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Juan Patiño-Echeverŕıa, Bernd Krauskopf and Hinke M. Osinga
Department of Mathematics, University of Auckland, New Zealand

June 2025

Abstract

Wild chaos is a higher-dimensional form of chaotic dynamics that can only arise in vector
fields of dimension at least four. It is characterized by the persistent presence of tangencies
between stable and unstable manifolds of an invariant set. We study a four-dimensional
extension of the classic Lorenz system, which was recently shown to exhibit a so-called
wild pseudohyperbolic attractor for a specific choice of parameters. Pseudohyperbolicity
guarantees that every trajectory in the attractor has a positive maximal Lyapunov exponent,
and this property persists under small perturbations of the system.

We investigate how wild chaotic attractors arise geometrically by analysing the overall
bifurcation structure in the (ρ, µ)-plane. Here, ρ is the standard (Rayleigh) parameter in the
classic Lorenz system, and µ is a new parameter that introduces spiralling dynamics near the
origin. We begin by identifying the bifurcation structure inherited from the Lorenz system by
continuing its homoclinic bifurcations as curves. Kneading diagrams, in combination with
Lin’s method, allow us to uncover additional curves of global bifurcation intrinsic to the
four-dimensional system. We also compute the Lyapunov spectrum of the unstable manifold
of the origin to identify different types of attractors. This approach provides insight into the
parameter regions where wild chaos may occur.

1 Introduction

We study a four-dimensional extension of the classic Lorenz system [35] as proposed in [40]:
ẋ = σ (y − x),
ẏ = x (ρ− z)− y,
ż = x y − β z + µw,
ẇ = −µ z − βw,

(1)

where σ, β, ρ, and µ are non-negative parameters. As is standard in the field, we fix the
parameters σ = 10 and β = 8/3 throughout this paper. When µ = 0, the hyperplane {w =
0} is invariant, and system (1) restricted to this hyperplane is the three-dimensional Lorenz
system. Indeed, many properties of the classic Lorenz system carry over to the four-dimensional
system (1). In particular, system (1) exhibits a rotational symmetry given by (x, y, z, w) 7→
(−x,−y, z, w), and its divergence is −(2β + σ + 1) < 0, so that system (1) is dissipative.
Furthermore, the origin 0 is always an equilibrium that coexist, for ρ > 1, with a pair of
rotationally symmetric equilibria

p± :=

(
±
√

(ρ− 1)(β2 + µ2)

β
,±
√

(ρ− 1)(β2 + µ2)

β
, ρ− 1,

−µ (ρ− 1)

β

)
.

System (1) was proposed in [40] as a candidate for a vector field exhibiting a wild spiral
chaotic attractor. Here, wild refers to the fact that the existence of homoclinic tangencies is
structurally stable in the C1-topology. In other words, any sufficiently small C1-perturbation
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of the system will also have a chaotic attractor with a homoclinic tangency [37, 9, 43, 44]. The
notion of wild chaotic sets goes back to Newhouse, who showed that, in the C2-topology, planar
diffeomorphisms can have robust homoclinic tangencies [36]. For C1-robustness of homoclinic
tangencies, a three-dimensional diffeomorphism, or equivalently, a four-dimensional vector field
is required; see [22, 43, 45] for background and theory.

System (1) is among the few examples currently known of higher-dimensional vector fields
that exhibit wild chaotic attractors. The important new ingredient is that for µ > 0 and ρ > 1,
the origin is a saddle-focus equilibrium, unlike in the Lorenz system, where the origin is a saddle
with real eigenvalues. This means that in (1), all homoclinic orbits when µ > 0 and ρ > 1 are
of Shilnikov type. Recently, Gonchenko, Kazakov, and Turaev [23] introduced a numerical tech-
nique to determine whether an attractor is pseudohyperbolic by computing Lyapunov exponents
and their associated eigenfunctions. Pseudohyperbolicity is a key property that ensures the ro-
bustness of chaotic dynamics and the absence of periodic windows; see again [22, 43, 45]. Using
this technique and the computation of kneading diagrams [6] in the (ρ, σ)-plane, they showed nu-
merically that system (1) has a wild pseudohyperbolic chaotic attractor for the standard values
of σ and β, with ρ = 25 and µ = 7.

To set the stage, Fig. 1 shows the three saddle-focus equilibria 0 and p± of system (1)
at the parameter point (ρ, µ) = (25, 7), which we will refer as (ρ∗, µ∗) throughout this paper.
Also shown is the one-dimensional unstable manifold W u(0) of 0 (consisting of trajectories
that converge to 0 in backward time), which accumulates on the attractor; see also [23, Fig.
1]. Panel (a) is a projection onto (x, y, z)-space, and panels (b) and (c) show projections onto
(x, y, w)-space and (x, z, w)-space, respectively. Notice the rotational symmetry of system (1).
The value ρ = 25 chosen in [23] is slightly smaller than the standard value ρ = 28 associated with
the classic chaotic attractor in the Lorenz system [35, 41, 2, 42]. The results in [23] establish
a connection between the theoretical framework of wild chaotic attractors developed in [44, 43]
and numerical evidence for their existence in this specific four-dimensional system. However,
there is as yet no description of the bifurcation structure of system (1) or the precise transitions
to or from a wild chaotic attractor.

Here, we carry out a two-parameter bifurcation analysis of system (1) to understand the
geometric structures in the (ρ, µ)-plane that give rise to different attractors and, in particular,
to a wild chaotic attractor as that in Fig. 1. Specifically, we investigate the backbone structure
of system (1), consisting of equilibria and periodic orbits, together with their associated stable
and unstable manifolds. Our goal is to identify (sequences of) global bifurcations responsible for
creating wild attractors as parameters vary. Specifically, we address the following key questions:

• How do the bifurcations of the classic Lorenz system extend into the two-parameter (ρ, µ)-
plane?

• What is the overall global structure of the bifurcation curves in the (ρ, µ)-plane?

• What types of attractors exist in system (1), and under what conditions does a wild chaotic
attractor arise?

• What bifurcation mechanisms lead to the emergence of wild chaos?

To answer these questions, we begin by considering global bifurcations of the classic Lorenz
system that were identified in [15] and continue them as curves in the (ρ, µ)-plane of system (1),
which we achieve with the package AUTO [13, 14]. This first step allows us to understand the
organization of bifurcations inherited from the Lorenz system, revealing a complicated structure
of global bifurcations. The bifurcation diagram highlights the primary homoclinic bifurcation
curve as an upper boundary for the other global bifurcations. This curve emerges from the
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Figure 1: The attractor of system (1) for σ = 10, ρ = 25, β = 8/3, and µ = 7, represented
by the one-dimensional unstable manifold W u(0) (red curve) of the saddle equilibrium 0 (green
dot). Shown are projections onto (x, y, z)-space (a), (x, y, w)-space (b), and (x, z, w)-space (c);
also shown are the saddle equilibria p± (green dots).

so-called homoclinic explosion point in the Lorenz system [41], which also acts as an organizing
centre for the dynamics of system (1) in the (ρ, µ)-plane.

We find that all the bifurcation curves inherited from the Lorenz system lie below the point
(ρ∗, µ∗), where the wild chaotic attractor was identified in [23]. However, as the next step, we
identify new global bifurcations not present in the Lorenz system. Specifically, homoclinic orbits
of the origin in the Lorenz system always make a single ‘excursion’ around either p+ or p− and
then are forced to ‘visit’ the opposite symmetric equilibrium [15]. We find that homoclinic orbits
of the four-dimensional system (1) can make multiple ‘excursions’ around the first equilibrium
before ‘visiting’ the symmetric counterpart. Moreover, all homoclinic orbits to 0 in system (1)
are of ‘chaotic’ Shilnikov type because the saddle quantity of 0 is always positive [31]. We find
many homoclinic orbits with these properties in system (1). Several of them also originate from
the homoclinic explosion point on the ρ-axis, despite the fact that they do not exist as actual
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homoclinic orbits in the classic Lorenz system. To identify and continue this type of homoclinic
bifurcations, we employ kneading diagrams [6] combined with Lin’s method [29]. This approach
reveals the intricate structure of the bifurcations and shows how these curves accumulate densely
near the point (ρ∗, µ∗). To study the nature of the attractors in system (1), we also compute the
Lyapunov spectrum of W u(0), which allows us to investigate pseudohyperbolicity by comparing
the Lyapunov exponents with the topological information obtained from the bifurcation and
kneading diagrams.

