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Abstract

We present a constructive recognition algorithm to decide whether

a given black-box group is isomorphic to an alternating or a symmetric

group without prior knowledge of the degree. This eliminates the ma-

jor gap in known algorithms, as they require the degree as additional

input.

Our methods are probabilistic and rely on results about propor-

tions of elements with certain properties in alternating and symmetric

groups. These results are of independent interest; for instance, we es-

tablish a lower bound for the proportion of involutions with small

support.
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1 Introduction

The computational recognition of finite simple groups is a fundamental
task in the finite matrix group recognition project (see [8, 9, 11]). Generally
not much is known about the way in which a group might be given as input
and therefore algorithms which take black-box groups (see [1]) as input are
the most versatile. For the important infinite family of alternating groups,
the present black-box algorithms [3, 4] can only test whether a given black-
box group is isomorphic to an alternating or a symmetric group of a particular
degree, provided as additional input to the algorithm. Therefore deciding
whether a given black-box group is isomorphic to an alternating group may
require to run the algorithm once for each possible degree. The present paper
describes a one-sided Monte-Carlo (see e.g. [12, p. 14]) black-box algorithm
which avoids this bottleneck. Our algorithm takes as input a black-box group
given by a set of generators together with a natural number N and decides
whether the given group is isomorphic to an alternating group of any degree
at most N . If the algorithm proves this to be the case, it computes the
degree of the group and recognises it constructively. Otherwise the algorithm
reports failure. Our algorithm runs in time nearly linear in N whereas the
older algorithms have a runtime complexity of Õ(N2) to solve the same task
in the worst case.

Given a black-box group G, we let µ denote an upper bound for the
cost of multiplying two elements in G and let ρ denote an upper bound for
the cost of computing a uniformly distributed, independent random element
of G. Throughout this paper, log denotes the natural logarithm.

Theorem 1.1. Algorithm 4.29, RecogniseSnAn, is a one-sided Monte-
Carlo algorithm with the following properties. It takes as input a black-box
group G = 〈X〉, a natural number N and a real number ε with 0 < ε < 1. If
G ∼= An or G ∼= Sn for some 9 ≤ n ≤ N , it returns with probability at least
1−ε the degree n and an isomorphism λ : G → An or λ : G → Sn. Otherwise
it reports failure. The algorithm runs in time O(N log(N)2 log(ε−1)(|X|µ +
ρ)) and stores at most O(log(N)) group elements at any moment.

The black-box construction of a 3-cycle – one of the key ingredients of
the algorithm – is a surprisingly hard problem. The solution lies in the
combination of the following theoretical results, which are also of independent
interest. The first allows us to find involutions with small support; the second
uses these to construct a 3-cycle.
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Theorem 1.2. Let 9 ≤ n ∈ N and G ∈ {An, Sn}. The proportion of elements
x ∈ G of even order satisfying

∣∣ supp x|x|/2
∣∣ ≤ 4

√
n/3 is at least (13 log(n))−1.

Theorem 1.3. Let 7 ≤ n ∈ N, G ∈ {An, Sn} and 1 ≤ k ≤ 2
√
n/3. Let

s ∈ G be an involution moving 2k points.

1. The proportion of elements r in the conjugacy class sG such that r and
s move exactly one common point is at least 10/(3n).

2. Let M be the set of elements in sG not commuting with s. The propor-
tion of elements r in M such that (sr)2 is a 3-cycle is at least 1/3.

The constructive recognition algorithm for alternating and symmetric
groups described in [3] consists of two parts: the construction of standard
generators assuming the degree is known, and the algorithmic construction
of the inverse of the isomorphism λ : G → An. The contribution of this
paper is to replace the first part by an algorithm determining the degree and
finding the standard generators simultaneously. Together with the second
part of [3], this establishes the algorithm for the main theorem above. If one
is interested in recognising the symmetric group rather than the alternating
group, the remarks of [3] apply and the same complexity is achieved.

Our algorithm has been implemented in the computer algebra system
GAP [7]. Comparisons of our implementation with the GAP implementation
of the first part of [3] show that our algorithm is a significant improvement.
Given as input a black box group isomorphic to a symmetric or alternating
group, the new algorithm establishes this fact and determines the degree of
the group in about the same time that the old algorithm requires to decide
whether the input group is isomorphic to an alternating or symmetric group
of the specific degree given as part of the input. In general, the old algorithm
has to be run several times to find the degree of the input group. Therefore,
the new algorithm wins out by a factor determined by the number of putative
degrees the old algorithm has to test. The scope of our implementation
depends on many factors, in particular the way the group is represented. To
give a very rough indication, in the natural permutation representation the
present implementation can deal with degrees of around 10000.

In applications in the matrix group recognition project it is imperative
that the algorithm report failure quickly when the input group is not isomor-
phic to an alternating nor a symmetric group. We tested the performance of
our algorithm when handed some examples of almost simple groups which
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are not alternating or symmetric. In all these examples our algorithm re-
ported failure extremely fast. This is mainly due to finding an element of
order not existing in the symmetric group of degree N , thus even proving
that the group cannot be of the specified isomorphism types (cf. remark after
Algorithm 4.1).

The practical performance of our algorithm exceeds its predicted per-
formance as the constants in our estimates of proportions of elements are
too conservative, notably in the proportion proved in Theorem 1.2. Further
improvements of the performance could be achieved in situations where an
order oracle is available by lowering the a priori upper bound N .

As E. O’Brien pointed out, our algorithm can also be applied to decide
whether the input group G is a central extension of some (not necessarily
finite) abelian group by An or Sn by working with G/Z(G) as black-box
group.

Here is a short overview of this paper. We fix some notation in Section 2
and give an outline of the algorithm in Section 3. In Section 4 we describe
the setup in detail and prove Theorem 1.1. Finally, in Section 5 we give
proofs of Theorems 1.2 and 1.3, along with proofs of some technical results
which are used in the proof of Theorem 1.1.

2 Preliminaries

This paper describes a constructive recognition algorithm which decides
whether a given black-box group is isomorphic to an alternating or a symmet-
ric group. The notion of when a black-box group is constructively recognizable
is defined in [3, Definition 1.1]. In particular, we note that if our algorithm
concludes that a given black-box group G is indeed isomorphic to an alter-
nating group An or a symmetric group Sn of some degree n, then it also
determines an isomorphism λ : G → An or λ : G → Sn and a pair {s, t} of
generators for G, called the standard generators of G. We call λ together
with the standard generators {s, t} a constructive isomorphism.

The standard generators for An chosen by the algorithm satisfy the fol-
lowing presentations given by Carmichael [5]:

{
s, t

∣∣∣∣ s
n−2 = t3 = (st)n−1 = (t(−1)ks−ktsk)2 = 1 for 1 ≤ k ≤ n− 2

2

}
(1)
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for even n > 3 and
{
s, t

∣∣∣∣ s
n−2 = t3 = (st)n = (ts−ktsk)2 = 1 for 1 ≤ k ≤ n− 3

2

}
(2)

for odd n > 3.
Examples of standard generators for An are s = (1, 2)(3, 4, . . . , n) and

t = (1, 2, 3) for n even, and s = (3, 4, . . . , n) and t = (1, 2, 3) for n odd.
Our algorithm exploits information gained by considering the cycle types

of permutations in symmetric groups. Recall that the cycle type of an element
g ∈ Sn is defined as 1a1 · · ·nan if g contains ai cycles of length i for 1 ≤ i ≤ n.
Note that for n ≥ 7 we have Aut(An) = Sn, so the cycle type is preserved
by all automorphisms of An. Thus, if G is isomorphic to An or Sn, the cycle
type of λ(g) is independent of the choice of isomorphism λ from G to An

or Sn. This allows us to generalise the notion of cycle type to elements of a
black-box group G isomorphic to An or Sn.

During the course of the algorithm, we may encounter subgroups Ak of An.
For k ≥ 7 and k odd, given a 3-cycle c ∈ An we say that a k-cycle g matches
c if {gc2, c} are standard generators for Ak. Note that in this case g must be
of the form (u, v, w, . . .), where c = (u, v, w) for u, v, w ∈ {1, . . . , n}.

