
Chaos and wild chaos in Lorenz-type systems

Hinke M. Osinga, Bernd Krauskopf and Stefanie Hittmeyer

Abstract This contribution provides a geometric perspective on the type of chaotic
dynamics that one finds in the original Lorenz system and in a higher-dimensional
Lorenz-type system. The latter provides an example of a system that features robust
homoclinic tangencies; one also speaks of ‘wild chaos’ in contrast to the ‘classi-
cal chaos’ where homoclinic tangencies can only occur densely, and not robustly
in open intervals in parameter space. Specifically, we discuss the manifestation of
chaotic dynamics in the three-dimensional phase space of the Lorenz system, and
illustrate the geometry behind the process that results in its description by a one-
dimensional noninvertible map. For the higher-dimensional Lorenz-type system, the
corresponding reduction process leads to a two-dimensional noninvertible map in-
troduced in 2006 by Bamón, Kiwi, and Rivera-Letelier [arXiv 0508045] as a system
displaying wild chaos. We present the geometric ingredients — in the form of dif-
ferent types of tangency bifurcations — that one encounters on the route to wild
chaos.

1 Introduction

The Lorenz system was introduced and studied by meteorologist Edward Lorenz in
the 1960s as an extremely simplified model for atmospheric convection dynamics
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Fig. 1 The Lorenz attractor as computed and rendered as a surface, with the equilibria 0 and p±

and the manifold W u(0).

[35]. Famously, Lorenz discovered sensitive dependence on the initial condition,
and the Lorenz system has arguably become the best-known example of a chaotic
system. It is given as the vector field





ẋ = σ(y− x),
ẏ = ρx− y− xz,
ż = −β z+ xy.

(1)

The system is invariant under the symmetry of a rotation about the z-axis by π . The
now classical choice of the parameters for which Lorenz found a chaotic attractor is

σ = 10, ρ = 28, β = 2
2
3
. (2)

For these parameters, (1) has three equilibria: the origin 0 and a symmetrically
related pair of secondary equilibria p±, which are all saddles. The chaotic attractor
is often called the Lorenz or butterfly attractor. It has two ‘wings,’ which are centred
at p− and p+ (which are not part of the attractor). Importantly, the Lorenz attractor
contains 0 and its one-dimensional unstable manifold W u(0), that is, the two trajec-
tories that converge to 0 in backward time. The Lorenz attractor actually consists
of infinitely many layers or sheets that are connected along W u(0), which forms the
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‘outer boundary’ of the attractor. This is already sketched and studied in the original
paper by Lorenz [35]; an illustration of the different layers of the Lorenz attractor
can be found in the paper by Perelló [40] and it is reproduced in [14].

Figure 1 shows a computed version of the Lorenz attractor, which was ren-
dered as a surface from computed orbit segments of several suitably chosen fam-
ilies; see [14] for detail of this computation. Also shown in Figure 1 is the one-
dimensional unstable manifold W u(0), with its left and right branches rendered in
different shades; observe how W u(0) forms the outer boundary of the Lorenz attrac-
tor. Our visualisation in Figure 1 is quite different from most images of the Lorenz
attractor that are obtained with numerical simulation. Starting from some initial con-
dition, and letting transients die down, the Lorenz attractor is typically visualised by
plotting (a long part of) the remaining trajectory. In this way, the part of the Lorenz
attractor closest to the origin is generally missed, as it is not ‘visited’ very often by
trajectories; hence, most published images show a considerably smaller part of the
Lorenz attractor.

The Lorenz system (1) has been studied since the 1970s via the concept of the
geometric Lorenz attractor, which is an abstract geometric model introduced by
Guckenheimer [24], Guckenheimer and Williams [26], and Afrajmovich, Bykov
and Shilnikov [1, 2]; see also [8, 44]. The key is that the geometric Lorenz attractor
displays all the features observed in the Lorenz system, and that it can be reduced
rigorously to a one-dimensional noninvertible map. This reduction is done in two
steps. First of all, one considers the Poincaré return map to the horizontal section
through the points p± (given by z = ρ − 1). Locally this map is a diffeomorphism
that has a stable foliation (near the classic parameter values), that is, an invariant
foliation that is uniformly contracted by the Poincaré return map. The map on the
quotient space of this foliation is a one-dimensional noninvertible map, called the
Lorenz map, and it describes the dynamics on the geometric Lorenz attractor exactly.
It can be shown with standard methods that the Lorenz map has chaotic dynamics;
see, for example, [25]. In 1999 Tucker [45] famously provided a computer-assisted
proof that, for the classical parameter values (2), the Lorenz system (1) satisfies the
technical conditions of this geometric construction, thereby showing that the Lorenz
attractor is indeed a chaotic attractor.

The question how chaos arises in the Lorenz system has also been considered,
where ρ is chosen traditionally as the parameter that is varied [15, 43]. For small
ρ > 1 all typical initial conditions simply end up at either p− or p+, which are the
only attractors of (1). As ρ is increased, a first homoclinic bifurcation at ρ ≈ 13.9265
is encountered; here both branches of the one-dimensional unstable manifold W u(0)
of the origin return to 0 to form a pair of homoclinc connections. This global bifurca-
tion creates not only a pair of (symmetrically related) saddle periodic orbits, but also
a hyperbolic set of saddle type. The result is what has been called preturbulence [29],
which is characterised by the existence of arbitrarily long chaotic transients before
the system settles down to either p− or p+ (still the only attractors). At ρ ≈ 24.0579
one encounters a pair of heteroclinic cycles between the origin and the pair of sad-
dle periodic orbits, and this results in the creation of a chaotic attractor. The chaotic
attractor, which is the closure of W u(0), coexists with the two stable equilibria until
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they become saddles in a Hopf bifurcation at ρ = 470/19≈ 24.7368. After the Hopf
bifurcation and up to ρ = 28, the chaotic attractor is the only attractor.

