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Abstract

A boundary crisis occurs when a chaotic attractor outgrows its basin of attraction and sud-
denly disappears. As previously reported, the locus of a boundary crisis is organised by homo-
or heteroclinic tangencies between the stable and unstable manifolds of saddle periodic or-
bits. In two parameters, such tangencies lead to curves, but the locus of boundary crisis along
those curves exhibits gaps or channels, in which other non-chaotic attractors persist. These
attractors are stable periodic orbits which themselves can undergo a cascade of period-doubling
bifurcations culminating in multi-component chaotic attractors. The canonical diffeomorphic
two-dimensional Hénon map exhibits such periodic channels, which are structured in a partic-
ular ordered way: each channel is bounded on one side by a saddle-node bifurcation and on
the other by a period-doubling cascade to chaos; furthermore, all channels seem to have the
same orientation, with the saddle-node bifurcation always on the same side. We investigate
the locus of boundary crisis in the Ikeda map, which models the dynamics of energy levels in a
laser ring cavity. We find that the Ikeda map features periodic channels with a richer and more
general organisation than for the Hénon map. Using numerical continuation, we investigate
how the periodic channels depend on a third parameter and characterise how they split into
multiple channels with different properties.

1 Introduction

Boundary crisis was first studied in [26] as a new bifurcation for chaotic dynamical systems. It
is mediated by a homo- or heteroclinic tangency between global stable and unstable manifolds of
fixed points or periodic orbits and results in the sudden disappearance of a chaotic attractor as
it touches the boundary of its own basin of attraction. While the locus of homo- or heteroclinic
tangency is generally a smooth curve in a two-parameter plane, the locus of boundary crisis is not
smooth [6, 16, 17]. Indeed, the effect of a tangency between global (un)stable manifolds can be
different, particularly when the attractor is not chaotic, and other phenomena may result, such
as interior crisis, when a multi-component chaotic attractor merges into a larger chaotic attractor
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that consists of fewer or only one component [7], or basin boundary metamorphosis, where the
basin boundary associated with the attractor changes from smooth to fractal [8, 9]. Gallas, Grebogi
and Yorke [6] discussed how the nature of the crisis bifucation along a two-parameter tangency
locus changes at a so-called double-crisis vertex, where another curve of homoclinic or heteroclinic
tangencies between manifolds of a different periodic orbit intersects. In [16, 17], it was shown
that the nature of the crisis bifurcation on a tangency locus also changes at points where the
tangency locus crosses a curve of saddle-node bifurcations. The intersecting curve of saddle-node
bifurcations gives rise to a periodic channel that constitutes an actual gap in the locus of boundary
crisis. Periodic channels are the two-parameter versions of the well-known periodic windows in
one-parameter bifurcation diagrams of systems with chaotic attractors such as the logistic map [3]
or the Hénon map [10, 23]. Hence, one should expect that there may be infinitely many periodic
channels, which means that we cannot speak of a curve of boundary crisis bifurcation.

Despite the fact that boundary crisis is not a robust phenomenon in a two-parameter setting,
numerical brute-force iterative methods and actual physical experiments will still highlight its ex-
istence [1, 14, 21, 22, 27]. The gaps in the locus of boundary crisis will typically only be visible
at increasingly finer scales of parameter variations [6, 16, 17]. However, the basin of attraction of
the attractor that exists in such a periodic window may be quite large. Hence, particularly in the
study of boundary crisis, where the attractor is supposed to disappear, the periodic channels can
be very important in determining parameter regimes that can be regarded as safe. Therefore, it is
of interest to study the organisation of periodic channels and how they depend on parameters.