Let π ∈ Sn. Call a point i with 1 ≤ i ≤ n a moved point of π if iπ 6= i.
Call the set of moved points of π the support of π, denoted supp π. Similarly,
denote by fix π the set of fixed points of π, that is {1, . . . , n} − supp π.

3 Brief outline of the algorithm

We describe a one-sided Monte-Carlo algorithm which takes as input a
black-box group G, a real number ε with 0 < ε < 1 and a positive integer N .
The aim of the algorithm is to determine whether there is an integer n with
9 ≤ n ≤ N such that G is isomorphic to An or Sn. In the following we
describe the main steps of our algorithm. We present this description under
the assumption that the algorithm is given a black-box group G which is
indeed isomorphic via the unknown isomorphism λ to An or Sn for some
n ≤ N and describe the types of elements in G we seek to establish this
fact. If the algorithm is handed a black-box group not isomorphic to an
alternating or symmetric group, then one of the subsequent steps will fail to
find the required elements and the algorithm reports failure.
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The algorithm consists of three main steps. In the first step we compute
a subset R ⊆ G which contains a 3-cycle with high probability. The details
are presented in Algorithm ThreeCycleCandidates in Section 4.1. If no
such set R was found, then we conclude that G is not isomorphic to An or
Sn for any n with 9 ≤ n ≤ N and terminate.

The second step repeats the following basic step for each element c ∈ R.
We may assume without loss of generality that λ(c) = (1, 2, 3) and we seek a
k-cycle g matching c such that k ≥ 3n/4. The construction of g is described
in Algorithm ConstructLongCycle in Section 4.2. If no such element g
was found, then we discard c as a putative 3-cycle and continue with the next
candidate for c in R. Otherwise, without loss of generality, we may assume
that λ(g) = (1, 2, . . . , k).

The third step, described in Algorithm StandardGenerators in Sec-
tion 4.4, determines the degree n. This step repeats a basic step which
computes random conjugates r = gx of g for x ∈ G. Note that by now we
have derived some partial information about λ, namely λ(c) = (1, 2, 3) and
λ(g) = (1, 2, . . . , k). This allows us to decide whether suppλ(gx) contains
hereto unseen points in which case the basic step replaces g by an element g′

such that λ(g′) = (1, 2, . . . , ℓ) for some ℓ > k. The third step repeats this ba-
sic step until it obtains an n- or an (n−1)-cycle and constructs the standard
generators for G from these.

Finally, we use methods from [3] to check whether we have found standard
generators and compute a constructive isomorphism.

4 Details of the algorithm

In this section, the steps of the algorithm are described in detail. Each
step in turn is broken down into one or more procedures. Each procedure is
designed to accept an arbitrary black-box group as input, which forces the
output to be fairly generic. Therefore each procedure has an accompanying
lemma which gives an interpretation of the output if the input is in fact a
symmetric or alternating group. A second lemma determines the complexity,
which is valid for arbitrary black-box groups as input.
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4.1 Construction of possible 3-cycles

The following algorithm constructs a set of putative 3-cycles. It is based
on the simple observation that the product of two involutions t1, t2 with
| supp(t1) ∩ supp(t2)| = 1 squares to a 3-cycle.

Algorithm 4.1 (ThreeCycleCandidates).
Input: A group G, a real number 0 < ε < 1 and N ∈ N.
Output: A set R ⊂ G or fail.
Algorithm:

1. Let M :=
∏

p p
⌊logp(N)⌋, where the product is over all odd primes p

with p ≤ N . Let B := ⌈13 log(N) log
(
3/ε
)
⌉, T := ⌈3 log

(
3/ε
)
⌉ and

C :=
⌈
3NT/5

⌉
.

2. Choose B random elements r1, . . . , rB ∈ G and set ti := rMi for 1 ≤ i ≤
B.

3. For each ti, if there is a smallest a ∈ N such that t
(2a)
i = 1G and

a− 1 ≤ log2(N), then replace ti by t
(2a−1)
i . Otherwise return fail.

4. For each ti set Γi := ∅. Repeat the following step at most C times:
Choose a random conjugate c of ti. If tic 6= cti and |Γi| < T , then add
c to Γi.

5. Return
⋃B

i=1{(tic)2 : c ∈ Γi}.

Note that if the algorithm returns fail, then Step 3 has found an element
g ∈ G such that |g| cannot be the order of any element in any group Sn for
n ≤ N . Hence G is proven not to be isomorphic to An or Sn for any n ≤ N .

Lemma 4.2. Let 9 ≤ N ∈ N, 0 < ε < 1 and G ∈ {Sn,An} for some
9 ≤ n ≤ N . A call to Algorithm ThreeCycleCandidates(G, ε,N) returns
a subset R of G and, with probability at least 1−ε, R contains a 3-cycle in G.
Moreover, |R| ≤ ⌈13 log(N) log

(
3/ε
)
⌉ · ⌈3 log

(
3/ε
)
⌉.

Proof. Note that M is an odd integer and that for every g ∈ G the element
gM has even order or is trivial. Therefore, by Corollary 5.6, with probability
at least 1− ε/3 one of the ti constructed in Step 2 has even order such that

t := t
|ti|/2
i is a product of k disjoint transpositions with k ≤ ⌊max{2√n/3, 2}⌋.

Let X be a list of C random conjugates of t. Then, with probability at least
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1 − ε/3, X contains at least T elements which do not commute with t by
Corollary 5.9. Now let Γ be a list of T random conjugates of t not commuting
with t. By Corollary 5.10 there is, with probability at least 1 − ε/3, an
element c ∈ Γ such that (tc)2 is a 3-cycle. Thus, with probability at least
(1− ε/3)3 ≥ 1− ε, the set R contains a 3-cycle. Since after Step 4 we have
|Γi| ≤ T , clearly |R| ≤ T · B holds. This implies the claimed bound for
|R|.

Lemma 4.3. Let G be a finite group, 0 < ε < 1 and N ∈ N. Then Three-

CycleCandidates with input G, ε,N runs in O(N log(N)2 log(ε−1)2(µ +
ρ)) time and requires storage of O(log(N) log(ε−1)2) group elements.

Proof. Since M <
∏

2<p≤N N ≤ NN , computing the M -th power of a group
element with a square-and-multiply algorithm requires O(N log(N)) group
operations. In Step 2 we construct B random elements and compute their
M -th power. We compute t

(2a)
i by repeated squaring, ensuring that a− 1 ≤

log2(N), thus step 3 can be performed in B ·log2(N) group operations. Step 4
requiresB·C random elements andO(B·C) group operations; likewise, Step 5
requires O(B ·T ) group operations. Thus, the total runtime of the algorithm
is O(N log(N)2 log(ε−1)2(µ+ ρ)).

Clearly, we only need to store O(log(N) log(ε−1)2) elements overall, con-
cluding the proof.

4.2 Construction of a matching cycle

The aim of this section is, given a 3-cycle c in a black-box group G iso-
morphic to an alternating or symmetric group of degree n, to construct a
k-cycle g matching c with k ≥ 3n/4. The proportion of cycles with this prop-
erty is too small for our purposes, so we consider other types of elements in
G which occur more frequently and allow the construction of a k-cycle g with
the desired properties. As a first step, we describe what we call bolstering
elements. These allow us to construct the desired cycle g easily. Since bol-
stering elements are still too rare, we consider pre-bolstering elements from
which we obtain bolstering elements in turn.

4.2.1 Bolstering Elements

Let c be a 3-cycle with supp c = {u, v, w}. Call an element x ∈ Sn bolster-
ing with respect to c if it is of the form x = (v, a1, . . . , aα)(w, b1, . . . , bβ)(. . .)
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or x = (v, a1, . . . , aα, w, b1, . . . , bβ)(. . .) with u ∈ fixx and α, β ≥ 2.

Remark 4.4. Given a bolstering element x with respect to the 3-cycle c =
(u, v, w), we can find a cycle g matching c. Let m := min{α, β} and m′ :=
⌊|α− β|/2⌋.

1. c · cx · c(x2) · · · c(xm) =: y is a single cycle of length 2m+ 3.

2. If α ≤ β − 2, we can compute z = (u, bα+2, bα+1). Then m′ is the

least positive integer such that z(x
2(m′+1))c does not have order 5 and

y · z · z(x2) · z(x4) · · · z(x2(m′−1)) =: g is a cycle of length 2m′ + 2m+ 3.

