
An L2-quotient algorithm for finitely presented groups

on arbitrarily many generators

Sebastian Jambor

Abstract

Abstract. We generalize the Plesken-Fabiańska L2-quotient algorithm for finitely presented groups
on two or three generators to allow an arbitrary number of generators. The main difficulty lies in a
constructive description of the invariant ring of GL(2,K) on m copies of SL(2,K) by simultaneous
conjugation. By giving this description, we generalize and simplify some of the known results in
invariant theory. An implementation of the algorithm is available in the computer algebra system
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1 Introduction

The Plesken-Fabiańska L2-quotient algorithm [PF09] takes as input a finitely presented group G on two
generators and computes all quotients ofG which are isomorphic to PSL(2, q) or PGL(2, q). The algorithm
finds all possible prime powers q, and also deals with the case when there are infinitely many. This was
adapted by Fabiańska [Fab09] to allow finitely presented groups on three generators. In particular, the
algorithm can decide whether G has infinitely many quotients isomorphic to PSL(2, q) or PGL(2, q), so
in some cases it can be used to prove that a finitely presented group is infinite. This has been applied
for example in [CHN11]. In this paper, we generalize the algorithm to allow finitely presented groups on
an arbitrary number of generators.

The method of Fabiańska and Plesken uses the character of representations F2 → SL(2,K), where F2

is the free group of rank 2 and K is an arbitrary field. The character is fully determined by the traces of
the images of the two generators of F2 and their product. This observation goes as far back as to Vogt
[Vog89] and Fricke and Klein [FK65]. Horowitz [Hor72] gives a rigorous proof of this fact, and generalizes
it to representations Fm → SL(2,K) for an arbitrarym, by proving that a character is fully determined by
2m−1 traces. While the traces for m = 2 are algebraically independent (that is, for every choice of traces
for the images of the two generators and their product, there always exists a representation with these
traces), this is no longer true for m > 2. The problem is thus to describe all relations between the traces,
or equivalently, to give a presentation for the invariant ring K[SL(2,K)m]GL(2,K), where GL(2,K) acts
on m copies of SL(2,K) by conjugation. Furthermore, we need this description to be independent of the
characteristic of the field K. This problem has a long history. Procesi [Pro76] proves that the invariant
ring K[(Kn×n)m]GL(n,K) is finitely generated if K has characteristic zero, and Donkin [Don92] generalizes
this to arbitrary fields K. However, their results are non-constructive. Procesi [Pro84] gives an implicit
description of the invariant ring C[(C2×2)m]GL(2,C), and Drensky [Dre03] gives an explicit description,
however, their results are not valid for fields of characteristic 2. Magnus [Mag80] uses Horowitz’s results
to to give a description of the quotient ring of the invariant ring.

We will use the approach of Horowitz and Magnus to get a partial description of the invariant ring.
The methods are constructive and the arguments are shorter than the original arguments; at the same
time we get more precise results, needed for the algorithm. This theory is developed in Section 2.
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Sections 3–7 are adaptations of [PF09], where we have to generalize results on characters and traces to
work for arbitrarily many generators. Up until the end of Section 7, all results assume that representations
restricted to the subgroup generated by the first two generators is absolutely irreducible. The results
in Section 8 show how the general case can be reduced to this special case. In Section 9, a new test to
recognize epimorphisms onto A4, S4, and A5 is developed, since the test described in [PF09] is inefficient
for more than two generators. Section 10 describes the proper notation and theory to deal with an infinite
number of L2-quotients. The algorithm is given in Section 11, with several examples in Section 12.

2 Fricke characters

Througout the paper, K is an arbitrary field and m ≥ 2 an integer, unless specified otherwise. In this
section, we adopt the following notation.

Notation 2.1. Given matrices A1, . . . , Am ∈ SL(2,K) and a list i1, . . . , ik ∈ {±1, . . . ,±m}, we set
ti1,...,ik := tr(Ai1 · · ·Aik), where A−i := A−1

i for i ∈ {1, . . . ,m}. If I = {i1, . . . , ik} ⊆ {1, . . . ,m} with
i1 < i2 < · · · < ik, then tI := ti1,...,ik .

Let A1, A2, A3 ∈ SL(2,K). The traces satisfy the following basic identities.

t1,1,2 = t1t1,2 − t2, (1)

t−1,2 = t1t2 − t1,2, (2)

t1,2,1,3 = t1,2t1,3 + t2,3 − t2t3, (3)

t1,3,2 = −t1,2,3 + t1t2,3 + t2t1,3 + t3t1,2 − t1t2t3. (4)

The first two identities are easy consequences of the Cayley-Hamilton Theorem, and the others are easy
consequences of the first two (for (3) consider tr((A1A2)

2(A−1
2 A3)); for (4) consider tr(A−1

1 (A−1
2 A3)) =

tr((A2A1)
−1A3)).

We first prove that all traces of words in the Ai are consequences of the tI with ∅ 6= I ⊆ {1, . . . ,m}.
This was already observed by Vogt [Vog89] and later by Fricke and Klein [FK65]. The first rigorous proof
of this fact was given by Horowitz [Hor72], and a shorter proof by Fabiańska and Plesken [PF09].

Let Fm be the free group of rank m, generated by g1, . . . , gm.

Theorem 2.2 ([Hor72, Theorem 3.1], [PF09, Lemma 2.1]). Let Xm := {xI | ∅ 6= I ⊆ {1, . . . ,m}} be a
set of indeterminates over Z. For every w ∈ Fm there exists a polynomial τ(w) ∈ Z[Xm], such that for
every field K and every m-tuple A = (A1, . . . , Am) ∈ SL(2,K)m,

tr(w(A1, . . . , Am)) = εA(τ(w)),

where εA : Z[Xm] → K is the evaluation map which sends xI to tI .

Since the proof in [Hor72] is lengthy, and the result in [PF09] is not as general, we present a short
proof here in its entirety. The basic idea is that of [PF09, Lemma 2.1].

Proof. We assume that w is freely and cyclically reduced and proceed by induction on the length of w.
If w is conjugate to g−1

i w′ for some w′ ∈ Fn of length |w| − 1, set τ(w) = τ(giw
′) − τ(gi)τ(w

′). Thus
we may assume that all exponents of w are positive. If w is conjugate to giw

′giw
′′ for some w′, w′′ ∈ Fm

with |w′|+ |w′′| = |w| − 2, set τ(w) = τ(giw
′)τ(giw

′′) + τ(w′w′′)− τ(w′)τ(w′′). We are left to deal with
the case where w is of the form w = gi1 · · · gik where the ij are pairwise distinct. We may assume i1 < ij
for all j ∈ {2, . . . , k}. The case i1 < · · · < ik is the induction basis, so there is nothing to do. Otherwise,
let j be the smallest index with ij > ij+1. Set w1 := gi1 · · · gij−1

, w2 := gij , and w3 := gij+1
· · · gik ,

so w = w1w2w3. By equation (4) we may set τ(w) := −τ(w1w3w2) + τ(w1)τ(w2w3) + τ(w2)τ(w1w3) +
τ(w3)τ(w1w2)− τ(w1)τ(w2)τ(w3). Either w1w3w2 is of the desired form, or we repeat this process. This
terminates after finitely many steps.

2



We call τ(w) the trace polynomial of w. If n > 2, then τ(w) is not unique. For example, define the
Fricke polynomial

φ(x1, x2, x3, x12, x13, x23, x123) := x2123 + (x1x2x3 − x1x23 − x2x13 − x3x12)x123

+ x21 + x22 + x23 + x212 + x213 + x223 − x1x2x12 − x1x3x13 − x2x3x23 + x12x13x23 − 4.

Then εA(φ) = 0 for every choice of A. Proofs appear for example in [Hor72, Section 2] and [Mag80,
Lemma 2.2]. We will see below that φ is simply a determinant condition (see Proposition 2.4 and
Corollary 2.5).

A lot of effort has been put into describing all polynomial relations between the traces. More precisely,
let

Im := {f ∈ Z[Xm] | εA(f) = 0 for all A1, . . . , An ∈ SL(2,C)}
and Φm := Z[Xm]/Im, the ring of Fricke characters. It is easy to see that εA(f) = 0 for all A ∈ SL(2,K)m,
so the role of C is not special. Horowitz [Hor72, Theorem 4.3] proves I3 = 〈φ〉, and Whittemore [Whi73,
Theorem 1] proves that Im is not principal if m ≥ 4. Magnus [Mag80, Theorem 2.1] shows that Φm can
be embedded into a finitely generated extension field of Q of transcendence degree 3m − 3. Note that
Φm ⊗Z C is isomorphic to the invariant ring C[SL(2,C)m]GL(2,C). Procesi [Pro84] gives a description of
the invariant ring C[(C2×2)m]GL(2,C), and an explicit presentation of the invariant ring with generators
and relations is given by Drensky [Dre03, Theorem 2.3]. However, these results are not valid for fields of
characteristic 2, and hence cannot be applied to describe Φm.

Our first aim is to partially describe Φm; we give a presentation of a localisation of Φm, which will be
enough for our algorithmic applications. By doing that, we will also find new and shorter proofs of some
of the results mentioned above.

We will use the following basic result.

Proposition 2.3 ([Mac69, Theorem 2], [Mag80, Equation (2.7)], [BH95, Proposition 4.1], [PF09, Proposi-
tion 3.1]). Let A = (A1, A2) ∈ SL(2,K)2. Then 〈A1, A2〉 is absolutely irreducible if and only if (t1, t2, t12)
is not a zero of

ρ := x21 + x22 + x212 − x1x2x12 − 4.

This is based on the fact that 〈A1, A2〉 is absolutely irreducible if and only if (I2, A1, A2, A1A2) is a
K-basis of K2×2 (see for example [PF09]), a result which we will also use several times.

The main result in this section shows that two matrices A1, A2 uniquely determine an arbitrary matrix
by the specification of four traces; it also shows that the Fricke polynomial is really a determinant condi-
tion. The basic idea of the proof has already been used by Brumfiel and Hilden [BH95, Proposition B.4].

