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Abstract

This paper presents a generalization of a theorem of Saltman on the existence of generic
extensions with group A ⋊ G over an infinite field K, where A is abelian, using less
restrictive requirements on A and G. The method is constructive, thereby allowing the
explicit construction of generic polynomials for those groups, and it gives new bounds
on the generic dimension.

Generic polynomials for several small groups are constructed.
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1. Introduction

Inverse Galois theory is concerned with the question of whether a given finite group G
is realizable as Galois group over some field K (cf. Malle and Matzat, 1999). Once this
question is settled, one can go a step further and ask for a description of all Galois
extensions of K with group G. This is done using parametric polynomials, i.e. poly-
nomials f(x1, . . . , xk, X) with coefficients in some rational function field K(x1, . . . , xk),
such that the splitting field of f over K(x1, . . . , xk) has Galois group G and that ev-
ery G-extension of K is the splitting field of f(a1, . . . , ak, X) for a specialization of f
with certain a1, . . . , ak ∈ K. Usually, one also requires that these polynomials describe
all Galois extensions with group G, where the fixed field is an arbitrary extension field
of K; in this case, f is called generic. For an excellent reference for generic polynomials
see Jensen et al. (2002).

In Saltman (1982), the concept of generic extensions for a group G is introduced,
and Ledet (2000) showed that over infinite ground fields K, the existence of a generic
G-extension is equivalent to the existence of a generic G-polynomial. Kemper (2001)
then showed that every generic polynomial is in fact descent generic, i.e. every subgroup
of G is the splitting field of some specialization.

In this paper, we will prove the following theorem:
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Theorem 1. Let A be a finite abelian group and K an infinite field. Let G be a finite
group acting on A by automorphisms, such that for every prime p the order of the image
of G in Aut(Ap) is coprime to p, where Ap denotes the p-Sylow subgroup of A. If there
exist generic extensions for G and A over K then there exists a generic extension for
A⋊G over K.

This is a generalization of Saltman (1982, Theorem 3.5), where the same result is
proved under the condition that |A| and |G| are coprime. Saltman proves this as an
easy corollary of his theorem which states that a generic A ≀G-extension exists, provided
that generic extensions for A and G exist. While this conclusion is quite elegant and
in particular shows the existence of generic A ⋊ G-polynomials for certain A and G, it
is not trivial to extract those polynomials from the generic extensions. This extraction
has been carried out in Jensen et al. (2002, Section 5.5) for dihedral groups of prime
power degree (i.e. G = C2), but the number of parameters of the generic polynomials
thus constructed is not optimal. The authors of Jensen et al. (2002) deem it already too
involved to construct generic polynomials for Frobenius groups of prime degree, which is
naturally the next family of semidirect products to study after dihedral groups.

The approach of this paper uses Kummer theory as outlined in Section 2. The
proof of Theorem 1 is constructive, and the extraction of a generic A ⋊ G-polynomial
is straightforward. In particular, the construction of generic polynomials for dihedral
groups or Frobenius groups is now an easy task.

In Section 4 we will construct generic polynomials for most of the groups of order 24.

2. Kummer theory

We prove two easy results in Kummer theory, which will be our motivation for the
construction of the generic A ⋊ G-extensions. In this whole section, let n ∈ N, let K
be a field with characteristic coprime to n, and let L/K be a finite Galois extension
such that L contains a primitive nth root of unity ζn. By the classical Kummer theory,
the abelian extensions E/L with exp(AutE(L))

∣∣n are in bijection to the subgroups U ≤
L∗/L∗n, where the bijection maps each such subgroup U to the field extension L( n

√
U)/L.

(Cf. Lang (2002, VI, §8). Here, exp(A) denotes the exponent of the group A, i.e. the
least common multiple of orders of elements in A, and L( n

√
U) is the field extension of L

where all nth roots of elements a ∈ L∗ with aL∗n ∈ U are adjoined.)
The first result is a criterion to decide whether L( n

√
U)/K is Galois. Note that the

action of AutK(L) on L∗ induces an action on L∗/L∗n.

Proposition 2. Let U ≤ L∗/L∗n. The extension L( n
√
U)/K is a Galois extension if

and only if U is invariant under the action of the Galois group of L/K.

Proof. Set G := AutK(L). Let first U be invariant under G. By definition, L( n
√
U) is the

splitting field of PU = {tn − a | a ∈ L∗ and aL∗n ∈ U} over L, and this set is invariant
under G, i.e. for tn − a ∈ PU and g ∈ G we have tn − g(a) ∈ PU . Consider the set

Q :=

{
∏

b∈Ga

(tn − b) | a ∈ L∗ and aL∗n ∈ U

}
⊆ K[t],
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where Ga is the G-orbit of a. Then L( n
√
U) is the splitting field of Q over L, and it

contains the splitting field E of Q over K, which is therefore Galois over K, as the
polynomials in Q are separable. To prove that L( n

√
U) = E, we have to show that

L ⊆ E; but for a ∈ L∗ the polynomial tn − an is an element of PU and hence a divisor
of an element of Q, therefore a ∈ E.

Now let L( n
√
U)/K be Galois, and consider the set Q as above. Then every polynomial

in Q has a zero in L( n
√
U) and hence splits completely. In particular, the polynomial

tn − g(a) splits for every g ∈ G and every aL∗n, and by the bijection between subgroups
of L∗/L∗n and abelian extensions of L this implies g(a)L∗n ∈ U .