3. If β ≤ α−2, we compute z := (u, aβ+1, aβ+2) to obtain a (2m′+2m+3)-
cycle in similar fashion.

The details of how to compute z will be described in AlgorithmBuildCycle.

Since the proportion of bolstering elements with respect to a given 3-cycle
in An and Sn is too small, we instead try to find pre-bolstering elements and
use these to construct bolstering elements.

An element r is called pre-bolstering with respect to c if it is of the form

r = (w, u, a1, . . . , aα)(v, b1, . . . , bβ)(. . .)

or
r = (w, u, a1, . . . , aα, v, b1, . . . , bβ)(. . .)

with supp c = {u, v, w} and α, β ≥ 2. Note that if r is pre-bolstering, then
either x = cr or x = c2r is bolstering with respect to c.

The next lemma gives a criterion when an element r ∈ Sn is pre-bolstering
with respect to a 3-cycle c.

Lemma 4.5. Let c ∈ Sn be a 3-cycle. Then r is pre-bolstering with respect
to c if and only if [cr, c] 6= 1G, c

(r2) 6∈ {c, c2} and [c, c(r
2)] = 1G.

Proof. Clearly, if r is pre-bolstering, then the conditions hold. Conversely,
suppose that r is not be pre-bolstering. Then either supp cr ∩ supp c = ∅ or
fix r ∩ supp c 6= ∅ or min{α, β} < 2. In the first case we find [cr, c] = 1G.
In both the second and the third case, clearly supp c ∩ supp c(r

2) 6= ∅, thus
either [c, c(r

2)] 6= 1G or supp c = supp c(r
2) hold. (Note that if the supports of

c and c(r
2) coincide, then c(r

2) = c or c(r
2) = c2.)
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For a group G isomorphic to an alternating or a symmetric group and a
3-cycle c ∈ G, the following algorithm constructs a list of bolstering elements
with respect to c. It achieves this by selecting a number of random elements
from G and using the criteria in Lemma 4.5 to recognise pre-bolstering ele-
ments among these. From these it then constructs bolstering elements with
respect to c.

Algorithm 4.6 (BolsteringElements).
Input: A group G, an element c ∈ G, a real number ε with 0 < ε < 1 and
N ∈ N.
Output: A list B with B ⊂ G.
Algorithm:

1. Let S := 7N⌈7
4
log ε−1⌉ and R := ⌈7

4
log ε−1⌉.

2. Set C := ∅. Repeat the following step at most S times: choose a
random element r ∈ G; if [cr, c] 6= 1G, c

(r2) 6∈ {c, c2}, [c, c(r2)] = 1G and
|C| < R, then add r to C.

3. For each r ∈ C, compute zr := crcrcrc
(r2)c. If (zr)

3 = 1G, then add c2r
to B. Otherwise add cr to B. Return B.

Lemma 4.7. Let 7 ≤ n ≤ N , G ∈ {Sn,An}, c ∈ G a 3-cycle and 0 <
ε < 1. Let B := BolsteringElements(G, c, ε,N). Then B is a list
of random bolstering elements and, with probability at least 1 − ε, we have
|B| ≥ ⌈7

4
log ε−1⌉.

Proof. Let supp c = {u, v, w}. Clearly, using Lemma 4.5 the elements r
constructed in Step 1 of Algorithm 4.6 are pre-bolstering with respect to c.
Step 3 has to decide whether c = (u, v, w) or c = (u, w, v). In the first case
zr is a 3-cycle, while in the second case zr is a 5-cycle. Thus, (zr)

3 =
1G if and only if c = (u, v, w) and B is a list of bolstering elements. By
Proposition 5.12, we find less than R elements with probability at most ε,
since S = 7N⌈7

4
log ε−1⌉ ≥ 5N ·max

(
(5/4)4 log ε−1, 25

18

⌈
1
2
log3/4 ε

⌉)
.

Lemma 4.8. Let G be a black-box group, c ∈ G an arbitrary element, 0 <
ε < 1 and N ∈ N. Then algorithm BolsteringElements with input
G, c, ε,N runs in O(N log ε−1(µ+ρ)) time and requires storage of O(log ε−1)
group elements.

Proof. Since elements are removed from C until |C| ≤ R, it clearly suffices
to store O(log ε−1) elements. The remaining estimates are obvious.
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4.2.2 Exploiting bolstering elements

Given a bolstering element x with respect to a 3-cycle c, we can construct
a cycle gx matching c, using Remark 4.4. But depending on the type of the
bolstering element, this may require different steps to obtain the longest
possible matching cycle. The type of a given bolstering element can be de-
termined using only black-box operations as described in Remark 4.9. We
first describe Algorithm BuildCycle which applies this remark to obtain a
cycle gx matching c from a given bolstering element x. This is used by Al-
gorithm ConstructLongCycle, which computes gx for every x returned
by Algorithm BolsteringElements, and returns the longest gx.

Remark 4.9. Several properties of bolstering elements can be checked al-
gorithmically using only black-box operations. Let supp c = {u, v, w}. Let x
be bolstering with respect to c and u ∈ fixx.

1. Let m := min{α, β}. Then m is the least natural number such that
c(x

m+1)c does not have order 5. Note that necessarily m < n/2.

2. α = β if and only if c(x
m+1) ∈ {c, c2}.

3. |α− β| = 1 if and only if c(x
m+2)c does not have order 5.

4. If α 6= β, then w 6∈ v〈x〉, i.e. x is of the first form, if and only if c(x
m+1)c

has order 2.

5. Assume |α − β| > 1. If w ∈ v〈x〉, then α > β if and only if c(x
m+2) and

c(x
m+1c) commute. If w 6∈ v〈x〉, then α < β if and only if c(x

m+2) and
c(x

m+1c) commute.

When called with input a black-box group G isomorphic to an alternating
group An or a symmetric group Sn and elements c, x ∈ G such that c is a 3-
cycle and x is a bolstering element with respect to c, the following algorithm
determines a cycle gx of length k matching c. It returns gx and its length k.

Algorithm 4.10 (BuildCycle).
Input: Elements c, x of a group G and N ∈ N.
Output: A number k ∈ N and an element g ∈ G, or fail.
Algorithm: Determine m := min{α, β} and check whether |α − β| ≥ 2
as described in Remark 4.9. If m ≥ N/2, return fail. Compute y :=
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c ·cx ·c(x2) · · · c(xm). If |α−β| ≤ 1, return 2m+1, y. Otherwise set d := c(x
m+1)

and

e :=





dxc, if w ∈ v〈x〉 and α > β,

(d(xc
2))2, if w ∈ v〈x〉 and α < β,

d(xc
2), if w 6∈ v〈x〉 and α > β,

(d(xc))2, if w 6∈ v〈x〉 and α < β,

where we can decide whether w ∈ v〈x〉 and α > β using Remark 4.9. Set
z := de and determine m′ as described in Remark 4.4. If m′ ≥ N/2, return

fail. Otherwise compute g := y ·z ·z(x2) · · · z(x2(m′−1)). Return 2m′+2m+1, g.

Lemma 4.11. Let 7 ≤ n ≤ N ∈ N, c ∈ Sn a 3-cycle and x a bolstering
element with respect to c. Then BuildCycle with input c, x,N returns k
and g such that g is a k-cycle matching c.

Proof. This is an application of Remarks 4.4 and 4.9, where it is easy to
check that z has the form given in Remark 4.4, e.g., if w ∈ v〈x〉 and α > β
we have d = (u, aβ+1, v) and e = (v, aβ+2, a1), hence z = (u, aβ+1, aβ+2).

Lemma 4.12. Let G be a finite group, c, x ∈ G arbitrary elements, and
N ∈ N. Then BuildCycle with input c, x,N runs in O(Nµ) time and
requires storage of a constant number of group elements.

Proof. By storing c(x
i−1), the next element c(x

i) can be computed in constant
time. Since m and m′ are bounded by N/2, the lemma follows.

Algorithm 4.13 (ConstructLongCycle).
Input: A group G, an element c ∈ G, 0 < ε < 1 and N ∈ N.
Output: A number k ∈ N and an element g ∈ G or fail.
Algorithm:

1. Let L := ∅ and B := BolsteringElements(G, c, ε/2, N). If B con-
tains less than ⌈7

4
log(2/ε)⌉ elements, return fail.

