂k
i=1 Qi = I.

1. Call IsPrimary with input I. If I is primary, return I. Otherwise, let F be the representation
matrix of the element which proves that I is not primary. Let µ be its minimal polynomial with
prime factorization µ = µe1

1 · · ·µer
r .

2. Compute Fi := µi(F)ei and Wi := ker(Fi) ≤ K1×d for 1 ≤ i ≤ r.

3. Compute Ji := IdealBasisToGroebner(I,
⊕

j 6=i Wj) for 1 ≤ i ≤ r.

4. Return
⋃r

i=1 PrimaryDecompositionInfinite(Ji).

Theorem 5.17. Algorithm 5.16 is correct. It requires O((n+d)d5) field operations and (n+(d−1)2+1)d
factorizations of polynomials of degree at most d; if K ∼= Fq(t1, . . . , tm), then it also requires at most nd2

computations of pth roots of elements in K.

Proof. Let I =
⋂k

i=1 Qi be the primary decomposition of I. Then A = K[x]/I ∼= K[x]/Q1 ⊕ · · · ⊕
K[x]/Qk =: A1 ⊕ · · · ⊕Ak by the Chinese Remainder Theorem. We proceed by induction on k. If k = 1
then I is primary, which is detected in Step 1. If k > 1 then I is not primary, and Algorithm 5.13 yields
f ∈ A such that the minimal polynomial µ has at least two coprime factors. Let µ = µe1

1 · · ·µeℓ
ℓ be the

prime factorization of µ. By Proposition 5.1 we can write A = ker(µ1(f)
e1)⊕· · ·⊕ker(µℓ(f)

eℓ), and after a
renumbering we can assume W1 := ker(µ1(f)

e1) = A1⊕· · ·⊕Ai1 , W2 := ker(µ2(f)
e2) = Ai1+1⊕· · ·⊕Ai2 ,

etc. Now Wj
∼= A/

⊕
ℓ 6=j Wℓ, so the ideal Jj computed in Step 4 satisfies K[x]/Jj ∼= Wj = Aij−1+1 ⊕

· · · ⊕Aij ; thus Jj = Qij−1+1 ∩ · · · ∩Qij , and the correctness follows by induction.

The complexity of Step 1 is given in Proposition 5.14. The matrix powers Id, F, F
2, . . . , Fmax(e1,...,ek)

in Step 2 can be computed in O(d · dω) field operations. Every Fi is the sum of ei deg(µi) + 1 scaled
powers of F , so the Fi can be computed in at most O(d3) field operations. Each kernel can be computed
in O(dω) field operations. Since k ≤ d, Step 2 has a total cost of O(dω+1) field operations. Every Ji can
be computed in O(ndω) field operations, so Step 3 has a total cost of O(ndω+1) field operations. Thus
Steps 1–3 have a total cost of O((n+d)d4) field operations and n+(d−1)2+1 factorizations of polynomials
of degree at most d, plus nd computations of pth roots of elements in K if K ∼= Fq(t1, . . . , tm). To count
the number of times that PrimaryDecompositionInfinite is called, consider the recursion tree. The
leaves correspond to the primary components of I. Since there are at most d primary components, the
tree has at most d leaves and hence at most 2d− 1 vertices. Thus PrimaryDecompositionInfinite is
called at most 2d− 1 times, which proves the complexity result.

Remark 5.18. 1. Using the variant of IsPrimary described in Remark 5.15, the algorithm has a
complexity of O((n+ d)d5) field operations and at most (n+ (d− 1)2 + 1)d factorizations.

2. Slightly better complexity results can be achieved by using Remark 3.14 to compute the minimal
polynomial. However, this leads to a worse complexity if classical matrix multiplication (that is,
ω = 3) is used, and is slower in practice.

16

6 Primary decomposition for arbitrary fields

Algorithm 5.16 uses linear combinations of the generators of the algebra A to find a splitting element. We
have seen in Example 5.10 that this approach may fail if the field is finite. An alternative approach is to
use minimal polynomials of arbitrary elements of A. This is used for example in [EHV92] and [Mon02];
note however that [Mon02] uses the characteristic polynomial instead of the minimal polynomial. In both
algorithms, the elements are chosen at random. Furthermore, [EHV92] assumes that K is perfect, and
[Mon02] assumes char(K) = 0.

