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THE COHOMOLOGY OF THE HEISENBERG LIE ALGEBRAS
OVER FIELDS OF FINITE CHARACTERISTIC

GRANT CAIRNS AND SEBASTIAN JAMBOR

(Communicated by Dan M. Barbasch)

Abstract. We give explicit formulas for the cohomology of the Heisenberg
Lie algebras over fields of finite characteristic. We use this to show that in
characteristic two, unlike all other cases, the Betti numbers are unimodal.

The Heisenberg Lie algebra is the algebra hm with basis {x1, . . . , xm, y1, . . . ,
ym, z} and nonzero relations [xi, yi] = z, 1 ≤ i ≤ m. The cohomology (with trivial
coefficients) H∗(hm) was one of the first explicit computations of the cohomology
of a family of nilpotent Lie algebras. Louis Santharoubane [4] showed that over
fields of characteristic zero, the Betti numbers are:

dim Hn(hm) = ( 2m
n ) − ( 2m

n−2 ),

for all n ≤ m. Over fields of prime characteristic, the differential has larger kernel,
and so one expects “more” cohomology. Recently, Emil Sköldberg [5] used algebraic
Morse theory to compute the Poincaré polynomial Sm(t) =

∑
n dim Hn(hm)tn of

the Heisenberg Lie algebra hm over fields of characteristic two. He obtained

Sm(t) =
(1 + t3)(1 + t)2m + (t + t2)(2t)m

1 + t2
.

In this paper we extend Sköldberg’s result to arbitrary characteristic by directly
computing the Betti numbers.

Theorem. Over fields of characteristic p, one has

dimHn(hm) =
(

2m

n

)
−

(
2m

n − 2

)
+
�n+1

2p �∑
i=1

(
2m + 1

n − 2ip + 1

)
−
�n−1

2p �∑
i=1

(
2m + 1

n − 2ip − 1

)
,

for all i ≤ m.

In particular, we have:

Corollary 1. In characteristic two,

dim Hn(hm) =
�n

2 �∑
i=0

(−1)i

(
2m

n − 2i

)
+

�n−3
2 �∑

i=0

(−1)i

(
2m

n − 3 − 2i

)
,

for all i ≤ m.
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The characteristic two case of the theorem is equivalent to Sköldberg’s formula,
as can be seen by expanding the latter, applying the binomial expansion to the
factor (1 + t)2m, and using the expansion 1

1+t2 =
∑

n=0(−1)nt2n. Recall that the
Betti numbers dim Hn(L) of a unimodular Lie algebra L satisfy Poincaré duality
(that is, dimHn(L) = dim Hdim L−n(L)), and they are said to be unimodal if
they increase with n for 1 ≤ n ≤ 1

2 dim L and then (consequently) decrease for
1
2 dimL ≤ n ≤ dimL. One of the utilities of Santharoubane’s result was that, over
fields of characteristic zero, it provided examples of nilpotent Lie algebras whose
Betti numbers are not unimodal; see [2] and [1]. Other nilpotent algebras with
non-unimodal Betti numbers were given in [3]. In characteristic p > 2, the above
theorem gives dim H3(h4) =

(
8
3

)
−

(
8
1

)
= 48, while dim H4(h4) =

(
8
4

)
−

(
8
2

)
= 42,

exactly as in the characteristic zero case. However, we have:

Corollary 2. In characteristic two, for all m ≥ 1, the Betti numbers of hm are
(strictly) unimodal; that is, dimHn(hm) > dim Hn−1(hm), for all 1 ≤ n ≤ m.

This raises an obvious question: over fields of characteristic two, do all nilpotent
Lie algebras have unimodal Betti numbers?

Proof of the theorem. Consider the differential d in the exterior algebra Λh∗
m over

the dual vector space h∗
m, where by definition d : h1

m → Λh2
m is the dual of the Lie

bracket map. For each n, let Zn denote the kernel of d : Λnh∗
m → Λn+1h∗

m. Since
H∗(hm) = kernel(d)/image(d), one has

(1) dim Hn(hm) = dim Zn + dim Zn−1 −
(

2m + 1
n − 1

)
.

We claim that for n ≤ m,

(2) dim Zn =
(

2m

n

)
+
�n+1

2p �∑
i=1

(
2m

n − 2ip + 1

)
−
�n−1

2p �∑
i=1

(
2m

n − 2ip − 1

)
.