2. Call BuildCycle for each bolstering element x ∈ B. If this fails for
some x, return fail. Otherwise return k and g computed by Build-

Cycle with maximal k.

Lemma 4.14. Let 9 ≤ N ∈ N, 0 < ε < 1, G ∈ {Sn,An} for some
9 ≤ n ≤ N and c ∈ G a 3-cycle. Then, with probability at least 1 − ε,
ConstructLongCycle with input G, c, ε,N returns k and g such that
k ≥ max(3n/4, 9) and g is a k-cycle matching c.
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Proof. Step 1 succeeds with probability at least 1−ε/2, cf. Lemma 4.7. Since
7/4 log(2/ε) ≥ 1/2 log3/4(ε/2), Proposition 5.13 yields that, with probability
at least 1 − ε/2, BuildCycle constructs at least one k-cycle with k ≥
max(3n/4, 9).

Lemma 4.15. Let G be a finite group, c ∈ G an arbitrary element, 0 < ε < 1
and N ∈ N. Then ConstructLongCycle with input G, c, ε,N runs in
O(N log ε−1(µ+ ρ)) time and requires storage of O(log ε−1) group elements.

Proof. This follows from Lemmas 4.8 and 4.12.

4.3 Auxiliary algorithms

In this section we describe short algorithms which are called by the main
algorithm RecogniseSnAn. For our discussion, we assume we are given
a group G isomorphic to An or Sn and that c is a 3-cycle and g a k-cycle
matching c. We perform computations mainly in 〈g, c〉 ∼= Ak.

The first algorithm decides whether a point i ∈ supp g is fixed by a given
element r ∈ G.

Remark 4.16. Let a1, . . . , a7 ∈ N be pairwise distinct and

A := {{1, 2, i} : 3 ≤ i ≤ 6}.

If the sets {a1, a2, a3}, {a1, a4, a5}, {a1, a6, a7} intersect each set in A non-
trivially, then a1 ∈ {1, 2}.

This observation allows us to recognise a fixed point of an arbitrary el-
ement r ∈ G by examining the intersection of the supports of some aptly
chosen elements. If c is a 3-cycle and g a matching cycle, the following algo-
rithm decides whether the single point in the intersection of the supports of
c and c(g

2) is fixed by r.

Algorithm 4.17 (IsFixedPoint).
Input: Elements g, c, r of a group G.
Output: true or false.
Algorithm: Define

X := {cr, cg2r, cg2c(g
3)c(g

4)r}
and

H1 := {c2, ccg , ccgc(g
3)

, cc
g(c(g

3))2 , cc
g(c(g

3))2c(g
4)}.
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If there is an element x ∈ X such that [x, h] = 1G for at least two different
h ∈ H1, then return false. Otherwise define

H2 := {c, cg, cgc(g
3)

, cg(c
(g3))2 , cg(c

(g3))2c(g
4)}.

If there is an element x ∈ X such that [x, h] = 1G for at least two different
h ∈ H2, then return false. Otherwise return true.

Lemma 4.18. Let 7 ≤ k ≤ n, c ∈ Sn a 3-cycle, g ∈ Sn a k-cycle matching c
and r ∈ Sn an arbitrary element. IsFixedPoint(g, c, r) returns true if
and only if the unique point contained in both supp c and supp c(g

2) is fixed
by r.

Proof. Without loss of generality, let c = (1, 2, 3) and g = (1, 2, . . . , k). We
find supp c ∩ supp c(g

2) = {3}, H1 = {(1, 3, j) : j ∈ {2, 4, 5, 6, 7}}, H2 =
{(2, 3, j) : j ∈ {1, 4, 5, 6, 7}} and X = {(1, 2, 3)r, (3, 4, 5)r, (3, 6, 7)r}.

Assume that IsFixedPoint returns false. Then there are elements
x ∈ X and h1, h2 ∈ H1 (or in H2) commuting with x. Suppose 3 ∈ fix r.
Since then 3 ∈ supp x ∩ supph1 ∩ supph2 and h1, h2 commute with x, we
obtain supph1 = supp x = supph2, a contradiction. Thus 3 6∈ fix r.

Conversely assume that IsFixedPoint returns true. Then, for each
x ∈ X, there exist h1, . . . , h4 ∈ H1 with supphi ∩ supp x 6= ∅, and similarly
for H2. The result now follows by Remark 4.16.

Lemma 4.19. Let G be a finite group and g, c, r ∈ G arbitrary elements.
Then IsFixedPoint with input g, c, r uses a constant number of group op-
erations and requires storage of a constant number of group elements.

Proof. This is immediate.

Let G be a black-box group isomorphic to an alternating or symmetric
group, c ∈ G a 3-cycle, g ∈ G a k-cycle matching c, and r another element
of G. Assume without loss of generality that g = (1, 2, . . . , k) and c =
(1, 2, 3). If r satisfies | supp r ∩ supp g| ≥ 1 and | fix r ∩ supp g| ≥ 2, the next
algorithm computes a conjugate r̃ = rx such that r̃ fixes the points 1 and 2,
but not the point 3. Here we identify the point j ∈ {1, . . . , k} with the

3-cycle cg
(j−3)

.

Algorithm 4.20 (AdjustCycle).
Input: Elements g, c, r of a group G and k ∈ N.

14



Output: An element r̃ ∈ G conjugate to r or fail.
Algorithm: Compute the set

F := {1 ≤ j ≤ k : IsFixedPoint(g, c(g
j−3), r) = true}.

If |F | < 2 or |F | = k, then return fail. Otherwise, define f1 as the smallest
and f2 as the second smallest number in F . Define m as the smallest natural
number not in F . Define the element x ∈ G according to the following table:

F ∩ {1, 2, 3, 4} x

{1, 2, 3, 4} or {1, 2, 3} c(gc
2)m−3cc

{1, 2, 4} or {1, 2} 1G
{1, 3, 4} cg

{1, 3} (c2)g

{1, 4} or {1} c(gc
2)f2−3c

{2, 3, 4} or {2, 4} cc
g

{2, 3} (c2)c
g

{2} c(gc
2)f2−3cg

{3, 4} or {3} (c2)(gc
2)f2−3

c2

{4} or ∅ c(gc
2)f2−3

c(gc
2)f1−3

Return r̃ := rx.

Lemma 4.21. Let 7 ≤ k0 ≤ k ≤ n ∈ N, c = (1, 2, 3), g = (1, 2, . . . , k) and
r ∈ Sn a k0-cycle. If r has in supp g at least two fixed points and one moved
point, then r̃ := AdjustCycle(g, c, r, k) is a k0-cycle fixing the points 1 and
2 and moving 3. Moreover, the difference supp r − supp g lies in supp r̃.

Proof. If r has two fixed points and a moved point in supp g, the algorithm
returns a k0-cycle r̃. We want to show that r̃ fixes the points 1 and 2 but
moves the point 3. By Lemma 4.18, we have F = fix r ∩ supp g. Then the
table defining x looks as follows:
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F ∩ {1, 2, 3, 4} x
{1, 2, 3, 4} or {1, 2, 3} (1, 2)(3,m)
{1, 2, 4} or {1, 2} 1G

{1, 3, 4} (2, 3, 4)
{1, 3} (2, 4, 3)

{1, 4} or {1} (2, 3, f2)
{2, 3, 4} or {2, 4} (1, 3, 4)

{2, 3} (1, 4, 3)
{2} (1, 3, f2)

{3, 4} or {3} (1, f2)(2, 3)
{4} or ∅ (1, f1)(2, f2)

Thus, in each case r̃ = rx fixes 1 and 2 but not 3. Since x ∈ 〈g, c〉, it fixes
every element in {1, . . . , n}− supp g, so (supp r− supp g) ⊂ supp r̃ holds.

Lemma 4.22. Let G be a finite group, g, c, r ∈ G arbitrary elements and
k ∈ N. AdjustCycle with input g, c, r, k runs in O(kµ) time and requires
storage of a constant number of group elements.

Proof. This follows by standard arguments.

Using elements provided by AdjustCycle, the next algorithm appends
new points to the cycle g. Since g will always be a cycle of odd length, new
points can only be appended in pairs. Because of this we need an element s,
a ‘storage cycle’, storing the first new point until we encounter a second one.
The output s̃ assumes the role of s the next time AppendPoints is called.