This paper is organized as follows. In Se. 2, we present and describe the basic properties and
local bifurcation structure of system (1) in the (ρ, µ)-plane. In Se. 3, we study global bifurcations
of system (1) that originate from the classic Lorenz system, showing how they are organized
as curves in the (ρ, µ)-plane. In Se. 4, we introduce the kneading diagram of W u(0), which
enables the identification of additional curves of secondary homoclinic bifurcation. In Se. 5, we
compactify the parameter plane to the (quarter) Poincaré disk, which allows us to visualize the
global organization of the bifurcation curves, and in particular, we identify a homoclinic explosion
point at infinity as an organizing centre of the dynamics of system (1). The kneading diagram
reveals the denseness of homoclinic bifurcations near (ρ∗, µ∗), providing numerical evidence for
the wild nature of the chaotic attractor. In Se. 6, we present the associated Lyapunov spectrum
of the unstable manifold of the origin to identify different types of attractors. Finally, in Se. 7,
we summarize our findings and discuss possible directions for future research.

2 Local and global bifurcations of equilibria and the primary
periodic orbits

Figure 2 shows, for three different fixed values of µ, the one-parameter bifurcation diagram of
system (1) when varying ρ. The starting point is the case µ = 0 in panel (a) of the classic
Lorenz system [35]; we refer to [41, 17, 16, 24, 42] for more details and background of this three-
dimensional system. As we already mentioned, 0 is always an equilibrium, and its eigenvalues
are

λ1,2 = 1
2(σ + 1)± 1

2

√
(σ − 1)2 + 4σρ and λ3,4 = −β ± µ i.

Hence, 0 is initially stable until it loses stability in a pitchfork bifurcation P at ρ = 1; for ρ > 1, 0
is a real saddle with one unstable and three stable eigenvalues. The symmetric pair of equilibria
p±, born at ρ = 1, are initially stable until they lose stability in a subcritical Hopf bifurcation
H at ρH ≈ 24.7368. Beyond H, the pair p± are saddle foci with two unstable eigenvalues.
For values of ρ before ρH, there exists a pair of saddle periodic orbits Γ±, which have a single
unstable Floquet multiplier, meaning that they have three-dimensional stable manifolds W s(Γ±)
(consisting of trajectories that converge to Γ± in forward time). The pair Γ± shrink down to p±

and disappear at H; the branch of periodic orbits is represented in Fig. 2(a) by the maximum and
minimum of |x|. A pair of homoclinic orbits to 0 exists at the codimension-one global bifurcation
denoted Homr at ρr ≈ 13.9565. It famously creates, for ρ > ρr, an infinite number of saddle
periodic orbits, including Γ± (also known as the primary periodic orbits) [41, 24, 28, 21]. This
bifurcation at µ = 0 is also referred to as a homoclinic explosion point. It marks the beginning of
the so-called preturbulent regime, where one finds a hyperbolic set that contains infinitely many
saddle periodic orbits [28, 25]. As a result, there are orbits with arbitrarily long transients,
but p± are still the only attractors [41, 16]. The preturbulent regime ends at ρE ≈ 24.0579,
where there is a pair of heteroclinic connections between 0 and Γ±; together with structurally
stable connections from Γ± back to 0, it forms a pair of EtoP cycles. We call this heteroclinic
bifurcation EtoP for equilibrium to periodic orbit. At EtoP the two branches of W u(0) no longer
converge to p±, respectively, but rather lie in the stable manifold W s(Γ±) of Γ±. Past EtoP,
the one-dimensional invariant manifold W u(0) never settles down to simple behaviour, creating
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Figure 2: One-parameter bifurcation diagrams of (1) in ρ for µ = 0 (a), µ = 4 (b), and µ = 7
(c), where branches are represented by |x|. Shown are branches of equilibria (dark blue when
stable and light blue when saddles) and periodic orbits (dark green when stable and light green
when saddles) represented by their minimum and maximum value of |x|. Also shown are points
P of pitchfork, H of Hopf, PD of period-doubling and T of torus bifurcation, together with the
vertical lines Homr of homoclinic and EtoP of equilibrium to periodic orbit bifurcation.

a chaotic attractor: the famous Lorenz attractor. It initially coexists with p± until they lose
stability at H; subsequently, the Lorenz attractor is the sole attractor of system (1) with µ = 0.
It is pseudohyperbolic over a range of ρ-values up to about ρ = 31.01; see [12, 10] for details.

Figure 2(b) shows the case for µ = 4. Initially, up to ρ ≈ 10, the bifurcation structure is as
for µ = 0. However, the Hopf bifurcation H now occurs much earlier at ρ ≈ 10.6227, before the
homoclinic bifurcation Homr at ρ ≈ 23.8079. This change in the order of H and Homr means,
in particular, that the Hopf bifurcation is now supercritical: the bifurcating pair of periodic
orbits exist to the right of H and Γ± are initially stable. These two periodic orbits are the only
attractors of system (1) until they lose stability in a supercritical period-doubling bifurcation
PD at ρ ≈ 14.2488. Here, a pair of stable period-doubled periodic orbits is born (not shown);
this process continues in a period-doubling cascade that creates a pair of chaotic attractors.
Past PD, the periodic orbits Γ± are of saddle type with three-dimensional stable manifolds. As
shown in panel (b), they disappear in the homoclinic bifurcation Homr at ρ ≈ 23.8079, but in a
spiralling manner: they loop around a point on Homr while converging to it. Additionally, note
that system (1) with µ = 4 does not have an EtoP bifurcation.
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Finally, we show in Fig. 2(c) the case µ = 7. In a broad sense, the bifurcation structure
is as for µ = 4. A difference is that, this time, the stable periodic orbits Γ± emanating from
the Hopf bifurcation lose stability in a torus bifurcation T at ρ ≈ 13.067. Past this point, Γ±

are of saddle type with two-dimensional stable manifolds. At ρ ≈ 14.9813, the periodic orbits
Γ± undergo a subcritical period-doubling bifurcation PD and, subsequently, the dimension of
their stable manifold is three. As for µ = 4, the periodic orbits Γ± disappear at the homoclinic
bifurcation Homr, which now occurs at the much larger value ρ ≈ 44.5255; note the change in
scale in panel (c) when compared to panels (a) and (b). The spiralling of the branches of Γ±

in Fig. 2(c) is now much more pronounced; see the inset in panel (c). As for µ = 4, there is no
EtoP bifurcation for µ = 7.

The fact that the branches of Γ± spiral into a point on Homr indicates a Shilnikov-type
homoclinic bifurcation. In Fig. 3, we illustrate in different projections the pair of Shilnikov
homoclinic orbits to 0 at Homr for µ = 4 in row (a) and for µ = 7 in row (b). They are
formed by the two branches of W u(0), which we denote W u

+(0) and W u
−(0). Also shown in

Fig. 3 is the symmetric pair of equilibria p±. Figure 3(a1) is the projection onto (x, z, w)-space,
which illustrates the two Shilnikov homoclinic orbits approaching 0 in a spiralling manner. This
behaviour is also clearly observed in the projection onto the (z, w)-plane in panel (a2); note that
the pair of homoclinic orbits coincide in this projection. The projection onto the (x, y)-plane in
panel (a3) shows how W u

+(0) and W u
−(0) loop around p+ and p−, respectively, before converging

to 0; in this projection the spiralling behaviour around 0 is not visible. Figure 3 shows similar
projections onto (x, z, w)-space in panel (b1) and onto the (z, w)-plane in panel (b2), which
illustrates that the pair of Shilnikov homoclinic orbits for µ = 7, exhibits more pronounced
spiralling around 0. The projection onto the (x, y)-plane in panel (b3) is similar to that in
panel (a3), but the pair of equilibria p± is now beyond the loops (and outside the shown range).

To get a sense of the transition between panels (a) to (c) in Fig. 2, we now consider the
associated two-parameter bifurcation diagram of system (1) in the (ρ, µ)-plane. Figure 4 shows
the curves ρ = 1 of pitchfork bifurcation P, and