Proposition 2.4. Let A1, A2 ∈ SL(2,K) such that 〈A1, A2〉 is absolutely irreducible, and let i ≥
3. Given Ti, T1i, T2i, T12i ∈ K, there exists a unique Ai ∈ K2×2 such that tI = TI for all I ∈
{{i}, {1, i}, {2, i}, {1, 2, i}}. Moreover, det(Ai) = 1 if and only if φ(t1, . . . , t12i) = 0.

More precisely, let

λi0 := (x21 + x22 + x212 − x1x2x12 − 2)xi − x1x1i − x2x2i + (x1x2 − x12)x12i,

λi1 := −x1xi − x2x12i + x12x2i + 2x1i,

λi2 := −x2xi − x1x12i + x12x1i + 2x2i,

λi12 := −x1x2i − x2x1i − xix12 + x1x2xi + 2x12i;

set ΛI := λiI(t1, t2, Ti, t12, T1i, T2i, T12i) for I ∈ {{0}, {1}, {2}, {1, 2}}. Then

Ai =
1

ρ(t1, t2, t12)
(Λ0I2 + Λ1A1 + Λ2A2 + Λ12A1A2).

Proof. Since 〈A1, A2〉 is absolutely irreducible, (I2, A1, A2, A1A2) is a K-basis of K2×2. Thus if Ai exists
as in the statement, then Ai = µ0I2+µ1A1+µ2A2+µ12A1A2 for some µi ∈ K. Multiplying the equation
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from the left by the matrices I2, A1, A2, A1A2 and taking traces shows that the µi are the unique solution
of 



2 t1 t2 t12
t1 t21 − 2 t12 t1t12 − t2
t2 t12 t22 − 2 t2t12 − t1
t12 t1t12 − t2 t2t12 − t1 t212 − 2







µ0

µ1

µ2

µ12


 =




Ti
T1i
T2i
T12i


 ,

which is given by µi = Λi/ρ(t1, t2, t12). This proves the uniqueness and existence of Ai. It remains
to show the determinant condition. We use the idea of [PF09, Proposition 3.1]. Let α be a root of
X2 − t1X + 1; by enlarging K if necessary, we may assume α ∈ K. Let v1 ∈ K2×1 be an eigenvector of
A1 with eigenvalue α. Set v2 := A2v1, and let M ∈ GL(2,K) be the matrix with columns v1 and v2. Set
Bj :=M−1AjM for j ∈ {1, 2, i}. Then

B1 =

(
α t2(α− t1) + t12
0 t1 − α

)
and B2 =

(
0 −1
1 t2

)
.

Since Bi = 1/ρ(t1, t2, t12)(Λ0I2 + Λ1B1 + Λ2B2 + Λ12B1B2),

det(Ai) = det(Bi) =
φ(t1, . . . , t12i) + ρ(t1, t2, t12)

ρ(t1, t2, t12)
,

which concludes the proof.

Corollary 2.5. Let A1, A2, A3 ∈ SL(2,K). The tI satisfy the Fricke relation, that is, φ(t1, . . . , t123) = 0.

Proof. We may assume without loss of generality that K is algebraically closed. By Proposition 2.4, the
statement is true for the Zariski-open subset

U = {(A1, A2, A3) ∈ SL(2,K)3 | ρ(tr(A1), tr(A2), tr(A1A2)) 6= 0},

so by continuity, it is true for all elements in SL(2,K)3.

The following is a generalization of [Mag80, Theorem 2.2] and [PF09, Proposition 3.1]. Set

Im := {{i} | 1 ≤ i ≤ m} ∪ {{i, j} | 1 ≤ i ≤ 2, i < j ≤ m} ∪ {{1, 2, k} | 3 ≤ k ≤ m}.

Corollary 2.6. Let TI ∈ K for I ∈ Im such that

ρ(T1, T2, T12) 6= 0 and φ(T1, T2, Tk, T12, T1k, T2k, T12k) = 0 for all 3 ≤ k ≤ m.

Let L be the splitting field of X2 − T1X + 1 ∈ K[X]. There exists A = (A1, . . . , Am) ∈ SL(2, L)m such
that tI = TI for all I ∈ Im, and A is unique up to conjugation by GL(2, L).

There exists A ∈ SL(2,K)m such that tI = TI for all I ∈ Im if and only if ρ(T1, T2, T12) = NL/K(z)
for some z ∈ L. In this case, A is unique up to conjugation by GL(2,K).

Proof. By [PF09, Proposition 3.1], there exists A′ := (A1, A2) ∈ SL(2, L)2 with t1 = T1, t2 = T2, and
t12 = T12; furthermore, A′ is unique up to L-equivalence, and A′ exists in SL(2,K)2 if and only if
ρ(T1, T2, T12) is a norm, in which case A′ is unique up to K-equivalence. By Proposition 2.4, the choice
of A′ and the TI uniquely determines the matrices A3, . . . , Am.

This result implies that the traces tJ with J 6∈ Im can be expressed in the traces tI with I ∈ Im if
ρ(t1, t2, t12) 6= 0. The next result gives the precise formulae.

Proposition 2.7. Let A1, . . . , An ∈ SL(2,K). Let 3 ≤ i < n and ∅ 6= j ⊆ {i + 1, . . . , n}. The tuple
t = (tI | ∅ 6= I ⊆ {1, . . . , n}) is a zero of the polynomials

xijρ− (λi0xj + λi1x1j + λi2x2j + λi12x12j),

x1ijρ− (λi0x1j + λi1(x1x1j − xj) + λi2x12j + λi12(x1x12j − x2j)),

x2ijρ− (λi0x2j + λi1(−x12j + x1x2j + x2x1j + xjx12 − x1x2xj) + λi2(x2x2j − xj)

+ λi12(x12x2j − x1xj + x1j)),

x12ijρ− (λi0x12j + λi1(x12x1j − x2xj + x2j) + λi2(x2x12j − x1j) + λi12(x12x12j − xj)).
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Proof. It is enough to prove the statement if ρ 6= 0 (see proof of Corollary 2.5). By Proposition 2.4,
we see Ai = Λ0I2 + Λ1A1 + Λ2A2 + Λ12A1A2. Multiplying from the right by Aj and from the left by
I2, A1, A2, A1A2 and taking traces yields the result.

For a ring R and r ∈ R, let Rr denote the localisation of R at the set {1, r, r2, . . . }. While we do not
have an explicit description of the ring Φm of Fricke characters, we have one for a localisation of Φm.

Corollary 2.8. Let
Φ′

m := (Z[xI | I ∈ Im]/〈φ123, . . . , φ12m〉)ρ,
where φ12i := φ(x1, x2, xi, x12, x1i, x2i, x12i) for 3 ≤ i ≤ m and ρ := ρ(x1, x2, x12). The ring homomor-
phism Φ′

m → (Φm)ρ defined by xI 7→ xI is an isomorphism.

Proof. Define a ring homomorphism α : Z[xI | I ∈ Im] → (Φm)ρ by mapping xI to xI . By Proposition 2.7,
α is surjective, and by Proposition 2.4, α factors over Φ′

m. But Proposition 2.4 also shows that the induced
map is injective (see also Corollary 2.6).

Corollary 2.9 ([Mag80, Theorem 2.1]). The quotient field of Φm is isomorphic to a (m−2)-fold quadratic
extension of a rational function field of trancendence degree 3m− 3 over Q.

3 Trace tuples

The ultimate goal is to get a bijection between prime ideals of Φ′
m and equivalence classes of representa-

tions Fm → SL(2,K), where K ranges over all fields.

Definition 3.1. A tuple t = (tI | I ∈ Im) ∈ KIm is a trace tuple if

ρ(t1, t2, t12) 6= 0 and φ(t1, t2, ti, t12, t1i, t2i, t12i) = 0 for all 3 ≤ i ≤ m.

If A ∈ SL(2,K)m such that 〈A1, A2〉 is absolutely irreducible, then the traces tI = tr(Ai1 · · ·Aik) for
I = {i1 < · · · < ik} ∈ Im form a trace tuple. We call this the trace tuple of A, and A a realization of t.
The tuple (tJ | ∅ 6= J ⊆ {1, . . . ,m}) is the full trace tuple of A.

Definition 3.2. Let Γ be a group generated by γ1, . . . , γm. Let

R(Γ,K) := {∆: Γ → SL(2,K) | ∆|〈γ1,γ2〉 is absolutely irreducible}.

Remark 3.3. The set R(Fm,K) is in bijection to the set of matrices A ∈ SL(2,K)m such that 〈A1, A2〉
is absolutely irreducible, so we may talk about trace tuples of ∆ and regard representations as realizations
of trace tuples.

We will first prove the results for finite fields and then generalize to arbitrary fields.

3.1 Finite fields

Definition 3.4. Let t, t′ ∈ FIm
q be trace tuples. Let L and L′ be the subfields of Fq generated by t

and t′, respectively. We say that t and t′ are equivalent if there exists an isomorphism α : L → L′ such
that α(tI) = α(t′I) for all I ∈ Im.

Remark 3.5. By Corollary 2.6, every trace tuple t ∈ FIm
q has a realization A ∈ SL(2,Fq)

m.

Let t ∈ FIm
q be a trace tuple. Define a ring homomorphism αt : Φ

′
m → Fq by αt(xI) := tI for I ∈ Im.

Then Pt := ker(αt) is a maximal ideal of Φ′
m.

Conversely, let P ∈ MaxSpec(Φ′
m), where MaxSpec(Φ′

m) denotes the set of maximal ideals of Φ′
m.

Let Fq = Φ′
m/P , and set (tP )I := xI + P ∈ Fq for I ∈ Im. Then tP := ((tP )I | I ∈ Im) ∈ FIm

q is a trace
tuple.