Algorithm 4.23 (AppendPoints).
Input: Elements g, c, r, s of a group G and k, k0 ∈ N.
Output: Two elements g̃, s̃ ∈ G and k̃ ∈ N.
Algorithm:

1. Set g̃ := g, s̃ := s and k̃ := k.

2. For each 1 ≤ j < k0, set xj := c(r
j). If [xj, g̃c

2] = 1G, then perform
Step 3.

3. If s̃ = 1G, then set s̃ := xj. If s̃ 6= 1G and s̃ 6= xj, then set k̃ := k̃ + 2,

g̃ := g̃s̃(x
2
j ) and s̃ := 1G.

4. Return g̃, s̃ and k̃.

16



Lemma 4.24. Let 7 ≤ k0 ≤ k ≤ n ∈ N, c = (1, 2, 3), g = (1, 2, . . . , k) and
r ∈ Sn a k0-cycle fixing the points 1 and 2 and moving 3. Let s ∈ Sn be either
the identity element or s = (1, 2, b) for some b ∈ {1, . . . , n} − supp g. Let

g̃, s̃, k̃ := AppendPoints(g, c, r, s, k, k0). Then g̃ is a k̃-cycle matching c,
and supp r ∪ supp g ∪ supp s = supp g̃ ∪ supp s̃.

Proof. Let r = (3, a1, . . . , ak0−1) with 4 ≤ aj ≤ n. Then xj = (1, 2, aj), so xj

and g̃c2 commute if and only if aj 6∈ supp g̃. If, in this case, s̃ is the identity,
the new point is stored in s̃. If s̃ = xj, the point is already stored in s.
Otherwise we find s̃ = (1, 2, b) for some b 6∈ (supp g̃ ∪ {aj}). Now, g̃ is set to

(1, 2, . . . , k, b, aj), becoming a k̃-cycle matching c. Since all aj are treated
in this manner, clearly supp r ⊂ (supp g̃ ∪ supp s̃) holds.

Lemma 4.25. Let G be a finite group, g, c, r, s ∈ G arbitrary elements and
k, k0 ∈ N. Then AppendPoints with input g, c, r, s, k, k0 runs in O(k0µ)
time and requires storage of a constant number of group elements.

Proof. This is immediate.

4.4 Construction of standard generators

Let G be a black-box group isomorphic to an alternating or symmetric
group, c ∈ G a 3-cycle and g ∈ G a k-cycle matching c. The first algorithm
in this section uses these elements to construct standard generators of the
alternating group of the same degree as G.

The main algorithm RecogniseSnAn ties up all algorithms in this chap-
ter and results of [3] to either constructively recognise the group or decide
that it is not isomorphic to an alternating or symmetric group with high
probability.

Algorithm 4.26 (StandardGenerators).
Input: A group G, elements g, c ∈ G, 0 < ε < 1 and k,N ∈ N.
Output: Elements g̃, c̃ ∈ G and k̃ ∈ N or fail.
Algorithm:

1. Set s := 1G, k0 := k − 2, r := gc2, k̃ := k and g̃ := g.

2. Choose a list R of ⌈log(10/3)−1(logN + log ε−1)⌉ random conjugates
of r. For each x ∈ R, perform Step 3.
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3. Set m := AdjustCycle(g̃, c, x, k̃). If m = fail, then return fail.

Set g̃, s, k̃ := AppendPoints(g̃, c,m, s, k̃, k0). If k̃ > N , then return
fail.

4. If s = 1G, set g̃ := c2g̃ and c̃ := c. Otherwise set k̃ := k̃ + 1, g̃ := g̃s
and c̃ := s.

5. Check whether (g̃, c̃) satisfies the presentation (1) or (2) for Ak. If that

is not the case, then return fail. Otherwise return g̃, c̃, k̃.

Lemma 4.27. Let 9 ≤ k ≤ n ≤ N ∈ N, k ≥ 3n/4, G ∈ {Sn,An}, c ∈ G a
3-cycle, g ∈ G a k-cycle matching c and 0 < ε < 1. Then, with probability at
least 1−ε, we find g̃, c̃, k̃ := StandardGenerators(G, g, c, ε, k,N) 6= fail

such that k̃ = n and g̃, c̃ are standard generators for An.

Proof. First note that k0 ≥ ⌈(7/10)n⌉ and r is a k0-cycle, so the supports
of g̃ and a random conjugate x of r always have a common moved point.
Furthermore, x has at least two fixed points in supp g̃ since k = k0 + 2, so
the algorithm cannot fail in Step 3. Lemmas 4.21 and 4.24 ensure that after
Step 2 the set supp g̃ ∪ supp s contains the supports of all x ∈ R. Thus, by
Theorem 5.14, we find that with probability at least 1 − ε the elements g̃
and s have no common fixed point on {1, . . . , n}. It is easy to check that we
return the correct degree and standard generators.

Lemma 4.28. Let G be a group, g, c ∈ G arbitrary elements, 0 < ε < 1 and
k,N ∈ N. Then StandardGenerators with input G, g, c, ε, k,N runs in
O (N(logN + log ε−1)(µ+ ρ)) time and requires storage of a constant number
of group elements.

Proof. The cost to check whether a presentation for Ak is satisfied requires
O(N) group operations by [3, Lemma 4.4]. At any call of AdjustCycle

and AppendPoints we have k ≤ N . Thus, Lemmas 4.22 and 4.25 yield the
claimed runtime.

We can now present the main algorithm and prove the main Theorem 1.1.

Algorithm 4.29 (RecogniseSnAn).
Input: A group G = 〈X〉, 0 < ε < 1 and N ∈ N.
Output: A constructive isomorphism or fail.
Algorithm:
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1. Set T := ⌈log2 ε−1⌉.

2. If T = 0, then return fail. Otherwise set T := T − 1 and compute
R := ThreeCycleCandidates(G, 1/4, N). If R = fail, then return
fail.

3. If R = ∅, go to Step 2. Otherwise choose c ∈ R and set R := R− {c}.

4. Set ℓ := ConstructLongCycle(G, c, 1/8, N). If ℓ = fail, go to
Step 3. Otherwise set k, g := ℓ ∈ N×G.

5. Set ℓ := StandardGenerators(G, g, c, 1/8, k,N). If ℓ = fail, go to
Step 3. Otherwise set g, c, n := ℓ ∈ G×G× N.

6. Using methods described in [3], check whether G is isomorphic to An

or Sn. If that is the case, then return the constructive isomorphism
computed during the check. Otherwise go to Step 3.

Proof of Theorem 1.1. For the first part of the statement, consider Steps 2
through 6. Note that ThreeCycleCandidates cannot fail if G is an alter-
nating or symmetric group of degree at most N , so by Lemma 4.2 we obtain
a set R containing a 3-cycle with probability at least 3/4. Thus, without
loss of generality, let c ∈ R be a 3-cycle. Using Lemma 4.14, we find, with
probability at least 7/8, that Step 4 constructs a k-cycle matching c with
k ≥ max(3n/4, 9). Now, by Lemma 4.27, Step 5 returns the correct degree
and standard generators with probability at least 7/8. Step 6 always returns
a correct answer, cf. [3, Lemma 5.5 and proof of Theorem 1.2(b)]. Thus, the
probability to succeed in one pass is at least (3/4) · (7/8)2 > 1/2. We repeat
this procedure ⌈log2 ε−1⌉ times to obtain the claimed overall probability.

We now prove the second claim. Steps 2 through 6 are repeated up to
⌈log2 ε−1⌉ times. During one such pass we execute Step 2 only once and
Steps 4 through 6 up to |R| times. By Lemma 4.2 we have |R| ≤ c logN for
some constant c ∈ R. In Step 5, note that k, n ≤ N must hold. Then the
claim follows by Lemmas 4.3, 4.15, 4.28 and [3, Section 5].

5 Probability estimates

This section contains theoretical results which are used to establish lower
bounds for the success probability of the algorithm. Several results are of
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independent interest. We already mentioned the prbability estimates for
small support involutions in the introduction. Another noteworthy result is
a lower bound on the proportion on k-cycles in Sn having a common fixed
point, cf. Theorem 5.14.