Periodic windows and, therefore, periodic channels in the Hénon map [10, 23] are structured in
a special way: The two-parameter channel arises from a curve SNk of saddle-node bifurcations that
creates a saddle and sink of a particular period k; this is the base period of the channel. The period-
k sink subsequently undergoes a cascade of period-doubling bifurcations until a chaotic attractor
emerges that consists of k disjoint components. The basin of this chaotic attractor is formed by the
stable manifold of the period-k saddle. One branch of the unstable manifold of this period-k saddle
accumulates onto the period-k attractor. The channel ends when the stable and unstable manifolds
of the period-k saddle become tangent; this can give rise to an interior crisis after which the original
chaotic attractor re-emerges, or a boundary crisis that destroys the k-component chaotic attractor.
Using terminology from [7], we call this a periodic channel of subduction-crisis type. All periodic
channels for the Hénon map are of subduction-crisis type and the order in which the sequence of
bifurcations occurs is always the same, that is, if the left boundary for one of the periodic channels
is formed by a curve of saddle-node bifurcation, then all left boundaries of the periodic channels are
saddle-node bifurcations [16, 17].

In this paper we investigate parameter-dependence of periodic channels for the particular exam-
ple of the Ikeda map [12, 13]. This map describes the behaviour of the complex field amplitude of
a continuous laser signal as it recirculates through a di-electric nonlinear medium in a ring cavity,
which is formed by four reflective mirrors. Light with constant amplitude and frequency is injected
by the laser into the ring cavity and some of the energy is absorbed by the nonlinear medium.
We use a simplified model of this process, derived in [11] assuming that saturable absorption is
negligible; in real form, the Ikeda map is then given by the diffeomorphism(

x
y

)
7→

(
a
0

)
+R

(
cosϑ − sinϑ
sinϑ cosϑ

) (
x
y

)
, where ϑ = φ− p

1 + x2 + y2
. (1)

We view a and R as the main parameters, which represent the amplitude of the light from the
laser and the scaled reflectivity of the mirrors, that is, 0 ≤ R ≤ 1. The parameters φ and p are
detuning parameters due to the cavity and nonlinear medium, respectively. The Ikeda map exhibits
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a chaotic attractor in certain parameter regions. The basic bifurcation structure that creates the
chaotic attractor is a period-doubling sequence to chaos. The chaotic attractor is destroyed by a
homoclinic tangency bifurcation between the global stable and unstable manifolds of the saddle
fixed point, or a heteroclinic tangency bifurcation between the global stable and unstable manifolds
of two saddle periodic orbits with periods six and two, respectively [6]. However, as was also already
reported in [6], the precise region of existence of the chaotic attractor is more complicated due to
the existence of many periodic channels.

We studied periodic channels for the Ikeda map (1) in detail in [19], where we kept φ = 0.4
and p = 6.0 fixed. We found that the periodic channels in the (a,R)-plane of the Ikeda map (1)
are not necessarily of subduction-crisis type [19], which makes the overall structure of its crisis loci
richer than that of the Hénon map. In [19], we found periodic channels bounded on both sides
by curves of saddle-node bifurcation, which we call subduction-subduction channels. Furthermore,
there exist pairs of subduction-crisis channels of the same base period for which the ordering of the
bifurcations in one of the channels occurs in a reversed ‘crisis-subduction’ manner. Both types of
channels seem related to the so-called bounded or paired cascades of period-doubling bifurcations
discussed in [24, 25], which are created or destroyed in pairs that correspond to the same base
period. Most importantly, as shown in [24], bounded cascades are not robust.

Our hypothesis is that variation of a third parameter for the Ikeda map will, therefore, cause
the creation or descruction of periodic channels, namely, those of subduction-subduction or paired
subduction-crisis type. In this paper, we use φ as this third parameter and study how the organisa-
tion of crisis loci and periodic channels in the (a,R)-plane changes as φ decreases. Here, we focus
on periodic channels with base period five, which provide a good overview of the possible cases
that can be expected. Since the creation and destruction of the period-doubling cascades is already
discussed at length in [24, 25], we are primarily interested in the effective splitting of a channel,
caused by the creation of an additional locus of boundary crisis.