Theorem 3.6. The maps P 7→ tP and t 7→ Pt induce mutually inverse bijections between MaxSpec(Φ′
m)

and the set of equivalence classes of trace tuples over finite fields.
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Proof. Let P ∈ MaxSpec(Φ′
m). Since αtP (xI) = xI + P by definition, we see P = PtP . Now let t ∈ FIm

q

be a trace tuple; we may assume that Fq is generated by t. Then Φ′
m/Pt is a field with q elements. Define

a homomorphism Fq → Φ′
m/Pt by tI 7→ xI + Pt. By definition of Pt this is well-defined and it is clearly

surjective, hence an isomorphism; it maps t to tPt
, so t is equivalent to tPt

.

If q|q′, then we can embedd R(Fm,Fq) into R(Fm,Fq′), and we can embedd R(Fm,Fq)/ΓL(2, q) into
R(Fm,Fq′)/ΓL(2, q

′) (where ΓL(2, q) acts on R(Fm,Fq) by composition).

Corollary 3.7. There is a bijection between MaxSpec(Φ′
m) and

⋃
q R(Fm,Fq)/ΓL(2, q), where q ranges

over all prime powers.

Proof. This follows by Theorem 3.6 and Corollary 2.6.

3.2 Arbitrary fields

Definition 3.8. Let K and K ′ be fields. Let t ∈ KIm and t′ ∈ (K ′)Im be trace tuples, and let S and S′

be the rings generated by t and t′, respectively. We say that t and t′ are equivalent if there exists a ring
isomorphism α : S → S′ such that α(tI) = t′I for all I ∈ Im.

Remark 3.9. By Corollary 2.6, every trace tuple t ∈ KIm has a realization, but in general we must
allow field extensions. That is, there exist matrices A ∈ SL(2, L)m with tI = tr(Ai1 · · ·Aik) for all
I = {i1 < · · · < ik} ∈ Im, where L is either K or a quadratic extension of K.

Let t ∈ KIm be a trace tuple. Define a ring homomorphism αt : Φ
′
m → K by αt(xI) := tI for I ∈ Im.

Then Pt := ker(αt) is a prime ideal of Φ′
m.

Conversely, let P ∈ Spec(Φ′
m), where Spec(Φ′

m) denotes the set of prime ideals of Φ′
m. Let K be the

quotient field of Φ′
m/P ; set (tP )I := xI + P ∈ K for I ∈ Im. Then tP := ((tP )I | I ∈ Im) ∈ KIm is a

trace tuple.

Theorem 3.10. The maps P 7→ tP and t 7→ Pt induce mutually inverse bijections between Spec(Φ′
m)

and the set of equivalence classes of trace tuples.

4 Actions

Definition 4.1. Let Σm := {±1}m, the group of sign changes. Let ∆ ∈ R(Fm,K), and let χ : Fm →
Fq : w 7→ tr(∆(w)) be the character of ∆. Let t ∈ KIm be a trace tuple.

1. Let σ ∈ Σm. Define

σ∆: Fm → SL(2,K) : w 7→ w(σ)∆(w);
σχ : Fm → K : w 7→ w(σ)χ(w); and

σtI :=
(∏

i∈I

σi

)
tI .

This defines actions of Σm on representations, characters, and trace tuples.

2. Let σ ∈ Σm. Define a ring automorphism on Φ′
m by mapping xI to (

∏
i∈I σi)xI . This defines an

action of Σm on Φ′
m by automorphisms, and hence an action on the set of ideals of Φ′

m.

3. Let α ∈ Gal(K). Define

α∆: Fm → SL(2,K) : w 7→ α(∆(w));
αχ : Fm → K : w 7→ α(χ(w)); and
αtI := α(tI).

This defines actions of Gal(K) on representations, characters, and trace tuples.
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Remark 4.2. The actions are compatible with the various bijections. More precisely, let ∆ ∈ R(Fm,K),
let t ∈ KIm be a trace tuple, and let P ∈ Spec(Φ′

m). Denote by χ∆ the character of ∆ and by t∆ the
trace tuple of ∆. Then

χ(σ∆) =
σ(χ∆), t(σ∆) =

σ(t∆), P(σt) =
σ(Pt), and t(σP ) =

σ(tP )

for all σ ∈ Σm, and
χ(α∆) =

α(χ∆) and t(α∆) =
α(t∆)

for all α ∈ Gal(K).

5 Projective representations and finitely presented groups

Definition 5.1. Let Γ be a group generated by γ1, . . . , γm. Set

P(Γ,K) := {δ : Γ → PSL(2,K) | δ|〈γ1,γ2〉 is absolutely irreducible}.

Theorem 5.2. There is a bijection between MaxSpec(Φ′
m)/Σm and

⋃
q P(Fm,Fq)/PΓL(2, q), where q

ranges over all prime powers.

Proof. This follows from Corollary 3.7, since two representations ∆,∆′ : Fm → SL(2, q) induce the same
projective representation if and only if ∆′ = σ∆ for some σ ∈ Σm.

Definition 5.3. Let G = 〈g1, . . . , gm | w1, . . . , wr〉 be a finitely presented group. For s ∈ {±1}r define

Is(G) := 〈τ(wib)− siτ(b) | 1 ≤ i ≤ r, b ∈ {1, g1, g2, g1g2}〉 E Φ′
m,

the trace presentation ideal of G with respect to the sign system s. (We regard the τ(w) as elements
of Φ′

m via the isomorphism of Corollary 2.8.) Set I(G) :=
⋂

s∈{±1}r Is(G), the full trace presentation ideal
of G.

The following result is a reformulation of [PF09, Proposition 3.3].

Proposition 5.4. Let G be a finitely presented group. Let ∆ ∈ R(Fm, SL(2,K)) with trace tuple t ∈ KIm

and prime ideal P = Pt ∈ Spec(Φ′
m). The following are equivalent:

1. The representation ∆ induces a projective presentation δ : G→ PSL(2,K).

2. The trace tuple t is a zero of I(G).

3. The prime ideal P contains I(G).

Proof. The equivalence of (2) and (3) is immediate. We prove the equivalence of (1) and (2). Let
Ai := ∆(gi). Then ∆ induces a projective representation of G if and only if wi(A1, . . . , Am) = siI2 for
some s = (s1, . . . , sr) ∈ {±1}r. Since the trace bilinear form is non-degenerate, this is equivalent to
tr(wi(A1, . . . , Am)B)− si tr(B) = 0, where B runs through a basis of K2×2. Since 〈A1, A2〉 is absolutely
irreducible, we can choose the basis (I2, A1, A2, A1A2).

Corollary 5.5. There is a bijection between the maximal elements of V(I(G))/Σm, where V(I(G)) =
{P ∈ Spec(Φ′

m) | I(G) ⊆ P} and
⋃

q P(G,Fq)/PΓL(2, q), where q ranges over all prime powers.

6 Subgroups

Corollary 5.5 describes a bijection between classes of maximal ideals and classes of absolutely irreducible
projective representations. In this section, we establish criteria to decide whether a maximal ideal is
mapped to a surjective projective representation.

According to Dickson’s classification (see for example [Suz82, Section 3.6]), an absolutely irreducible
subgroup U � PSL(2, q) is

7



• isomorphic to A4, S4, or A5, or

• a dihedral group, or

• isomorphic to PGL(2, q′) for some q′|r if q = r2 is a square, or

• isomorphic to PSL(2, q′) for some q′|q.

For a finite group H let J(H) :=
⋂

G I(G), where G ranges over all presentations of G onm generators.

Proposition 6.1. Let H be a finite group. Set J ′(H) := (J(H) :
(⋂

Q J(Q)
)∞

) E Φ′
m, where Q ranges

over all proper quotients of H.
Let ∆ ∈ R(Fm, SL(2,K)) with trace tuple t ∈ KIm and prime ideal P = Pt ∈ Spec(Φ′

m). The
following are equivalent:

1. The representation ∆ induces a projective presentation δ such that im(δ) ∼= H.

2. The trace tuple t is a zero of J ′(H).

3. The prime ideal P contains J ′(H).

Proof. It suffices to prove the equivalence of (1) and (2). By Proposition 5.4, δ factors over H if and only
if t is a zero of J(H), and it factors over Q if and only if t is a zero of J(Q). But t is a zero of J ′(H) if
and only if it is a zero of J(H) but not a zero of J(Q) for any proper quotient Q of H, which proves the
proposition.

We will later let H be one of the groups A4, S4, or A5, which deals with the first kind of subgroups.
We handle the dihedral groups in a slightly more general context.

Lemma 6.2. Let t ∈ KIm be a trace tuple. Let ∅ 6= J ⊆ {1, . . . ,m}. If tI = 0 for all I ∈ Im with |I ∩ J |
odd, then tI = 0 for all ∅ 6= I ⊆ {1, . . . ,m} with |I ∩ J | odd.

Proof. Assume I 6∈ Im with |I ∩ J | odd. We proceed by induction on |I|. We assume that I ∩ {1, 2} = ∅;
the other cases are analogous. Let i be the minimum of I, and let j := I − {i}. By Proposition 2.7,
tI = tij = 1/ρ(t)

(
λi0(t)tj + λi1(t)t1j + λi2(t)t2j + λi12(t)t12j

)
. There are eight cases to consider; we

give the proof for two of them, the other six are analogous. The first case is 1, 2, i 6∈ J ; the sets j,
{1} ∪ j, {2} ∪ j, and {1, 2} ∪ j have odd intersection with J , thus tj = t1j = t2j = t12j = 0 by
induction. The formula for tij shows that tij = 0. The second case is 1 ∈ J but 2, i 6∈ J ; now
t1 = t2 = ti = t12 = t1i = t2i = t12i = tj = t2j = t12j = 0. By Proposition 2.4, λi1(t) = 0, so tij = 0.

Let ∆ ∈ R(Fm,K); then ∆ is imprimitive if K2×1 = V1 ⊕ V2 for one-dimensional subspaces V1, V2 ≤
K2×1 such that ∆ permutes the Vi transitively.

Proposition 6.3. Let K be an algebraically closed field. Let ∆ ∈ R(Fm,K), and let t be its trace tuple.
Then ∆ is imprimitive if and only if there exists ∅ 6= J ⊆ {1, . . . ,m} such that tI = 0 for all I ∈ Im with
|I ∩ J | odd.