A crucial role in the organisation of the dynamics of the Lorenz system (1) is
played by the stable manifold W s(0) of the origin 0, which we refer to as the Lorenz
manifold. The origin 0 is a saddle equilibrium (for ρ > 1) with two stable directions
and one unstable direction, and W s(0) is a smooth surface that consists of all points
in R3 that end up at 0. Before the first homoclinic bifurcation, W s(0) forms the
boundary between the two attractors p− and p+. In the preturbulent regime after the
first homoclinic bifurcation W s(0) is still part of the basin boundary of p±, but it is
much more complicated topologically as it is involved in organising arbitrarily long
transients.

More importantly for the purpose of this paper, the Lorenz manifold W s(0) or-
ganises the dynamics in the chaotic regime [14, 15]. Owing to the sensitive de-
pendence on the initial condition, W s(0) is dense in phase space. Moreover, the
interaction of the Lorenz manifold W s(0) with the unstable manifold W u(0) gives
rise to infinitely many further homoclinic bifurcations when ρ is varied. Closely
related is the fact that there are infinitely many homoclinic tangencies between the
two-dimensional stable and unstable manifolds of the saddle periodic orbits that lie
dense in the chaotic Lorenz attractor. More generally, such tangencies of a three-
dimensional vector field correspond directly (by taking a Poincaré return map) to
homoclinic tangencies of the one-dimensional stable and unstable manifolds of fixed
or periodic points of a planar diffeomorphism such as the Hénon map [27], which is
another well-known chaotic system. Near a homoclinic tangency one can construct
Smale horseshoe dynamics, that is, a chaotic hyperbolic set of saddle type. More-
over, any homoclinic tangency of a one-parameter family of three-dimensional vec-
tor fields, or planar diffeomorphisms, is accumulated in parameter space by other
homoclinic tangencies [39], leading to an infinite sequence of homoclinic tangency
points accumulating on other homoclinic tangency points. This is one of the charac-
terizing properties of ‘classical chaos’ that arises in vector fields of dimension three
and in diffeomorphisms of dimension two, for which the Lorenz system and the
Hénon map are standard examples; see, for example, textbooks such as [4, 25, 42].

At a homoclinic tangency of a hyperbolic set (such as a periodic orbit) there
is a nontransversal intersection of its stable and unstable manifolds. In particular,
the point of homoclinic tangency is nonwandering and its tangent bundle cannot be
decomposed into stable and unstable subspaces. As a result, the system is not uni-
formly hyperbolic, or simply, it is nonhyperbolic at a homoclinic tangency. In other
words, in ‘classical chaos’ one finds infinitely many accumulating points of nonhy-
perbolicity. A property is said to be robust (in the C1-topology) if there is an open
neighbourhood in the space of vector fields or diffeomorphisms such that all these
systems have said property. As it turns out, it has been argued that nonhyperbolicity
and homoclinic tangencies do not occur robustly in three-dimensional vector fields
or two-dimensional diffeomorphisms [36].

On the other hand, robust homoclinic tangencies and, hence, robust nonhyper-
bolicity can be found in vector fields of dimension at least four and in diffeomor-
phisms of dimension at least three [11]. Any system with this property is said to
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display wild chaos [37]. There are several constructions of diffeomorphisms that
feature robust nonhyperbolicity [3, 6, 7, 21, 22]. Moreover, in [49] it is shown that
a four-dimensional vector field model of calcium dynamics in a neuronal cell has
a heterodimensional cycle between two saddle periodic orbits, which is directly as-
sociated with robust hyperbolicity [11, 29]. It is also possible to construct an n-
dimensional vector field with robust homoclinic tangencies of a singular attractor
and, hence, with wild chaos. Turaev and Shilnikov presented such an example for
n ≥ 4 in [46, 47]. We consider here the example for n ≥ 5 due to Bamón, Kiwi,
and Rivera-Letelier [9], which is constructed as a Lorenz-type system. It suffices
to consider their construction for n = 5; the associated attractor is called Lorenz-
like because it is effectively a higher-dimensional version of the geometric Lorenz-
attractor. The dynamics of the five-dimensional Lorenz-type vector field is described
by a four-dimensional diffeomorphism given as the Poincaré return map to a suit-
able codimension-one section. On this section there is a two-dimensional stable
foliation, and the resulting quotient map is now a noninvertible map of the plane.
This map is given in [9] in explicit form; in fact, Bamón, Kiwi, and Rivera-Letelier
construct their example by starting from the noninvertible map, lifting it to the four-
dimensional Poincaré return map and then suspending this diffeomorphism to obtain
an abstract five-dimensional Lorenz-type vector field. In a small neighbourhood of a
specific point in parameter space, they then show that the planar noninvertible map
is robustly nonhyperbolic.

The goal of this paper is to determine and illustrate the geometry behind chaos in
the Lorenz system and wild chaos in the five-dimensional Lorenz-type system. This
study is made possible by advanced numerical methods — based on solving fami-
lies of boundary value problems — for the computation of two-dimensional global
manifolds of vector fields [15, 30, 31, 33] and tangency bifurcations involving sta-
ble and unstable sets of noninvertible planar maps [10, 28]; their implementation
is done in the packages AUTO [13] and Cl MatContM [18, 23], respectively. Sec-
tion 2 is concerned with the Lorenz system. Our starting point in Section 2.1 is
the discussion of how the three-dimensional phase space is organised globally by
the two-dimensional Lorenz manifold W s(0) of the origin in the presence of the
classical Lorenz attractor. We then discuss in Section 2.2 the geometry behind the
description of the dynamics on the Lorenz attractor by the one-dimensional Lorenz
map. The two-dimensional Lorenz-like map is introduced in Section 3 and its basic
properties are discussed. The transition from simple to wild chaos is the subject of
Section 3.1, where we show how different types of tangency bifurcations are in-
volved in creating increasingly complicated dynamics. In Section 3.2 we present a
two-parameter bifurcation diagram with curves of the different tangency bifurca-
tions, which allows us to identify a large region where we conjecture wild chaos to
be found. Finally, Section 4 summarises the results and briefly discusses avenues
for future research.