µ =
8

3

√(
53110 + 21823ρ− 969ρ2

925 + 2860ρ− 969ρ2

)
,

185

57
< ρ <

470

19
, (2)

of Hopf bifurcation H. Hence, P is a vertical line, and H has the vertical asymptote ρ = 185/57.
The other codimension-one bifurcation curves need to be computed numerically, which we
achieve with the package AUTO [13, 14] by starting from the corresponding bifurcation points in
Fig. 2. In particular, the continuation of Homr from the point (ρr, 0) gives the corresponding
curve in Fig. 4, which is monotonically increasing with ρ > ρr. Similarly, we continue and
show in Fig. 4 the curve EtoP starting from the point (ρE, 0); it exists for decreasing ρ, has
a maximum at µ ≈ 1.4161, and ends at the point (ρr, 0). Notice that the curves EtoP and
Homr approach each other very closely as they converge to the point (ρr, 0). By continuation
from the point PD for µ = 4, we find the curve PD of period-doubling bifurcation; it grows
when continued in the direction of increasing µ and leaves the shown range of Fig. 4. In the
direction of decreasing µ, the curve PD also ends at the point (ρr, 0). From Fig. 2, we know
that there must be a change in criticality on the curve PD in the range 4 < µ < 7. The point
(ρ, µ) ≈ (14.2021, 5.2156) at which this happens is detected by AUTO as the codimension-two
1:2 resonance point R2. Bifurcation theory suggests the existence of a torus bifurcation near
R2 [31]. In fact, we find that the curve T of torus bifurcation, when continued from the point T
in Fig. 2(c), indeed, ends on the curve PD at R2; when continued for increasing µ, the curve T
grows beyond bound and leaves the frame of Fig. 4. We also know from Fig. 2 that there must
be a criticality change on the curve H in the range 0 < µ < 4. We find it by continuing the
curve H numerically with AUTO instead of using the analytical expression (2); in this way, we
detect the codimension-two generalized Hopf point GH at (ρ, µ) ≈ (13.2731, 3.0465) where the
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Figure 3: The homoclinic orbit Homr of (1) with 0 and p± (green dots) for µ = 4 and
ρ ≈ 23.8078 (a) and for µ = 7 and ρ ≈ 44.5255 (b), formed by W u

+(0) (red curve); also shown
is the symmetric counterpart formed by W u

−(0) (light-red curve). Shown are projections onto
(x, z, w)-space (a1), (b1), onto the (z, w)-plane (a2), (b2), and onto the (x, y)-plane (a3), (b3).

criticality of H changes. The unfolding of GH gives rise to a curve F of fold (or saddle-node)
bifurcation of periodic orbits [31], which we followed and show in Fig. 4. Note that the curve F
connects GH with the point (ρr, 0) and was, thus, not observed in Fig. 2.

Overall, Fig. 4 explains what we have seen in the three one-parameter bifurcation diagrams
of Fig. 2. In particular, the homoclinic explosion point of the Lorenz system at (ρr, 0) emerges
as an organizing centre of the two-parameter bifurcation diagram in the (ρ, µ)-plane. Not only
is it the endpoint of the curve Homr, but it also gives rise to the curves EtoP, PD and F that
are not part of the bifurcation sequence near ρr when µ = 0.
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of pitchfork, H (green) of Hopf, T (cyan) of torus, PD (yellow) of period-doubling, F (teal) of
fold of periodic orbits, EtoP (purple) of equilibrium to periodic orbit, and Homr (brown) of
homoclinic bifurcation. Also shown are the codimension-two points GH (purple) of generalized
Hopf and R2 (light blue) of 1:2 resonance bifurcation.

A global ingredient in the two-parameter bifurcation diagram of Fig. 4 is the curve EtoP.
We conclude this section by examining the associated connecting orbit at its two points with
µ = 1.2. The top row of Fig. 5 shows the EtoP connection, where W u

+(0) connects to Γ−

in the (x, y, z)-space, along with the equilibria 0 and p±, and the bottom row are projections
onto the (x, y)-plane. For points near (ρE , 0), the EtoP connection resembles that of the classic
Lorenz equations (see [15, Fig. 2]), as depicted in panels (a1) and (a2) of Fig. 5 for ρ ≈ 19.015.
As ρ decreases, the periodic orbit Γ− grows, as shown in panels (b1) to (b3) for ρ ≈ 14.954,
where both the EtoP connection and Γ− approach the limiting pair of homoclinic orbits. This
is particularly evident in the projection onto the (x, y)-plane in panel (b2). The enlargement
near 0 in panel (b3) reveals that this is, indeed, still an EtoP connection. Note that there is no
spiralling near 0 in any panels of Fig. 5 because this only occurs in the stable subspace near 0,
which is not involved in the EtoP connection.

3 Homoclinic bifurcations of different symbol sequences

In previous research into the classic Lorenz system, the authors of [15] systematically followed
29 = 512 heteroclinic orbits connecting p+ to 0 in the parameter ρ; each of them was found to
end at a particular pair of homoclinic orbits to 0 at a well-defined value of ρ > ρr. In this way,
116 different homoclinic orbits were found, which were all identified as homoclinic explosion
points that give rise to infinitely many periodic orbits; see [41] and, in particular, [15] for more
details and available data of these so-called admissible homoclinic orbits. The homoclinic orbits
found in [15] make longer and more complicated ‘excursions around’ p+ and p− compared to
the homoclinic orbit Homr. They are described with a finite symbol sequence based on W u

+(0),
defined in [15] as

rh1 · · ·hk where

{
hj = l if the jth excursion is around p−,
hj = r if the jth excursion is around p+,

(3)
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Figure 5: The EtoP connection of system (1) for ρ ≈ 19.015, µ = 1.2 in panels (a1), (a2), and
for ρ ≈ 14.954, µ = 1.2 in panels (b1)–(b3). Shown are projections onto (x, y, z)-space (top row)
and onto the (x, y)-plane (bottom row). Panel (b3) is an enlargement of the grey rectangle in
panel (b2).

for some k ∈ N, which we call the level of the symbol sequence; the symbol sequence r of the
basic homoclinic orbit Homr has level zero and the 116 homoclinic orbits found in [15] have
symbol sequences up to level nine. The first symbol in (3) does not give any extra information:
it is always r because we are considering the symbol sequences of the positive branch W u

+(0),
which has its first excursion around p+; see figures 3, 7 and 8. Its symmetric counterpart is the
symbol sequence of W u

−(0) given by rh1 · · ·hk = lh̄1 · · · h̄k, where r̄ = l and l̄ = r. The symbol
sequence can be computed efficiently by considering maxima and minima of the time series of x
of W u

+(0); see Se. 4, where we define the symbol sequence of W u
+(0) more generally.

In the classic Lorenz equations, that is, for µ = 0 in system (1), past the homoclinic bifur-
cation Homr, the branch W u

+(0) immediately switches, after its first excursion around p+, to
the region with negative x. Therefore, W u

+(0) makes at least one excursion around p− before
returning to 0, and h1 = l for all symbol sequences with k ≥ 1 [15, 41]. We continue the 21
homoclinic orbits from [15] with symbol sequences up to level six as curves in the (ρ, µ)-plane.
We refer to them as secondary homoclinic orbits Homs, with a given symbol sequence s. Figure 6
shows the bifurcation curves from Fig. 4 together with these 21 curves of secondary homoclinic
orbits Homs; their symbol sequences are shown at the bottom of the figure. Panel (a) of Fig. 6
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Figure 6: Two-parameter bifurcation diagram from Fig. 4 with the 21 curves of secondary
homoclinic bifurcation Homs up to level six, with those of level six plotted as thinner curves;
their finite symbol sequences s are shown at the bottom and summarized in Table 1 and Table 2.
We distinguish curves that end at the point (ρr, 0) (group I, grey), those that end at a different
homoclinic bifurcation point (group II, light blue), and the curve Homrl (black). Panel (a)
shows a larger part of the (ρ, µ)-plane and panel (b) is an enlargement; under-brackets indicate
twin homoclinic orbits.

shows a larger part of the (ρ, µ)-plane, and panel (b) is an enlargement that focuses on the 21
curves Homs; here, the curves with k ≤ 5 are shown thicker. We computed these curves Homs
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symbol ρ-value from [15] limit symbol ρ at endpoint

rl 54.645952 ∞
rll 47.053443 r 13.9565
rlllrlr 44.668849 r 13.9565
rlllrl 44.240808 r 13.9565
rlll 43.198042 r 13.9565
rllllr 42.034581 r 13.9565
rllllrl 41.472638 r 13.9565
rllll 40.788829 r 13.9565
rlllllr 39.996627 r 13.9565
rlllll 39.115749 r 13.9565
rllllll 37.875935 r 13.9565

rL 24.0579 r 13.9565

Table 1: Homoclinic orbits Homs in group I of given finite symbol sequence s up to level six,
with the respective values of ρ at the begin and endpoints on the ρ-axis of their corresponding
bifurcation curves in the (ρ, µ)-plane. The subfamily rlk is highlighted in green. All these
homoclinic orbits limit onto Homr; compare with Fig. 6 and Fig. 7.

with AUTO by starting from the available data in [15]. For the respective ρ-value with µ = 0, we
generate four-dimensional starting data and then continue the respective curves of homoclinic
orbits in the (ρ, µ)-plane as the solution family of a suitable boundary value problem; see [30]
for details. As with the primary homoclinic bifurcation Homr, all homoclinic bifurcations of
different finite symbol sequences are of Shilnikov type when µ > 0.