Note that using the binomial formula,

(3)
(

k

i

)
=

(
k − 1

i

)
+

(
k − 1
i − 1

)
,

(1) and (2) give

dimHn(hm) =
(

2m

n

)
−

(
2m

n − 2

)
+
�n+1

2p �∑
i=1

(
2m

n − 2ip + 1

)
−
�n−1

2p �∑
i=1

(
2m

n − 2ip − 1

)

+
� n

2p�∑
i=1

(
2m

n − 2ip

)
−
�n−2

2p �∑
i=1

(
2m

n − 2ip − 2

)

=
(

2m

n

)
−

(
2m

n − 2

)
+
�n+1

2p �∑
i=1

(
2m + 1

n − 2ip + 1

)
−
�n−1

2p �∑
i=1

(
2m + 1

n − 2ip − 1

)
,

which establishes the theorem. So it remains to prove (2). Let

{a1, . . . , am, b1, . . . , bm, c} ⊂ h
∗
m

denote the dual basis of {x1, . . . , xm, y1, . . . , ym, z}, let Ai
m =Λi〈a1, . . . , am, b1, . . . ,

bm〉 for 0 ≤ i ≤ 2m, let Ai
m = 0 for all other i ∈ Z, and set Am =

⊕
i Ai

m.



HEISENBERG LIE ALGEBRAS 3805

Note that Λh∗
m = Am ⊕ cAm, the differential d is zero on Am and dc =

∑m
i=1 aibi.

Denote dc by Ωm and consider the map ϕi,m,k : Ai
m → Ai+2

m ; α → αΩk
m. Thus

Zn = An
m ⊕ c · ker(ϕn−1,m,1). Write Kn,m = dim ker(ϕn,m,1). Since An

m has
dimension

(
2m
n

)
, we have

(4) dim Zn =
(

2m

n

)
+ Kn−1,m,

for all n ≤ m, and in order to prove (2), it remains to show that

Kn−1,m =
�n+1

2p �∑
i=1

(
2m

n − 2ip + 1

)
−
�n−1

2p �∑
i=1

(
2m

n − 2ip − 1

)
,

for all n ≤ m, or equivalently,

(5) Kn,m =
�n+2

2p �∑
i=1

(
2m

n − 2ip + 2

)
−
� n

2p�∑
i=1

(
2m

n − 2ip

)
,

for all n < m. We establish this by induction on n. First, notice that in charac-
teristic p one has Ωp

m = 0. The following may be regarded as a finite characteristic
version of the weak Lefschetz property:

Lemma. Let 0 ≤ k ≤ p− 1, i ≤ m−k, α ∈ Ai
m, and suppose that αΩk

m = 0. Then
α = βΩp−k

m for some β ∈ Ai−2p+2k
m .

Proof of the lemma. First note that the result is trivial for k = 0, so we assume
k ≥ 1. The proof is by induction on m. The result is obvious for m = 1, so assume
m > 1. First notice that Ωm = Ωm−1 + ambm and so by the binomial formula,

(6) Ωj
m = (Ωm−1 + ambm)j = Ωj

m−1 + jΩj−1
m−1ambm,

for all 1 ≤ j ≤ p − 1. In particular, multiplying by am and bm, respectively, gives

Ωj
mam = Ωj

m−1am and Ωj
mbm = Ωj

m−1bm.

Now we can write

(7) α = α0 + α1am + α2bm + α3ambm,

for some α0, . . . , α3 ∈ Am−1. Thus αΩk
m = 0 gives

α0Ωk
m−1 + α1Ωk

m−1am + α2Ωk
m−1bm + (α3Ωk

m−1 + kα0Ωk−1
m−1)ambm = 0,

and equating coefficients, α0Ωk
m−1 = α1Ωk

m−1 = α2Ωk
m−1 = 0, and

(8) α3Ωk
m−1 + kα0Ωk−1

m−1 = 0.

Since α1, α2 have degree 1 less than the degree of α, their degree is ≤ (m− 1)− k,
and we can apply the inductive hypothesis, which gives α1 = β1Ω

p−k
m−1 and α2 =

β2Ω
p−k
m−1, for some β1, β2 ∈ Ai−2p+2k−1

m−1 . Furthermore, multiplying (8) by Ωm−1

gives α3Ωk+1
m−1 = 0. Since α3 has degree 2 less than the degree of α, its degree

is ≤ (m − 1) − (k + 1), and we can apply the inductive hypothesis, which gives
α3 = β3Ω

p−k−1
m−1 , for some β3 ∈ Ai−2p+2k

m−1 . Let γ = k−1α3Ωm−1 + α0 ∈ Ai
m−1.