6 Osinga, Krauskopf & Hittmeyer

2 Chaos in the Lorenz system

In this section we consider the chaotic dynamics of the Lorenz system (1) for the
classical parameter values given in (2). We first consider the organisation of the
full phase space and then illustrate the geometry behind the reduction to the one-
dimensional Lorenz map.

2.1 Global organisation of the phase space

The Lorenz attractor is the only attractor of (1) for ρ = 28. Its basin is the entire
phase space R3 with the exception of the symmetric pair of secondary equilibria
p± and their one-dimensional stable manifolds W s(p±). Recall that the origin 0 and
its one-dimensional unstable manifold W u(0) are part of the chaotic attractor. This
also means that the two-dimensional stable manifold W s(0) lies in the basin of the
Lorenz attractor. Moreover, locally near 0 the invariant surface W s(0) determines the
dynamics in the following sense: initial conditions on one side of W s(0) flow away
from the origin into the left wing of the attractor (towards negative values of x) and
those on the other side flow away from the origin into the right wing of the attractor
(towards positive values of x). The sensitive dependence on initial conditions of the
dynamics on the Lorenz attractor has global consequences throughout the phase
space. Any open sphere in phase space, no matter how small, must contain two
points that eventually move over the Lorenz attractor differently: at some point in
time one trajectory is, say, on the left wing, while the other is on the right wing.
This means that, locally near the attractor, the two trajectories are on either side of
W s(0). This implies that W s(0) must divide the open sphere into two open halves,
each containing one of the two initial conditions. In turn this proves that W s(0) lies
dense in the basin of the Lorenz attractor and, hence, also in R3.

According to the stable and unstable manifold theorem [38], locally near 0 the
surface W s(0) is a small topological disk that is tangent to the two-dimensional
stable linear eigenspace Es(0) spanned by the eigenvectors of the two negative real
eigenvalues. This disk can be imagined to grow while its boundary maintains a fixed
geodesic distance (distance of the shortest path on W s(0)) to the origin 0. At any
stage of this growth process one is dealing with a smooth embedding of the standard
unit disk into R3 yet, as it grows, this topological disk fills out R3 densely. Hence,
loosely speaking, one can imagine the surface W s(0) as a growing, space-filling
pancake.

We developed a numerical method for the computation of two-dimensional sta-
ble and unstable manifolds, called the geodesic level set (GLS) method [30]. This
method is based on the idea of growing such a manifold by adding geodesic bands
to it at each step. With the GLS method we are able to compute a first part of W s(0)
as a surface up to a considerable geodesic distance. On the other hand, in order to
examine the denseness of W s(0) in R3 a different approach is needed. Namely, we
consider the intersection set Ŵ s(0) :=W s(0)∩SR with a suitable chosen sphere SR,
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Fig. 2 The Lorenz manifold W s(0) for ρ = 28 intersecting the sphere SR with R = 70.7099 in the
set Ŵ s(0); also shown are the equilibria 0 and p− and the one-dimensional manifolds W u(0) and
W s(p±).

which is then computed directly by defining a boundary value problem such that its
solutions are orbit segments with begin point on SR and end point in Es(0) near 0;
see [5, 15] for details. More specifically, we choose the centre of SR as the point
(0,0,ρ−1) on the z-axis, which lies exactly in the middle of the line that connects
the two equilibria p±. The radius R of SR is chosen such that the Lorenz attractor is
well inside SR, and the second intersection points in Ŵ s(p±) :=W s(p±)∩SR of the
small-amplitude branches of W s(p±) lie on the the ‘equator’ of SR — for ρ = 28 as
considered here, this gives R = 70.7099; see [15] for details.

Figure 2 illustrates the geometry of how W s(0) intersects the sphere SR. The view
is from a point with negative x- and y-coordinates, and only one half of the com-
puted part of the surface W s(0) is shown, namely, the part with y ≥ 0. The sphere
SR is rendered transparant. Inside SR, we can clearly see the equilibria 0 and p−,
with p+ obscured by W s(0). The one-dimensional unstable manifold W u(0), with
its left and right branches rendered in different shades, gives an idea of the location
of the Lorenz attractor. Also shown in Figure 2 are the two one-dimensional stable
manifolds W s(p±), each drawn in different shades. Note that the small-amplitude
branch of W s(p−) indeed intersects SR along its equator, while the large-amplitude
branch of W s(p+) intersects SR at a point higher up and closer to the z-axis. Recall
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��*
Ŵ s(p+)
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Fig. 3 The set Ŵ s(0) for ρ = 28 on the sphere SR with R = 70.7099; also shown are Ŵ s(p±).

that p± ∪W s(p±) forms the complement of the basin of the Lorenz attractor. The
surface W s(0) can be seen to wrap around the curves W s(p±), which it cannot inter-
sect. The part of W s(0) that is shown, which was computed up to geodesic distance
162.5, generates the beginnings of what appear to be only three intersection curves
in Ŵ s(0). It is clear that an impractically large piece of W s(0) would need to be
computed to generate the many curves in Ŵ s(0) that are shown in Figure 2; this is
why Ŵ s(0) is computed directly.