Proof. Let χ : Fm → Fq : w 7→ tr(∆(w)) be the character of ∆. By [Jam14, Theorem 3.3], ∆ is imprimitive
if and only if there exists an epimorphism ψ : Fm → {±1} such that ψ(w) = −1 implies χ(w) = 0 for
all w ∈ Fm. For ∅ 6= J ⊆ {1, . . . ,m} define an epimorphism ψJ : Fm → {±1} by ψJ (gj) = −1 if j ∈ J
and ψJ (gj) = 1 otherwise. This yields a bijection between the non-empty subsets of {1, . . . ,m} and the
epimorphisms of Fm onto {±1}. Let Ai := ∆(gi) for i ∈ {1, . . . ,m}. We show that ψJ(w) = −1 implies
χ(w) for all w ∈ Fm if and only if tI = 0 for all I ∈ Im with |I ∩ J | odd.

The condition is obviously necessary; we show that it is sufficient. By Lemma 6.2 we may assume
that tI = 0 for all ∅ 6= I ⊆ {1, . . . ,m} with |I ∩ J | odd. Let w ∈ Fm with ψJ(w) = −1. We prove
χ(w) = 0 by induction on |w|, proceeding along the lines of the proof of Theorem 2.2. Note that
χ(w) = εA(τ(w)), where A = (∆(g1), . . . ,∆(gm)). If w is conjugate to g−1

i w′ for some i ∈ {1, . . . ,m}
and some w′ ∈ Fm with |w′| = |w|−1, then χ(w) = χ(giw

′)−χ(gi)χ(w′). By induction, χ(w) = χ(giw
′),

since either ψJ (giw
′)) = −1 or ψJ(gi) = −1. Similar considerations apply to the other cases of the proof

of Theorem 2.2, so we conclude χ(w) = 0.
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The definition of imprimitivity depends on the field of definition. By abuse of notation we call a
representation imprimitive if it is imprimitive after field extension.

Corollary 6.4. Let

D :=
⋂

∅6=J⊆{1,...,m}

〈xI | I ∈ Im with |I ∩ J | odd〉 E Φ′
m.

Let P ∈ Spec(Φ′
m), and let ∆ ∈ R(Fm,K) be a realization of tP , where K is the quotient field of Φ′

m/P .
Then ∆ is imprimitive if and only if D ⊆ P .

In other words, the imprimitive representations correspond to the elements of the closed subset

V(D) = {P ∈ Spec(Φ′
m) | D ⊆ P}

of Spec(Φ′
m).

The dihedral subgroups of PSL(2, q) are precisely the images of imprimitive subgroups of SL(2, q).
Setting A4 := J ′(A4), S4 := J ′(S4), and A5 := J ′(A5), we can formulate the main result of this section.

Theorem 6.5. Let G be a finitely presented group on m generators. The set of normal subgroups N E G
such that G/N ∼= PSL(2, q) for some prime power q > 5 or G/N ∼= PGL(2, q) for some prime power
q > 4 and such that 〈g1N, g2N〉 is absolutely irreducible is in bijection to the set of Σm-orbits of maximal
ideals of

Q(G) := V(I(G))−V(D ∩ A4 ∩S4 ∩ A5) ⊆ Spec(Φ′
m).

7 The PSL-PGL-decision

Definition 7.1. A finite group is of L2-type if it is isomorphic to PSL(2, q) for some q > 5 or to PGL(2, q)
for some q > 4. A quotient of a finitely presented group is an L2-quotient if it is of L2-type.

Theorem 6.5 gives a characterization of L2-quotients purely in algebro-geometric terms. To decide
whether an L2-quotient is isomorphic to PSL(2, q) or PGL(2, q) for some q, we use arithmetic tools.

LetM ∈ Q(G) be a maximal ideal, and let tM be the trace tuple defined byM . Let ∆: Fm → SL(2, q)
be a realization of tM . The field Φ′

m/M is generated by tM , so Φ′
m/M is the character field of ∆. Since

representations over finite fields can be realized over the character field, we may assume q = |Φ′
m/M |.

If q is not a square, then by Dickson’s classification ∆ induces an epimorphism onto PSL(2, q), and if
q = r2, then ∆ induces an epimorphism onto PSL(2, q) or PGL(2, r). We give a criterion to decide which
case occurs. Note that ∆ induces a projective representation onto PGL(2, r) if and only if the image of
∆ is conjugate to a subgroup of GL(2, r)F∗

q , where F∗
q is identified with scalar matrices.

Proposition 7.2. Let q = r2 be a prime power. Let t ∈ FIm
q be a trace tuple and ∆: Fm → SL(2, q) a

realization of t, and let α be a generator of Gal(Fq/Fr). The image of ∆ is conjugate to a subgroup of
GL(2, r)F∗

q if and only if σt = αt for some σ ∈ Σm.

Proof. Let χ : Fm → Fq : w 7→ tr(∆(w)) be the character of ∆. By [Jam14, Theorem 4.1], the image
of ∆ is conjugate to a subgroup of GL(2, r)F∗

q if and only if there exists σ ∈ Σm with σχ = αχ. Using
Lemma 6.2 and the construction of the τ(w) in the proof of Theorem 2.2, we can show as in the proof of
Proposition 6.3 that this is equivalent to σtI = αtI for all I ∈ Im.

Remark 7.3. Let M E Φ′
m be a maximal ideal, and let σ ∈ StabΣm

(M). Then Φ′
m/M → Φ′

m/M : xI +
M 7→ σxI +M defines a Galois automorphism.

Corollary 7.4. Let M E Φ′
m be a maximal ideal such that |Φ′

m/M | = q = r2 is a square. Let t = tM be
the trace tuple of M , and let ∆: Fm → SL(2, q) be a realization of tM . The image of ∆ is conjugate to a
subgroup of GL(2, r)F∗

q if and only if M has a non-trivial stabilizer in Σm.

Together with Theorem 6.5 we get the following result.
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Theorem 7.5. Let G be a finitely presented group on m generators. The set of normal subgroups N E G
such that G/N ∼= PSL(2, q) for some odd q > 5 with 〈g1N, g2N〉 absolutely irreducible is in bijection
to the regular Σm-orbits of maximal ideals of Q(G). The set of normal subgroups N E G such that
G/N ∼= PGL(2, q) for some q > 4 with 〈g1N, g2N〉 absolutely irreducible is in bijection to the Σm-orbits
of maximal ideals of Q(G) with a stabilizer of order 2.

When dealing with infinitely many L2-quotients, the following reformulation in terms of trace tuples
if often useful.

Corollary 7.6. Let G be a finitely presented group on m generators, and let q = pd be a prime power.
If q > 5 is odd, then the set of normal subgroups N E G such that G/N ∼= PSL(2, q) with 〈g1N, g2N〉
absolutely irreducible is in bijection to the regular Σm × Gal(Fq)-orbits of zeroes t ∈ FIm

q of Q(G) with
Fq = Fp[t]. If q > 4, then the set of normal subgroups N E G such that G/N ∼= PGL(2, q) with 〈g1N, g2N〉
absolutely irreducible is in bijection to the Σm×Gal(Fq2)-orbits of zeroes t ∈ FIm

q2 of Q(G) with Fq2 = Fp[t]
having stabilizer of order 2.

Let G/N1 and G/N2 be L2-quotients of G with N1 6= N2. What is the isomorphism type of G/N1∩N2?
Clearly, if G/N1 or G/N2 is simple, then G/N1 ∩ N2

∼= G/N1 × G/N2. This leaves the case that both
G/Ni are non-simple, that is, G/Ni

∼= PGL(2, qi) for some prime powers qi.

Proposition 7.7. Let G be a finitely presented group on m generators. Let M1 and M2 be maximal ideals
of Q(G) with stabilizers 〈σ(i)〉 ≤ Σm of order 2, and let N1, N2 E G be normal subgrops corresponding to
M1,M2 in the bijection of Theorem 7.5. Let q1, q2 be prime powers with G/Ni

∼= PGL(2, qi). If N1 6= N2,
then

G/N1 ∩N2
∼=

{
PGL(2, q1) �

C2 PGL(2, q2) if σ(1) = σ(2),

PGL(2, q1)× PGL(2, q2) otherwise.

Proof. Let δi : G→ PSL(2, q2i ) be a realization of Mi; define δ1 × δ2 : G→ PSL(2, q21)× PSL(2, q22) : g 7→
(δ1(g), δ2(g)). The image H of δ1× δ2 is a subdirect product of PGL(2, q1)×PGL(2, q2). Since N1 6= N2,
this subdirect product is amalgamated either in C2 or in the trivial group, and in the latter case the
product is direct. There is a unique epimorphism εi : PGL(2, qi) → C2, where εi(δ(gj)) = 1 if and only

if δi(gj) ∈ PSL(2, qi). By the proof of [Jam14, Theorem 4.1], this is equivalent to σ
(i)
j = 1. Hence

ε1(δ1(gj)) = ε2(δ2(gj)) if and only if σ(1) = σ(2), which proves the proposition.

8 Arbitrary representations

Until now, we only considered representations ∆: Fm → SL(2,K) such that ∆|〈g1,g2〉 is absolutely irre-
ducible. We now show how the case of arbitrary absolutely irreducible representations can be reduced to
this one.

Proposition 8.1. Let ∆: Fm → SL(2,K) be a representation. For 1 ≤ i, j, k ≤ m set ∆i,j := ∆|〈gi,gj〉

and ∆i,jk := ∆|〈gi,gjgk〉. Then ∆ is absolutely irreducible if and only if one of ∆i,j with 1 ≤ i < j ≤ m,
∆1,2i with 3 ≤ i ≤ m, or ∆2,ij with 3 ≤ i < j ≤ m is absolutely irreducible.