Figure 6 shows that the curves of secondary homoclinic orbits Homs divide into groups that
behave differently. The curve Homrl is the only homoclinic bifurcation of level 1, and it leaves
the shown parameter region in a manner similar to Homr. We find that the curve Homrl also
goes off to infinity. The curve Homr is the homoclinic bifurcation curve with the smallest ρ-value
with µ = 0, and Homrl has the largest value of ρ [15]. All other curves of secondary homoclinic
bifurcation lie in the region bounded by Homr and Homrl. Amazingly, none of these curves
leave the shown parameter region. Rather, they come in two groups: curves that end at the
(first) homoclinic explosion point (ρr, 0) of the Lorenz system, which we will refer to as group I,
and curves that end at another homoclinic explosion point of the Lorenz system (with µ = 0),
which we call group II. These two groups are distinguished by colour in Fig. 6; moreover, their
properties are summarized in Table 1 and Table 2, respectively, in terms of the ρ-values at their
begin and endpoints and the associated symbol sequences.

We first consider and describe the curves in group I. Figure 7 shows some examples of
secondary homoclinic orbits Homs in this group in projection onto the (x, y)-plane, namely,
those for fixed µ = 1.2 with corresponding values of ρ, and with symbol sequences as shown in
each panel of the figure. In particular, the subfamily of homoclinic orbits Homs with s = rlk is
from group I, and its symbol sequence is highlighted in bold in Fig. 6 and in green in Table 1.
Panels (a1)–(a6) of Fig. 7 show the corresponding homoclinic orbits up to level k = 6. The
importance of this subfamily is that it has the EtoP cycle as its limit; that is, as k → ∞, we
have that rlk → rL, where the symbol L represents infinitely many loops around Γ− and, hence,
excursions around p−. This convergence was identified in [15] for the corresponding homoclinic
bifurcation points of the Lorenz system on the ρ-axis, which converge to the point (ρE, 0). We
observe, and conjecture here, that the subfamily of curves Homs with s = rlk also converges
to the curve EtoP in the two-parameter (ρ, µ)-plane of system (1) as k → ∞. However, this
convergence is slow and so only hinted at in Fig. 6, as well as Fig. 7(a1)–(a6).

In addition to this subfamily, we find other secondary homoclinic bifurcations Homs in group
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Figure 7: Homoclinic orbits Homs for µ = 1.2 from group I as listed in Table 1, formed
by W u

+(0) and shown with 0 and p± (green dots) in projection onto the (x, y)-plane. Here
ρ ≈ 59.2656 (a1), ρ ≈ 50.1550 (a2), ρ ≈ 45.4384 (a3), ρ ≈ 42.4947 (a4), ρ ≈ 40.4656 (a5),
ρ ≈ 38.9735 (a6), ρ ≈ 47.2593 (b), ρ ≈ 46.7092 (c), and ρ ≈ 44.0306 (d). Their symbol
sequences s are indicated in each panel.

I, and panels (b)–(d) of Fig. 7 show three examples. We were unable to tease out which symbol
sequences correspond to homoclinic orbits from group I, but we believe there to be infinitely
many that are organized in other subfamilies. Observe in the enlargement panel (b) of Fig. 6
that any other subfamilies in group I lie nested in between curves of the subfamily Homrlk ; this
is necessarily the case because curves of homoclinic orbits to 0 cannot intersect. Therefore, we
conjecture that any subfamily in group I converges similarly to the curve EtoP as the level of
the symbol sequence goes to infinity.

We now consider the curves of secondary homoclinic orbits Homs in group II; their properties
are summarized in Table 2. Observe that the secondary homoclinic orbits in group II have
different endpoints with associated symbol sequences. Figures 8 and 9 illustrate some of the
secondary homoclinic orbits in group II in projection onto the (x, y)-plane and as a time series of
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symbol ρ-value from [15] limit symbol ρ at endpoint

rllr 50.590467 rl 54.645952
rllrl 48.900976 rll 47.053443
rlllr 45.128887 rll 47.053443
rllrlr 49.703500 rllr 50.590467
rlllrr 46.005196 rll 47.053443
rllrlrl 49.320171 rllrl 48.900976
rllrllr 48.476611 rll 47.053443
rlllrrl 45.585034 rll 47.053443
rlllrll 43.786551 rlll 43.198042
rllllrr 42.573041 rlll 43.198042

Table 2: Homoclinic orbits Homs in group II of given finite symbol sequence s up to level six,
with the respective values of ρ at the begin and endpoints on the ρ-axis of their corresponding
bifurcation curves in the (ρ, µ)-plane. These homoclinic orbits limit on different ones as given
by the limit symbols; compare with Fig. 6, Fig. 8 and Fig. 9.

x. In both figures, the first column shows homoclinic orbits with µ = 1.2 for symbol sequences as
shown in each panel; the second column shows each homoclinic orbit when continued practically
to its limit, the endpoint with µ ≈ 0; here, the first segment of the orbit that gives the shown
limiting symbol sequence is shown darker than the ‘tail’. The third column presents the time
series of x for respective homoclinic orbits over the normalized time interval [0, 1].

Figure 8 illustrates a particular subfamily in group II. Panel (a1) shows the secondary ho-
moclinic orbit with symbol sequence s = rllr near the start of the continuation at µ = 1.2
when ρ ≈ 54.5225. When continued in the (ρ, µ)-plane, the curve converges to the endpoint
(ρ, µ) ≈ (54.645952, 0), which corresponds to the homoclinic orbit Homrl, as is also suggested
in Fig. 6. Observe in Fig. 8(a2) that W u

+(0) now comes very close to 0 well before it converges
to 0. This is illustrated by the time series of x in panels (a3) and (a4): in panel (a4), the branch
W u

+(0) spends a large amount of time near 0 after only the two loops rl. In the limit, the re-
maining segment of the homoclinic orbit with s = rllr is no longer part of the connecting orbit
because it is no longer reachable by W u

+(0). This is why we say that the secondary homoclinic
orbit with symbol sequence s = rllr converges to the homoclinic orbit Homrl, ‘dropping the
tail’ lr. This convergence behaviour is also observed in [15] for the classic Lorenz system when
studying how (structurally stable) heteroclinic orbits connecting p+ and 0 end at particular
pairs of homoclinic orbits to 0 at well-defined values of ρ > ρr when continued in the parameter
ρ; in [15], however, the limit comprises the ‘tail’ of these heteroclinic orbits.

Note that, in Fig. 8(a2), the ‘tail’ is the symmetric counterpart of the limiting homoclinic
orbit. That is, the homoclinic orbit with symbol sequence s = rllr = rlrl, has rl as its limit.
In Fig. 8(b1), we show a second example of this type of homoclinic orbit from group II, namely,
Homs with s = rlllrr = rllrll. Again, when continued in the (ρ, µ)-plane, as the endpoint
(ρ, µ) ≈ (47.0534, 0) of the curve Homs is approached, W u

+(0) comes very close to 0 before
completing the last three oscillations. Indeed, panel (b2) shows how the homoclinic orbit with
symbol sequence rll splits off in the limit; see also panels (b3) and (b4).

These two examples suggest that there is a subfamily in group II, for which Homs splits in
the middle, with the second half of the symbol sequence being the symmetric counterpart of
the first half. It is a natural conjecture that, for any finite (occurring) symbol sequence m, the
homoclinic orbit with symbol sequence mm is in group II and has Homm as its limit. The data
shown in Fig. 6 and Table 2 provides the only two examples illustrated in Fig. 8(a) and (b) from
the family of homoclinic orbits up to level six. To support this conjecture, we also compute a
homoclinic orbit of level seven, namely, Homs with s = rllrlrrl = rllrrllr, which is part of
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Figure 8: Homoclinic orbits Homs from group II from Table 2 shown with 0 and p± (green
dots) in projection onto the (x, y)-plane and as time series of x. The respective homoclinic
orbit is shown in the first column at µ = 1.2, and in the second column near the endpoint of
Homs with µ ≈ 0, where the limiting homoclinic orbit is dark red; the third column shows
the two corresponding time series of x. Here ρ ≈ 54.5225 (a1, a3), ρ ≈ 54.65 (a2, a4), ρ ≈
48.9370 (b1, b3), ρ ≈ 47.05 (b2, b4), ρ ≈ 53.6854 (c1, c3), and ρ ≈ 50.59 (c2, c4). The symbol
sequences of Homs and the limiting homoclinic orbits are indicated in the first and second
columns, respectively.

