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Abstract

An algorithm is presented to compute the minimal associated primes of an ideal in a polynomial ring
over the integers. It differs from the known algorithms insofar as it avoids to compute Gröbner basis over
the integers until the very end, thereby eliminating one of the bottlenecks of those algorithms.
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1. Introduction

This paper presents an algorithm to compute the minimal associated primes of an ideal in a polynomial
ring over the integers, based on an algorithm by Fabiańska ((Fabiańska, 2009)).
Efficient algorithms to compute primary decomposition of ideals over fields are known for quite a while (see
(Decker et al., 1999) for an overview) and implemented in most computer algebra systems for commutative
algebra (for example Magma (Bosma et al., 1997), Singular (Decker et al., 2010), and Macaulay2 (Grayson
and Stillman, 2010)). The idea in Fabiańska’s algorithm is to use these algorithms to compute the minimal
associated primes over the rationals and over various finite fields, and combine these results to get the
minimal associated primes over the integers. Of course, one has to know over which finite fields the
computations have to be done, or in other words, one has to know which primes can occur in some
minimal associated prime ideal. The first step in the algorithm is therefore to compute a Gröbner basis
over the integers to get a sufficient list of those primes. Unfortunately, this initial computation is often
the bottleneck of the whole algorithm, since a Gröbner basis calculation over the integers can be several
orders of magnitude slower than a Gröbner basis calculation over a field. It is therefore desirable to find
a way to compute the necessary primes which avoids calculations over the integers. This is done in this
paper, where the computation over the integers is replaced by several computations over the rationals
and over finite fields, which is usually still much faster than a computation over the integers.
The need for an efficient algorithm to compute the minimal associated primes over the integers arose in
computations with the L2-quotient algorithm (see (Plesken and Fabiańska, 2009) and (Fabiańska, 2009))
and the L3-U3-quotient algorithm (presented in an upcoming paper). In the last section, I will present
several examples of ideals which came up in this context, and also from other sources, together with
timings taken with and without this new method.
Note that recently an algorithm was developed to compute a primary decomposition over the integers
(see (Pfister et al., 2011)), which is implemented in Singular.

2. The Algorithm

In this whole section, I is an ideal of the ring Z[x] = Z[x1, . . . , xn], and p ∈ Z is some prime number.
Furthermore, νp : Z〈p〉[x] → Fp[x] is the canonical epimorphism, where Z〈p〉 = { f

g
| f, g ∈ Z, p ∤ g}; we also

write f instead of νp(f) for f ∈ Z〈p〉[x], and X instead of νp(X) for subsets X ⊆ Z〈p〉[x]. Furthermore,
we set QI := I ⊗Z Q, and minAss(I) denotes the set of minimal associated primes of I.
For q ∈ Z a prime or zero define minAssq(I) := {P ∈ minAss(I) |P ∩ Z = 〈q〉Z}. Then it is well known
that minAss0(I) = {P ′∩Z[x] |P ′ ∈ minAss(QI)} (see for example (Atiyah and Macdonald, 1969)). Prime
ideals containing an integer are handled as follows:
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Proposition 1 ((Fabiańska, 2009, Lemma 1.3.11)). For any prime p we have

minAssp(I) = {ν−1
p

(
P̃
)
| P̃ ∈ minAss

(
νp(I)

)
with ν−1

p

(
P̃
)
6⊇ P ′ for all P ′ ∈ minAss0(I)}.

Proof. Let P1, . . . , Pr be the minimal associated primes of I, and P̃1, . . . , P̃s the minimal associated primes
of I. Then for any i ∈ {1, . . . , s} we have

P1 ∩ · · · ∩ Pr =
√
I ⊆ ν−1

p

(√
I
)
⊆ ν−1

p

(
P̃i

)
,

so ν−1
p

(
P̃i

)
contains some minimal associated prime of I.

Now let j ∈ {1, . . . , r} such that p ∈ Pj . Then P̃1 ∩ · · · ∩ P̃s ⊆ νp(Pj), so P̃i ⊆ νp(Pj) for some i, and

hence ν−1
p

(
P̃i

)
⊆ Pj . But we proved above that Pk ⊆ ν−1

p

(
P̃i

)
for some k, and hence Pk = ν−1

p

(
P̃i

)
= Pj ,

by the minimality of Pj .