In this section we show that it suffices to consider the elements of an arbitrary basis of A. Furthermore,
this approach is valid for arbitrary fields K.

Proposition 6.1. Let I E K[x] be a zero-dimensional ideal; set A := K[x]/I, and let B be a basis of A.
If I is not primary, then µb has two coprime factors for at least one b ∈ B.

Proof. By Theorem 5.12 we may assume that A is semi-simple and A/K is separable. Suppose µb is
irreducible for all b ∈ B. Then every b ∈ B lies in a twisted diagonal of A. Write A = F1 ⊕ · · · ⊕ Fk,
where Fi/K are separable field extensions; define

ϕ : A → K : a1 + · · ·+ ak 7→ (k − 1) trF1/K(a1)− trF2/K(a2)− · · · − trFk/K(ak),

where ai ∈ Fi and trFi/K is the trace of Fi/K. Since Fi/K is separable, trFi/K 6= 0, see for example
[Jac89, Section 10.5, Lemma]; thus ϕ 6= 0, so kerϕ is a proper subspace of A. But every twisted diagonal
is a subspace of kerϕ. Hence B is contained in kerϕ, a contradiction.

Remark 6.2. An equivalent formulation of Proposition 6.1 is: I is primary if and only if µb is a prime
power for all b ∈ B. It is natural to assume that the following statement is also true: “I is prime if
and only if µb is prime for all b ∈ B.” But this statement is false. To see this, let K = F2(t), and let
I := 〈x2

1 + t2 + t, x2
2 + t〉 E K[x1, x2]. Set ai := xi + I ∈ K[x1, x2]/I =: A; then B := (1, a1, a2, a1a2) is a

basis of A, and µb is irreducible for all b ∈ B. However, the minimal polynomial of a1 + a2 is (T + t)2,
which shows that I is not prime.

Algorithm 6.3 (SplitAlgebra).
Input: A = Alg(M, e) and a ∈ A.
Output: A list (M1, B1), . . . , (Mr, Br) satisfying the following properties, where Ai := Alg(Mi): (1)
A = A1 ⊕ · · · ⊕ Ar; (2) B(Ai) = Bi; and (3) µai

is the power of an irreducible polynomial, where
a = a1 + · · ·+ ar with ai ∈ Ai.

1. Compute the representation matrix F of a.

2. Compute the minimal polynomial µ of F and its factorization µ = µe1
1 · · ·µer

r .

3. If r = 1, then return Alg(M, e). Otherwise, compute the kernel Wi of the representation matrix of
µei
i (a), for i = 1, . . . , r.

4. Return the output of MatphiDirectSum(Alg(M, e), {W1, . . . ,Wk}).

Proposition 6.4. Algorithm 6.3 is correct. If µa is the power of an irreducible polynomial, then it
requires O(d3) field operations and a factorization of a polynomial of degree at most d. If µa has r > 1
coprime factors, then it requires O((n+r)d3) field operations and a factorization of a polynomial of degree
at most d.

Proof. The correctness follows immediately by Proposition 5.1.
By Proposition 3.11, Step 1 has a cost of O(d3), and by Proposition 3.13, Step 2 has a cost of O(d3)

field operations and one factorization. Note that ai = e · F i, so (e, a, . . . , ad−1) can be computed by d
vector-matrix multiplications, for a total cost of O(d3) field operations. Let µei

i = T ℓ+cℓ−1T
ℓ−1+· · ·+c0;

then µei
i (a) = aℓ + cℓ−1a

ℓ−1 + · · ·+ c0e can be computed from (e, a, . . . , ad−1) in O(d2) field operations.
The cost for each representation matrix is O(d3), and for each kernel O(dω). Thus Step 3 has a total cost
of O(rd3) field operations. Step 4 is O(nd3) by Proposition 3.23.