the available data in [15]. The continuation of this homoclinic orbit is shown in Fig. 8(c) in the
same way. The homoclinic orbit is now more complicated but again splits in the middle and has
Homm with m = rllr as its limit, in agreement with the conjecture.
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Figure 9: Twin homoclinic orbits Homsi from group II with symbol sequences as indicated,
shown with 0 and p± (green dots) as in Fig. 8. Here, ρ ≈ 52.39 (a1, a3), ρ ≈ 47.83 (b1, b3),
ρ ≈ 51.86 (c1, c3), ρ ≈ 48.40 (d1, d3), and all homoclinic orbits converge to Homrll on the
ρ-axis with ρ ≈ 47.05 (a2, a4, b2, b4, c2, c4, d2, d4).
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We observe in Fig. 6 that curves in group I appear to be accumulated, on either side, by pairs
of curves in group II. The exceptions are Homr and Homrl, which are only accumulated from the
right and the left, respectively, because they form the boundary of all other secondary homoclinic
curves. As a specific example, observe in the enlargement panel (b) of Fig. 6 the curves Homs1

and Homs2 with symbol sequences s1 = rllrl and s2 = rlllr that approach Homs with s = rll

from the right and the left, respectively. We illustrate the associated convergence of these
homoclinic orbits in Fig. 9(a) and (b). Panels (a1) and (b1) show the curves Homs1 and Homs2

near the start of the continuation at µ = 1.2, when ρ ≈ 52.39 and ρ ≈ 47.83, respectively. When
they are continued in the (ρ, µ)-plane, the homoclinic orbit Homrll splits off as the endpoint
(ρ, µ) ≈ (47.0534, 0) of the curves is approached. This is highlighted in panels (a2) and (b2) by
a darker colour and is illustrated further in panels (a3), (a4) and (b3), (b4) in terms of the time
series of x over the normalized time interval [0, 1]. Note that we can write s2 = rlllr = rllrl,
which we call the ‘twin’ of s1 = rllrl; such twin homoclinic orbits are indicated by brackets in
Fig. 6(b) and Table 2.

We show a second example in Fig. 9 (c) and (d) of this type of twin homoclinic orbits in group
II, namely, the pair with s1 = rllrllr and s2 = rlllrrl = rllrllr that also approach Homrll

from the right and left, respectively. Again, as the endpoint (ρ, µ) ≈ (47.0534, 0) of the curves
Homs1 and Homs2 is approached during the continuation, the segment with symbol sequence
rll splits off, as highlighted in panels (c2) and (d2); see also panels (c3), (c4) and (d3), (d4)
where we show the respective two instances of the pair of homoclinic orbits in terms of the time
series of x. From the data we have, we observe and conjecture that the twin homoclinic orbits
Homsi with s1 = mv and s2 = mv for (occurring) finite symbol sequences m and v are in group
II, and have the homoclinic orbit Homm as their limit. Indeed, there is another example in Fig. 6
and Table 2 that agrees with the conjecture, namely, the twin pair Homsi with s1 = rllllrr

and s2 = rlllrll = rllllrr that converges to Homs with s = rlll.
From the 116 admissible homoclinic orbits up to level six found in [15], we find that two

give rise to curves in the (ρ, µ)-plane with endpoints at a limiting homoclinic orbit from group
II. These two homoclinic orbits are Homsi with s1 = rllrlr and s2 = rllrlrl, which converge
to rllr and rllrl, respectively. It is unclear from the available data for which other symbol
sequences one finds convergence to group II, but there will also be infinitely many of them.

Note in the enlargement panel (b) of Fig. 6 that the curve Homs1 with s1 = rlllrr, shown
in Fig. 8(b), converges to Homm with m = rll, but its twin Homs2 with s2 = rllrll is not in
Fig. 6 nor Table 2. Indeed, s2 repeats the sequence rll and, as such, was not obtained in [15]
(via the continuation of heteroclinic orbits) as an ‘admissible’ homoclinic explosion point [41].
Hence, at this point it is unclear whether Homs2 with rllrll actually exists in system (1), for
µ > 0.

A final note regarding Fig. 6 is that all the curves of secondary homoclinic bifurcation
Homs are bounded by the main homoclinic bifurcation Homr. In particular, they are well away
from (ρ∗, µ∗) = (25, 7), cited in [23] as the parameter point where a wild pseudohyperbolic
chaotic attractor exists. While our results in this section reveal properties of the homoclinic
explosion point (ρ, µ) = (ρr, 0) and how it organizes the dynamics of system (1) that are directly
associated with the Lorenz system, they do not explain (by themselves) the emergence of a wild
pseudohyperbolic chaotic attractor.

4 Kneading Diagram of the unstable manifold of the origin

In an effort to find other global bifurcations, homoclinic or otherwise, we employ a parameter
sweeping technique that determines regions in the (ρ, µ)-plane with different values of a topolog-
ical invariant. This is an established way of detecting regions in a parameter plane with different
qualitative behaviour; see [19, 8, 6, 5, 48] for different examples of this approach. Specifically,
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we consider the so-called kneading diagram that encodes the ‘fate’ of W u
+(0) for any parameter

point in the (ρ, µ)-plane because this branch of the unstable manifold of 0 is involved in (pairs
of) Shilnikov homoclinic orbits, EtoP connections, and possibly other global bifurcations. To
this end, we extend the definition of (finite) symbol sequences of homoclinic orbits from the
previous section to generic parameter points, where W u

+(0) makes excursions around p+ and p−

infinitely many times, which leads to infinite symbol sequences.
We find it helpful to define such (infinite) sequences with the symbols + and −. More

specifically, for a generic point in the parameter plane, we define the kneading sequence

S(ρ, µ) = S := (+ s1 s2 . . . ) ∈ Σ ⊆ {+,−}N, (4)

with si = + when the ith extremum in x of W u
+(0) is a positive maximum in x and si = − if it is

a negative minimum. As before, because of the symmetry of system (1), one could equivalently
consider the kneading sequence of the branch W u

−(0), with the opposite symbols.
The kneading sequence is finite at (nongeneric) points of the (ρ, µ)-plane, for example, where

a global homoclinic bifurcation exists; it is then given by the corresponding finite symbol se-
quence defined in Se. 3, where r is replaced by + and l by −. We find it useful to maintain this
difference in notation between infinitely long kneading sequences of W u

+(0) and finite symbol
sequences at global bifurcations, chiefly because any kneading diagram in the parameter plane
is necessarily only computed up to a finite number of symbols. We emphasize that the sweeping
technique does not compute global bifurcations themselves. However, it is a suitable method to
identify where they are approximately located, namely, at corresponding changes of the knead-
ing sequence. Once we identify a certain global bifurcation in this way, we are able to compute
the corresponding curve with Lin’s method as a solution to a suitably posed boundary value
problem [29].

We use the software package Tides [1] to compute W u
+(0) to high-precision and find the

relevant maxima and minima of x. Taking sufficiently long pieces of the trajectory generated
by W u

+(0) allows us to determine a sufficiently large number of these extrema. In practice,
we ensure that we are able to identify up to twenty positive maxima and/or negative minima.
This method is efficient because, in principle, it is not necessary to have very long kneading
sequences to get a suitably fine distinction between different topological cases. As an illustrative
example, Fig. 10 shows four short trajectories generated by W u

+(0) for fixed µ = 2.5 and different
values of ρ, computed until the corresponding kneading sequences have three symbols. Since
the first symbol in (4) is always +, the four cases in Fig. 10 cover all possibilities. Here, the
top row shows W u

+(0) in projection onto the (x, y)-plane, and the bottom row its corresponding
time series of x. Specifically, in panels (a1) and (a2), W u

+(0) has three consecutive positive
maxima, yielding S = (+ + + . . . ); and in panels (b1) and (b2), it has two positive maxima and
a negative minimum, yielding S = (+ + − . . . ). The change in the third symbol indicates that
there must be a homoclinic bifurcation with symbol sequence s = rr for an intermediate value
of ρ. Similarly, the trajectories generated by W u

+(0) in Fig. 10 (c) and (d) have the kneading
sequences S = (+ − + . . . ) and S = (+ − − . . . ), respectively, which indicates the presence
in between of a homoclinic bifurcation with symbol sequence s = rl. Moreover, there must
be a homoclinic bifurcation with symbol sequence s = r in between panels (b) and (c). This
illustrates that two kneading sequences that differ from the i-th symbol are separated by a
homoclinic bifurcation of level i− 2, with symbol sequence based on the first i− 1 symbols.

In order to visualize the kneading sequences in the (ρ, µ)-plane, we define the kneading
invariant

Kn = Kn(S) =

n∑
i=0

si
1

2(i+1)
of S = (+ s1 s2 . . . ), (5)

computed up to n+1 symbols, which allows us to identify homoclinic bifurcations up to level n−1.
Since s0 = +, the kneading invariant Kn takes values in the interval [0, 1]. By construction, the
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Figure 10: Short initial segment of the branch W u
+(0) (red curve) of (1) with 0 and p± (green

dots) for fixed µ = 2.5, and ρ = 13 (a), ρ = 17 (b), ρ = 19 (c), and ρ = 24 (d). Shown
are the projections onto the (x, y)-plane (top) and the time series of x (bottom), where the
positive maxima (cyan dots) and negative minima (blue dots) define the first three symbols in
the respective kneading sequences S.

numbers Kn divide the interval [0, 1] into 2n subintervals of length 2−n, each of which represents
a different initial kneading sequence to which we assign a specific colour. We find it particularly
useful to consider the division of the (ρ, µ)-plane by Kn for increasing n; we refer to this as
the kneading diagram of Kn. In this way, we obtain images of increasingly deeper complexity,
which allows us to identify more subregions in the (ρ, µ)-plane and associated global bifurcations
bounding them.