Figure 3 shows four different views of the the computed intersection curves in
Ŵ s(0) on the sphere SR; also shown on SR are the points in Ŵ s(p±). In all views,
the vertical axis is the z-axis of (1). In Figure 3(a), the horizontal axis is the direc-
tion defined by (cosθ ,−sinθ), with θ = 3π/10 (in other words, the (x,y)-plane
was rotated clockwise by 3π/10 about the z-axis). The view points in panels (b)–
(d) are consecutively rotated by a further π/4 radians about the z-axis; note that a
further rotation over π/4 would show the symmetrical version of Figure 3(a) with
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Ŵ s(p−) and Ŵ s(p+) interchanged. Figure 3 is designed to illustrate how W s(0) fills
the phase space R3 by showing the intersection set Ŵ s(0) on the sphere SR. Notice
the intricate structure of how the curves in Ŵ s(0) fill up SR; see also [15]. As one
might expect, the computed curves in Ŵ s(0) are not distributed evenly on SR, and
there are several larger regions on SR without computed curves in Ŵ s(0). This is due
to the fact that a finite computation is performed to show an infinite process. More
specifically, the curves in Ŵ s(0) that are shown in Figure 3 have the property that
the overall integration time of the associated computed orbit segments is no larger
than 7.0; see [15] for details of the computational setup. This bound already leads to
a considerable computation generating 350 MB of AUTO data and 377 individual
curves in Ŵ s(0). As we have checked, these regions fill up with additional curves
in Ŵ s(0) if one allows for a larger bound on the integration time of orbit segments;
however, the number of curves thus obtained and, hence, the duration and data pro-
duced grow exponentially with the bound on the integration time. Figure 3 provides
a good illustration of the space-filling nature of the surface W s(0) in phase space
that, in turn, constitutes a global geometric interpretation of the sensitive depen-
dence of the Lorenz system (1) on the initial conditions.

2.2 From Lorenz attractor to Lorenz map

The first step in the reduction process resulting in the description of the dynamics
on the Lorenz attractor by the Lorenz map is to consider the Poincaré return map to
the horizontal plane Σρ through the secondary equilibria p±, which is given by

Σρ := {(x,y,z) ∈ R3 | z = ρ−1}. (3)

Geometrically, this means that one needs to consider the intersection sets with Σρ of
the relevant invariant objects of the vector field (1). Figure 4 illustrates the situation.
The Lorenz attractor, represented by the unstable manifold W u(0) accumulating on
it, can be found in the middle of the image. It is intersected by Σρ , which is rendered
transparent, at the height of the equilibria p±. The stable manifold W s(0) is shown
as computed up to geodesic distance 162.5; the parts of W s(0) below and above
the plane Σρ are rendered solid and transparent, respectively. The outer boundary
of the computed part of W s(0) (the geodesic level set of geodesic distance 162.5)
is highlighted to help illustrate the complicated geometry of this surface, which is
topologically a disk. The surface W s(0) can be seen in Figure 4 to intersect Σρ

in several curves of the set W s
(0) := W s(0)∩Σρ . One of them is the primary in-

tersection curve W s
0(0), which is invariant under the symmetry of a rotation by π

about the z-axis and contains the point (0,0,ρ−1). Also shown in Figure 4 are the
one-dimensional manifolds W s(p±), which intersect Σρ in discrete points.

It is important to realise, as can easily be checked from (1), that the flow is tangent
to Σρ along the tangency locus
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W ss(p+) W ss(p−)

W s(0)

0

C

⊙ ⊗Σρ W
s

0(0)

Fig. 4 The manifold W s(0) for ρ = 28 computed up to geodesic distance 162.5 and its intersection
with the plane Σρ ; the section Σρ and the part of W s(0) above it are rendered transparent. Also
shown are the equilibria 0 and p±, the one-dimensional manifolds W u(0) and W s(p±), and the
tangency locus C on Σρ .

C = {(x,y,ρ−1) ∈ R3 | xy = β (ρ−1)}. (4)

The set C consists of two hyperbolas, which contain the equilibria p± ∈ Σρ , re-
specively. In between the two hyperbolas the vector field points downward (towards
negative z), which is indicated by the symbol ⊗ in Figure 4. In the regions to the
other side of C the vector field points upward (towards postive z), which is indicated
by the symbol �. As a result, the Poincaré return map, defined as the first return to
the section, is not a diffeomorphism on the entire plane Σρ . This is why one defines
the local Poincaré return map only on the central region of Σρ where the direction of
the flow is downward [24], that is, in between the two hyperbolas of C; technically,
this means that one considers the second return to Σρ .

However, this local Poincaré map on the central region is still not a diffeo-
morphism. Namely, points along the primary intersection curve W s

0(0) converge
to 0 6∈ Σρ under the flow and, hence, do not return to the section Σρ . This means that
the Poincaré map is not defined on W s

0(0). Trajectories through points to the left
of W s

0(0) spiral around p− before intersecting Σρ again, while those through points
to the right of W s

0(0) spiral around p+ before intersecting the central region of Σρ



Chaos and wild chaos 11

−20 −10 0 10 20x

−20

−10

0

10

20

y

p+

p−
C

⊗
⊙

C

⊗
⊙

W
s
(0)

W
s
(0)

W
s

0(0)

W
u
(0)

W
u
(0)

Fig. 5 The invariant objects of (1) for ρ = 28 in the plane Σρ ; compare with Figure 4. Shown are
the equilibria p±, the tangency locus C, the intersection set of the Lorenz attractor as represented
by W u

(0), and curves in W s
(0); the primary intersection curve W s

0(0) is highlighted, and it divides
the central region labelled ⊗ where the direction of the flow is downward.

again. Hence, the local Poincaré map has a discontinuity across the curve W s
0(0),

and it maps each of the two complimentary regions either side of W s
0(0) over the

entire central region between the two hyperbolas in C.
Figure 5 shows the respective invariant objects in the plane Σρ , which can be

identified with the (x,y)-plane (with fixed z = ρ−1). By construction, the equilibria
p± lie in Σρ and on the tangency locus C that bound the central region indicated
by the symbol ⊗. The Lorenz attractor is represented by the intersection points
W u

(0) := W u(0)∩ Σρ of the unstable manifold W u(0). These intersection points
appear to intersect Σρ in four disjoint curves, two of which lie in the central region;
note that the Lorenz attractor does not contain the points p± and compare with
Figure 1. Also shown in Figure 5 are many curves of the intersection set W s

(0), and
the primary curve W s

0(0) is highligthed. Curves in the set W s
(0) were computed

directly by imposing the boundary condition that the corresponding orbit segments
have their begin point in Σρ ; by contrast, in Figure 4 the shown curves in W s