Proof. We generalize [Fab09, Lemma 3.4.4] and so strenghten [BH95, Proposition B.7]. We may assume
that K is algebraically closed, so absolute irreducibility coincides with irreducibility. Clearly if some
restriction of ∆ is irreducible, then ∆ is irreducible. So assume now that all given restrictions are reducible.
We show that ∆ is reducible. Since ∆i,j is reducible, ∆(gi) and ∆(gj) have a common eigenspace. If the
minimal polynomial of some ∆(gi) is not square-free, then ∆(gi) has a unique eigenspace of dimension 1,
which has to be a common eigenspace for all ∆(gj). Thus ∆ is reducible. So assume now that the
minimal polynomials of all ∆(gi) are square-free. We may further assume that all ∆(gi) have two distinct
eigenvalues; for if ∆(gi) is a scalar matrix, then ∆ is reducible if and only if ∆|〈g1,...,ĝi,...,gm〉 is reducible.
Let Ei be the set of eigenspaces of ∆i and E := {Ei | 1 ≤ i ≤ m}. By our hypothesis, |Ei ∩ Ej | ≥ 1 for
all i, j. Note that |Ei| = 2, so if |E| ≥ 4, then the Ei must have a common element, that is, the matrices
have a common eigenspace. The same is trivially true if |E| ≤ 2. Assume now that |E| = 3. Consider
first the case E1 6= E2. Let E1 = {〈v1〉, 〈v2〉} and E1 ∩ E2 = {〈v1〉}. We claim that 〈v1〉 is a common
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eigenspace for all ∆(gi). For suppose that 〈v1〉 is not an eigenspace of ∆(gi) for some i; then 〈v2〉 must be
an eigenspace of ∆(gi), since |E1 ∩ Ei| ≥ 1. Since ∆1,2i is reducible, ∆(g1) and ∆(g2gi) have a common
eigenspace. This is either 〈v1〉 or 〈v2〉. In the first case, ∆(g2gi) and ∆(g2) have eigenspace 〈v1〉, so
∆(gi) has eigenspace 〈v1〉, contradicting our assumption. In the second case, ∆(g2gi) and ∆(gi) have
eigenspace 〈v2〉, so ∆(g2) has eigenspace 〈v2〉, again a contradiction. Thus the assumption that 〈v1〉 is
not an eigenspace of ∆(gi) is impossible. We conclude the proof by showing that E1 = E2 is not possible.
Since |E| = 3, there exist i < j with E = {E1, Ei, Ej}. All sets have at least one element in common,
so we may assume E1 = {〈v1〉, 〈v2〉}, Ei = {〈v1〉, 〈v3〉}, and Ej = {〈v2〉, 〈v3〉}. Since ∆2,ij is reducible,
∆(g2) and ∆(gigj) have a common eigenspace. Assume that this is 〈v1〉; then 〈v1〉 is also an eigenspace
of ∆(gj), a contradiction. If it is 〈v2〉, then 〈v2〉 is also an eigenspace of ∆(gi), also a contradiction. Thus
E1 = E2 is impossible.

Let

Um := {({i}, {j}) | 1 ≤ i < j ≤ m} ∪ {({1}, {2, j}) | 3 ≤ j ≤ m} ∪ {({2}, {i, j}) | 3 ≤ i < j ≤ m}.

For every u = (u1, u2) ∈ Um, let αu ∈ Aut(Fm) with αu(gu1
) = g1 and αu(gu2

) = u2, where gv :=
gv1

· · · gvk
for v = {v1 < · · · < vk}. Thus ∆: Fm → SL(2,K) is absolutely irreducible if and only if

(∆ ◦ α−1
u )|〈g1,g2〉 is absolutely irreducible for some u ∈ Um.

By abuse of notation, if α ∈ Aut(Fm) and G is a group generated by elements g1, . . . , gm, then we
denote the automorphism of G defined by gi 7→ α(gi) for 1 ≤ i ≤ m again by α. Fix a total order <
on Um. Set

Iu(G) := I(α(G)) + 〈ρ(xv1
, xv2

, xv1∪v2
) | v ∈ Um, v < u〉.

For a maximal ideal M ∈ V(Iu(G)) let tM be the trace tuple, and let ∆M : Fm → SL(2, q) be a
realization of tM , where q = |Φ′

m/M |. The projective representation induced by ∆M ◦ αu factors over
G; denote this projective representation by δM,u, and define NM := ker(δM,u) E G. Note that NM is
constant on the Σm-orbit of M .

Conversely, let N E G such that G/N is of L2-type. Let δ : G → PSL(2, q) with ker(δ) = N , and
let ∆: Fm → SL(2, q) be a lift of δ. Set t = t∆ and MN := Pt; then MN is a maximal L2-ideal. Note
that MN is only well-defined up to the action of Σm. If u ∈ Um is minimal such that (∆ ◦ α−1

u )||〈g1,g2〉 is
absolutely irreducible, then MN ∈ V(Iu(G)).

For u ∈ Um set
Qu(G) := V(Iu(G))− V (D ∩ A4 ∩S4 ∩ A5).

We now present the main result.

Theorem 8.2. Let G be a finitely presented group on m generators. The maps M 7→ NM and N 7→MN

induce mutually inverse bijections between Σm-orbits of maximal ideals of
⊎

u∈Um
Qu(G) and normal

subgroups N E G such that G/N is of L2-type (where
⊎

denotes the disjoint union).

Proof. This follows by Proposition 8.1 and Theorem 7.5.

9 Subgroup tests

Proposition 6.1 allows us to test whether a realization ∆: Fm → SL(2,K) of a prime ideal P E Φ′
m

maps projectively onto A4, S4, or A5, using the ideals J ′(A4), J
′(S4), and J

′(A5). These ideals are easily
computed if m = 2, since there are only 4 presentations of A4 on two generators, 9 for S4, and 19 for A5;
see [PF09, Lemmas 3.7–3.9]. However, this approach is no longer efficient if m ≥ 3. For example, there
are 65 presentations of A4 on three generators, 420 for S4, and 1688 for A5.

In this section, we describe a more efficient test, using the absolutely irreducible subgroups of A4, S4,
and A5. Set Ai := ∆(gi) and let ai ∈ PSL(2,K) be the projective image, for 1 ≤ i ≤ m. We assume
that 〈A1, A2〉 is absolutely irreducible. Define H := 〈a1, . . . , am〉. If H ∼= A4, then 〈a1, a2〉 ∈ {V4,A4};
if H ∼= S4, then 〈a1, a2〉 ∈ {V4, S3,D8,A4, S4}; and if H ∼= S4, then 〈a1, a2〉 ∈ {V4, S3,D10,A4, S4}. It
is easy to check whether 〈a1, a2〉 ∈ {V4, S3,D8,D10,A4, S4,A5}; for example, 〈a1, a2〉 = V4 if and only
if tr(A1) = tr(A2) = tr(A1A2) = 0. If 〈a1, a2〉 is one of the seven groups, then we can always find
matrices B1 = w1(A1, A2), B2 = w2(A1, A2) such that tr(B1) = tr(B2) = 0 and 〈w1(a1, a2), w2(a1, a2)〉
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is a dihedral group of order 4, 6, or 10. In the latter two cases we may also assume that tr(B1B2) = 1 or
tr(B1B2) is a root of X2 +X − 1, respectively.

For B = (B1, B2) ∈ SL(2, q)2 and X ∈ SL(2, q) let

θB(X) := (tr(X), tr(B1X), tr(B2X), tr(B1B2X)) ∈ F4
q.

If 〈B1, B2〉 is absolutely irreducible, then X is uniquely determined by θB(X), see Proposition 2.4.
We give details of an A4-test. Fix B, and let bi ∈ PSL(2, q) be the projective image of Bi. Assume

〈b1, b2〉 ∼= V4; let 〈b1, b2〉 ≤ Γ ≤ PSL(2, q) with Γ ∼= A4 and let Γ̃ ≤ SL(2, q) be the full preimage of Γ.

Now X ∈ SL(2, q) maps onto an element of Γ if and only if θB(X) ∈ θB(Γ̃) = {θB(Y ) | Y ∈ Γ̃}, thus for
an effective subgroup test it is enough to compute the sets θB(Γ̃). The subgroups of PSL(2, q) isomorphic

to A4 are all conjugate in PGL(2, q), and θ(MB)(Γ̃) = θB(
M−1

Γ̃) for all M ∈ GL(2, q), so it is enough to

compute θB(Γ̃) for a fixed Γ and all possible B. Furthermore, θ(MB)(Γ̃) = θB(Γ̃) for all M ∈ NGL(2,q)(Γ̃),

so it suffices to compute θB(Γ̃) for a fixed Γ and all NGL(2,q)(Γ̃)-conjugacy classes of pairs B ∈ Γ̃ mapping

onto generators for V4. Finally, the subgroups Γ̃ are up to conjugation images of SL(2, 3) ≤ SL(2,Z[i])
modulo a prime ideal of Z[i], so θB(Γ̃) can be computed uniformly for all prime powers q by a single
computation over Z.

Summarizing, we get the following result.

Proposition 9.1. Let G = PSL(2, q) for an odd prime power q, let a1, a2 ∈ G be generators of a Klein
four group V , and let z ∈ G. Let Ai ∈ SL(2, q) be a preimage of Ai, and let Z ∈ SL(2, q) be a preimage
of z.

There is a unique H ≤ G isomorphic to A4 which contains V , and z ∈ H if and only if θB(Z) is one
of the 24 elements

Θ4 := {(±2, 0, 0, 0), (0,±2, 0, 0), (0, 0,±2, 0), (0, 0, 0,±2), (±1,±1,±1,±1)}.

Proposition 9.2. Let A1, . . . , Am ∈ SL(2, q) such that 〈A1, A2〉 is absolutely irreducible. Let t =
(tr(A1), tr(A2), tr(A1A2)), and let ai ∈ PSL(2, q) be the image of Ai. Set B := (A1, A2). Then
〈a1, . . . , am〉 is isomorphic to A4 if and only if one of the following conditions is satisfied.

1. t = (0, 0, 0) and θB(Ai) ∈ Θ4 for all 3 ≤ i ≤ m, where B = (A1, A2), and at least one θB(Ai) =
(±1,±1,±1,±1).