We present in Fig. 11 the same bifurcation curves as those shown in Fig. 6, over the same
parameter ranges, overlaid on the kneading diagrams of K2 in panel (a) and K4 in panel (b).
Figure 11(a) shows that the (ρ, µ)-plane is now divided into five regions distinguished by four
different colours. Their boundaries correspond to four homoclinic orbits up to level one. For a
fixed value of µ = 2.5, as in Fig. 10, we observe the same sequence of four different regions with
three homoclinic orbits separating them. One of these is the primary homoclinic bifurcation
curve Homr bounding regions with kneading sequences S = (+ +− . . . ) and S = (+−+ . . . ).

Significantly, Fig. 11(a) already identifies additional curves of homoclinic bifurcation that
we did not encounter in Fig. 6. First of all, we find that a second curve Homrl, forms the upper
boundary of the region with kneading sequence S = (+ − − . . . ). It is distinct from the curve
Homrl we identified earlier, which forms the lower boundary of this region. As we continue
this new curve Homrl in the direction of decreasing ρ, we find that it approaches and ends
at the homoclinic explosion point (ρr, 0). Secondly, the two regions with kneading sequences
S = (+ + + . . . ) and S = (+ +− . . . ) are separated by the homoclinic bifurcation curve Homrr.
This global bifurcation lies above Homr and can also be continued to the homoclinic explosion
point as µ → 0. It does not actually occur in the Lorenz system since there, W u

+(0) always
immediately switches to perform at least one excursion around p− before returning to 0.

Figure 12 displays these two newly found homoclinic orbits for fixed µ = 7 in projections
onto the (x, y)-plane (first column), the (z, w)-plane (second column), and as time series of x
and w (third column). Panels (a1)–(a4) show Homrl at ρ ≈ 65.4113, and panels (b1)–(b4)
show Homrr at ρ ≈ 31.3119. Comparing the first row of Fig. 12 with Fig. 7(a1) confirms
that both homoclinic orbits, indeed, have the same symbol sequence s = rl even though they
belong to separate curves in the (ρ, µ)-plane. Note in Fig. 12 that it is not entirely possible to
appreciate the ‘excursions around’ p+ and p− from the projections onto the (x, y) and (z, w)-
planes; however, the kneading sequence is identified reliably from the respective maxima and
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Figure 11: Colouring of the panels of Fig. 6 by the kneading invariants K2 in panel (a) and K4

in panel (b); also shown are several additional curves Homs of secondary homoclinic bifurcation.

minima of the time series of x; in this way, we identified the new homoclinic orbit Homrr which
is shown in panels (b1)–(b4); here, the homoclinic orbit has two loops near p+ and then closes
up without going to the region with negative x.

Figure 11(b) presents the kneading diagram of K4, which divides the (ρ, µ)-plane into regions
distinguished by 16 distinct colours. The kneading invariant K4 identifies the curves of secondary
homoclinic bifurcation Homs up to level three as boundaries between regions of different colours.
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Figure 12: The secondary homoclinic orbits Homsi with s1 = rl in panel (a) and s2 = rr in
panel (b) formed by W u

+(0) for µ = 7, shown with 0 and p± (green dots) in projections onto the
(x, y)-plane (first column), onto the (z, w)-plane (second column), and as time series of x and w
(third column). Here, ρ ≈ 65.4113 in row (a) and ρ ≈ 31.3119 in row (b).

This division is further illustrated in the enlargement at the bottom of the figure, where colour
changes correspond to the secondary homoclinic orbits up to level three that we identified in the
previous section. However, the kneading diagram of K4 also suggests the existence of a number of
additional global bifurcations. In particular, we found a second curve of a homoclinic orbit with
symbol sequence s = rllr in between the two curves Homrl. Moreover, the kneading diagram
of K4 reveals three new curves of global bifurcation below the lower curve Homrl; from right to
left, they correspond to symbol sequences rlrr, rlr, and rlrl. When continued towards lower
µ, these curves end on the ρ-axis at values of ρ to the right of the homoclinic explosion point
associated with symbol sequence rl. While it is known that additional homoclinic bifurcations
occur at higher values of ρ (for example, see the list in [41, Appendix I]), the method applied
in [15] did not detect homoclinic bifurcation curves to the right of Homrl. The kneading diagram
of K4 identifies these homoclinic bifurcation curves below the lower curve Homrl and we find
that they are paired with curves with identical symbol sequences that lie above the upper curve
Homrl. This pairing is evident in Fig. 11(b) from the recurring colour patterns in the kneading
diagram of K4, which also highlights the primary homoclinic bifurcation curve Homr as the
upper boundary for this pairing phenomenon.

At first glance, all curves of homoclinic bifurcation that lie above Homr in Fig. 11(b) appear
to converge to the homoclinic explosion point (ρr, 0) as µ → 0. Indeed, the homoclinic orbits
Homs with symbol sequences s = rj behave this way: the curve Homrr, was already identified
in panel (a), and we also find those with s = rrr and s = rrrr in panel (b). These curves fan
out further above and to the left of Homr for larger j. However, observe in Fig. 11(b) that the
curves with symbol sequences s1 = rlrr and s2 = rrll, only exist for larger values of µ. More
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are distinguished according to the colour bar.

precisely, when we continue these curves in the direction of decreasing µ, they do not converge
to the homoclinic explosion point (ρr, 0) as µ→ 0. Instead, these curves approach the primary
homoclinic bifurcation Homr from the right and left, respectively, reach minimum values of µ
and of ρ, after which they turn around and follow Homr closely towards large values of µ and
ρ. This behaviour raises the question of whether these homoclinic orbits exist at lower values of
µ, specifically, in the vicinity of the homoclinic explosion point (ρr, 0).

To address this question, we compute and display in Fig. 13 the kneading diagram of K4

in an enlarged view near the homoclinic explosion point (ρr, 0) in the (ρ, µ)-plane. In fact, we
identify here another pair of branches of homoclinic orbits with symbol sequences s1 = rlrr and
s2 = rrll, which are different from those previously found. These two curves emerge from the
homoclinic explosion point and exhibit behaviour complementary to their counterparts (with the
same symbol sequences at larger µ values): they approach the primary homoclinic bifurcation
curve Homr from the right and left, respectively, reach maximum values of µ and of ρ, and then
turn back to (ρr, 0) along Homr as µ→ 0. From this, we conclude that these curves of secondary
homoclinic orbits with symbol sequences s1 and s2 exist both in the vicinity of (ρr, 0) as well as
for large values of µ and ρ; however, the respective curves are not connected, rather, they have
‘finger’ shapes, as can be seen in Fig. 13.

Figure 13 also further illustrates the behaviour of the curves of homoclinic orbits with symbol
sequences of the form s = rj . Specifically, the curve corresponding to the largest value of j
appears to establish a left boundary for all other homoclinic orbits with symbol sequences up to
level j − 2.

Figure 11 and Fig. 13 seem to suggest that all curves of homoclinic bifurcation accumulate on
some limiting curve on the left. In Fig. 14, we present the kneading diagram of K9 near (ρr, 0)
over a larger range of the (ρ, µ)-plane; compare with Fig. 11 and Fig. 13. Overlaid in Fig. 14
are the computed curves (brown) Homs with s = rj for 1 ≤ j ≤ 9. Figure 14 shows that there

21



H

P
D

T

F

EtoP

ρ

µ

ρr

GH

R2

r
9

r
9

Homr9

Homr9

r
8

r
7

r
6

r
5

r
4

r
3

rr

r

rl

0

1

K9
8

6

4

2

0

11 13 15 17 19

Figure 14: Kneading diagram of K9 near (ρr, 0) with the curves of homoclinic bifurcation with
symbol sequences of the form s = rj with 1 ≤ j ≤ 9 (brown). Values of K9 are distinguished
according to the colour bar.

are additional curves of homoclinic bifurcation to the left of the curve Homrrrr; approximately,
for µ < 2.7, all these curves seem to accumulate to the right of the curve PD. However, when
µ is slightly larger than 2.7, this is no longer the case and the curves with symbol sequences
s = rj extend to the left of the curve PD, and also even beyond the curve T of torus bifurcation;
compare with Fig. 11. The curves of homoclinic bifurcation with symbol sequences s = rj with
1 ≤ j ≤ 8 originate from the homoclinic explosion point (ρr, 0) and can be continued without
limit for increasing ρ and µ. However, for j = 9, we observe a change: the curve Homr9 splits into
a pair of fingers, one finger emerging from the homoclinic explosion point (ρr, 0), and another
from large values of ρ and µ.