(0)
were obtained from the computed part of the two-dimensional manifold W s(0).
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The reduction of the Poincaré map to the Lorenz map for ρ = 28 relies on the
fact that the geometric Lorenz system — the abstract version of the Lorenz system
— admits an invariant stable foliation in some neighbourhood of the chaotic attrac-
tor [1, 26, 41, 48]. This means that leaves of this foliation are mapped to leaves, and
the dynamics on the leaves is a contraction. When restricted to said neighbourhood
of the attractor, the curves in W s

(0) generate the stable foliation by means of tak-
ing their closure. Hence, Figure 5 provides an illustration of the stable foliation by
showing a large number of curves in W s

(0). The leaves of this foliation intersect the
segment of the diagonal between p− and p+ in unique points. The one-dimensional
Lorenz map is defined on this diagonal segment — or, rather, on the corresponding
interval of the variable x — and it describes how leaves are mapped to leaves un-
der the Poincaré map on the central region of Σρ . The Lorenz map is topologically
conjugate to the map

x 7→
{

1−β |x |α , x ∈ [−1,0),
−1+β |x |α , x ∈ (0,1], (5)

with 0 < α < 1, β ∈ (1,2) and α β > 1; see [25]. Here, α is the ratio between
the magnitudes of the weak stable and unstable eigenvalues of the equilibrium 0
of the Lorenz system (1). The Lorenz map is not invertible because it maps the
subinterval [−1,0) to a much larger subinterval in [−1,1]; due to symmetry, the
same is true for the subinterval (0,1]. Moreover, the Lorenz map has a discontinuity
at 0, which is also referred to as the critical point; note that 0 corresponds to the
point (0,0,ρ−1)∈W s

(0) that never returns to Σρ . The critical point 0 has infinitely
many preimages under the Lorenz map, because all points on W s

(0) eventually map
to 0; compare with Figure 5. One can also take the point of view that the critical
point 0 of the Lorenz map represents the origin 0 of the Lorenz system; then the
(symmetrically related) first intersection points of W u

(0) in the central region of
Σρ can be thought of as the forward (set-valued) image of the critical point 0. In
particular, whenever these two points map to the critical point 0 under some iterate
of the Lorenz map then this corresponds to a homoclinic orbit of 0 in the full Lorenz
system.

The Lorenz map of the form (5) is a rigorous descriptions of the dynamics of the
Lorenz system (1) provided that there is an invariant stable foliation. There is every
indication that this is indeed the case in this entire ρ-range of 0 < ρ ≤ 30.1 [43].
Indeed, the Lorenz map has been used to study the (emergence of) chaotic dynamics
for increasing ρ up to ρ = 28 [24, 29, 43]. On the other hand, it is known that for
ρ ≥ 30.2 the Lorenz system has ‘cusped horseshoes,’ the dynamics of which is
definitely not represented faithfully by the one-dimensional Lorenz map [24, 43].
By which mechanism the stable foliation is lost near ρ ≈ 30.1 is the subject of
ongoing research [12].

A closely-related concept is the so-called Lorenz template [19, 20, 24, 35]. Ge-
ometrically, the Lorenz template is obtained from the Lorenz attractor in Figure 1
by the identification of points on the diagonal segment in between p− and p+ with
points on the Lorenz attractor via the projection along leaves of the stable foliation
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in Σρ . More specifically, consider the points corresponding to the stable projections
of the first intersection points of the two sides of W u(0) with Σρ in the central re-
gion where the direction of the flow is downward. The diagonal segment connecting
these two points contains the point (0,0,ρ − 1). Initial conditions on the diagonal
segment on either side of (0,0,ρ − 1) sweep out two surfaces as the flow takes
them around p− and p+, respectively, until they return to the central region of Σρ as
two curves (that are very close to the intersection of the Lorenz attractor with Σρ ).
Projection along stable leaves then identifies these two end curves with the initial
diagonal segment. This segment can, hence, be thought of as the start and finish line
on a branched two-manifold, that is, the topological object obtained by ‘glueing’ the
two surfaces together along the diagonal in the central region of Σρ ; this branched
two-manifold is the Lorenz template. In particular, the Lorenz template allows one
to describe the symbolic dynamics of the knot-types in R3 of periodic orbits in the
Lorenz system [19]. Notice that the dynamics from start to finish on the Lorenz
template is exactly given by the Lorenz map.

3 Wild chaos in a Lorenz-type system in dimension five

The reduction process for the three-dimensional (geometric) Lorenz system can also
be applied to systems with phase-space dimension n ≥ 4. In direct analogy, one
obtains an invariant foliation in a suitable (n− 1)-dimensional cross-section with
leaves of codimension one and dimension n− 2; this would require that, near the
Lorenz attractor, the additional directions are all stronger than those on the Lorenz
attractor. Projection along stable leaves then results in a one-dimensional Lorenz
map, meaning that the dynamics of such a vector field for n ≥ 4 is just like that of
the Lorenz system (1) itself.

To obtain a Lorenz-type vector field in higher dimensions with different dynam-
ics from that of the Lorenz system (1), one needs to consider an example where the
Poincaré map in a cross-section admits an invariant stable foliation of codimension
at least two. In 2006, Bamón, Kiwi, and Rivera-Letelier [9] constructed such an
abstract n-dimensional Lorenz-type vector field for n ≥ 5 with a stable foliation of
codimension two and dimension n−3 in the (n−1)-dimensional cross-section; the
minimal case n = 5 contains all the geometric ingredients, and we restrict to it for
simplicity in the discussion that follows. The central object in [9] is the correspond-
ing two-dimensional noninvertible quotient map, which is given on the punctured
complex plane as

f : C\{0} → C

z 7→ (1−λ +λ |z |a)
( z
|z |
)2

+1,
(6)
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with parameters a,λ ∈ R in the ranges 0 < a < 1 and 0 < λ < 1. Notice the term
| z |a, indicating a clear similarity with the form (5) of the one-dimensional Lorenz
map.