17

Algorithm 6.5 (PrimaryDecomposition).
Input: The Gröbner basis of a zero-dimensional ideal I E K[x].
Output: The primary decomposition of I, that is, a list of ideals Q1, . . . , Qk given by Gröbner bases, such
that each Qi is a primary ideal,

√
Qi 6=

√
Qj for i 6= j, and

⋂k
i=1 Qi = I.

1. Let M be the FGLM data of I and B = B(I). Set A := {(M,B)} and i := 1.

2. Set A′ := ∅. For every pair (M ′, B′) in A: If Bi 6∈ B′, then add (M ′, B′) to A′. Otherwise, add the
output of SplitAlgebra(Alg(M ′), eℓ) to A′, where ℓ is the index of Bi in B′.

3. Set A := A′ and set i := i+ 1. If i ≤ d, then go to Step 2.

4. Call FGLMDataToGroebner for every element in A and return the output.

Theorem 6.6. Algorithm 6.5 is correct. It requires O(nd4) field operations and d factorizations of
univariate polynomials over K of degree at most d.

Proof. The correctness follows by Propositions 6.1 and 6.4.
Step 1 requires O(nd3) field operations. We analyze Step 2. Let dM ′,i := dim(Alg(M ′)) in iteration i,

and let rM ′,j be the number of elements returned by SplitAlgebra(Alg(M ′), eℓ). The call to SplitAl-

gebra costs O(d3M ′,i) if rM ′,i = 1, and O((n + rM ′,i)d
3
M ′,i) otherwise. The total cost for all M ′ with

rM ′,i = 1 is O(d3) in every iteration. Since the loop has d iterations, this amounts to a total cost of O(d4).
Now consider all occurrences where rM ′,i > 1 during the run of the algorithm. Every occurrence splits
the algebra Alg(M ′) into rM ′,i subalgebras of smaller dimension; arrange all these algebras in a tree. The
leaves are the irreducible algebras, so there are k ≤ d leaves. It is easy to see that such a tree has at
most 2k − 1 nodes in total, and at most k − 1 internal nodes. Since a split corresponds to an internal
node, there are at most k − 1 ≤ d − 1 splits. Furthermore,

∑
M ′,i rM ′,i ≤ 2d − 2, as it is the number

of non-root nodes. Since O((n+ rM ′,i)d
3
M ′,i) ⊆ O((n+ rM ′,i)d

3), this shows that the total cost for calls

to SplitAlgebra with rM ′,i > 1 is O(nd4) field operations. The call to FGLMDataToGroebner

is O(nd2M ′,d), so Step 4 has a total cost of O(nd2) field operations. To achieve the stated number of
factorizations, we must alter the run of the algorithm minimally. Note that the minimal polynomial in
SplitAlgebra has degree at most dM ′,i. Multiplying all minimal polynomials of one iteration yields a
polynomial of degree at most d, which is then factored; taking greatest common divisors of the factors
with the minimal polynomials yields the factorization of the minimal polynomials.

Remark 6.7. 1. The main differences between Algorithm 5.16 and Algorithm 6.5 are that the former
uses linear combinations of the generators and proceeds recursively, while the latter uses elements
of a basis and proceeds iteratively. Replacing Algorithm 5.16 by an iterative version would yield
an algorithm with complexity O((n+ d)d4) and at most (d− 1)2 + 1 factorizations.

2. Algorithm 6.5 suffers from the problem described in Remark 5.15: if the ideal is primary but no basis
element is primitive, then it has to compute and factor d minimal polynomials. Hence although
the runtime complexity is superior, it will depend on the given example which algorithm performs
better in practice.

7 Examples

In this section, we compare the algorithms developed in this paper with the algorithms implemented
in Magma [BCP97], which uses a variant of the algorithm described in [BW93]. As suggested by one
of the referees, we also implemented a variant of the GTZ algorithm (Algorithm ZPDF in [GTZ88])
which uses the FGLM algorithm for order changes, and therefore also avoids Gröbner basis computations
using Buchberger’s or Faugere’s algorithm. This algorithm is referenced as GTZ below. Note that this
algorithm terminates with high probability only for fields of characteristic zero. For fields of positive
characteristic it may never terminate.