2. t = (0,±1,±1) and θB(Ai) ∈ Θ4 for all 3 ≤ i ≤ m, where B = (A1, A
−1
2 A1A2).

3. t = (±1, 0,±1) and θB(Ai) ∈ Θ4 for all 3 ≤ i ≤ m, where B = (A2, A
−1
1 A2A1).

4. t = (±1,±1, 0) and θB(Ai) ∈ Θ4 for all 3 ≤ i ≤ m, where B = (A1A2, A2A1).

5. t = (±1,±1,±1) with an even number of −1’s, and θB(Ai) ∈ Θ4 for all 3 ≤ i ≤ m, where
B = (A1A

−1
2 , A−1

2 A1).

Proof. The only absolutely irreducible subgroups of A4 are the Klein four group and A4. If t = (0, 0, 0),
then 〈a1, a2〉 is a Klein four group, and the claim follows by Proposition 9.1. If t = (0,±1,±1), then
〈a1, a2〉 = A4, and 〈a1, a−1

2 a1a2〉 generate the subgroup of order 4; again, the claim follows by Proposi-
tion 9.1. The other cases correspond to the other three presentations of A4 and are handled similarly.

It is straight-forward to give similar conditions for S4 and A5, utilizing the subgroups S3 and D10 in
addition to V4.

10 L2-ideals

Definition 10.1. An L2-ideal is a prime ideal P ∈ Spec(Φ′
m)−V(D ∩ A4 ∩S4 ∩ A5). Let P ∩ Z = 〈p〉,

and let d be the Krull dimension of P .

1. If d = 0, that is, P is a maximal ideal, let k := dimFp
(Φ′

m/P ). Then P is of type L2(p
k) if

StabΣm
(P ) is trivial, and of type PGL(2, pk/2) otherwise.
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2. If d > 0 and p 6= 0, then P is of type L2(p
∞d

), or of type L2(p
∞) if d = 1.

3. If d = 1 and p = 0, let k := dimQ(Φ
′
m ⊗Z Q/P ⊗Z Q). Then P is of type L2(∞k).

4. If d > 1 and p = 0, then P is of type L2(∞∞d−1

), or of type L2(∞∞) if d = 2.

For an L2-ideal P let tP be the trace tuple, ∆P a realization of tP , and δP the projective representation
induced by ∆P .

Proposition 10.2. Let P be an L2-ideal.

1. If P is of type L2(p
k), then the image of δP is isomorphic to L2(p

k); if P is of type PGL(2, pk),
then the image of δP is isomorphic to PGL(2, pk).

2. If P is of type L2(∞k), then every maximal L2-ideal containing P is of type L2(p
ℓ) or PGL(2, pℓ/2)

with ℓ ≤ k. Moreover, the set of maximal elements of V(P ) which are not L2-ideals is finite.

3. If P is of type L2(p
∞d

), then there are infinitely many k ∈ N such that V(P ) contains L2-ideals of
type L2(p

k). Moreover, the set of prime ideals in V(P ) which are not L2-ideals form a closed set of
dimension at most d− 1.

4. If P is of type L2(∞∞d−1

), then for all but finitely many primes p there exist infinitely many k ∈ N
such that V(P ) contains L2-ideals of type L2(p

k). Moreover, the set of prime ideals in V(P ) which
are not L2-ideals form a closed set of dimension at most d− 1.

Proof. First note that the set of prime ideals in V(P ) which are not L2-ideals are precisely the elements of
the set V(P )∩V(D∩A4∩S4∩A5) = V(P +D∩A4∩S4∩A5). Since P does not contain D∩A4∩S4∩A5

and P is prime, P $ P + D ∩ A4 ∩ S4 ∩ A5, so the Krull dimension of the latter ideal is smaller than
that of P . This settles all claims about the size of V(P ).

We prove the other claims.

1. This follows by Theorem 7.5.

2. The first point follows since dimFp
(Φ′

m ⊗Z Fp/P ⊗Z Fp) ≤ dimQ(Φ
′
m ⊗Z Q/P ⊗Z Q) for all primes p,

and the maximal ideals of Φ′
m containing P and p are in bijection to the maximal ideals of Φ′

m⊗ZFp

containing P ⊗Z Fp. For the second point, note that a set of dimension zero is finite.

3. Since Φ′
m is finitely generated, there are only finitely many epimorphisms of Φ′

m onto Fpk for every k.
But there are infinitely many primes containing P .

4. In this case, (Φ′
m/P )⊗Z Q has algebraically independent elements, so there are epimorphisms onto

number fields of arbitrarily high degrees. Let α : Φ′
m ⊗Z Q → K be an epimorphism onto a number

field K of degree k such that α factors over Φ′
m ⊗Z Q; set Q := ker(α|Φ′

m
) E Φ′

m. Then Q ⊇ P ; if

Q is an L2-ideal, then it is of type L2(∞k). But the prime ideals which are not L2-ideals form a
set of Krull-dimension d − 1, so this approach yields an L2-ideal for almost all Q. The result now
follows by part (2).

11 The algorithm

Definition 11.1. Let G = 〈g1, . . . , gm | w1(g1, . . . , gm), . . . , wr(g1, . . . , gm)〉 be a finitely presented group.
Then Σm acts on the set {±1}r of sign systems by

σs := (w1(σ1, . . . , σm)s1, . . . , wr(σ1, . . . , σm)sr)

for σ ∈ Σm and s ∈ {±1}r.

Remark 11.2. A prime ideal P ∈ Spec(Φ′
m) contains Is(G) if and only if σP contains I(σs)(G). Let T

be the kernel of the action and S a set of representatives of the orbits; then the Σm-orbits of V(I(G)) are
in bijection to the T -orbits of V(

⋂
s∈S Is(G)).
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This allows us to reduce the computations by a factor up to 2m.

Algorithm 11.3 (L2Quotients).
Input: A finitely presented group G.
Output: For every u ∈ Um, a set of representatives for the Σm-orbits of minimal L2-ideals of Qu(G).

1. Set A := Um and R := ∅.

2. Let u be the smallest element in A. Let T be the kernel and S a set of representatives for the orbits
of the action of Σm on the sign systems of αu(G).

3. Let P be the set of minimal elements in
⋃

s∈S MinAss(Ius (G)), where MinAss(I) denotes the minimal
associated prime ideals of I. Remove from P all elements which contain one of the ideals D, A4,
S4, or A5.

4. Choose a set P ′ of representatives of T -orbits on P.

5. Add (P ′, u) to R, and remove u from A. If A 6= ∅, go to step 2; otherwise return R.

Remark 11.4. 1. The output of the algorithm describes the L2-quotients of G as follows. For every
N E G with G/N of L2-type there exists u ∈ Um and σ ∈ Σm such that MN ⊇ P for some P .
Conversely, if M ⊇ P is a maximal L2-ideal for some P , then NM E G with G/NM of L2-type.

2. If all prime ideals returned by the algorithm are maximal, then G has only finitely many L2-
quotients, and the normal subgroups N E G with G/N of L2-type are in bijection to the maximal
ideals.

3. If the algorithm returns at least one prime ideal of positive Krull dimension, then G has infinitely
many L2-quotients.

The algorithm has been implemented in Magma [BCP97].

Remark 11.5. 1. The ring Φ′
m is very useful for the theoretical description of the algorithm. However,

in practice the localization at ρ slows down computations considerably. Instead, we work with the
preimage of Ius (G) in Z[xJ | ∅ 6= J ⊆ {1, . . . ,m}], and remove all prime components containing ρ.

2. The implementation uses Gröbner bases to handle the ideals Ius (G). However, Gröbner basis com-
putations over the integers can be very slow, especially as m grows. The algorithm in [Jam11]
to compute the minimal associated primes of an ideal replaces Gröbner basis computations over
the integers by several Gröbner basis computations over prime fields, resulting in a much faster
algorithm.

11.1 Adaptation to Coxeter groups

Coxeter groups are a special class of finitely presented groups, where the only relations are (gigj)
Cij = 1

for a symmetric matrix C = (Cij) ∈ (Z ∪ {∞})m×m with 1’s along the diagonal (if Cij = ∞, then we
simply omit the relation). We call C a Coxeter matrix and denote the finitely presented group by GC .
We are often only interested in smooth quotients of Coxeter groups, that is, those for which the images
also have the prescribed orders (unless the prescribed order is ∞). In this case, the L2-quotient algorithm
can be simplified, which also results in a considerable speed-up of the computation. This is based on the
following.

For n ∈ N let ζn ∈ C be a primitive n-th root of unity. Set ηn := ζn + ζ−1
n , and let Ψn ∈ Z[T ] be the

minimal polynomial of ηn. For convenience, we define Ψ∞ := 0.

Remark 11.6. Let A ∈ SL(2,K) where k is a field of characteristic p ≥ 0, and let n ∈ N.

1. If p = 0 or (n, p) = 1, then Ψn(tr(A)) = 0 if and only if |A| = n.

2. If n = p, then Ψn(tr(A)) = 0 if and only if |A| ∈ {1, p}.

3. If n = 2p 6= 4, then Ψn(tr(A)) = 0 if and only if |A| ∈ {2, 2p}.
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For a Coxeter matrix C ∈ (Z ∪ {∞})m×m set

I(C) := 〈x1, . . . , xm〉+ 〈Ψ2Cij
(xij) | 1 ≤ i < j ≤ m with Cij even〉

+ 〈ΨCij
(xij)Ψ2Cij

(xij) | 1 ≤ i < j ≤ m with Cij odd〉 E Φ′
m,

where xij = ρ−1(λi0xj + λi1x1j + λi2x2j + λi12x12j).

Remark 11.7. Let a1, a2 ∈ L2(q) with |a1| = |a2| = 2 and |a1a2| 6= 1. Then 〈a1, a2〉 is absolutely
irreducible if and only if (q, |a1a2|) = 1.

Theorem 11.8. Let C ∈ (Z ∪ {∞})m×m be a Coxeter matrix.