A planar noninvertible map can have richer dynamics than a one-dimensional
noninvertible map, where homoclinic tangencies can be at most dense in parameter
space. Indeed, [9] provides a proof that there exists a small open region near the
point (a,λ ) = (1,1) in the (a,λ )-plane, such that the map (6) has a homoclinic
tangency for every point from this parameter region; hence, homoclinic tangencies
occur robustly, and the map, as well as the associated Lorenz-type vector field in
R5, exhibit wild chaos.

As is the case for the one-dimensional Lorenz map, the origin in C does not have
a well-defined image under (6). Hence, this point is a critical point, which we refer
to as J0. The critical point J0 arises, as in Section 2.2, from the fact that it lies on
the three-dimensional stable manifold of an equilibrium e of the five-dimensional
Lorenz-type vector field, where e does not lie in the cross-section on which the
four-dimensional Poincaré map is defined. The equilibrium e has a two-dimensional
unstable manifold that corresponds in the planar map (6) to the critical circle

J1 = {z ∈ C | |z−1 |= 1−λ }, (7)

with radius 1− λ around the point z = 1. The equilibrium e plays the role of the
origin 0 of the Lorenz system (1) and, in complete analogy, the critical circle J1 can
be interpreted as the set-valued image of the critical point J0. The map (6) maps the
punctured complex plane C \ J0 in a two-to-one fashion — by angle doubling due
to the term (z/ | z |)2 — to the region outside the circle J1; the centre of the angle-
doubling is shifted by 1 with respect to J0 = 0. Dynamics and bifurcations of this
type of map are the subject of [28], where we consider a more general family with
an additional complex parameter c for the shift; it is set to c = 1 in (6) for simplicity
and in accordance with the formulation of the map in [9].

Our goal here is to present geometric mechanisms that are involved in the transi-
tion from simple dynamics to wild chaos in the map (6) as the point (a,λ ) = (1,1) is
approached. Key ingredients in this transition are different types of global bifurca-
tions. The map (6) has fixed points and periodic points, which correspond to periodic
orbits of the associated vector field. If they are saddles then these points have sta-
ble and unstable invariant sets, which are the generalisations of stable and unstable
manifolds to the context of noninvertible maps; see, for example, [16, 17, 32] for
more details. Points on the stable set W s(p) of a saddle periodic point p converge
to p under iteration of f k where k is the (minimal) period of p; note that k = 1 if
p is a fixed point. Similarly, points on the unstable set W u(p) of p converge to p
via a particular sequence of preimages of f k. Note that W s(p) and W u(p) in the
map (6) are one-dimensional objects, but they are typically not manifolds. The sta-
ble set W s(p) consists of a primary manifold W s

0 (p) that contains p, and all preim-
ages of W s

0 (p), so that the stable set is typically a disjoint family of infinitely many
one-dimensional manifolds. The unstable set may be an immersed one-dimensional
manifold; however, sequence of preimages of points in W u(p) may not be unique,
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in which case W u(p) has self-intersections. The stable and unstable sets of a saddle
fixed or periodic point of the map (6) correspond to four-dimensional stable and
two-dimensional unstable manifolds of the corresponding saddle periodic orbit in
the five-dimensional Lorenz-type vector field.

Clearly, the stable and unstable sets of a fixed or periodic point p can become
tangent, which is referred to as a homoclinic tangency and corresponds to a tan-
gency between the respective manifolds of the associated periodic orbit in the five-
dimensional Lorenz-type vector field. To characterise the additional global bifur-
cations that arise in the map (6) it is convenient to consider the backward critical
set

J − := ∪∞
k=0 f−k(J0)

of all preimages of the critical point J0, and the forward critical set

J + := ∪∞
k=0 f k(J1),

of all images of the critical circle J1. Note that J − consists of potentially infinitely
many discrete points, while J + consists of infinitely many closed curves; we refer
to J = J −∪J + as the critical set. With this notation, we can define three fur-
ther tangency bifurcations: the forward critical tangency where a stable set W s(p)
becomes tangent to the circles in the forward critical set J +; the backward critical
tangency where a sequence of points in the backward critical set J − lies on an
unstable set W u(p); and the forward-backward critical tangency where a sequence
of points in the backward critical set J − lies on the forward critical set J +. These
three global bifurcation involving the critical set J , as well as the homoclinic bi-
furcation, are encountered and discussed here as part of the transition to wild chaos.
They are of codimension one, that is, they are encountered generically at isolated
points when a single parameter is changed; their unfoldings are presented in detail
in [28]. Note that a forward or backward critical tangency corresponds to a hete-
roclinic bifurcation between the corresponding periodic orbit and the equilibrium
e of the Lorenz-type vector field. The forward-backward critical tangency, on the
other hand, corresponds to the existence of an isolated homoclinic orbit of the sad-
dle equilibrium e of the five-dimensional Lorenz-type vector field; it is the higher-
dimensional analogue of how a homoclinic bifurcation in the Lorenz system (1) is
described by the one-dimensional Lorenz map.

3.1 The transition for increasing a = λ

We now show a series of phase portraits as panels (a)–(l) of Figure 6 that illustrate
the bifurcations that are encountered in the transition to wild chaos and generate the
robustness of homoclinic tangencies; more specifically, we increase a and λ along
the diagonal a = λ towards the point (a,λ ) = (1,1), near which wild chaos was
proven to exist [9]. To facilitate the visualisations, we project the complex plane
C onto the Poincaré disk by stereographic projection, where the unit circle, that
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is, the boundary of the Poincaré disk represents the directions to infinity. In each
phase portrait we show a suitable number of points in the backward critical set J −