The examples were run on a machine with four Intel Xeon E5-4617 processors with 6 cores each,
running at 2.9 GHz, and 1 TB of DDR3 RAM.

The first three examples are taken from the symbolic data project [Grä10]. We choose the base field
F65537 for these examples.

18

Example 7.1 (ilias13). F65537[x] = F65537[d2, s2, D2, S2, d1, s1, S1], degrevlex order with d2 > · · · > S1.
The ideal is radical, and the residue class algebra has dimension 468. The primary decomposition has 19
components.

Example 7.2 (Reimer 5a). F65537[x] = F65537[u, t, z, y, x], degrevlex order with u > · · · > x. The ideal is
radical, and the residue class algebra has dimension 720. The primary decomposition has 12 components.

Example 7.3 (Steidel 1). F65537[x] = F65537[x, y, z], degrevlex order with x > y > z. The residue class
algebra has dimension 729, and the residue class algebra of the radical has dimension 569. The primary
decomposition has 28 components.

The next group of examples comes from the L3-U3-quotient algorithm for finitely presented groups
[Jam12]. Every finitely presented group G = 〈a, b | w1, . . . , wr〉 defines a trace presentation ideal

I(G) E Z[x, y1, . . . , y4, z1, . . . , z4, ζ].

The monomial order on the polynomial ring is a weighted degrevlex order with deg(x) = 8, deg(yi) = 2,
deg(zi) = 4, deg(ζ) = 1, and x > y41 > · · · > y44 > z21 > · · · > z24 > ζ8.

The ideal I(G) is not zero-dimensional in general, but we will alter the ideal or the polynomial ring
to get zero-dimensional ideals (over fields).

Example 7.4. I := I(G) ⊗Z Q E Q[x, . . . , ζ], where G = 〈a, b | (a5b2)2, [a−2, b]4, ab−2a2b〉. The ideal is
radical, and the residue class algebra has dimension 184. The primary decomposition has 12 components.

Example 7.5. I := I(G) ⊗Z Q E Q[x, . . . , ζ], where G = 〈a, b | a5, b5, (ab)5, [a, b]5〉. The residue class
algebra has dimension 458, and the residue class algebra of the radical has dimension 446. The primary
decomposition has 46 components.

Example 7.6. I := I(G) ⊗Z Q E Q[x, . . . , ζ], where G = 〈a, b | a4, b4, (ab)6, [a, b]6〉. The residue class
algebra has dimension 256, and the residue class algebra of the radical has dimension 248. The primary
decomposition has 57 components.

Example 7.7. I := I(G) ⊗Z[y2] F2(y2) + 〈y1 + y4〉 E F2(y2)[x, y1, y3, y4, z1, . . . , z4, ζ], where G = 〈a, b |
ab2a−1b3, [a, b]2〉. The ideal is radical, and the residue class algebra has dimension 50.

Example 7.8. I := I(G) ⊗Z[z2] F2(z2) + 〈z3 + z4〉 E F2(z2)[x, y1, . . . , y4, z1, z3, z4, ζ], where G = 〈a, b |
a4b4, (ab)4〉. The residue class algebra has dimension 156, and the residue class algebra of the radical has
dimension 16. The primary decomposition has 4 components.

The final example comes from the L2-quotient algorithm for finitely presented groups [Jam14]. Every
finitely presented group G = 〈a, b, c | w1, . . . , wr〉 defines a trace presentation ideal

I(G) E Z[x, y1, . . . , y3, z1, . . . , z3].

The monomial order on the polynomial ring is a weighted degrevlex order with deg(x) = 3, deg(yi) = 2,
deg(zi) = 1, and x2 > y31 > · · · > y33 > z61 > · · · > z63 .