1. Let q = pd, and let ∆: Fm → SL(2, q) be a representation which induces a smooth projective
representation δ : GC → PSL(2, q) such that δ(GC) is of L2-type. Let t := t∆ and P := Pt. If
|δ(g1g2)| 6= p, then P ⊇ I(C).

2. Let M ⊇ I(C) be a maximal L2-ideal and ∆ = ∆M : Fm → SL(2, q) a realization. Then ∆ induces
a projective representation δ : GC → PSL(2, q) such that δ(GC) is of L2-type. If (q, 2Cij) = 1 for
all 1 ≤ i < j ≤ m, then δ is smooth.

Proof. This follows easily by the preceeding remarks.

This can be easily turned into an algorithm. We leave the details to the reader.

11.2 Computing realizations

The L2-quotient algorithm returns a set of L2-ideals, which contain a lot of information, for example,
the isomorphism types and number of L2-images. However, in certain cases one will want to compute an
explicit epimorphism G→ PSL(2, q) encoded by an L2-ideal. We now present an algorithm to accomplish
that. This algorithm works for representations of arbitrary degree, so we present it in this generality.

Proposition 11.9. Let G be a finitely generated group, and let χ : G → K be the character of an
absolutely irreducible representation ∆ of degree n. There is a probabilistic algorithm with input χ and
n which constructs an extension field L/K of degree at most n and a representation ∆′ : G→ GL(n,L),
such that ∆′ is equivalent to ∆. If K is finite, then we can choose L = K.

Proof. We assume first that G = Fm is a free group on g1, . . . , gm. We first find words w1, . . . , wn2 ∈ Fm

such that (∆(w1), . . . ,∆(wn2)) is a basis of Kn×n. Let Wi := {w ∈ Fm | |w| ≤ i}, where |w| denotes
the length of the word w. For X ⊆ Kn×n denote by 〈X〉K the K-span of X. Note that 〈∆(Wi+1)〉K =
〈∆(Wi)〉K for some i implies 〈∆(Wj)〉K = 〈∆(Wi)〉K for all j ≥ i. In particular, the chain

〈∆(W0)〉K ⊆ 〈∆(W1)〉K ⊆ · · ·

stabilizes after at most n2 steps, so ∆(Wn2−1) is a generating set of Kn×n. Let C be a subset ofWn2−1 of
n2 elements; define the matrix Σ := (χ(v, w))v,w, where v and w run through C. Since the trace bilinear
form S : Kn×n ×Kn×n → K : (V,W ) 7→ tr(VW ) is non-degenerate, ∆(C) is a basis of Kn×n if and only
if Σ is non-singular. By running through all n2-element subsets of Wn2−1 we can find the w1, . . . , wn2 .

Now let V := Kn×1 be the KFm-module induced by ∆. We first construct the KFm-module V n =
V ⊕ · · · ⊕V ≡ Kn×n. To determine the action of Fm on Kn×n, it is enough to determine values λijk ∈ K

such that ∆(gi)∆(wj) =
∑

k λ
i
jk∆(wk), where 1 ≤ i ≤ m and 1 ≤ j, k ≤ n2. Since S is non-degenerate,

each λijk is uniquely determined by the n2 equations

χ(giwjwℓ) = S(∆(gi)∆(wj),∆(wℓ)) = S(
∑

k

λijk∆(wk),∆(wℓ)) =
n2∑

k=1

λijkχ(wk · wℓ),

where 1 ≤ ℓ ≤ n2. By solving the linear equations, we can construct the KFm-module V n ≡ Kn×n.
Let Γ: Fm → GL(Kn×n) be the representation on V n ≡ Kn×n. We denote the extensions of ∆ and

Γ to the group algebras again by ∆ and Γ, respectively. Let v = (v1, . . . , vn) ∈ Kn×n, where the vi are
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the columns of v. Then Γ(a)v = (∆(a)v1, . . . ,∆(a)vn) for a ∈ KFm. In particular, Γ(a) and ∆(a) have
the same minimal polynomial, and if c ∈ K[x] is the characteristic polynomial of ∆(a), then cn is the
characteristic polynomial of Γ(a).

We now use an adaptation of [GLGO06] to find a simple factor of the KFm-module Kn×n. If K is
finite, choose random elements a ∈ KFm until Γ(a) has an eigenspace of dimension n. Since the image of
∆ is isomorphic to Kn×n, this terminates with high probability by a result of Holt and Rees (see [HR94,
Section 2.3]). Set L := K, and let λ ∈ L be an eigenvalue of Γ(a) of multiplicity n. If K is infinite,
then choose random a ∈ KFm until the characteristic polynomial of Γ(a) is an n-th power of a separable
polynomial (that is, the characteristic polynomial of ∆(a) is separable). The characteristic polynomial
of a matrix is inseparable if and only if its discriminant is zero, so the set of matrices with inseparable
characteristic polynomial is Zariski closed in Kn×n. Thus the matrices with separable characteristic
polynomial are Zariski dense in Kn×n. Since the image of ∆ is isomorphic to Kn×n, the probability of
finding a suitable a is very high. Let L/K be a field extension such that the characteristic polynomial
has a root λ in L.

Let v ∈ Ln×n be an eigenvector of Γ(a) with eigenvalue λ. Then

Γ(a)v = (∆(a)v1, . . . ,∆(a)vn) = λv = (λv1, . . . , λvn).

We may assume without loss of generality that v1 is non-zero. Since the λ-eigenspace of ∆(a) is one-
dimensional, there exist ξ2, . . . , ξn ∈ L such that vi = ξiv1 for i > 1. Thus v = (v1, ξ2v1, . . . , ξnv1) and
Γ(a)v = (∆(a)v1, ξ2∆(a)v1, . . . , ξn∆(a)v1), so LFmv is isomorphic to LFmv1 ∼= L ⊗K V . Now choose
w1, . . . , wn ∈ Fm such that B := (Γ(w1)v, . . . ,Γ(wn)v) is a basis of LFmv. For every generator gi of
Fm let ∆′(gi) be the representation matrix of gi on LFmv with respect to B. By construction, ∆′ is
equivalent to ∆. This concludes the proof if G = Fm is a free group.

Now assume that G is an arbitrary finitely generated group generated bym elements, and let ν : Fm →
G be an epimorphism. Let ∆̂ := ∆ ◦ ν and χ̂ := χ ◦ ν. We construct an extension field L/K and a

representation ∆̂′ such that ∆̂ ∼ ∆̂′. But then ∆′ : G → GL(n, F ) defined by ∆′(g) := ∆̂′(g̃), where
g̃ ∈ Fm with ν(g̃) = g is arbitrary, is a representation of G, equivalent to ∆.

In our special setting, we can use the trace polynomials to compute all character values. Furthermore,
we always assume that ∆〈g1,g2〉 is absolutely irreducible, so we can choose (w1, . . . , w4) = (1, g1, g2, g1g2)
in the first part of the algorithm.

12 Examples

For the results in this section we use our implementation of the L2-quotient algorithm inMagma [BCP97].

12.1 Groups with finitely many L2-quotients

In [Cox39], Coxeter defines three families of presentations:

(ℓ,m|n, k) = 〈a, b | aℓ, bm, (ab)n, (a−1b)k〉,
(ℓ,m, n; q) = 〈a, b | aℓ, bm, (ab)n, [a, b]q〉,

Gm,n,p = 〈a, b | am, bn, cp, (ab)2, (ac)2, (bc)2, (abc)2〉.

These groups have been intensively studied, see [EJ08] for an overview. After recent work of Havas and
Holt [HH10], only for four of these groups is it not known whether they are finite or infinite, namely
(3, 4, 9; 2), (3, 4, 11; 2), (3, 5, 6; 2), and G3,7,19. We study these groups and their low-index subgroups
[Sim94] using the L2-quotient algorithm.

Proposition 12.1. Let G = (3, 4, 9; 2). Then G has seven conjugacy classes of subgroups of index ≤ 50.
For 1 ≤ i ≤ 50 let Hi ≤ G with [G : Hi] = i, if such a group exists. The only L2-quotient of Hi for
i ∈ {1, 3, 4, 12} is L2(89); the group H6 has a quotient L2(89)× (PGL(2, 5) �

C2 PGL(2, 5)); and H30 and
H36 have a quotient L2(89)× PGL(2, 5).

Let G = (3, 5, 6; 2). Then G has two conjugacy classes of subgroups of index ≤ 50, a group of index 3
and G itself. Both groups have the single L2-quotient L2(61).
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The groups (3, 4, 11; 2) and G3,7,19 do not have non-trivial subgroups of index ≤ 50. Both groups have
a single L2-quotient, namely (3, 4, 11; 2) has L2(769), and G

3,7,19 has L2(113).

The next result concerns a question of Conder [Con92], asking whether a group has non-trivial finite
quotients.

Proposition 12.2. The group

G = 〈A,B,C,D,E, F |A3, B3, C2, D2, E2, F 2, (AC)3, (AD)3, (AE)3, (AF )3,

(BC)3, (BD)3, (BE)3, (BF )3, (ABA−1C)2, (ABA−1D)2, (A−1BAE)2,

(A−1BAF )2, (BAB−1C)2, (B−1ABD)2, (BAB−1E)2, (B−1ABF )2〉
has no quotients isomorphic to L2(q) or PGL(2, q) for any prime power q.

12.2 Groups with L2-ideals of type L2(∞k)

If the algorithm returns an ideal of type L2(∞k), then the group has infinitely many L2-quotients, finitely
many in every characteristic. Using algebraic number theory, the precise quotient types can be determined
as already outlined in [PF09, Example 8.1]. We illustrate the process by relaxing the conditions of the
Coxeter presentation G3,7,19.

Proposition 12.3. Let G = 〈a, b, c | a3, b7, (ab)2, (ac)2, (bc)2, (abc)2〉. Then G has finitely many L2-
quotients in every characteristic.