We complement the brute-force iteration methods that identify the loci of boundary crisis for the
Ikeda map (1) in the (a,R)-plane with continuation methods that compute the loci of saddle-node
and period-doubling bifurcation, as well as loci of homoclinic or heteroclinic tangencies between
global stable and unstable manifolds of fixed points or periodic orbits. These loci were computed
with the continuation package Cl matcont [4].

The presentation is organised as follows. In the next section, we present the local bifurcation
structure near the period-five channels in the (a,R)-plane for four different values of φ. We describe
the nature of the period-five channels and show how they depend on φ. In Section 3, we investigate
how the locus of boundary crisis is involved in the splitting of a period-five channel. We end with
a discussion in Section 4.

2 Parameter-dependence of period-five channels

Under normal operating conditions, the dynamics of the laser ring cavity is trivial, that is, the
Ikeda map (1) has a single attractor that is a fixed point corresponding to coherent light of fixed
complex field amplitude. However, if the amplitude a > 0 of the incoming light is small enough and
the reflectivity 0 ≤ R ≤ 1 of the mirrors large enough, then other behavior may occur, including
chaos [5]. Figure 1 shows a small part of this region that focusses on the period-five channels
in the (a,R)-plane. Here p = 0.6 is fixed, but φ is varied from φ = 0.4, φ = 0.3, φ = 0.25 to
φ = 0.2 in panels (a)–(d), respectively. The grey-shaded regions correspond to parameter values
for which the fixed point is the only attractor. For other parameter values, a second attractor co-
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Figure 1: Loci of saddle-node (grey) and period-doubling bifurcation (black) in the (a,R)-plane for
the Ikeda map (1) with p = 0.6; the detuning φ decreases from φ = 0.4, φ = 0.3, φ = 0.25 to φ = 0.2
in panels (a)–(d), respectively. The grey region indicates where only a stable fixed point exists; this
region is bounded by the curve HC1 (thick black) of homoclinic tangency between the stable and
unstable manifolds of a saddle fixed point.

exists, which may be chaotic. The lower boundary of the region with trivial dynamics is primarily
formed by a locus HC1 of homoclinic tangency between the stable and unstable manifolds of a
saddle fixed point. Where HC1 is indeed bounding the region of trivial dynamics, the homoclinic
tangency bifurcation corresponds to a boundary crisis at which the chaotic attractor, which consists
of a single component, suddenly disappears. The grey region of trivial dynamics is interspersed
by periodic channels, several of which can easily be discerned, particularly in Figure 1(a). Two of
these periodic channels have base period five and associated curves SN5 and SN10 of saddle-node
bifurcation and PD5 and PD10 of period-doubling bifurcation of the period-five and -ten orbits in
these channels are drawn and labelled as well.

Previous work investigating the organisation of solutions in the (a,R)-plane have used φ = 0.4
and the data shown in Figure 1(a) was previously discussed in [19]. Let us first focus our attention
on the left period-five channel, which is of subduction-subduction type and bounded on both sides
by curves SN5 of saddle-node bifurcation of a period-five orbit. Figure 2(a) shows a bifurcation
diagram with respect to a, where R is fixed at R = 0.935, cutting across this channel at a location
above the curve HC1 associated with the locus of boundary crisis. Here, each period-five orbit is
indicated by the x-coordinate of only one of its points. At either extreme of the a-range shown there
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Figure 2: Bifurcation diagram of the period-five base orbit for R = 0.935 and the same values
φ = 0.4, φ = 0.3, φ = 0.25 and φ = 0.2 in panels (a)–(d) as in Figure 1, respectively. In each panel,
a varies over a range that includes the width of the left period-five channel in the corresponding
panels of Figure 1. The value of x of only one of the points in the period-five orbit is shown on the
vertical axis, and two points are shown if the orbit has period ten. Stable solutions are black and
unstable solutions are grey; the bifurcations are labelled as in Figure 1.

exists a single saddle period-five orbit (grey). These saddles are connected via a branch of stable
period-five orbits (black) arising through a pair of saddle-node bifurcations SN5. Above HC1 the
period-five channels represents an isolated region in the (a,R)-plane for which a stable period-five
orbit exists; just below HC1, the channel forms a periodic window for the main chaotic attractor.
For values of R well below HC1, a cusp point exists on SN5 and the general nature of the channel
boundaries change; further bifurcations that produce higher-period attractors exist in this region,
which we do not discuss further.