Example 7.9. I := I(G)⊗Z[z2] F2(z2) E F2(z2)[x, y1, y2, y3, z1, z3], where

G = 〈a, b, c | a5bac11, aba−1ba−2c〉

The ideal is radical, and the residue class algebra has dimension 28. The minimal polynomials of some
generators are inseparable, so Algorithm 4.8 must use field extensions.

The time to compute the radical is listed in Table 1, and the time to compute the primary decom-
position in Table 2. Several computations did not finish after three hours and were terminated without
a result. Note that the first three examples are defined over a finite field, the second three examples
are defined over the rationals, and the last three examples are defined over function fields of finite fields.
Since Algorithm 5.16 is only applicable to ideals defined over infinite fields, it cannot be used on the first
three examples.

19

It should be noted thatMagma’s algorithms use p-adic and modular techniques to address the problem
of coefficient growth for the computations over the rationals. The implementation of our algorithms does
not use these techniques at the moment, but it can be expected that this would yield a significant
speed-up. The modular approach is described in [IPS11].

Another possibility for improvement is the use of sparse linear algebra methods. At the moment,
the algorithms use regular linear algebra methods, and the FGLM data of the examples are relatively
dense. For sparse examples, the Gröbner based algorithms seem to perform better than the algorithms
developed in this paper.

Ex. 7.1 Ex. 7.2 Ex. 7.3 Ex. 7.4 Ex. 7.5 Ex. 7.6 Ex. 7.7 Ex. 7.8 Ex. 7.9

Magma 192.27 104.72 9.01 3.43 82.06 5.88 > 3h > 3h > 3h
Alg. 4.8 1.43 0.93 1.81 18.73 52.74 2.98 1.50 9.94 0.32

Table 1: Time (in seconds) to compute the radical.

Ex. 7.1 Ex. 7.2 Ex. 7.3 Ex. 7.4 Ex. 7.5 Ex. 7.6 Ex. 7.7 Ex. 7.8 Ex. 7.9

Magma > 3h > 3h 2760.28 1.70 > 3h > 3h 6.88 4350.18 3691.44
GTZ 2.35 5.78 > 3h 5867.68 > 3h > 3h 13.57 > 3h 31.02
Alg. 5.16 n/a n/a n/a 1.51 2.93 5.79 14.29 0.06 0.06
Alg. 6.5 2.08 4.76 5.96 5.77 0.98 4.51 0.44 0.06 0.13

Table 2: Time (in seconds) to compute the primary decomposition.

8 Acknowledgments

I was supported by the Alexander von Humboldt Foundation via a Feodor Lynen Research Fellowship.
The initial ideas for this paper were developed while I was visiting the Magma group at the University
of Sydney. I am grateful to Allan Steel for several very helpful discussions. I am also grateful to John
Cannon for inviting me to Sydney. I thank Eamonn O’Brien and Gerhard Pfister for helpful comments
on an early version of this paper. The referees made very helpful suggestions, which led to a significant
improvement of the paper.

References

[AKR05] J. Abbott, M. Kreuzer, and L. Robbiano. Computing zero-dimensional schemes. J. Symbolic
Comput., 39(1):31–49, 2005.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993).

[BTBQM00] M. A. Borges-Trenard, M. Borges-Quintana, and T. Mora. Computing Gröbner bases by
FGLM techniques in a non-commutative setting. J. Symbolic Comput., 30(4):429–449, 2000.

[BW93] Thomas Becker and Volker Weispfenning. Gröbner bases, volume 141 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1993. A computational approach to commutative
algebra, In cooperation with Heinz Kredel.

[DM96] John D. Dixon and Brian Mortimer. Permutation groups, volume 163 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1996.

[EHV92] David Eisenbud, Craig Huneke, and Wolmer Vasconcelos. Direct methods for primary
decomposition. Invent. Math., 110(2):207–235, 1992.

20

[FGLM93] J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional
Gröbner bases by change of ordering. J. Symbolic Comput., 16(4):329–344, 1993.

[Grä10] Hans-Gert Gräbe. The SymbolicData Project, 2010.

[GTZ88] Patrizia Gianni, Barry Trager, and Gail Zacharias. Gröbner bases and primary decompo-
sition of polynomial ideals. J. Symbolic Comput., 6(2-3):149–167, 1988. Computational
aspects of commutative algebra.