Obviously, minAss(I) = minAss0(I)∪
⋃

p prime minAssp(I). Thus, instead of doing computation over the
integers, we can do (almost) all calculations over the rationals and over finite fields.

Example 2. Let I = 〈2x2 + 3x + 1, x2 + 3x + 2〉EZ[x]; set p := 3. Then minAss0(I) = {〈x + 1〉} and
minAss

(
I
)
= {〈x+ 1〉, 〈x+ 2〉}. Using Proposition 1, it follows that 〈3, x + 2〉 is a minimal associated

prime of I, but 〈3, x+ 1〉 is not.
For p = 2 we get minAss

(
I
)
= {〈x+ 1〉〉}, so minAss2(I) = ∅.

It remains to find the primes p for which minAssp(I) is non-empty.
One way to do this is the following (used in (Fabiańska, 2009)): There exists a multiplicatively closed
subset S ⊆ Z generated by finitely many primes such that QI ∩ Z[x] = S−1I ∩ Z[x]. Then every prime
contained in an associated prime of I is contained in S ((Atiyah and Macdonald, 1969, Proposition 4.9)).
To determine such S one can use Gröbner bases over Z:

Proposition 3 ((Adams and Loustaunau, 1994, Proposition 4.4.4)). Let G be a Gröbner basis of I, and
let S be generated by the prime factors of leading coefficients of G. Then QI ∩ Z[x] = S−1I ∩ Z[x].

Unfortunately, Gröbner basis computations over the integers can be very expensive and several orders
of magnitudes slower than a calculation over Q or over a finite field. We would therefore like to have
another criterion which is less expensive.

It is an elementary fact that p occurs in an associated prime of I if and only if (I : p) 6= I. This gives
a criterion to decide for a single prime p whether we should bother to compute minAssp(I), but this
decision still has to be made for every single prime. Thus, as a first step, the set of primes one has to
consider is reduced to a finite set.

Proposition 4. Let G be a reduced Gröbner basis of QI (we always assume that a reduced Gröbner
basis consists of monic elements). Let S ⊆ Z be the multiplicatively closed subset generated by all prime
divisors of denominators which occurred during Buchberger’s algorithm applied to any generating set of I,
and T ⊆ S the multiplicatively closed subset generated by all prime divisors of denominators of G. Then:

1. For any prime p ∈ Z − S we have (I : p) = I. In particular, the prime numbers which occur in
associated primes of I are contained in S.

2. Assume that T is generated by p1, . . . , pℓ, and that S is generated by p1, . . . , pm. Then

T−1(I : (pℓ+1 · · · pm)∞) = 〈G〉T−1Z[x].

Proof. Let I = 〈f1, . . . , fr〉. Then any g ∈ G can be written as g =
∑r

i=1
zi
si
fi with zi ∈ Z[x] and si ∈ S,

for all i.

1. Let f ∈ (I : p) ⊆ QI. Then f ∈ QI ∩Z[x], so f =
∑

g∈G λgg with λg ∈ T−1Z[x] since all g ∈ G are
monic; thus sf ∈ I for a suitable s ∈ S. But pf ∈ I, and p and s are coprime, hence f ∈ I.

2. By the first statement, we have QI ∩ Z[x] = S−1I ∩ Z[x] = (I : (p1 · · · pm)∞), so localizing gives

T−1(I : (pℓ+1 · · · pm)∞) = T−1(QI ∩ Z[x]) = QI ∩ T−1Z[x].

But G is a Gröbner basis of QI ∩ T−1Z[x]ET−1Z[x], which gives the result.
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Example 5. Let I = 〈2x2 +3x+1, x2 +3x+2〉EZ[x] be as in Example 2. Depending on the order the
two generators are processed, S is generated either by 2, or by 2 and 3. In both cases, Example 2 proves
minAss(I) = {〈x+ 1〉, 〈3, x+ 2〉}.