Note the many changes in colour of the kneading diagram of K9 between the specific curves
of homoclinic bifurcation. They indicate the presence of additional homoclinic bifurcation curves
with similar fingers, which we did not individually compute. Our findings suggest that many
curves of homoclinic orbits exist in the vicinity of the homoclinic explosion point (ρr, 0), but not
all of these extend to infinity in the (ρ, µ)-plane. On the other hand, it appears that the disjoint
curves with the same symbol sequences also exist for sufficiently large values of ρ and µ.
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5 Compactification of the parameter plane

We now investigate the global bifurcations for near-infinite values of ρ and µ in the parameter
plane. For this purpose, we compactify the first quadrant of the (ρ, µ)-plane to a quarter
sector of the unit disk D, often referred to as the (quarter) Poincaré disk, by introducing the
transformation P : R2 → D given by

P (ρ, µ) = (ρ̃, µ̃) =

(
ρ

R+
√
R2 + ρ2 + (aµ)2

,
aµ

R+
√
R2 + ρ2 + (aµ)2

)
. (6)

Here R > 0 and a > 0 are parameters that can be chosen to enhance the visibility of certain
parts of the (ρ, µ)-plane. Specifically, we set R = 30 and a = 4 to position the parameter region
near (ρ∗, µ∗) = (25, 7), where the wild chaotic attractor of (1) was observed in [23], near the
centre of the compactified quarter disk, at (ρ̃∗, µ̃∗) = P (ρ∗, µ∗) ≈ (0.3202, 0.3587). Note that the
(quarter) unit circle bounding D represents directions of escape to infinity in the (ρ, µ)-plane.

Figure 15 illustrates this compactification to the quarter disk by showing the bifurcation
curves from Fig. 11(b) with the kneading diagram of K4. Overlaid are all curves of homoclinic
bifurcation up to level three, which we identified and computed directly in the compactified
quarter disk. Indeed, the benefit of the compactification (6) goes beyond providing a global
visualization of the parameter space; it allows us to detect all homoclinic bifurcation curves of
system (1) up to a certain level. Observe that the bifurcation curves P, H, and T converge
to the point (ρ̃, µ̃) = (0, 1), which corresponds to a limiting vertical slope in the (ρ, µ)-plane.
This behaviour was already known from the analytical expressions of the pitchfork and Hopf
bifurcations, but it was not previously observed for the torus bifurcation. In contrast, the
bifurcation curve PD and several other curves of homoclinic bifurcation converge to the point
(ρ̃, µ̃) = (1, 0), indicating a limiting horizontal slope in the (ρ, µ)-plane.

Figure 15 features several new curves of secondary homoclinic bifurcation. For instance,
two curves with symbol sequence rlr were already identified in Fig. 11(b) and Fig. 13, yet
the kneading diagram of K4 in the compactified parameter disk reveals a third curve with the
same symbol sequence. This curve emerges from (ρ̃, µ̃) ≈ (0.7871, 0) and ends at (ρ̃, µ̃) =
(1, 0). Another example is an additional curve of secondary homoclinic bifurcation with symbol
sequence rlrl that acts as the boundary of a separate region of the kneading diagram of K4;
its endpoints are (ρ̃, µ̃) ≈ (0.8118, 0) and (ρ̃, µ̃) ≈ (0.8745, 0). Likewise, we observe a new curve
Homs with symbol sequence rlrr with endpoints (ρ̃, µ̃) ≈ (0.6664, 0) and (ρ̃, µ̃) ≈ (0.7609, 0).
The compactified parameter disk D also reveals extra regions and associated curves of homoclinic
bifurcation ‘at infinity’, acting as counterparts to those that emanate from and return to the
homoclinic explosion point (ρ̃, µ̃) = (ρ̃r, 0). An example is an additional curve Homrll near the
point (ρ̃, µ̃) = (1, 0), which serves as a counterpart to the one shown in Fig. 11.

5.1 Compactified kneading diagram of K9

Figure 15 already provides global insights from the picture of the bifurcation structure of sys-
tem (1) at the level of K4. In particular, it suggests that the point (ρ̃, µ̃) = (1, 0) is another
organizing centre ‘at infinity’, similar to the homoclinic explosion point (ρ̃, µ̃) = (ρ̃r, 0). To in-
vestigate this further, we show in Fig. 16 the kneading diagram of K9 in the compactified quarter
disk together with all identified curves of homoclinic bifurcation. It displays the different global
properties with finer detail and increased complexity. We did not identify and continue all
boundary curves between different regions of K9, but their existence and symbol sequences can
be inferred, as we showed for K4 in Se. 4. As an additional feature, we also show the regions
between consecutive curves of homoclinic bifurcation of the form s = rj for 9 < j ≤ 40; they are
represented by a colour gradient ranging from grey to light red. We compute and show these
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Figure 15: Two-parameter bifurcation diagram in the compactified quarter disk given by (ρ̃, µ̃),
coloured by the kneading diagram of K4; compare with Fig. 11(b) and see Fig. 13 for the colour
bar.

regions because the homoclinic orbits of this form act as upper boundaries for the respective
kneading diagrams Kj . Figure 16 suggests that the pattern of homoclinic orbits extends all
the way to infinity without an apparent upper boundary as the length of the symbol sequence
increases. In the limit, these regions and homoclinic bifurcations appear to accumulate on the
entire arc at infinity, staying to the right of the torus bifurcation curve T.

Observe in Fig. 16 how the curves of secondary homoclinic bifurcation that start and end
on the ρ̃-axis are all well away from ρ̃ = 1 and appear to be bounded by and accumulate on
a (yet unknown) limiting curve or curves. This is reminiscent of boundaries for fingers-like
regions in kneading diagrams discussed in [19, 20]. The ‘accumulation curve(s)’ of these fingers
in Fig. 16 seems to bound the region of dense secondary homoclinic orbits on the right. The
point (ρ̃∗, µ̃∗) where a wild pseudohyperbolic chaotic attractor was observed in [23] is located
well within this region. The enlargement in the inset of Fig. 16 highlights the denseness of
homoclinic bifurcations near this point.
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We illustrate dense homoclinic bifurcations further in Fig. 17 with the kneading diagram of
K11 in the uncompactified (ρ, µ)-plane over the same range as in Fig. 11(a); the point (ρ∗, µ∗) =
(25, 7) from [23] is again marked. Observe that K11 in Fig. 17 shows a very fine structure
in a large neighbourhood of (ρ∗, µ∗), providing clear numerical evidence for the ‘wildness’ in
the (ρ, µ)-plane, complementing the corresponding images in the (ρ, σ)-plane in [23]. Notably,
the region of dense homoclinic bifurcations is not restricted to a vicinity of the point (ρ∗, µ∗).
Rather, it is quite large and appears to extend below the curve Homr as well as to arbitrarily
large values of µ, as we illustrated in Fig. 16.
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6 Lyapunov spectrum of the unstable manifold of the origin

The kneading diagrams from the previous sections provide insight into the topological structure
and complexity of the accumulation and denseness of homoclinic orbits. However, they do
not offer information about the nature of the corresponding invariant sets and/or attractors of
system (1). To explore whether W u

+(0) approaches an equilibrium point, a periodic orbit, or a
chaotic attractor (wild or not), we now examine how the associated Lyapunov spectrum varies
across the (ρ, µ)-plane.

Since system (1) is a four-dimensional autonomous vector field, each trajectory has four
Lyapunov exponents, denoted, in order, Λ4 ≤ Λ3 ≤ Λ2 ≤ Λ1. At least one of these Lyapunov
exponents is zero unless the trajectory converges to an equilibrium point. Moreover, the trace
of the Jacobian matrix of system (1), given by −(2β + σ + 1) = −49/3 for σ = 10 and β = 8/3
as used here, is constant across the (ρ, µ)-plane. These two properties allow us to control the
accuracy of our numerical computations when we compute the Lyapunov spectrum.

The negative trace implies that system (1) always has some attractor, to which the branch
W u

+(0) converges generically; namely to:

(E) an attracting equilibrium if Λ1 < 0,

(P) an attracting periodic orbit if Λ1 = 0,

(C) a chaotic attractor (wild or not) if Λ1 > 0.