Note that if f is a continuous and decreasing function on the interval
[a, b+ 1], then

∫ b+1

a

f(x) dx ≤
b∑

k=a

f(k). (3)

We will also use the following useful result several times.

Lemma 5.1 (Chernoff’s bound, [12, Lemma 2.3.3]). Let X1, X2, . . . be a
sequence of 0-1 valued random variables such that P(Xi = 1) ≥ p for any
values of the previous Xj (but Xi may depend on these Xj). Then, for all
integers T and 0 < δ < 1,

P

(
T∑

i=1

Xi ≤ (1− δ)pT

)
≤ e−δ2pT/2.

5.1 Small support involutions

The aim of this section is to compute the proportion of even-order ele-
ments in An and Sn which power to an involution with small support. These
involutions are used in the algorithm to construct 3-cycles (cf. Algorithm 4.1
and Corollary 5.10). To achieve this, we compute lower bounds for the pro-
portion ub(n) of elements in Sn and the proportion ũb(n) of elements in An

which contain jb points in cycles of lengths divisible by b but not by 2b and
the remaining (n− jb) points in cycles of length not divisible by b for some
integer j satisfying 1 ≤ j ≤ 4

√
n/(3b). To obtain involutions, we choose b to

be a certain power of two.
Let tb(bn) denote the proportion of all permutations in Sbn such that all

cycle lengths are a multiple of b but no cycle length is a multiple of 2b. Define
tb(0) := 1. Observe that tb(b) = 1/b, since the only allowable permutations
are the b-cycles and the proportion of b-cycles in Sb is 1/b. The proof of the
following lemma refines the ideas in [10] to obtain the explicit lower bound
given below.

Lemma 5.2. Let n, b ∈ N. Then tb(bn) ≥
(
b231/(2b)n1−1/(2b)

)−1
.
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Proof. The proof is by induction on n. For n = 1 we have tb(b) = 1/b and
the claim holds. Consider tb((n+1)b). If 1 lies in a cycle of length jb, then j
has to be odd. Choosing jb−1 out of (n+1)b−1 points and arranging them

yields ((n+1)b−1)!
((n−j+1)b)!

such cycles. On the remaining (n + 1 − j)b points we may
choose any permutation whose cycles have lengths divisible by b but not by
2b. We obtain the recursion

((n+ 1)b)! · tb((n+ 1)b) =
n+1∑

j=1
j odd

((n+ 1)b− 1)! · tb((n+ 1− j)b),

and thus

(n+ 1)b · tb((n+ 1)b) =
n+1∑

j=1
j odd

tb((n+ 1− j)b).

Let us first assume that n is even. The induction hypothesis yields

(n+ 1)b · tb((n+ 1)b) ≥ 1 +
n−1∑

j=1
j odd

1

b231/(2b)(n+ 1− j)1−1/(2b)

= 1 +

n/2∑

k=1

1

b231/(2b)(2k)1−1/(2b)

≥ 1 +

(
2

3

)1/(2b) ∫ n/2+1

1

1

b22x1−1/(2b)
dx

= 1 +

(
2

3

)1/(2b)
1

b

(
x1/(2b)

∣∣∣∣
n/2+1

x=1

)

≥ 1

b31/(2b)
(
(n+ 2)1/(2b) − 21/(2b) + b31/(2b)

)

≥ 1

b31/(2b)
(n+ 1)1/(2b).

A similar estimation holds for odd n, using tb(b) = 1/b; in either case we see

tb((n+ 1)b) ≥ 1

b231/(2b)
(n+ 1)1/(2b)−1,

so the result follows by induction.
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Lemma 5.3. Let f(x) :=
(
(n/b− x)1/bx1−1/(2b)

)−1
, where n ≥ 404 and 1 ≤

b ≤ 4
√
n/3. Then f is positive and decreasing for 0 < x ≤ 4

√
n/(3b) + 1.

Proof. Clearly f is positive on the given interval. Moreover,

d

dx
f(x) =

bx+ n− 2bn+ 2b2x

2(n− bx)bx
f(x)

and bx+n−2bn+2b2x < 0 for x ≤ 4
√
n/(3b)+1, which proves the claim.

Let s¬b(n) denote the proportion of elements in Sn with no cycle of length
a multiple of b. Applying the inequality from [2, Theorem 2.3(b)] we get

s¬b(n) ≥
b1/b

Γ(1− 1/b)n1/b

(
1− 1

n

)
, (4)

where Γ denotes the Γ-function. Now we are in a position to prove the
following lemma which is essential for the proof of Theorem 1.2.

Lemma 5.4. Let 404 ≤ n ∈ N. Define b := 2⌈log2(
1
3
log(n))⌉. Then ub(n) ≥

1/ (16 log(n)) and u2b(n) ≥ 1/ (21 log(n)).

Proof. Clearly

ub(n) =

⌊ 4
√
n

3b
⌋∑

j=1

s¬b(n− jb) · tb(jb).

Set c(b) := Γ(1 − 1/b)−1
(
1− (404− 4

3

√
404)−1

)
; then s¬b(n − jb) ≥ c(b) ·

(b/(n− jb))1/b. Together with Lemmas 5.2 and 5.3 we obtain

ub(n) ≥
c(b)

31/(2b)b2

⌊ 4
√
n

3b
⌋∑

j=1

1

(n/b− j)1/b
1

j1−1/(2b)

≥ c(b)

31/(2b)b2

∫ ⌊ 4
√
n

3b
⌋+1

1

1

(n/b)1/b
1

j1−1/(2b)
dj

≥ c(b)

31/(2b)b2−1/bn1/b

∫ 4
√
n

3b

1

j1/(2b)−1 dj

=
2c(b)

31/(2b)b1−1/bn1/b
j1/(2b)

∣∣∣∣

4
√
n

3b

j=1
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>
2c(b)

bn1/b

((
4
√
n

3b

)1/(2b)

− 1

)
.

By definition, b = 2⌈log2(
1
3
log(n))⌉, thus 1

3
log(n) ≤ b < 2

3
log(n). Note that

1
3
log(n) > 2 for n ≥ 404 implies b ≥ 4. Moreover, 1/

(
bn1/b

)
is increasing

in b for 0 < b < log(n), and Γ is decreasing on the interval (0, 1), so c(b)

is increasing for b > 1. Lastly (4
√
n/(3b))

1/(2b) − 1 is decreasing in b for
0 < b ≤ 4

√
n/3. Altogether we obtain

ub(n) ≥
2c(4)

bn1/b

((
4
√
n

3b

)1/(2b)

− 1

)

≥ 6c(4)

log(n)n3/ log(n)

((
2
√
n

log(n)

)3/(4 log(n))

− 1

)
.

Since
(
2
√
n/ log(n)

)3/(4 log(n)) − 1 is increasing on the interval [404,∞) and

n(3/ log(n)) = e3, this yields

ub(n) ≥
6c(4)

e3 log(n)



(

2
√
404

log(404)

)3/(4 log(404))

− 1


 ≥ 1

16 log(n)
.

A similar argument establishes the bound for u2b(n).

Lemma 5.5. For all b, n ∈ N,

ũb(n) ≥
(
1− 1

b− 1

)
ub(n).

Proof. Denote by a¬b(n) the proportion of elements in An with no cycle of
length a multiple of b, and by c¬b(n) = 2 s¬b(n) − a¬b(n) the proportion of
such elements in Sn −An. Every element in Sjb can be supplemented with
an element of An−jb or Sn−jb −An−jb to get an element of An, hence

ũb(n) ≥
⌊ 4

√
n

3b
⌋∑

j=1

min{a¬b(n− jb), c¬b(n− jb)} · tb(jb).

Using the bounds (1−1/(b−1)) s¬b(n) ≤ a¬b(n) ≤ (1+1/(b−1)) s¬b(n) from
[2, Theorem 3.3(b)] we get c¬b(n) ≥ (1 − 1/(b − 1)) s¬b(n), which yields the
result.
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Before proving Theorem 1.2, we state the following immediate corollary.

Corollary 5.6. Let 9 ≤ n ∈ N, G ∈ {An, Sn} and T := ⌈13 log n log ε−1⌉.
The probability that among T random elements of G there is an element x
of even order satisfying

∣∣ supp x(|x|/2)
∣∣ ≤

⌊
4
√
n/3
⌋
is at least 1− ε.