Note that this proposition is independent of the monomial order used in the computation of the Gröbner
basis. In particular, we only have to consider those primes which occur as denominators in any Gröbner
basis calculation of QI. This can be used to our advantage in two ways: Firstly, by computing a new
reduced Gröbner basis, one can try to reduce the number of primes we have to consider. Secondly,
and maybe even more important, it can help to determine the primes in the first place: The problem
is that during the computation the denominators can get very big, often the size of several hundred
decimal digits, so there is no efficient way to compute the prime factors of this number. Let d be such a
denominator. The solution is to compute another reduced Gröbner basis and collect the denominators D
of the computation. Then instead of keeping d, only the greatest common divisors of d with all elements
of D are necessary.
While the proposition above reduces the number of primes to consider to a finite set, this set can still be
very big, and computing the minimal associated primes of I modulo all these primes can be expensive. So
remember again the criterion (I : p) 6= I to decide if p is necessary. Of course, this could be decided using
several Gröbner basis calculations over the integers, but this should be avoided. However, the equivalent
inequation (I : p∞) 6= I can be decided with a calculation over the field Fp:

Lemma 6. We have (I : p∞) % I if and only if (I : p∞) % I.

Proof. Assume (I : p∞) % I, and let ℓ ∈ N be minimal with (I : pℓ) = (I : p∞). Choose f ∈ (I : pℓ)− (I :

pℓ−1), and suppose f ∈ I. Then f = g for some g ∈ I, so p|(f − g); in particular, f−g
p

∈ (I : p∞). But

pℓ f−g
p

= pℓ−1f − pℓ−1g 6∈ I, by the choice of f , which is a contradiction.

Proposition 7. Let G, S and T be as in Proposition 4, and let p be a prime not contained in T . Then
p is contained in an associated prime of I if and only if

〈
G
〉
Fp[x]

% I.

Proof. We may assume p ∈ S. Then
〈
G
〉
Fp[x]

= 〈G〉T−1Z[x] = (I : p∞), by the second statement of

Proposition 4. The claim now follows by the lemma.

Now the algorithm can be formulated, which is presented as Algorithm 1.

Algorithm 1 Compute the minimal associated primes of an ideal

Input: An ideal I EZ[x].
Output: The set {P1, . . . , Pk} of minimal associated prime ideals of I.
1: Compute the minimal associated primes {P ′

1, . . . , P
′
r} of QI (using one of the well known algorithms).

2: Compute minAss0(I) = {P ′
i ∩ Z[x] | i = 1, . . . , r}.

3: Compute a reduced Gröbner basis G of QI, consisting of monic polynomials. Let D be the set of
denominators occurring in the Gröbner basis computation, and T the set of denominators of elements
of G.

4: Try to compute the set S of prime factors of D.
5: while entries in D cannot be factored or |S| is too big do

6: Compute another reduced Gröbner basis with respect to some other monomial order, and let D′

be the set of denominators occurring in this computation.
7: Replace D by {gcd(d, d′) | d ∈ D, d′ ∈ D′}.
8: Try to compute the set S of prime factors of D.
9: end while

10: for p ∈ S do

11: if p divides an element of T or
〈
G
〉
% I then

12: Compute the minimal associated primes
{
P̃1, . . . , P̃s

}
of I (using one of the well known algo-

rithms).

13: Compute minAssp(I) = {ν−1
p

(
P̃i

)
| i ∈ {1, . . . , s} and ν−1

p

(
P̃i

)
6⊇ P ′ for all P ′ ∈ minAss0(I)}.

14: end if

15: end for

16: return
⋃

q∈P ∪{0} minAssq(I).
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Note that the only time a Gröbner basis calculation over Z is necessary is in line 2. The decision in
line 5 whether D cannot be factored, or if |S| is too big, is a matter of experimentation. The current
implementation tries in lines 5 to 9 only to factor integers of size less than 2150 and to get the size of
S below 20. If after five Gröbner basis computations over the rationals this cannot be established, it
tries to factor arbitrary numbers and accepts any size of S. With this approach, for any ideal for which
a Gröbner basis over the rationals could be computed, the algorithm was able to compute a set S of
necessary primes.
Also note that lines 3 to 9 can be parallelized, as well as lines 10 to 15.