[GV85] Ira Gessel and Gérard Viennot. Binomial determinants, paths, and hook length formulae.
Adv. in Math., 58(3):300–321, 1985.

[GWW09] Shuhong Gao, Daqing Wan, and Mingsheng Wang. Primary decomposition of zero-
dimensional ideals over finite fields. Math. Comp., 78(265):509–521, 2009.

[IPS11] Nazeran Idrees, Gerhard Pfister, and Stefan Steidel. Parallelization of modular algorithms.
J. Symbolic Comput., 46(6):672–684, 2011.

[Jac89] Nathan Jacobson. Basic algebra. II. W. H. Freeman and Company, New York, second
edition, 1989.

[Jam12] Sebastian Jambor. An L3-U3-quotient algorithm for finitely presented groups. PhD thesis,
RWTH Aachen University, 2012.

[Jam14] Sebastian Jambor. An L2-quotient algorithm for finitely presented groups on arbitrarily
many generators. Preprint, 2014. arxiv:1402.6788.

[Kem02] Gregor Kemper. The calculation of radical ideals in positive characteristic. J. Symbolic
Comput., 34(3):229–238, 2002.

[KL91] Teresa Krick and Alessandro Logar. An algorithm for the computation of the radical of
an ideal in the ring of polynomials. In Applied algebra, algebraic algorithms and error-
correcting codes (New Orleans, LA, 1991), volume 539 of Lecture Notes in Comput. Sci.,
pages 195–205. Springer, Berlin, 1991.

[Kni95] Philip A. Knight. Fast rectangular matrix multiplication and QR decomposition. Linear
Algebra Appl., 221:69–81, 1995.

[KR00] Martin Kreuzer and Lorenzo Robbiano. Computational commutative algebra. 1. Springer-
Verlag, Berlin, 2000.

[Kre89] Heinz Kredel. Primary ideal decomposition. In EUROCAL ’87 (Leipzig, 1987), volume 378
of Lecture Notes in Comput. Sci., pages 270–281. Springer, Berlin, 1989.

[Lak90] Y. N. Lakshman. On the Complexity of Computing Gröbner bases for Zero Dimensional
Polynomial Ideals. PhD thesis, Rensselaer Polytechnic Institute, 1990.

[MMM93] M. G. Marinari, H. M. Möller, and T. Mora. Gröbner bases of ideals defined by functionals
with an application to ideals of projective points. Appl. Algebra Engrg. Comm. Comput.,
4(2):103–145, 1993.

[Mon02] Chris Monico. Computing the primary decomposition of zero-dimensional ideals. J. Symbolic
Comput., 34(5):451–459, 2002.

[Rou99] Fabrice Rouillier. Solving zero-dimensional systems through the rational univariate repre-
sentation. Appl. Algebra Engrg. Comm. Comput., 9(5):433–461, 1999.

[Sei74] A. Seidenberg. Constructions in algebra. Trans. Amer. Math. Soc., 197:273–313, 1974.

[Ste05] Allan Steel. Conquering inseparability: primary decomposition and multivariate factor-
ization over algebraic function fields of positive characteristic. J. Symbolic Comput.,
40(3):1053–1075, 2005.

21

[Sto94] Arne Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal
Institute of Technology Zurich, 1994.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.

[vzGG99] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge Uni-
versity Press, New York, 1999.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd
[extended abstract]. In STOC’12—Proceedings of the 2012 ACM Symposium on Theory of
Computing, pages 887–898. ACM, New York, 2012.

Department of Mathematics
The University of Auckland
Private Bag 92019
Auckland
New Zealand
E-mail address: s.jambor@auckland.ac.nz

22

	Introduction
	Preliminaries
	Auxiliary algorithms
	An algorithm to compute the radical
	Theoretical results
	Algorithms

	Primary decomposition over infinite fields
	Theoretical results
	Algorithms

	Primary decomposition for arbitrary fields
	Examples
	Acknowledgments