The authors of [23] separate case (C) into quasiattractors and pseudohyperbolic attractors [3].
A quasiattractor is a ‘regular’ chaotic attractor, which is structurally unstable: a small per-
turbation of the system typically results in the appearance of a periodic attractor caused by
the presence of so-called periodic windows in parameter space. In contrast, a pseudohyperbolic
attractor exists robustly, and hence, the parameter space is free of periodic windows. As defined
in [23, 22], we have the following cases of a chaotic attractor with Λ1 > 0

(CQ) regular if Λ1 + Λ2 + Λ3 < 0;
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Figure 18: Colouring by the Lyapunov spectrum of W u
+(0) in the (ρ, µ)-plane. The regions

are distinguished by the cases described in Table 3. Namely, (E) (green), (P) (blue), (CQ)
(magenta) and (CP) (red). Additionally, the region of numerical uncertainty (B1) (purple) and
(B2) (grey). Shown are also the bifurcation curves from Fig. 17 and the point (ρ∗, µ∗) (magenta
diamond).

(CP) pseudohyperbolic if Λ1 + Λ2 + Λ3 > 0.

Technically speaking, case (CP) implies that the chaotic attractor is pseudohyperbolic provided
that certain conditions on the linearized dynamics are also met, which we do not verify here;
see [23] for further details.

We compute the Lyapunov spectrum of W u
+(0) for points on a grid in the (ρ, µ)-plane with

the method from [11]: we integrate system (1) together with its linearization up to a specified
integration time; a GramSchmidt orthonormalization process is employed to control the Lya-
punov vectors. Since any computation is subject to numerical tolerances, we introduce a small
parameter ε > 0 and distinguish the asymptotic behaviour of W u

+(0) as summarized in Table 3.
In particular, we also include borderline cases, denoted (B1) and (B2), which arise when the
accuracy does not allow us to distinguish clearly between different attractor types.

Figure 18 shows the result of this calculation for a grid of 1000×300 parameter points in the
(ρ, µ)-plane over the ranges 0 ≤ ρ ≤ 100 and 0 ≤ µ ≤ 12; which is exactly the parameter region
shown in Fig. 17. The first segment of W u

+(0) was obtained by starting from a point at a small
distance from 0 along the unstable eigenvector Eu(0) and integrating by using the standard
Runge-Kutta fourth-order method over 300 units of time. A crucial issue in this computation
is the choice of the tolerance parameter ε. We found that ε = 0.08 yields reliable results based
on the criterion that the sum of the Lyapunov exponents is equal to the (constant) trace of
the Jacobian to within 10−4 units. Although the value of ε may seem relatively large, it is
consistent with those used in other numerical studies of Lyapunov exponents in the literature;
see, for example, [8, 27, 5, 4, 46].

Observe in Fig. 18 that the region of attracting equilibria, as determined by criterion (E),
is bounded by the curves P, H and F, as well as the curve EtoP on the other side of F. As
soon as the curve H of Hopf bifurcation is crossed, the attractor is a periodic orbit according
to criterion (P); as expected from theory, criterion (P) is satisfied effectively up to the curve
T of torus bifurcation. Figure 18 reveals that criterion (P) is also satisfied in a second, large
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case criterion attractor color

(E) Λ1 <−ε; equilibrium green
(P) |Λ1|<ε, Λ2 <−ε; periodic orbit blue
(B1) |Λ1|<ε, |Λ2|<ε, Λ3 <−ε; periodic—chaotic purple
(CQ) Λ1 >ε, |Λ2|<ε, Λ3 <−ε, Λ1 + Λ2 + Λ3 <−ε; chaotic regular magenta
(B2) Λ1 >ε, |Λ2|<ε, Λ3 <−ε, |Λ1 + Λ2 + Λ3|<ε; regular—pseudohyperbolic grey
(CP) Λ1 >ε, |Λ2|<ε, Λ3 <−ε, Λ1 + Λ2 + Λ3 >ε; chaotic pseudohyperbolic red

Table 3: Classification criteria for the Lyapunov spectrum of W u
+(0).

region that is interrupted by a band of chaotic dynamics that satisfy criteria (CQ) or (CP).
We are interested in the large ‘primary’ region that contains the point (ρ∗, µ∗) and satisfies
criterion (CP), consistent with the results in [23]. It exists to the right of the curve T and above
the boundary case (B2); the region satisfying criterion (CQ) is located below the boundary (B2)
and extends all the way to the ρ-axis. Additionally, Fig. 18 shows a ‘secondary’ region where
criterion (CP) also holds. It is bounded by regions with attracting periodic orbits and again
separated from the region of regular chaotic dynamics by the borderline case (B2).

Figure 17 and Fig. 18 provide complementary yet distinct information. Figure 17 clearly
suggests that the curves of secondary homoclinic bifurcation are dense near (ρ∗, µ∗). However, it
is difficult to determine the extent or size of this region from this figure alone. When comparing
with Fig. 18, it becomes clearer how far this region extends: approximately above the curve
of secondary homoclinic bifurcation Homrr, to the right of the curve T and up to ρ ≈ 35.
Additionally, in the ‘secondary’ region where criterion (CP) is satisfied, the kneading diagram
in Fig. 17 appears filled with curves of secondary homoclinic bifurcation, which may also indicate
the presence of a wild pseudohyperbolic chaotic attractor there. While Fig. 17 suggests that
homoclinic bifurcations are dense in many regions, Fig. 18 reveals that this does not generally
imply the presence of a pseudohyperbolic attractor. This suggests that there are open regions
in the (ρ, µ)-plane with wild hyperbolic (saddle) sets.

7 Conclusions and Outlook

We presented the global bifurcation structure in the two-parameter (ρ, µ)-plane of the four-
dimensional Lorenz-like system (1). Building upon results for the Lorenz system from [15], we
continued curves of global homoclinic bifurcation that emanate from the classic Lorenz system
for µ = 0. We found that all of these curves are bounded above by the primary homoclinic bifur-
cation Homr, and lie below the point (ρ∗, µ∗), where a wild pseudohyperbolic chaotic attractor
was shown to exist [23].

We found additional global bifurcations that are intrinsic to the four-dimensional Lorenz-like
system; we detected and continued them as curves in the (ρ, µ)-plane via kneading diagrams in
combination with Lin’s method [29]. Some of these curves also originate from the homoclinic
explosion point (ρr, 0), while others emerge from a point at infinity or other homoclinic explosion
points along the ρ-axis. In particular, these curves appear to be dense in a large region containing
the point (ρ∗, µ∗), which is strong numerical evidence for the wild nature of the chaotic attractor
at this parameter point.

We further analysed the system’s attractors by computing the Lyapunov spectrum associated
with the branch W u

+(0) of the one-dimensional unstable manifold of the origin. In this way, we
identified different regions in terms of the Lyapunov spectrum, including the region containing
the wild pseudohyperbolic attractor from [23]. We also found additional regions satisfying these
conditions, suggesting that wild pseudohyperbolic attractors may arise in other parts of the
(ρ, µ)-plane.

Our results suggest possible routes to wild chaos, and our approach is similar in spirit to
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that of [8, 19], where the computation of kneading invariants and Lyapunov spectra are em-
ployed to uncover the underlying geometry of complicated dynamics in two four-dimensional
systems arising in photonics. We focused here on chaotic pseudohyperbolic attractors that ex-
hibit robust homoclinic tangencies, which follow from the denseness of Shilnikov homoclinic
orbits and classify them as wild [23, 37]. The robust presence of homoclinic tangencies implies
the existence of heterodimensional cycles [32, 33, 34]. Thus far, we know of only one explicit
example of a vector field with a heterodimensional cycle, namely, the so-called Atri model of
intracellular calcium dynamics [47, 26]. In an initial investigation, we found periodic orbits with
the appropriate indices (dimension of the unstable manifold), but the presence of heterodimen-
sional cycles themselves in system (1) remains to be investigated. Their existence could act as
a precursor to the emergence of a wild chaotic attractor—analogous to how the invariant set of
a Smale horseshoe can become a chaotic attractor through certain bifurcations. This potential
connection is interesting and offers a pathway to understanding the mechanisms through which
wild chaotic attractors are created or destroyed.

Our work suggests another route to wild chaos, namely, involving the breakup of invariant
tori with overlapping resonance tongues. We observed that this appears to be an ingredient
in the transition to the main region containing the wild pseudohyperbolic chaotic attractor
identified in [23]. Understanding the exact nature of this transition is a challenging task for
future investigation.

Another interesting direction is to study the unfolding of the homoclinic explosion point
(ρ, µ) = (ρr, 0), which is richer in system (1) than in the Lorenz system. Equally interesting is
the point of the Lorenz system in the limit where ρ→∞, which has been considered in [18, 38, 39,
41, 7]. In the four-dimensional system (1), it serves as a second organizing centre at (ρ̃, µ̃) = (1, 0)
of the compactified parameter plane. Studying the dynamics near this point requires suitable
changes of coordinates and blow-up techniques to capture the nearby dynamics. More broadly,
the approach and computational methods developed in this work provide a framework that
can be applied to other four-or higher-dimensional systems with the potential for new types of
dynamics, including wild chaotic attractors or hyperbolic saddle sets.
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