If we know that an extension L( n
√
U)/K is Galois, we can try to determine the

isomorphism type of the Galois group. This can be done if the Galois group is known
to be a semidirect product of N := AutL(L( n

√
U)) by G := AutK(L). To describe the

action of G on N we use the following non-degenerate pairing (cf. Lang, 2002, VI, §8):

〈·, ·〉 : N × U → 〈ζn〉 : (h, xL∗n) 7→ h(α)

α
for any root α of tn − x.

Proposition 3. Let U ≤ L∗/L∗n be a finite subgroup invariant under G := AutK(L).
Assume that N := AutL(L( n

√
U)) has a complement in AutK(L( n

√
U)) (which is then

isomorphic to G). Let g ∈ G and h ∈ N ; then ghg−1 is determined by

〈ghg−1, xL∗n〉 = g(〈h, g−1(x)L∗n〉) for all xL∗n ∈ U.

Proof. Let xL∗n ∈ U and let α ∈ L( n
√
U) be a root of tn − x. Then

〈ghg−1, xL∗n〉 =
ghg−1(α)

α
= g

(
hg−1(α)

g−1(α)

)
= g(〈h, g−1(x)L∗n〉).

Since the pairing is non-degenerate, this determines ghg−1 uniquely.

Corollary 4. Assume that K contains a primitive nth root of unity. Let U ≤ L∗/L∗n be
a subgroup isomorphic to (Z/nZ)k for some k ∈ N, and assume that U is invariant under
the action of G := AutK(L). Furthermore, assume that the Galois group of L( n

√
U)/K

is a semidirect product of N := AutL(L( n
√
U)) by G. Then N is isomorphic to U∗ (the

dual of U) as (Z/nZ)G-module.

The whole construction of the generic extension for A⋊G is motivated by this corol-
lary.

3. Generic extension

3.1. Definitions and notations

Let G be a finite group and K a field.

Definition 5 (Saltman (1982, Definition 1.1)). A Galois extension S/R of commutative
K-algebras with group G is called a generic G-extension over K, if

1. R is of the form K[t, 1/t] for some number d of indeterminates t = (t1, . . . , td) and
an element 0 6= t ∈ K[t], and
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2. whenever K is an extension field of K and L/K is a Galois algebra with group G,
there is a K-algebra homomorphism ϕ : R → K, such that S ⊗ϕ K/K and L/K are
isomorphic as Galois extensions. The map ϕ is called a specialization.

Since a lot of arguments involve extending the scalars of K-algebras to K(ζn), we
adopt the following notation.

Notation. Let n ∈ N and K a field of characteristic coprime to n. Whenever X is a
K-algebra, we set Xn := K(ζn) ⊗K X , where ζn is a primitive nth root of unity.

3.2. Construction of generic extensions

We have the following analogue to Corollary 4 for Galois algebras.

Lemma 6. Let n ∈ N, and let K be a field of characteristic coprime to n. Let A =
(Z/nZ)k for some k ∈ N and let G be a finite group acting faithfully on A. Define
C := AutK(Kn). Let T/K be a Galois algebra with group A⋊G and S := TA.

Then there exist α1, . . . , αk ∈ T ∗
n with αni ∈ S∗

n such that Tn = Sn[α1, . . . , αk]. The
group 〈α1S

∗
n, . . . , αkS

∗
n〉 ≤ T ∗

n/S
∗
n is isomorphic to A∗ as (Z/nZ)G-modules, and for any

αS∗
n ∈ 〈α1S

∗
n, . . . , αkS

∗
n〉 of order n, the group 〈αS∗

n〉 is isomorphic to 〈ζn〉 as (Z/nZ)C-
module.

Proof. Let Ai be the ith component of (Z/nZ)k, and let Ai be the canonical complement

(i = 1, . . . , k). Then TAi/S and hence TAi
n /Sn is Galois with group Ai ∼= Cn. Since Sn is

a direct sum of isomorphic fields, by Hilbert 90 for Galois algebras there exists αi ∈ TAi
n

with TAi
n = Sn[αi] and αni ∈ S∗

n. Furthermore, Ai acts on Sn[αi] by multiplying αi with

roots of unity. Since Tn is generated by the subalgebras TAi
n , we have Tn = Sn[α1, . . . , αk].

For the last statement consider the non-degenerate pairing

〈·, ·〉 : A× 〈α1S
∗
n, . . . , αkS

∗
n〉 → 〈ζn〉 : (σ, αS∗

n) 7→ σ(α)

α
.

We have

〈γσ, αS∗
n〉 =

γσγ−1(α)

α
= γ

(
σγ−1(α)

γ−1(α)

)
= γ(〈σ, γ−1(α)S∗

n〉),

for any γ ∈ C×G. Since 〈ζn〉 ⊆ Kn = SGn we see 〈gσ, αS∗
n〉 = 〈σ, g−1(α)S∗

n〉 for all g ∈ G,
which proves that 〈α1S

∗
n, . . . , αkS

∗
n〉 is isomorphic to A∗ as (Z/nZ)G-modules. Now let

κ ∈ C and e ∈ N with κ(ζn) = ζen. Then we have 〈σ, κ(α)S∗
n〉 = 〈κσ, κ(α)S∗

n〉 = 〈σ, αS∗
n〉e,

and since the pairing is bi-multiplicative and non-degenerate, we have κ(α)S∗
n = αeS∗

n,
which concludes the proof.