3. Examples

The Gröbner basis algorithm used to compute the necessary primes is Ginv ((Blinkov and Gerdt, 2008)),
an implementation of the involutive basis algorithm by Gerdt and Blinkov (Gerdt, 2005) computing Janet
bases (see (Plesken and Robertz, 2005)), which has an option to collect all denominators occurring in a
Janet basis computation.
The first two examples are taken from the SymbolicData Project (Gräbe, 2010).

Example 8 (ZeroDim.example 54.xml). After the first run of the involutive basis algorithm over the
rationals, the biggest denominator is of the size 1085, so the algorithm does not try to factor this number.
After the second run, there are 35 primes left, and after another two runs, this is reduced to 18 primes,
which are then tested using the criterion of Proposition 7, leaving only six primes. Apart from the
minimal associated primes which occur already in a calculation over the rationals, this ideal has also a
minimal associated prime ideal containing 2, and another one containing 3.

Example 9 (Gerdt-85 1.xml). There are two calculations needed over the rationals to reduce the number
of necessary primes from 60 to 13, and after the modular criterion we see that only seven primes are
necessary. There are 22 minimal associated primes, and 14 of these prime ideals contain one of the prime
numbers 2, 3, 5, or 7.

The next set of examples comes up in a run of the L3-U3-quotient algorithm (presented in an upcoming
paper).

Example 10 (L3-U3-quotient algorithm). The L3-U3-quotient algorithm finds all epimorphic images
of a finitely presented group which are isomorphic to PSL(3, q) or to PSU(3, q) simultaneously for
any q. We start with the group 〈a, b | a2, b6, (ab)7, [a, b]8〉, and during the computation we have to
compute the minimal associated primes of five ideals. The first one is an ideal in the ring R :=
Z[x1, x−1, x2, x−2, x1,2, x−1,2, x−2,1, x−2,−1, x[1,2]], with a grading of the variables given by deg(xi) = 2
and deg(xi,j) = 4 for i, j ∈ {−2,−1, 1, 2}, and deg(x[1,2]) = 8; the other four ideals are ideals in the ring
R[ζ], with deg(ζ) = 1 and the relation ζ2 + ζ + 1.
Each ideal has at least one minimal associated prime containing a prime number.
The ideals are referred to in Table 1 as Example 10.1 to Example 10.5.

The following times are measured:

1. The time to find a sufficient list of primes (Proposition 4, corresponding to lines 3 to 9 of Algo-
rithm 1) using Ginv, listed in column “Rational criterion”.

2. The time to reduce this list to a necessary list of primes (Proposition 7, corresponding to line 11 of
Algorithm 1) using Magma, listed in column “Modular criterion”.

3. Time to compute the minimal associated primes (Proposition 1, corresponding to lines 2, 12, and
13 of Algorithm 1) using Magma, listed in column “associated primes”.

For comparison, the time to compute a Gröbner basis or Janet basis over Z in various computer algebra
systems is given. All computations were done on a Quad-Core AMD Opteron Processor 8356. Each
process was given 5 hours CPU time and 8 GB of RAM. The timings are recorded in Table 1. All source
files for these examples are available from (Jambor, 2010). The used program versions are: Singular
3-1-1; Magma V2.16-12; Macaulay2 1.2. For Ginv, a current developer version was used, which is also
available from (Jambor, 2010).
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Compute minAss(I) Gröbner basis over Z
Example Rational Modular associated Ginv Macaulay2 Magma Singular

criterion criterion primes

Example 8 9.8 1.5 9.2 197.3 4.2 38.9 OOM
Example 9 0.6 0.1 3.2 5253.6 ∞ ∞ OOM

Example 10.1 35.9 12.4 3.2 15.8 52.4 29.5 ∞
Example 10.2 4.3 2.0 0.6 16.8 OOM 26.7 ∞
Example 10.3 7.8 6.3 2.6 24.5 OOM OOM ∞
Example 10.4 7.2 2.9 0.8 175.4 OOM 12873.1 ∞
Example 10.5 1.1 5.4 1.5 466.0 OOM OOM ∞

Table 1: Time (in seconds) to compute the necessary primes, the minimal associated primes of the ideal, and
the Gröbner basis over Z of the ideal. The value ∞ means that the computation did not finish after 5 hours,
and OOM means that the process tried to use more than 8 GB of memory.