More precisely, let K/Q be the splitting field of X6−4X4+3X2+1 with Galois group Γ = Gal(K/Q) ∼=
〈(1, 4), (1, 2, 3)(4, 5, 6)〉 = C2 ≀C3. For a prime p 6= 2, 7 denote by ϕp ∈ Γ the Frobenius automorphism
mod p. The L2-quotient in characteristic p is

1. L2(p)
3 if ϕp = ();

2. L2(p)
2 × PGL(2, p) if ϕp ∼ (1, 4);

3. L2(p)× PGL(2, p) �
C2 PGL(2, p) if ϕp ∼ (1, 4)(2, 5);

4. PGL(2, p) �
C2 PGL(2, p) �

C2 PGL(2, p) if ϕp ∼ (1, 4)(2, 5)(3, 6);

5. L2(p
3) if ϕp ∼ (1, 2, 3)(4, 5, 6)±1;

6. PGL(2, p3) if ϕp ∼ (1, 2, 3, 4, 5, 6)±1;

Moreover, G has quotients L2(2
3) and PGL(2, 7).

In this case, we do not need the precise conjugacy type of the Frobenius automorphism, the decompo-
sition of X6−4X4+3x2+1 is enough. For example, taking p = 65537, we see that X6−4X4+3X2+1 ∈
Fp[X] has two irreducible factors of degree 3; this shows that G has a quotient L2(65537

3). Taking
p = 8388617 we see that X6 − 4X4 +3X2 +1 ∈ Fp[X] has two linear factors and two factors of degree 2;
this shows that G has quotient L2(8388617) × PGL(2, 8388617) �

C2 PGL(2, 8388617), that is, there is
precisely one N E G with G/N ∼= L2(8388617), precisely two N E G with G/N ∼= PGL(2, 8388617), and
no other N E G with G/N ∼= L2(8388617

k) or G/N ∼= PGL(2, 8388617k) for some k ∈ N.

Proof. The algorithm returns the single L2-ideal P = 〈x1+1, x32+x
2
2−2x2−1, x23+x

2
2−3, x12, x13, x23, x123〉

of type L2(∞6). The zeroes are

t = (−1,−ξ4 + 3ξ2 − 1, ξ, 0, 0, 0, 0) ∈ Fq,

where ξ is a root of X6 − 4X4 + 3X2 + 1. We assume Fq = Fp[ξ]. Let δ : G→ PSL(2, q) be a realization
of t. There is no characteristic such that −ξ4 + 3ξ2 − 1 = 0 or ξ = 0, so ∆ is never imprimitive, by
Proposition 6.3. Furthermore, ξ is never a root of Ψk for k ∈ {3, 4, 5, 6, 8, 10}, so |δ(c)| > 5 for all q (see
Remark 11.6), hence the image of δ cannot be A4, S4, or A5. Thus im(δ) ∈ {L2(q),PGL(2,

√
q)}. The

precise isomorphism type depends on the action of the Galois group. Note that αt = σt for a Galois
automorphism α and a non-trivial sign system σ if and only if σ = (1, 1,−1) and α(ξ) = −ξ. The result
for p 6= 2, 7 now follows by Corollary 7.6 and the fact that the Galois automorphism in characteristic p is
determined by the Frobenius automorphism. For p ∈ {2, 7} the result can be verified directly.
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12.3 Groups with L2-ideals of type L2(p
∞)

The other kind of L2-ideals of Krull dimension 1 are the ones containing a prime p. They seem to occur
far less frequently in practice than ideals of type L2(∞k). However, when they occur, we can again make
precise statements about the quotients.

Proposition 12.4. Let G = 〈a, b, c | a3 = 1, [a, c] = [c, a−1], aba = bab, abac−1 = caba〉. There exist
epimorphisms G → L2(q) if and only if q = 3k for some k ∈ N. Similarly, there exist epimorphisms
G→ PGL(2, q) if and only if q = 3k for some k ∈ N.

Proof. The algorithm returns the single L2-ideal

P = 〈3, x1 + 1, x2 + 1, x12 − 1, x13 − x3, x23 − x3, x
2
123 − x3x123 + 1〉

of type L2(3
∞), so L2-quotients can only occur in characteristic 3, proving the ‘only if’ parts. It remains

to show that every 3-power occurs. The zeroes of P are the trace tuples of the form

t = (t1, t2, t3, t12, t13, t23, t123) = (2, 2, ξ + ξ−1, 1, ξ + ξ−1, ξ + ξ−1, ξ)

with ξ ∈ F3. Let k = [F3[ξ] : F3], and let δ : G→ PSL(3, 3k) be a realization of t. If k = 2ℓ and ξ3
ℓ

= −ξ,
then the Galois automorphism α = (x 7→ x3

ℓ

) and the sign system σ = (1, 1,−1) induce the same action
on t, so the image of δ is PGL(2, 3ℓ), by Proposition 7.2. Otherwise, the image is L2(3

k).

Variations of the presentation yield similar results. We omit the easy proof.

Proposition 12.5. Let H = 〈a, b, c | [a, c][a−1, c], [b, a]ba−1, a−1c−1abac−1a−1b−1〉.

1. Let G = H/〈a5〉H . Then L2(q) and PGL(2, q) are quotients of G if and only if q = 5k for some
k ∈ N.

2. Let G = H/〈a7, (ab−1)8〉H . Then L2(q) and PGL(2, q) are quotients of G if and only if q = 7k for
some k ∈ N.

3. Let G = H/〈a11, (ab−1)5〉H . Then L2(q) and PGL(2, q) are quotients of G if and only if q = 11k

for some k ∈ N.

4. Let G = H/〈a19, (ab−1)9〉H . Then L2(q) is a quotient of G if and only if q = 19k for some k ∈ N
or q = 37; and PGL(2, q) is a quotient of G if and only if q = 19k for some k ∈ N.

12.4 Coxeter groups

Example 12.6. Let

C :=




1 8 3 2
8 1 5 5
3 5 1 13
2 5 13 1


 ∈ Z4×4.

Then L2(q) is a smooth quotient of GC if and only if q is one of the five primes

79, 6 449, 699 127 441, 8 438 303 591 453 175 937 527 551, 518 103 478 579 218 726 546 844 118 197 999.

Similarly, PGL(2, q) is a smooth quotient of GC if and only if q is one of the six primes

11 311, 28 081, 68 466 319, 24 005 442 449, 13 345 982 337 089, 408 327 690 683 773 678 271.

Definition 12.7. A C-group representation of rank m is a pair C = (H,S) such that S = {a1, . . . , am}
is a generating set of involutions of H which satisfy the intersection property

〈ai | i ∈ I〉 ∩ 〈aj | j ∈ J〉 = 〈ak | k ∈ I ∩ J〉 for all I, J ⊆ {1, . . . ,m}.
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Example 12.8. Let

C :=




1 2 3 3
2 1 3 4
3 3 1 2
3 4 2 1


 ∈ Z4×4.

Then L2(7) is the only smooth quotient of GC of L2-type. A realization is given by

S =

{(
0 1
6 0

)
,

(
3 2
2 4

)
,

(
2 6
5 5

)
,

(
0 5
4 0

)}
,

and it is easy to check that this generating set satisfies the intersection property.

The intersection property can be checked easily if GC only has finitely many L2-quotients. Infinitely
many quotients can be handled as well, but require a little more work, as shown in the following result.

Proposition 12.9. The only finite group of L2-type having a C-group representation of rank 4 such that
(|a1a2|, |a1a3|, |a1a4|, |a2a3|, |a3a4|) = (2, 3, 2, 3, 3) is PGL(2, 5).

Proof. The algorithm returns only one L2-ideal P of type L2(∞2). Let P ⊆ M E Φ′
m be a maximal

ideal containing P , and let t = tM ∈ F15
q be the corresponding full trace tuple (see Theorem 3.6). Let

H = 〈a1, . . . , a4〉 ≤ PSL(2, q) be the image of the induced projective representation. Then

t = (t1, t2, t3, t4, t12, . . . , t1234)

=

(
0, 0, 0, 0, 0,−1, 0,−1,

2

3
,−1, η4,

4

3
η4, η4,−

2

3
η4,

1

3

)
,

where η24 − 2 = 0. The induced trace tuple for H1 = 〈a2, a3, a4〉 is

θ := (t2, t3, t4, t23, t24, t34, t234) =

(
0, 0, 0,−1,

2

3
,−1,−2

3
η4

)
.

We determine the isomorphism type of H1. By Proposition 6.3, H1 is dihedral if and only if t234 = 0, that
is, if and only if 2 | q. The alternating group of degree 4 is not generated by involutions, and using the
methods of Section 9 it is easy to check that H1

∼= S4 if and only if 5 | q; furthermore, H1 6∼= A5 for all q.
So if (q, 30) = 1, then H1 is of L2-type. More precisely, if X2 − 2 has a solution mod p, then η4 ∈ Fp,
so H1 = PSL(2, p). If X2 − 2 has no solution mod p, then η4 is a generator of Fp2/Fp, and the Galois
group acts by the automorphism α which maps η4 to −η4. In particular, αθ = σθ for σ = (−1,−1,−1),
so H1 = PGL(2, p) by Proposition 7.2.

We now determine the isomorphism type of H. If 2 | q, then H is dihedral; in fact, in this case η4 = 0,
so t ∈ F15

2 , that is, H = PSL(2, 2) = S3 = H1. If X2 − 2 has a solution mod p, then H = PSL(2, p);
otherwise, αt = st for s = (−1,−1,−1,−1) with α as above, hence H = PGL(2, p). In any case, unless
5 | q we see H = H1, so the generating set does not satisfy the intersection property. We compute the
realization

A =

((
3 0
0 2

)
,

(
0 4
1 0

)
,

(
4 4η4 + 2

4η4 + 3 1

)
,

(
0 2η4 + 2

2η4 + 3 0

))
∈ SL(2, 52)4

of the unique trace tuple in characteristic 5, and it is easy to check that the induced projective tuple
satisfies the intersection property.

In this way, the L2-quotient algorithm can be used in the classification of all C-group representations
of L2(q) and PGL(2, q) of rank 4 ([CJL14]).
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