Our next goal is to describe the action of G on Tn more precisely: we know the images
of the αi only up to elements in S∗

n; we will therefore choose new generators β1, . . . , βk
of Tn where we can describe the action explicitly. To do this, we make the following
assumption: we let n = q for a prime power q and assume that A = (Z/qZ)k is cyclic
as (Z/qZ)G-module. For any submodule M ≤ (Z/qZ)G isomorphic to A∗ we then have
MA∗ = A∗. More precisely, for any x ∈ A∗ with (Z/qZ)x = A∗ we have Mx = A∗. Fix
such an M and let (m1, . . . ,mk) be a basis of M such that m1 is a cyclic generator of M ;
then m1 · x is again a cyclic generator of A∗.
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The passage from T ∗
q to T ∗

q /S
∗
q corresponds to the passage from Z to Z/qZ. The idea

is therefore to choose preimages of Z/qZ in Z for M and transfer the resulting relations
onto T ∗

q : Let Λ: G → (Z/qZ)k×k : g 7→ Λg be the representation induced by M with
respect to the basis (m1, . . . ,mk). Furthermore, let Γgi ∈ Z/qZ with mi =

∑
g∈G Γgi g for

all g ∈ G and i ∈ {1, . . . , k}. Choose λg ∈ Zk×k and γgi ∈ Z such that Λg = λg mod q
and Γgi = γgi mod q for all g ∈ G and i ∈ {1, . . . , k}.

Then we have on the one hand

gmi =
∑

h∈G

γhi gh =
∑

h∈G

γg
−1h
i h mod q,

on the other hand

gmi =

k∑

j=1

λgjimj =

k∑

j=1

λgji
∑

h∈G

γhj h mod q,

thus γg
−1h
i =

∑k
j=1 γ

h
j λ

g
ji + t(i, g, h)q for some t(i, g, h) ∈ Z.

Finally, let (σ1, . . . , σk) ∈ Ak be the dual basis of (m1, . . . ,mk) and C := AutK(Kq).

Lemma 7. With the assumptions and notations above, let T/K be a Galois algebra with
group A⋊G and set S := TA. Choose a generator αS∗

q of 〈α1S
∗
q , . . . , αkS

∗
q 〉 as (Z/qZ)G-

module and set a := αq ∈ S∗
q . For κ ∈ C with κ(ζq) = ζeq let yκ ∈ S∗

q with κ(α) = αeyκ.

Then there exist roots βi ∈ Tq of tq−∏h∈G h(a
γh

i ) such that Tq = Sq[β1, . . . , βk], and C,
G, and A act on Tq by

κ(βi) = βei
∏

h∈G

h((yκ)γ
h
i ), g(βi) =

k∏

j=1

β
λg

ji

j zgi , σj(βi) = ζδij
q βi,

where κ ∈ C, g ∈ G, zgi =
∏
h∈G h(a

t(i,g,h)), and δij is the Kronecker delta.

Proof. Let β′
i :=

∏
h∈G h(α

γh
i ) for i = 1, . . . , k; then β′

iS
∗
q = mi(αS

∗
q ), i.e.

〈α1S
∗
q , . . . , αkS

∗
q 〉 = Mα(S∗

q ) = 〈β′
1S

∗
q , . . . , β

′
kS

∗
q 〉

and hence Tq = Sq[β
′
1, . . . , β

′
k].

Since β′
i is a root of tq −∏h∈G h(a

γh
i ), its image under g must be a root of

tq −
∏

h∈G

h(aγ
g−1h
i ) = tq −

k∏

j=1

(
∏

h∈G

h(aγ
h
j )

)λg
ji

·
(
∏

h∈G

h(at(i,g,h))

)q
.

These roots are ζℓq
∏k
j=1(β

′
j)
λg

jizgi for ℓ = 0, . . . , q − 1, so for every g ∈ G and every

i ∈ {1, . . . , k} there exists ℓgi such that g(β′
i) = ζ

ℓg
i
q
∏k
j=1(β

′
j)
λg

jizgi .

Consider the (Z/qZ)G-module (Z/qZ)k⊕Z/qZ with basis (ξ1, . . . , ξk+1), where G acts

by gξi =
∑k

j=1 λ
g
jiξj + ℓgi ξk+1 for i = 1, . . . , k, and gξk+1 = ξk+1 (i.e. ξi corresponds to

β′
i for i = 1, . . . , k, and ξk+1 corresponds to ζq). Then

(
(Z/qZ)k ⊕ Z/qZ

)
/〈ξk+1〉 ∼= A∗,

i.e. there exist µ1, . . . , µk ∈ Z such that 〈ξ1 + µ1ξk+1, . . . , ξk + µkξk+1〉 is a submodule
isomorphic to A∗. Setting βi := ζµi

q β
′
i yields the desired result for the action of G. For

the action of C just note that κ(β′
i) =

∏
h∈G h(κ(α)γ

h
i ) = (β′

i)
e
∏
h∈G h((y

κ)γ
h
i ).
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The last lemma gives us the formulae to construct Galois extensions with group A⋊G,
given a G-extension and a Cq-extension.

Lemma 8. Let R ⊆ S ⊆ U be K-algebras, such that S/R is a G-extension and U/S is
a Cq-extension. Assume that Uq = Sq[θ] with θ ∈ Uq such that v := θq ∈ Sq; for κ ∈ C
with κ(ζq) = ζeq let yκ ∈ Sq with κ(θ) = θeyκ.

Set T q := Sq[θ1, . . . , θk], where θqi =
∏
h∈G h(v

γh
i ); define the action of C, G, and A

on T q by

κ(θi) = θei
∏

h∈G

h((yκ)γ
h
i ), g(θi) =

k∏

j=1

θ
λg

ji

j zgi , σj(θi) = ζδijθi,

where κ ∈ C, g ∈ G, zgi =
∏
h∈G h(v

t(i,g,h)), and δij is the Kronecker delta.
Then T q/R is a C × (A⋊G)-extension.