4. Another approach with fewer primes

The set S generated by the prime divisors of denominators occurring during Buchberger’s algorithm is
usually largely redundant. What is really necessary for the argument in Proposition 4 are the denomina-
tors of a representation of the Gröbner basis elements g in terms of the original ideal generators f1, . . . , fr,
that is, the si in some representation g =

∑r

i=1
zi
si
fi (see the proof of Proposition 4). As pointed out by

one of the referees, the set generated by the prime divisors of those si can be considerably smaller than
the set S considered in this paper.
While this is true, this approach is usually not an efficient alternative. There are mainly two problems:
First, the standard approach to compute these representations is to do calculations in a certain submodule
of Q[x]r+1 with a position over term order, so there is an additional cost for the polynomial arithmetic,
which has to be done for r + 1 components instead of one component, which leads to increased time
consumption. Second, while the polynomial generators fi and the Gröbner basis elements are often
sparse polynomials, the cofactors zi

si
tend to be dense polynomials, which leads to increased memory

consumption.
On the other hand, the approach presented in this paper, that is, remembering the denominators during
the computation, is virtually cost free.
There is a third problem with the standard approach to get the representations above: One is only
interested in the first entry of the r + 1 entries, but the Gröbner basis with the position over term order
will further reduce the elements where the first entry is zero. This is overcome in the Maple package
Janet and its C++ counterpart Ginv (see (Blinkov et al., 2003, Section 4)), where computations are done
in a submodule of Q[x]r+1 as well, but only the first entry is considered for reductions.
Of the seven examples above, only one computation with simultaneous construction of the representations
finished without exceeding 8 GB of memory (Example 8). And while in fact this alternative approach
leads to fewer primes to consider (there are 37 primes in this alternative approach, while a Janet ba-
sis computation with the same monomial ordering, remembering only the denominators, produces 262
primes), the tradeoff is not acceptable: Just this one Janet basis computation takes 153.3 seconds with
the alternative approach, while the approach presented in this paper takes 0.2 seconds. In fact, the whole
computation of the minimal associated primes as presented here takes 20.5 seconds, so it finishes long
before even the first Janet basis computation with the alternative approach in Q[x]r+1 finishes.

5. Conclusion

This paper presents a method to compute the prime numbers which can occur in associated prime ideals
of a given ideal I EZ[x] (see Section 2). In contrast to the known method, which relies on a Gröbner
basis calculation over Z, the new method relies entirely on Gröbner basis calculation over prime fields.
Together with the methods of Fabiańska’s algorithm, this gives a new algorithm to compute the minimal
associated prime ideals of an ideal in Z[x], presented in Algorithm 1, which is often faster than the old
approach.
The examples in Section 3 show that, even though the Gröbner basis calculation over Z can take a long
time to finish, the computation of the minimal associated primes can be relatively fast. Examples 8 and 9
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show in particular that it can be important to compute Gröbner bases with respect to different monomial
orders to keep the Gröbner basis computations over finite fields to a minimum (in Example 9, a second
Gröbner basis calculation reduces the primes to consider from 60 to 13, thereby replacing 47 otherwise
necessary Gröbner basis computations over finite fields by a single Gröbner basis calculation over Q).
Of course, there are examples where this new approach is slower than Fabiańska’s method, for instance,
if the Gröbner basis computation is fast with respect to one monomial order, but slow with respect to
others (at the moment, the new monomial order is selected randomly). Furthermore, the Gröbner basis
calculation over Z might be fast: in Example 10.1 it takes 15.8 seconds to compute the necessary primes
by a Janet basis calculation over Z, and about three times as long (35.9 + 12.4 = 48.3 seconds) to
compute the necessary primes via the rational an the modular criterion. However, in applications, in
particular the L3-U3-quotient algorithm, this new approach gives an overall speedup.
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