Proof of Theorem 1.2. The proportion in Sn equals
∑

b∈Bn
ub(n) and in An

it equals
∑

b∈Bn
ũb(n), where Bn := {2t : 1 ≤ t ≤

⌊
log2(

⌊
4
√
n/3
⌋
)
⌋
}. First,

let n ≥ 404 and b0 := 2⌈log2(
1
3
log(n))⌉. Then Lemmas 5.4 and 5.5 yield

∑

b∈Bn

ub(n) ≥
∑

b∈Bn

ũb(n) ≥ ũb0(n) + ũ2b0(n) ≥
1

13 log(n)
.

For 36 ≤ n ≤ 403 we can check

∑

b∈Bn

ũb(n) ≥
∑

b∈Bn

(
1− 1

b− 1

) ⌊ 4
√
n

3b
⌋∑

j=1

s¬b(n− jb) · tb(jb) ≥
1

13 log(n)

case by case, using the bounds in Lemma 5.2 and (4). Lastly, note that
the desired property depends only on the cycle type. For 9 ≤ n ≤ 35, we
confirm the claim by investigating each conjugacy class of Sn and An and
thus directly computing the exact proportion.

5.2 Products of k-involutions

We call a product of k disjoint transpositions a k-involution. Our method
to construct a 3-cycle uses the product of two random k-involutions r and s
such that supp(r)∩supp(s) contains a single element. Since we are in a black-
box setting, given an involution r we know neither k nor supp(r) explicitly.
However, if k is small enough, then a random conjugate of r which does
not commute with r satisfies our hypothesis with high probability, cf. The-
orem 1.3. Furthermore, there are enough non-commuting conjugates of r.
Note that we can find involutions with small k by Theorem 1.2.

First, we need some auxiliary lemmas.

Lemma 5.7. Let f(k) := (1− 2k/(9k2/4− 2k + 1))
2k
. Then f(k) is in-

creasing for k ≥ 2.
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Proof. Let g(k) := 9
4
k2 − 2k + 1. The derivative of f(k) is

(
2 log

(
1− 2k

g(k)

)
+

2k

g(k)2
g(k)

9
4
k2 − 4k + 1

(
−2g(k) + 2k

(9
2
k − 2

)))
f(k).

Thus, using log(1 + x) ≥ x/(1 + x), we find

d

dk
f(k) ≥

(
−4k

9
4
k2 − 4k + 1

+
2k

(9
4
k2 − 2k + 1)(9

4
k2 − 4k + 1)

(
9

2
k2 − 2

))
f(k)

and for k ≥ 2 it is easy to check that both factors are positive.

Let s ∈ Sn be a fixed k-involution. Denote by inv(n, k) the number of
k-involutions in Sn. Then

inv(n, k) =
| Sn |

|CSn(s)|
=

n!

2kk!(n− 2k)!
.

Let trip(n, k) denote the proportion of k-involutions r ∈ Sn such that r and s
move a single common point.

Note that if k is even, then inv(n, k) is also the number of k-involutions
in An, and trip(n, k) equals the proportion of k-involutions r ∈ An such that
| supp(r) ∩ supp(s)| = 1. Thus for the results in this section it does not
matter whether we consider the alternating or the symmetric group.

Lemma 5.8. Let 9 ≤ n ∈ N and 1 ≤ k ≤ 2
√
n/3. Then trip(n, k) ≥

min{trip(n, 1), trip(n, ⌊2√n/3⌋)}.

Proof. We have

trip(n, k) =
2k(n− 2k) inv(n− 2k − 1, k − 1)

inv(n, k)
=

4k2(n− 2k)!2

n!(n− 4k + 1)!
.

It suffices to show that trip(n, k + 1)/ trip(n, k) is decreasing in k. To see
this, consider the derivative of the quotient. We find

d

dk

trip(n, k + 1)

trip(n, k)
= α(n, k)

−2(k + 1)

((n− 2k − 1)(n− 2k)k)3

for some polynomial α(n, k) ∈ Z[n, k]. Since (n − 2k − 1) > 0 holds for
n ≥ 9 and k ≤ 2

√
n/3, we only need to show that α(n, k) ≥ 0. Write
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α = α+ + α− such that α+(n, k) ∈ Z>0[n, k] and α−(n, k) ∈ Z<0[n, k]. Since
1 ≤ k ≤ 2

√
n/3, we obtain

α(n, k) ≥ α+(n, 1) + α−(n, 2
√
n/3) =: β(

√
n) ∈ Q[

√
n].

Using Sturm sequences (cf. [6, Theorem 4.1.10]), it is easy to see that β has
no roots for

√
n ≥ 28, so α(n, k) ≥ β(

√
n) ≥ 0. Thus, the claim holds for

n ≥ 282. For 9 ≤ n ≤ 282 − 1 and 1 ≤ k ≤ ⌊2√n/3⌋, we check the claim
case by case.

Using this result we can now prove the first claim of Theorem 1.3.

Proof of Theorem 1.3 (1). By Lemma 5.8 it suffices to check the inequality
for k = 1 and k = ⌊2√n/3⌋. The first case is easy to verify , so consider the
second case. Note that

trip(n, k)

trip(n+ 1, k)
=

(n+ 1)(n− 4k + 2)

(n− 2k + 1)2
= 1 +

n− (4k2 − 1)

(n− 2k + 1)2
,

so trip(n, k) increases in n for n ≤ 4k2 − 1, which holds for n ≥ 39. We
consider this case first. Since n ≥ ⌈9k2/4⌉, we see

trip(n, k) ≥ trip

(⌈
9

4
k2

⌉
, k

)

=
4k2

(⌈9
4
k2⌉ − 4k + 1)

2k∏

i=1

⌈9
4
k2⌉ − 4k + i

⌈9
4
k2⌉ − 2k + i

≥ 4k2

(9
4
k2)

2k∏

i=1

(
1− 2k

9
4
k2 − 2k + 1

)
=

16

9

(
1− 2k

9
4
k2 − 2k + 1

)2k

.

The claim follows by Lemma 5.7, since k ≥ 4. For 10 ≤ n ≤ 38 we check
trip(n, ⌊2√n/3⌋) ≥ 10/(3n) case by case. Finally, for n ≤ 9 we compute the
proportion explicitly.

Theorem 1.3 (1) shows that we can construct a 3-cycle by looking at
O(n) conjugates of an involution with small support. Unfortunately, consid-
ering that many conjugates would result in a final algorithm with complexity
Õ(n2). Thus we do not use this result to construct the 3-cycles directly, but
instead use it as a lower bound for the proportion of non-commuting conju-
gates.
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Corollary 5.9. Let 9 ≤ n ∈ N, 1 ≤ k ≤ 2
√
n/3, 0 < ε < 1, G ∈ {An, Sn}

and s ∈ G a k-involution. Let Z :=
⌈
3n
5
⌈3 log ε−1⌉

⌉
. Then, with probability

at least 1− ε, a set of Z random conjugates of s contains at least ⌈3 log ε−1⌉
elements not commuting with s.

Proof. Use the proportion established in Theorem 1.3 (1) and Chernoff’s
bound (Lemma 5.1) with δ := 1/2.

Next we prove the second part of Theorem 1.3 by establishing a bound for
the conditional probability that two k-involutions s and r satisfy | supp r ∩
supp s| = 1, given that they do not commute. Note that in this case (sr)2 is
a 3-cycle, so we immediately obtain the following corollary.

Corollary 5.10. Let 9 ≤ n ∈ N, 1 ≤ k ≤ 2
√
n/3, 0 < ε < 1, G ∈ {An, Sn}

and s ∈ G a k-involution. Let Z := ⌈3 log ε−1⌉. Then, with probability at
least 1− ε, a set of Z random conjugates of s not commuting with s contains
an element r such that (sr)2 is a 3-cycle.