Proof. Let s :=
∑

ℓ∈(Z≥0)k sℓθ
ℓ be an arbitrary element in T q, where sℓ ∈ Sq and

θℓ :=
∏k
i=1 θ

ℓi
i , for all ℓ ∈ (Z≥0)

k. Define g(s) :=
∑

ℓ∈(Z≥0)k g(sℓ)g(θ)
ℓ, where g(θ) :=

∏k
i=1 g(θi). By the definition of zgi we have g(θi)

q = g(θqi ), so g(s) is well defined. We
show that this defines an action of G on T q: let g, h ∈ G and i ∈ {1, . . . , k}. Since Λ

is a representation, we have
∑k

j=1 λ
g
ℓjλ

h
ji = λghℓi + s(i, ℓ, g, h)q for some s(i, ℓ, g, h) ∈ Z.

We have to prove g(h(θi)) = (gh)(θi). Set bi := θqi =
∏
h∈G h(v

γh
i ). On the one hand we

have

g(h(θi)) =

k∏

j=1

[
k∏

ℓ=1

θ
λg

ℓj
λh

ji

ℓ (zgj )
λh

ji

]
g(zhi ) =

k∏

ℓ=1

θ
λgh

ℓi

ℓ

k∏

ℓ=1

b
s(i,ℓ,g,h)
ℓ

k∏

j=1

(zgj )
λh

jig(zhi ),

on the other hand we have (gh)(θj) =
∏k
ℓ=1 θ

λgh

ℓi

ℓ zghi , hence we have to show

k∏

j=1

(b
s(i,j,g,h)
j (zgj )

λh
ji )g(zhi ) = zghi .

This amounts to show

k∑

j=1

(γαj s(i, j, g, h) + t(j, g, α)λhji) + t(i, h, g−1α) = t(i, gh, α) (∗)

for all α ∈ G. But

k∑

j=1

t(j, g, α)λhji =

∑k
j=1 γ

g−1α
j λhji −

∑k
ℓ=1 γ

α
ℓ λ

gh
ℓi

q
−

k∑

j=1

γαj s(i, j, g, h)

and

t(i, h, g−1α) =
γ

(gh)−1α
i −∑k

j=1 γ
g−1α
j λhji

q
= t(i, gh, α) +

∑k
j=1(γ

α
j λ

gh
ji − γg

−1α
j λhji)

q
,
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which proves (∗). We show that the actions of A and G on T q result in an A⋊G-extension

T q/Rq. For i, j ∈ {1, . . . , k} and g ∈ G choose µgji ∈ Z such that g−1σig =
∑k
j=1 µ

g
jiσj ;

since A acts trivially on Sq, it is enough to prove that σig and g
∑k
j=1 µ

g
jiσj act in the

same way on θℓ for ℓ ∈ {1, . . . , k}. We have on the one hand

σig(θℓ) = ζλ
g

iℓ

k∏

j=1

θ
λg

jℓ

j zgℓ ,

on the other hand

g(




k∑

j=1

µgjiσj


 (θℓ)) = g(ζµ

g

ℓiθℓ) = ζµ
g

ℓi

k∏

j=1

θ
λg

jℓ

j zgℓ .

Since (σ1, . . . , σk) is the dual basis of (m1, . . . ,mk), we have λgℓi ≡ µgiℓ mod q.
Finally, it is easy to verify that our definition gives an action of C on T q and that

the actions of C and A⋊G commute, which finishes the proof of the lemma.

Remark. Whenever there exists a generic Cq-extension over K, we can choose one of
the form U/S such that Uq = Sq[θ] for some θ ∈ Uq with θq ∈ Sq, as in the last lemma.
The proof is almost identical to the proof that a generic extension can be chosen to have
a normal basis, using the equivalence of the existence of generic G-extensions over K
and the retract-rationality of the extension K(t1, . . . , tn)/K(t1, . . . , tn)

G, where G acts
faithfully and transitively on {t1, . . . , tn} (cf. (Jensen et al., 2002, Remark, p. 100) and
(Saltman, 1982, Corollary 5.4)).

Note that the generic Cq-extensions constructed by Saltman (1982) already are of
this form.

Now let A be any finite abelian group. For every prime p let Ap be the p-Sylow
subgroup of A. Then A ∼=

⊕
p primeAp and Aut(A) ∼=

⊕
p prime Aut(Ap), so if a group

G is acting on A, this action induces actions on the groups Ap. We can get a finer
decomposition of A: For each prime p, the group Ap is a ZpG-module, where ZpG is
the group ring of G over the ring of p-adic integers Zp. We assume p ∤ G; then ZpG is
a direct sum of full matrix rings of unramified extensions of Zp (cf. (Jacobinski, 1981,
Satz 11.1), (Holt and Plesken, 1989, Proposition 2.2.28)), i.e.

ZpG ∼=
ℓ⊕

i=1

R
n(i)×n(i)
i ,

where n(i) ∈ N, and Ri is an unramified extension of Zp, for i = 1, . . . , ℓ. By multiply-
ing Ap with the corresponding central idempotents, it suffices to analyze finite Rn×n-
modules, where R is an unramified extension of Zp and n ∈ N. Using Morita equivalence
and the Fundamental Theorem of finitely generated modules over PIDs we conclude

Ap ∼=
m⊕

i=1

(Z/peiZ)ki ,

for some m,ni, ki ∈ N, where each (Z/peiZ)ki is an irreducible ZpG-module.
We are now able to prove Theorem 1.
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Proof of Theorem 1. Let S/R be a generic G-extension over K. We can assume that
S/R has a normal basis (cf. Jensen et al., 2002, p. 105), and thus SN/R has a normal
basis for any normal subgroup N EG.