By (8), γΩk−1
m−1 = 0. Since deg(γ) = deg(α0) ≤ (m − 1) + (k − 1), the inductive

hypothesis gives γ = ηΩp−k+1
m−1 for some η ∈ Ai−2p+2k−2

m−1 . So

α0 = γ − k−1α3Ωm−1 = ηΩp−k+1
m−1 − k−1α3Ωm−1 = ηΩp−k+1

m−1 − k−1β3Ω
p−k
m−1.
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Using (6),

α0 + α3ambm =(ηΩp−k+1
m−1 − k−1β3Ω

p−k
m−1) + β3Ω

p−k−1
m−1 ambm

=ηΩp−k+1
m−1 − β3k

−1(Ωp−k
m−1 − kΩp−k−1

m−1 ambm)

=η(Ωp−k+1
m −(p − k+1)Ωp−k

m ambm)−β3k
−1(Ωp−k

m−1−kΩp−k−1
m−1 ambm).

Hence, as we are working in characteristic p,

α0+α3ambm = η(Ωp−k+1
m +(k−1)Ωp−k

m ambm)−β3k
−1(Ωp−k

m−1+(p−k)Ωp−k−1
m−1 ambm)

= η(Ωp−k+1
m + (k − 1)Ωp−k

m ambm) − β3k
−1Ωp−k

m (from (6))

= (ηΩm + (k − 1)ηambm − β3k
−1)Ωp−k

m .

Thus from (7),

α = (ηΩm + (k − 1)ηambm − β3k
−1 + β1am + β2bm)Ωp−k

m .

This establishes the lemma. �

Returning to the theorem, the lemma gives

Kn,m = dim ker(ϕn,m,1) = dim im(ϕn−2p+2,m,p−1)

=
(

2m

n − 2p + 2

)
− dim ker(ϕn−2p+2,m,p−1)

=
(

2m

n − 2p + 2

)
− dim im(ϕn−2p,m,1)

=
(

2m

n − 2p + 2

)
−

(
2m

n − 2p

)
+ dim ker(ϕn−2p,m,1)

=
(

2m

n − 2p + 2

)
−

(
2m

n − 2p

)
+ Kn−2p,m.

Thus (5) follows by induction on n. This completes the proof of the theorem. �

Proof of Corollary 2. We maintain the notation and terminology of the proof of
the theorem. For p = 2, (5) gives

Kn,m =
�n+2

4 �∑
i=1

(
2m

n − 4i + 2

)
−
�n

4 �∑
i=1

(
2m

n − 4i

)
=

�n
2 �∑

i=1

(−1)i+1

(
2m

n − 2i

)
.

Using (3) twice gives

(9)
(

k

i

)
=

(
k − 2

i

)
+ 2

(
k − 2
i − 1

)
+

(
k − 2
i − 2

)
.

Thus

Kn,m =
(

2m − 2
n − 2

)
+ 2

�n−1
2 �∑

i=1

(−1)i+1

(
2m − 2

n − 1 − 2i

)
.

Hence

(10) Kn,m =
(

2m − 2
n − 2

)
+ 2Kn−1,m−1,

for all n < m. Let ∆n,m = dim Hn(hm) − dim Hn−1(hm). We will show that
∆n,m > 0 for all 1 ≤ n ≤ m. The proof is by induction on n + m. First notice that
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since dim H1(hn) = 2n and dimH0(hn) = 1, one has ∆1,n > 0 for all n ≥ 1. From
(1), (3) and (4), for all n ≤ m,

∆n,m =
(

2m

n

)
−

(
2m

n − 1

)
−

(
2m

n − 2

)
+

(
2m

n − 3

)
+ Kn−1,m − Kn−3,m.

So, employing (9) and (10) gives

∆n,m =
(

2m − 2
n

)
+

(
2m − 2
n − 1

)
− 2

(
2m − 2
n − 2

)
−

(
2m − 2
n − 3

)
+

(
2m − 2
n − 4

)

+ 2Kn−2,m−1 − 2Kn−4,m−1

=
(

2m − 2
n

)
−

(
2m − 2
n − 1

)
+

(
2m − 2
n − 3

)
−

(
2m − 2
n − 4

)
+ 2∆n−1,m−1.

The inductive hypothesis gives ∆n−1,m−1 > 0. Thus, since
(
2m−2

n

)
≥

(
2m−2
n−1

)
and(

2m−2
n−3

)
≥

(
2m−2
n−4

)
for all n ≤ m, we have ∆n,m > 0, as required. �

Remark. The characteristic zero result of [4] can be deduced from the above theorem
by choosing a sufficiently large prime p. Indeed, the Heisenberg algebras are defined
over Z, and in each dimension, the determination of the cohomology amounts to
the computation of the rank of an integer matrix representing the differential. But
for an integer matrix, the rank in characteristic zero can only differ from the rank
in characteristic p for finitely many values of p.
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