Proof of Theorem 1.3 (2). Let s be a fixed k-involution and denote by Σ
the proportion of k-involutions r such that (sr)2 is a 3-cycle among all k-
involutions not commuting with s. The proportion Σ can be computed ex-
plicitly for n ≤ 9, so assume in the following that n ≥ 10. Let T := {t ∈
sSn : | supp t ∩ supp s| = 1} and C := {c ∈ sSn : | supp c ∩ supp s| = 0}.
Then (st)2 is a 3-cycle for every t ∈ T and [s, c] = 1G for every c ∈ C. We
find |T | = 2k(n− 2k) inv(n− 2k − 1, k − 1) and |C| = inv(n− 2k, k), so the
conditional probability Σ is bounded below by

|T |
inv(n, k)− |C| =

4k2(n− 2k)!2

(n− 4k + 1)(n!(n− 4k)!− (n− 2k)!2)
.

This term is greater or equal to 1/3 if and only if

(
1 +

12k2

n− 4k + 1

) 2k∏

i=1

n− 4k + i

n− 2k + i
≥ 1. (5)

Define g(n, k) := (1 + 12k2/(n− 4k + 1)) (1− 2k/(n− 2k + 1))2k; the claim
follows if g(n, k) ≥ 1. For this purpose, consider the derivative

d

dn
g(n, k) =

8k2(−n+ 6k2 + k − 1)

(n− 2k + 1)(n− 4k + 1)2

(
1− 2k

n− 2k + 1

)2k

.
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Note that k ≤ 2
√
n/3 by assumption and hence n ≥ 9k2/4.

Assume first n ≥ 6k2+k−1. Then d
dn
g(n, k) ≤ 0, and limn→∞ g(n, k) = 1

implies g(n, k) ≥ 1. Now assume 9k2/4 ≤ n < 6k2 + k− 1 and k ≥ 36. Then
d
dn
g(n, k) > 0, hence

g(n, k) ≥ g
(
9k2/4, k

)

=

(
1 +

12k2

9k2/4− 4k + 1

)(
1− 2k

9k2/4− 2k + 1

)2k

=: h(k)f(k).

Since h(k) ≥ 57/9 and f(k) increases for k ≥ 2 by Lemma 5.7, we get
g(n, k) ≥ 57/9 · f(36) > 1.

Finally, for 9k2/4 ≤ n < 6k2+k−1 and 1 ≤ k ≤ 35 we verify inequality (5)
case by case.

5.3 Pre-bolstering elements

Let G = Sn or G = An, and let c ∈ G be a 3-cycle. In the algorithm, we
use pre-bolstering elements to construct a long cycle matching c. Recall that
an element r is pre-bolstering with respect to c if

r = (w, u, a1, . . . , aα)(v, b1, . . . , bβ)(. . .)

or
r = (w, u, a1, . . . , aα, v, b1, . . . , bβ)(. . .)

with supp c = {u, v, w} and α, β ≥ 2. If k = α + β + 3, we call the element
k-pre-bolstering. Note that k ≥ 7. Denote by Lc,G(k) the number of k-pre-
bolstering elements of G with respect to c.

Lemma 5.11. Let 7 ≤ k ≤ n ∈ N and G ∈ {An, Sn}. Then we have
Lc,Sn(k) = 12(n− 3)!(k − 6) and Lc,An

(k) = 6(n− 3)!(k − 6). Moreover,

1

|G|

n∑

k=7

Lc,G(k) ≥
2

5n
.

Proof. A standard counting argument yields the formulae for Lc,G(k). Thus,
for G ∈ {An, Sn}, we obtain

1

|G|

n∑

k=7

Lc,G(k) =
6

n

(
1− 8n− 28

(n− 1)(n− 2)

)
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≥ 6

n

(
1− 8 · 7− 28

(7− 1)(7− 2)

)
=

2

5n
.

Using Chernoff’s bound, we obtain a terminating condition for the
algorithm BolsteringElements.

Proposition 5.12. Let 7 ≤ n ∈ N, G ∈ {An, Sn}, c ∈ G a 3-cycle, 0 <
ε < 1 and 1/2 < α ≤ 4/5. Let S =

⌈
5nmax

(
25
18
⌈1
2
logα ε⌉, (5/4)4 log ε−1

)⌉
.

The probability that among S random elements at least ⌈1
2
logα ε⌉ are k-pre-

bolstering with respect to c for some 7 ≤ k ≤ n is at least 1− ε.

Proof. Use Lemma 5.11 and Chernoff’s bound with δ := 16/25.

The next proposition establishes the second bound: a lower bound on the
proportion of k-pre-bolstering elements in G with αn ≤ k ≤ n among the
k-pre-bolstering elements with 7 ≤ k ≤ n. This ensures that Construct-

LongCycle constructs long cycles with high probability.

Proposition 5.13. Let 9 ≤ n ∈ N, G ∈ {An, Sn}, c = (c1, c2, c3) ∈ G a
3-cycle, 0 < ε < 1 and 3/4 ≤ α ≤ 4/5. Let R = ⌈1

2
logα ε⌉ and r1, . . . , rR ∈

G random elements such that ri is ki-pre-bolstering with respect to c. The
probability that there is at least one kj with kj ≥ max(9, ⌈αn⌉+1) is at least
1− ε.

Proof. We want to show that the proportion of ki-pre-bolstering elements
with ki ≥ ⌈αn⌉+ 1 among all pre-bolstering elements is at least 1− α2. For
n = 9 we verify the claim directly, so assume in the following n ≥ 10. Then
⌈αn⌉+ 1 ≥ 9, and we find

∑n
k=max(⌈αn⌉+1,9) Lc,G(k)∑n

k=7 Lc,G(k)
=

(n− 6)(n− 5)− 2
∑⌈αn⌉−6

k=1 k

(n− 6)(n− 5)

= 1− (⌈αn⌉ − 6)(⌈αn⌉ − 5)

(n− 6)(n− 5)

> 1− α2(n− 6)(n− 5)

(n− 6)(n− 5)
.

The claim now follows by a standard argument.
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5.4 Common fixed points of k-cycles

The final result ensures that we construct an n- or an (n − 1)-cycle in
StandardGenerators and thus find the correct degree of the group with
high probability.

Theorem 5.14. Let 0 < ε < 1, 0 < α < 1 and n, k, t ∈ N with αn ≤ k < n
and

t ≥ 1

log ((1− α)−1)

(
log n+ log ε−1

)
.

The probability that t random k-cycles in Sn have a common fixed point is at
most ε.

Proof. Denote by Pfix(n, k, t) the probability that t random k-cycles in Sn

have a common fixed point. Let r ∈ Sn be a k-cycle and 1 ≤ m1, . . . ,mj ≤ n
pairwise different points. If r fixes each of the mi, then the probability
that another random point mj+1 is fixed by r equals (n − k − j)/(n − j) =
1 − k/(n − j). Thus, the probability that m1, . . . ,mj+1 are common fixed
points of t random k-cycles equals

j∏

i=0

(
1− k

n− i

)t

.

Define cj := (−1)j
(

n
j+1

)∏j
i=0

(
1−k/(n−i)

)t
(note that cj = 0 for j ≥ n−k);

a standard inclusion-exclusion principle shows Pfix(n, k, t) =
∑n−k−1

j=0 cj. We
will prove ∣∣∣∣

cj
cj+1

∣∣∣∣ =
j + 2

n− j − 1
·
(
1− k

n− j − 1

)−t

≥ 1

for j + 1 < n− k. To this end, note that

t ≥ 1

log ((1− α)−1)
log

(
n− 2

2

)
≥ 1

log ((1− α)−1)
log

(
n− j − 1

j + 2

)

=
log
(

j+2
n−j−1

)

log
(

(n−j−1)(1−α)
n−j−1

) ≥
log
(

j+2
n−j−1

)

log
(

n−j−1−k
n−j−1

) ,

thus t · log (1− k/(n− j − 1)) ≤ log ((j + 2)/(n− j − 1)). This implies
(
1− k

n− j − 1

)t

≤ j + 2

n− j − 1
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and hence |cj| ≥ |cj+1|.
Since cj has alternating sign and c0 is positive, this yields

∑n−k−1
j=0 cj ≤ c0.

Moreover,

t ≥ 1

log ((1− α)−1)

(
log n+ log ε−1

)
=

log
(
ε
n

)

log(1− α)
≥ log

(
ε
n

)

log(1− k
n
)
,

hence log (ε/n) ≥ t · log
(
1 − k/n

)
. We obtain c0 = n(1 − k/n)t ≤ ε, thus

proving the claim.
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