We assume first that A is of the form A ∼= (Z/qZ)k for some prime power q and some
k ∈ N, such that A is cyclic as (Z/qZ)G-module. Let N EG be the kernel of the action
of G on A. Let V/U be a generic Cq-extension over K; by the previous remark we can
assume that Vq = Uq[θ] for some θ ∈ Vq with θq ∈ Uq.

By the definition of generic extensions, R is of the form R = K[r1, . . . , rm, 1/r] and
U is of the form U = K[u1, . . . , un, 1/u]. Let u = f(u1, . . . , un) for some polynomial f .
Let (s1, . . . , sℓ) be a free basis of SN/R; choose n · ℓ indeterminates y = (y11, . . . , ynℓ)

over S and set ρ′ := f(
∑ℓ

j=1 y1jsj , . . .
∑ℓ
j=1 ynjsj) ∈ SN [y]. Then ρ :=

∏
g∈G/N g(ρ

′) ∈
R[y] = K[r,y, 1/r], where r = (r1, . . . , rm). Set R′ := R[y, 1/ρ] and S′ := S[y, 1/ρ],

and define a homomorphism ϕ : U → (S ′)N : ui 7→
∑ℓ
j=1 yijsj ; we denote the extension

of ϕ to Uq → (S ′)Nq again by ϕ. Set V ′ := V ⊗ϕ(S′)N ; then V ′/S′ is a Cq-extension, and

V ′
q = (S ′)Nq [θ̃], where θ̃q = ϕ(θq). Set v := ϕ(θq), and define θ1, . . . , θk as in Lemma 8

to get a C × (A ⋊ G/N)-extension (S ′)Nq [θ1, . . . , θk]/R′. Then T q := S′
q[θ1, . . . , θk]/R′

is a C × (A ⋊ G)-extension, where N acts trivially on the θi. Set T := S′
q[θ1, . . . , θk]

C .

We claim that T /R′ is a generic A⋊G-extension.
Let T/K be an A⋊G-extension (by Jensen et al. (2002, Proposition 1.1.5) it suffices to

consider A⋊G-extensions ofK instead of extension fields L ⊇ K); set S := TA. There ex-
ists a specialization ψ : R → K such that S ⊗ψK/R⊗ψK ∼= S/K, and ψ(s1), . . . , ψ(sℓ)
is a K-basis of SN .

Choose α ∈ (TNq )∗ as in Lemma 7 and let L := SNq [α]C . Then L/SN is a Cq-extension,

so there exists a specialization χ : U → SN such that V ⊗χSN/SN ∼= L/SN . There exist

zij ∈ K with χ(ui) =
∑ℓ
j=1 zijψ(sj), and extending the map ψ to R′ by yij 7→ zij we

get an isomorphism T q ⊗ψK/K ∼= Tq/K which maps θi to βi, i.e. an isomorphism of
C × (A ⋊G)-extensions. Restricting to the fixed algebras, we get T ⊗ψK/K ∼= T/K as
A⋊G-extensions.

Now let A be arbitrary; we have A ∼=
⊕

p primeAp as G-module. Let p be a prime
and N EG the kernel of the action of G on Ap. Then there exist n1, . . . , nm ∈ N
and k1, . . . , km ∈ N such that Ap ∼=

⊕m
i=1(Z/p

niZ)ki as G/N -module and such that
(Z/pniZ)ki is cyclic as (Z/pniZ)G/N -module. The process above can be carried out for
each of those cyclic submodules to give a generic A⋊G-extension.

3.3. Generic polynomials and generic dimension

The generic dimension of a group G over a field K, denoted by gdK G, is the minimal
number of parameters in a generic G-polynomial over K, or ∞ if no generic polynomial
exists (cf. Jensen et al., 2002, Section 8.5). The following bounds can be derived from
Saltman’s results about generic extensions for semidirect products A⋊G: If G is a finite
group acting on the finite abelian group A by automorphisms with kernel N EG, and
if K is an infinite field and |G| and |A| are coprime, then gdK(A ⋊ G) ≤ gdK(G) +
[G : N ] gdK(A) (cf. Jensen et al., 2002, Proposition 8.5.6). Using the construction in
Theorem 1, these bounds can be considerably improved:

Let A be a finite abelian group and G a group acting on A, such that for every
prime p the image of G in Aut(Ap) has order coprime to p. Let pℓp be the exponent
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of Ap and NpEG the kernel of the action on Ap; then there exist k1, . . . , kℓp such that

Ap ∼=
⊕ℓp

i=1(Z/p
iZ)ki as Zp(G/Np)-modules. For every i, let γ(p, i) denote the minimal

number of generators of (Z/piZ)ki as (Z/piZ)(G/Np)-modules.

Corollary 9. Let A be a finite abelian group and G a group acting on A, such that for
every prime p the image of G in Aut(Ap) has order coprime to p. For every prime p,
define Np, ℓp, and γ(p, i) as above. Then

gdK(A⋊G) ≤ gdK(G) +
∑

p prime

[G : Np]

ℓp∑

i=1

γ(p, i) gdK(Cpi).