(as dots) and the closed curves in the forward critical set J +. We remark that the
circle J1 with radius 1− λ appears distorted in all phase portraits as a result of
stereographic projection. For the values a,λ ∈ R that we consider, the map (6) has
one fixed point p on the positive real line and a complex-conjugate pair of fixed
points q±. We plot these fixed points p and q±, as well as the stable set W s(p)
and unstable set W u(p) of the saddle point p; throughout, the points in J − are
branch points of the stable set W s(p). Notice that all phase portraits are symmetric
with repect to complex conjugation, owing to the fact that a,λ ∈ R. The phase
portraits in Figure 6 were obtained from computations of the transformed map on
the Poincaré disk as follows: the fixed points p and q± can be found readily; J −

is represented by all backward images of J0 under up to eleven backward iterations,
that is, by ∪11

k=0 f−k(J0); similarly, J + is represented by J1 and its next fourteen
forward iterations; to obtain W s(p), we take advantage of the complex-conjugate
symmetry and note that the primary manifold W s

0 (p) is the real halfline (0,∞), which
is the real interval (0,1] on the Poincaré disk; we computed eleven backward iterates
of W s

0 (p); finally, W u(p) was found by computing a first piece of arclength 5 and
then plotting it and its next six iterates (in this way, we ensure that W u(p) maintains
a suitable and comparable arclength as parameters are changed).

Figure 6(a) is for a = λ = 0.7, when the map (6) does not have chaotic dynamics,
and all typical orbits converge to one of the two attracting fixed points q±. The two
branches of the unstable set W u(p) (which is an immersed manifold in this case)
spiral towards q+ and q−, respectively. The preimages of W s

0 (p) are organised in
such a way that every point in the backward critical set J − connects four branches
of W s(p). Moreover, J − accumulates on the boundary of the Poincaré disk. The
forward critical set J +, on the other hand, accumulates on the unstable set W u(p).
Figure 6(b) shows the phase portrait for a = λ = 0.72, just after a Neimark-Sacker
bifurcation (or Hopf bifurcation for maps) [34]. The fixed points q± are now repel-
lors and W u(p) and J + accumulate on two invariant closed curves (not shown),
which correspond to invariant tori in the associated Lorenz-type vector field. As a
and λ change, these invariant closed curves undergo various bifurcations (associ-
ated with resonance phenomena) that we do not discuss here. Figure 6(c) shows
the phase portrait for a = λ = 0.73277, approximately at the moment that W s(p)
and W u(p) have a first homoclinic tangency. Since W u(p) accumulates on itself,
this first homoclinic tangency is accumulated in parameter space, on the side of
larger a = λ , by infinitely many homoclinic tangencies. As is shown in Figure 6(d)
for a = λ = 0.745, after the first homoclinic tangency there is a homoclinic tan-
gle between W s(p) and W u(p). Therefore, the system is now chaotic in the classical
sense, meaning that any homoclinic tangency between W s(p) and W u(p) is accumu-
lated by further homoclinic tangencies with associated saddle hyperbolic sets and
horseshoe dynamics; see, for example, [11, 39]. Notice also that W s(p) accumulates
on itself and the two branches of the unstable set W u(p) now intersect. Moreover,
the forward critical set J + accumulates on W u(p), so that the first homoclinic
tangency is also accumulated in parameter space, on the side of larger a = λ , by
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J0
J1 p

q+

q−

W s(p)

W u(p)

(a) (b)

(c) (d)

Fig. 6 The objects p (cross), q± (triangles when attracting, and squares when repelling), W s(p),
W u(p), J − and J + on the Poincaré disk; from (a) to (d) a= λ take the values 0.7, 0.72, 0.73277
and 0.745.

infinitely many forward critical tangencies; indeed, in Figure 6(d) there is a tangle
between W s(p) and J + as a result. Furthermore, the forward critical tangencies
have the effect that the points in J − are branch points to infinitely many, instead of
four branches of W s(p); see also [28]. In Figure 6(d), this can be seen at the origin,
where an additional eight branches are shown to connect to 0; these are preimages
of the two additional branches of W s(p) that intersect J1.

In Figure 6(e) for a = λ = 0.76302 one encounters the first backward critical
tangency, where the unstable manifold W u(p) goes through the critical point J0 = 0,
which implies that W u(p) contains two sequences of preimages of J0 (two because
of symmetry). Since W u(p) accumulates on itself, this first backward critical tan-
gency is accumulated in parameter space, on the side of larger a = λ , by infinitely
many backward critical tangencies. Observe from Figure 6(f) for a= λ = 0.765 how
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(e) (f)

(g) (h)

Fig. 6 continued The objects p, q±, W s(p), W u(p), J − and J + on the Poincaré disk; from (e)
to (h) a = λ take the values 0.76302, 0.765, 0.77 and 0.8.

these interactions with J0 induce effects near J1 and its images. As a result of this
first backward critical tangency, W u(p) has points of self-intersection on each of its
two branches (on top of the intersections between the two branches). Consider the
region A enclosed by the first segments of the two branches of W u(p) up to when
they meet on the real line. Before the backward critical tangency all points of J −

lie outside the region A . In this and the accumulating further backward critical tan-
gencies, more and more points of J − move inside this region; see also Figures 6(g)
and (h) for a = λ = 0.77 and a = λ = 0.8, respectively. Moreover, the map (6) has
a chaotic attractor in the region A , which is the closure of the unstable set W u(p)
and, hence, also contains p. Because the forward critical set J + accumulates on
W u(p), the first backward critical tangency is also accumulated in parameter space,
on the side of larger a = λ , by infinitely many forward-backward critical tangen-
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(i) (j)

(k) (l)

Fig. 6 continued The objects p, q±, W s(p), W u(p), J − and J + on the Poincaré disk; from (i)
to (l) a = λ take the values 0.85, 0.87, 0.9 and 0.95.

cies between J + and J −. The forward-backward critical tangencies lead to the
disappearance of certain sequences of backward orbits of J0 from the backward crit-
ical set J −; moreover, the closed curves in J + develop self-intersections in the
process. These effects of the forward-backward critical tangencies are difficult to
discern in the phase portraits Figure 6(f)–(l); see [28] for details and illustrations.