Saltman gives an explicit construction of generic Cq-extensions for prime powers q
with 8 ∤ q (cf. Saltman, 1982, Proposition 2.6), and Jensen, Ledet, and Yui use these
extensions to construct generic polynomials in ϕ(q)/2 parameters for odd q (cf. Jensen
et al., 2002, Proposition 5.3.4). This allows us to construct generic A ⋊ G-polynomials
over Q:

Corollary 10. Let A be a finite abelian group with 8 ∤ exp(A). Let G be a group acting
on A, such that for every prime p the image of G in Aut(Ap) has order coprime to p. For
every prime p, define Np, ℓp, and γ(p, i) as above. Let R = K[r1, . . . , rm, 1/r] and let
S/R be a generic G-extension with a normal basis. Then a generic (A ⋊G)-polynomial
over Q with

m+ [G : N2]

ℓ2∑

i=1

γ(2, i)ϕ(2i) +
∑

p prime
p≥3

[G : Np]

ℓp∑

i=1

γ(p, i)
ϕ(pi)

2

parameters can be effectively constructed.

Proof. It suffices to consider the case where A is of the form A ∼= (Z/qZ)k for some
prime power q and some k ∈ N, such that A is cyclic as (Z/qZ)G-module. In the general
case we can take a product of the generic polynomials. Let N EG be the kernel of the
action of G on A. Let T/K be a Galois algebra with group A ⋊ G. Choose α and βi
in TNq as in Lemma 7. Then (SNq [β1])

C/SN is Galois with group Cq. Following the
argument in Jensen et al. (2002, p. 103) we see that there exists j ∈ {1, . . . , q − 1} with
(j, q) = 1 and a specialization ϕ : T → K such that θ1 maps to βj1 and TrT q/T (θ1) maps

to a primitive element of (SNq [β1])
C/SN . Using the pairing in Lemma 6, we see that the

Galois closure of (SNq [β1])
C/K is T/K, since β1S

∗
q = m1αS

∗
q , and we chose m1 as cyclic

generator. Thus the product of the minimal polynomial of TrT q/T (θ1) and a (suitable)
generic polynomial for G is a generic polynomial for A⋊G.

Remark. The generic polynomials can be simplified in special cases.

1. Assume that G acts faithfully on the cyclic (Z/qZ)G-module A ∼= (Z/qZ)k, where
q is a prime power and k ∈ N. By replacing α by αj and β1 by βj1 in the situation
above we can assume that j = 1, i.e. Tr(β1) is a primitive element of (Sq[β1])

C/S,
where S := TA. We claim that the Galois closure of K[Tr(β1)]/K is T , i.e. the
minimal polynomial of TrT q/T (θ1) is generic (i.e. there is no need for the additional
generic polynomial for G in the proof above):
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Let A ≤ A be the orthogonal complement of 〈β1S
∗
q 〉 under the pairing in Lemma 6,

then Sq[β1] = TAq and hence S[Tr(β1)] = TA. Thus K[Tr(β1)] = TB for some

A ≤ B ≤ A⋊G, and since q
∣∣[K[Tr(β1)] : K] we have B∩A = A. The Galois closure

of TB is TB
′

, where B′ is the core of B in A⋊G, i.e. B′ =
⋂
x∈A⋊GB

x; we show
that B′ is trivial. Since β1S

∗
q = m1αS

∗
q and we chose m1 as cyclic generator, we see

that the normal closure of 〈β1S
∗
q 〉 in A∗ ⋊G is A∗. Since the pairing respects the

G-action, we get that the normal core of A is trivial, hence B′ intersects A trivially.
The group AB′ splits over A, so B′ is a subgroup of G. But G acts faithfully on
A, i.e. B′ = 1.

2. Now assume A = Z/qZ for an odd prime power q = pn and G acts faithfully on A.
In (1) above we saw that we can get an irreducible generic polynomial of degree
|G| · q; now, we make some further reductions which will give a generic polynomial
of degree q.
Since G is isomorphic to a subgroup of Aut(Cq), it is cyclic of order ℓ, generated by

an element g ∈ G. We can choose the γhi such that θq1 = vk
ℓ−1

g(vk
ℓ−2

) · · · gℓ−1(v) =:
Ψ(v) in Lemma 8 for some k ∈ N. Furthermore, we can choose V/U as the generic
Cq-extension constructed by Saltman: Let d = ϕ(q), let e ∈ N be of order pd
modulo pq and choose a generator κ of AutQ(Q(ζq)). Set x := u1 + u2(ζq +

1/ζq) + · · · + ud/2(ζq + 1/ζq)
d/2 + (ζq − 1/ζq) and u :=

∏d−1
i=0 κ(x). Now let U :=

Q[u1, . . . , ud/2, 1/u] and Vq := Uq[θ] with θq = xe
d−1

κ(xe
d−2

) · · ·κd−1(x) =: Φ(x).

Then V〈κ〉
q /U is a generic Cq-extension (cf. Jensen et al., 2002, Section 5.3). Next,

let S /R be a generic G-extension with free basis (s1, . . . , sℓ), and replace each ui
by
∑

j yijsj , so from x we get X := (
∑

j y1jsj)+ · · ·+(
∑

j yd/2,jsj)(ζq+1/ζq)
d/2 +

(ζq − 1/ζq). Set ρ :=
∏ℓ−1
i=0

∏d−1
j=0 g

i(κj(X)), R′ := R[y, 1/ρ], and S ′ := S[y, 1/ρ],

and let T q := S′
q[θ1], where θq1 = Ψ(Φ(X)). Then T 〈κ〉

q /R′ is a generic Cq ⋊G-

extension. Let s ∈ S′ be a generator for a normal basis of S′/R′. Then the minimal
polynomial of TrT q/T G(θ1s) is generic:
The argument is analogous to the proof of Jensen et al. (2002, Proposition 5.3.4):
The extension T q/R′ is generated by {ζiθj1gm(s) | 0 ≤ i < ϕ(q), 0 ≤ j < q, 0 ≤
m < ℓ}, so T /R′ is generated by their traces. We only have to consider the cases
i = 0 and (q, j) = 1, since the other traces are either conjugate to one of those
or lie in a subextension. If T/K is a Cq ⋊G-extension and S := TG, then Tq =

Sq[β1] with βq1 = Ψ(Φ(b)) for some b ∈ S, and some element TrTq/TG(θj1g
m(s)) =

TrTq/TG(g−m(θj1)s) specializes to a primitive element. We have g−m(Ψ(Φ(b))j) =

Ψ(Φ(g−m(bj))), so by sending X to g−m(bj) we get the desired result.

Remark. The theory developed here gives an interpretation for the element Mτ (b) in
Saltman (1982, Theorem 2.3) or Φ(b) in Jensen et al. (2002, Section 5.3), which is used
to characterize cyclic extensions of prime power degree q: it is an image of an element in
(Z/qZ)C which generates a submodule isomorphic to the (Z/qZ)C-module 〈ζq〉 (where
C := AutK(K(ζq)), and K is the base field).
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4. Examples

Example 11 (S3 = D6 = C3 ⋊ C2). A generic C2-extension is given by R′ = K[r, 1/r]
and S ′ := R′[α] with α2 = r, where C2 acts by changing the sign, and s := 1−α generates
a free basis. We haveX := y1+y2α+ζ−ζ2 and θ31 = Ψ(Φ(X)) = X4κ(X2)g(X2)κ(g(X)).
We replace θ1 by θ1/X to remove the fourth power, and get the trace t of sθ as

t = θs+
θ2g(s)

g(x1)κ(x1)
+

θ2s

g(x1)κ(x1)
+ θg(s).

The generator σ of C3 simply acts on the summands by multiplication with roots of
unity, and we can calculate the minimal polynomial of t as

µ := X3 − 12(A2 + 12y2
1)X + 16(A− 6)(A2 + 12y2

1),

where A := ry2
2 − y2

1 + 3.

The easy example of the generic S3-polynomial allows us to construct generic poly-
nomials for groups of order 24.

Example 12 (Groups of order 24). There are 15 groups of order 24, and it is known for
all of them whether generic polynomials over Q exist (cf. Jensen et al., 2002, Exercise 7.3).
We are now able to actually compute generic polynomials for those groups.

For C3 ×C8
∼= C24 and C3 ⋊ C8 there are no generic polynomials over Q. For SL(2, 3),

Rikuna (2004) proved that the invariant field of a four-dimensional representation is
purely transcendental, so a generic polynomial can be constructed, e.g using the methods
of Kemper and Mattig (2000).

If the group is a direct product (i.e. D8 ×C3, Q8 ×C3, C4 ×C6, V4 ×C6, S3 ×C4,
S3 ×V4

∼= D12 ×C2, (C3 ⋊ C4) × C2, and C2 ≀C3
∼= A4 ×C2), a generic polynomial

can be constructed by taking a product of generic polynomials for each factor. Generic
polynomials for S4 are well known, so we are left to deal with the groups C3 ⋊ Q8,
G1 := C3 ⋊ D8, where the kernel of the action is C4, and G2 := C3 ⋊ D8, where the
kernel of the action is V4.

We start with C3 ⋊ Q8. Let

F (r1, r2, r3, X) :=(X2 − 1)4 − 2(1 − r1r2r3)
2A+B + C

ABC
(X2 − 1)2

− 8
(1 − r1r2r3)

3

ABC
(X2 − 1)

+ (1 − r1r2r3)
4A

2 +B2 + C2 − 2AB − 2AC − 2BC

A2B2C2
,

where A := 1 + r21 + r21r
2
2 , B := 1 + r22 + r22r

2
3 , and C := 1 + r23 + r21r

2
3 , and set

µ1 := r44F (r1, r2, r3, r
−1/2
4 X). Then µ1 is a generic Q8-polynomial (Jensen et al., 2002,

Theorem 6.1.12), and a quadratic subextension is parametrized by the polynomial X2 −
(1 + r21 + r21r

2
2)(1 + r22 + r22r

2
3). By Example 11,

µ2 := X3 − 12(A2 + 12y2
1)X + 16(A− 6)(A2 + 12y2

1)
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with A := (1 + r21 + r21r
2
2)(1 + r22 + r22r

2
3)y

2
2 − y2

1 + 3 is a ‘generic polynomial’ for the
S3-subextension. Thus µ1µ2 is a generic C3 ⋊ Q8-polynomial.

Now we consider the semidirect products C3 ⋊ D8. Let

µ1 := X4 − 2r1r2X
2 + r21r2(r2 − 1) ∈ Q(r1, r2, X).

Then µ1 is a generic D8-polynomial; furthermore, if F/Q(r1, r2) is the splitting field,
then F/Q(

√
r2) is a V4-extension, and F/Q(

√
r2 − 1) is a C4-extension (cf. Jensen et al.,

2002, Theorem 2.2.7 and Corollary 2.2.8). Set

µ2 := X3 − 12(A2 + 12y2
1)X + 16(A− 6)(A2 + 12y2

1),

µ3 := X3 − 12(B2 + 12y2
1)X + 16(B − 6)(B2 + 12y2

1),

where A := r2y
2
2 − y2

1 + 3 and B := (r2 − 1)y2
2 − y2

1 + 3, then µ1µ2 is generic for G2-
extensions, and µ1µ3 is generic for G1-extensions.