When a = λ is increased further, W u(p) and, thus, the region A grows and in-
corporates more and more points of J −; see Figure 6(i)–(k) for a = λ = 0.85,
a = λ = 0.87 and a = λ = 0.9, respectively. At the same time, the sets W s(p),
W u(p) and J seem to become denser in the Poincaré disk, leading to ever more
associated tangency bifurcations when a = λ is increased. As Bamón, Kiwi, and
Rivera-Letelier showed in [9], near a = λ = 1 the tangency bifurcations between
stable and unstable sets of the hyperbolic saddle of (6) occur robustly. This mean
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that there exists 0 << w∗ < 1, such that one finds a homoclinic tangency of the hy-
perbolic saddle for every point (a,λ )∈ (w∗,1)×(w∗,1). We believe that Figure 6(l)
for a = λ = 0.95 gives some impression of what wild chaos, that is, the robustness
of homoclinic tangencies might look like. The saddle point p is only one of un-
countably infinitely many nonwandering points; yet the sets W s(p) and W u(p) and
the critical set J already fill out the Poincaré disk increasingly densely.

3.2 The bifurcation diagram in the (a,λ )-plane

The bifurcations that are encountered as a= λ is increased towards a= λ = 1 can be
continued as curves when a and λ are allowed to vary independently. For tangency
bifurcations this is done via the formulation of a suitable boundary value problem.
These computations are based on the technique for continuing a locus of homoclinic
tangency described in [10], which has been implemented in Cl MatContM [18, 23];
details on how we adapted this method can be found in [28]. Figure 7 shows the
resulting bifurcation diagram of (6) in the (a,λ )-plane; the points labelled (a)–(l)
along the diagonal are the parameter points of the phase portraits of Figure 6. Start-
ing from the lower-left corner, one first encounters the Neimarck-Sacker bifurcation
NS. The system then becomes chaotic when the curve H0 of homoclinic tangency
between W s(p) and W u(p) is crossed. As we already discussed, there are many more
homoclinic tangencies that accumulate on H0 and two of them are shown in Figure 7.
These curves of secondary homoclinic tangencies turn around and cross the diago-
nal at least twice, between the points (c) and (d) and between the points (d) and (e);
they each end on the curve B0 of first backward critical tangency where W u(p)
interacts with J −. Also shown in Figure 7 are five curves Fk of forward critical
tangency between the primary manifold W s

0 (p) and f (k−1)(J1), namely, those for
k = 8,10,12,14 and 16. Observe how each curve Fk passes very close to H0 before
turning away towards the right boundary of Figure 7 and note that Fk for k = 12,14
and 16 cross the diagonal very close to the curve H0. The curve B0 is accumulated
by curves of further backward critical tangencies, for example, the curve B2. Fig-
ure 7 also shows the curve FB10 of forward-backward critical tangency between J0
and f 9(J1), which lies very close to B0.

While the proof in [9] is valid only very close to the point a = λ = 1, the bifurca-
tion diagram in Figure 7 suggests that one might expect to encounter wild chaos in
a much larger region of the (a,λ )-plane. As soon as B0 is crossed, infinitely many
forward-backward critical tangencies have occured, which are codimension-one ho-
moclinic bifurcations of the equilibrium e of the five-dimensional Lorenz-type vec-
tor field; as such, they play the role of the homoclinic bifurcation in the Lorenz
system (1). Apart from this geometric ingredient, the proof in [9] also requires that
the parameters are such that (6) is area-expanding in a neighbourhood of the chaotic
attractor. In [28] we conjecture that homoclinic tangencies occur robustly to the right
of the first backward critical tangency B0; this region is shaded in Figure 7. This is
based on the suggestion that (6) is area-expanding in a neighbourhood of a subset of
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Fig. 7 Bifurcation diagram of (6) in the (a,λ )-plane for a,λ ∈ R. Shown are the curve NS of
Neimarck-Sacker bifurcation of q±, the curve H0 of first homoclinic tangency and two further
nearby curves of homoclinic tangency, the curves Fk for k ∈ {8,10,12,14,16} of forward critical
tangencies, the curve B0 of first backward critical tangency and two further nearby backward criti-
cal tangencies (one of which is labelled B2), the curve FB10 of forward-backward critical tangency,
and the curve A (cyan) along which det(D f (p)) = 1. The labelled points along the diagonal a = λ

correspond to the panels of Figure 6.

the attractor in this region. A sufficient (but not necessary) condition to ensure this
area-expanding property is that the product of the eigenvalues of p exceeds 1. The
curve A in Figure 7 is the locus where det(D f (p)) = 1, and (6) is area-expanding
in a neighbourhood of the chaotic attractor in the darker shaded region to the right
of A. Hence, in this darker region wild chaos should certainly be expected. In par-
ticular, this means that the phase portraits of Figure 6(k) and (l), and possibly also
those of Figure 6(g)–(j), are already from the regime of wild chaos.
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4 Conclusions

We presented a geometric perspective of the techniques used to prove the exis-
tence of chaos in the Lorenz system (1). The same approach can also be applied
to the study of wild chaos in higher-dimensional Lorenz-type vector fields. We fo-
cussed here on the two-dimensional noninvertible map (6) by Bámon, Kiwi and
Rivera-Letelier [9] and discussed how interactions between its invariant objects are
directly related to homoclinic and heteroclinic bifurcations of the associated five-
dimensional Lorenz-type vector field. In this way, we were able to describe geomet-
ric changes in (6) during the transition from non-chaotic, via chaotic to wild chaotic
dynamics. Our numerical results provide guidance for further theoretical study. In
particular, we proposed the conjecture that the wild chaotic regime for (6) starts as
soon as the first backward critical tangency bifurcation has occurred. Due to the
accumulative nature of the respective objects, the first backward critical tangency
induces infinitely many forward-backward critical tangencies, which emerge as a
main ingredient for wild chaos. It remains to show that, in this regime, the attractor
has the necessary area-expanding properties. The numerical methods we employed
can be used to investigate other two-dimensional noninvertible maps and associated
vector fields. In particular, it is of interest to explore possible routes to wild chaos
in these other examples.
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