As mentioned in the introduction, it is now quite simple to describe an algorithm
to compute generic polynomials over Q for Frobenius groups Cp ⋊ Cℓ, where Cℓ acts
faithfully on Cp and 8 ∤ ℓ. However, the actual computation of the polynomials is
practically infeasible, as there is no computer algebra system known to the author with
an efficient method for computations in the rational function field Q(z1, . . . , zk) and
algebraic extensions thereof.

Instead, we will use the theory developed here to construct single polynomials having
a prescribed semidirect product as Galois group.

Example 13 (Polynomials with prescribed Galois groups). 1. First, we set G := C4

and construct polynomials with Galois group Fk5 ⋊ C4 for several k ∈ N. Let
L/Q := Q(ζ5)/Q and let g be the generator of the Galois group C4 which maps ζ5
to ζ2

5 .
The subgroup 〈ζ5L∗5〉 ≤ L∗/L∗5 is invariant under C4, so any root of t5 − ζ5
generates a field extension E/Q with Galois group C20. In fact, E = Q(ζ25).
The F5 C4-submodule of L∗/L∗5 generated by (1+ζ5)L

∗5 is 〈(1+ζ5)L
∗5, (1+ζ2

5 )L∗5〉,
and g acts with the matrix ( 0 2

1 1 ). Thus the Galois group of

3∏

i=0

(t5 − gi(1 + ζ5)) = t20 − 3t15 + 4t10 − 2t5 + 1

is F2
5 ⋊ C4, where g acts on F2

5 via ( 1 0
0 3 ), by Proposition 3.

Similarly, the F5 C4-submodule of L∗/L∗5 generated by (1 − ζ5)L
∗5 is

〈(1 − ζ5)L
∗5, (1 − ζ2

5 )L∗5, (1 − ζ4
5 )L∗5〉,

and g acts with the matrix
(

0 0 3
1 0 1
0 1 2

)
, so we know the Galois group of t20 − 5t15 +

10t10 − 10t5 + 5, namely the semidirect product F3
5 ⋊ C4, where g acts by

(
1 0 0
0 2 0
0 0 3

)
.

Last, consider the element x := (1 + ζ5 − ζ2
5 ); then xL∗5 generates a submodule

isomorphic to the regular module. The element 1− g2 ∈ F5 C4 is a cyclic generator
of the two-dimensional self-dual faithful F5 C4-module, so any root of t5 − x/g2(x)
generates a field extension E/Q whose Galois closure has Galois group F2

5 ⋊ C4,
where g acts on F2

5 by ( 1 0
0 4 ); the minimal polynomial of the roots of t5 − x/g2(x)

over Q is t20 + 1
11 t

15 − 19
11 t

10 + 1
11 t

5 + 1.
12



2. As a second example, we construct a polynomial with Galois group F4
3 ⋊ D8, where

D8 := 〈a, b | a4, b2, (ab)2〉 is the dihedral group of order 8, and the action of D8 on
M := F4

3 is defined by

a 7→




1 0 0 0
0 2 0 0
0 0 0 1
0 0 2 0


 , b 7→




2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

Let S := Q( 4
√
−2, i) be the splitting field of t4 + 2 over Q; its Galois group is

generated by the elements α = ( 4
√
−2 7→ i 4

√
−2, i 7→ i) and β = ( 4

√
−2 7→ 4

√
−2, i 7→

−i), and it is isomorphic to D8.
Now let ζ3 be a primitive third root of unity and consider the element x := 4

√
−2+

i + ζ3 ∈ S(ζ3)
∗. Then xS(ζ3)

∗3 generates an eight-dimensional submodule of the
F3 D8-module S(ζ3)

∗/S(ζ3)
∗3. The element 1+2ba ∈ F3 D8 generates a submodule

of F3 D8 isomorphic to M , thus y := xβ(α(x2))S(ζ3)
∗3 generates a submodule of

S(ζ3)
∗/S(ζ3)

∗3 isomorphic to M .
Set z := y2κ(y), where κ is a generator of AutQ(Q(ζ3)) and let θ be a root of
t3 − z. Then S(TrS(ζ3,θ)/S(ζ3,θ)〈κ〉(θ))/S is a C3-extension (cf. Jensen et al., 2002,
Section 5.3). The Galois closure U/Q(ζ3) of S(ζ3, θ)/Q(ζ3) has Galois group M ⋊
D8, since M is self-dual, thus the Galois closure T/Q of S(TrS(ζ3,θ)/S(ζ3,θ)〈κ〉(θ))/Q
has Galois group M ⋊ D8. Since we know the action of the Galois group on U/Q,
we can compute the minimal polynomial of TrS(ζ3,θ)/S(ζ3,θ)〈κ〉(θ) as

t24 − 144t22 + 472t21 + 7524t20 − 30456t19 − 266608t18 − 981864t17 + 30277458t16

+ 9496600t15 − 1093991688t14 − 1140063288t13 + 30808510272t12

+ 31632046632t11 − 495311379648t10 − 865959612792t9 + 5149493226585t8

+ 14478424454376t7 − 28713293762728t6 − 144781282966176t5

− 41870309411988t4 + 619972209753552t3 + 1309616138896848t2

+ 1104816334207968t+ 352192366019556.
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