Figure 1(b) shows a similar bifurcation structure for φ = 0.3. Note that the curve HC1 has moved
up and right, and the curves SN5 are further apart. This wider period-five channel contains what
we will call a finger, bounded by a curve PD5 of period-doubling bifurcation. The corresponding
bifurcation diagram along the line R = 0.935 is shown in Figure 2(b). There now exists a pair of
period-doubling bifurcations PD5 of the stable period-five orbit that give rise to a branch of stable
period-ten orbits; the two points on the period-ten orbit that merge with the point used to indicate
the period-five orbit are shown in Figure 2(b). The finger inside the period-five channel extends
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down as far as R ≈ 0.83. Below this minimum value of R, though well above the cusp point on
SN5, any cross-section of the channel is like that of Figure 2(a), corresponding again to the simplest
example of a channel of subduction-subduction type.

The bifurcation structure increases in complexity as φ is decreased further. Panels (c) and (d)
of Figure 1 show the situation for φ = 0.25 and φ = 0.2, where two additional fingers have ap-
peared inside the finger bounded by PD5. The two new fingers are bounded by curves PD10 of
period-doubling bifurcation, meaning that the period-five channel now also contains regions where
an attracting period-twenty orbit exists. The corresponding slices at R = 0.935 are shown in Fig-
ures 2(c) and (d), respectively. Only periodic orbits with periods five and ten are plotted, along
with the pair SN5 of saddle-node bifurcations and the first two period-doubling bifurcations. For
both φ-values further period-doubling bifurcations occur, though we suspect that the sequence is
still finite for φ = 0.25. The discerning eye will have spotted the grey-shaded regions inside the
fingers bounded by PD10 in Figure 1(d), which indicate that the period-doubling sequence is infinite
for φ = 0.2 and a chaotic attractor consisting of five components co-exists with the attracting fixed
point in certain regions of the (a,R)-parameter plane when φ = 0.2.

The bifurcations inside the period-five channel as φ decreases is entirely in line with the findings
reported by Sander and Yorke [24, 25]. The boundary curves SN5 correspond to the beginning and
end of a paired cascade that includes increasingly more period-doubling bifurcations as φ decreases.
The higher-order nonlinearities of the Ikeda map (1) cause the appearance of two instead of one
finger that corresponds with the second period-doubling PD10, which means that the paired cascade
with base period five now includes a split of two paired cascades with base period ten; see also [25].

The second period-five channel in Figure 1 is also of subduction-subduction type. This channel
exhibits the splitting and merging of a different type of paired cascade that is also discussed in [24,
25]. Figure 3(a1) shows a cross-section for R = 0.935 and φ = 0.4, when the channel has its simplest
form. Above the curve HC1, it is bounded on both sides by curves SN10 of saddle-node bifurcation
of a period-ten orbit that subsequenty bifurcates to the base period-five orbit in a pair of (reversed)
period-doubling bifurcations PD5 [19]. As indicated in Figure 1(a), the curves SN10 end on PD5 at
degenerate period-doubling bifurcation points, where the criticality of the period-doubling changes
from supercritical to subcritical. This is illustrated in Figure 3(a2) with a cross-section at R = 0.82
for this same φ-value; at this lower value of R, both period-doubling bifurcations PD5 are subcritical.

As φ decreases, a cusp point gives rise to a pair of saddle-node bifurcations SN5 on the middle
branch of stable period-five orbits. Figures 3(b1) and (b2) show the same two cross-sections for
φ = 0.3, that is, at R = 0.935 and R = 0.82, respectively. For φ = 0.3, there are additional period-
doubling bifurcations PD10 for the period-ten orbits that are born in PD5; each branch exhibits one
period-doubling bifurcation soon after PD5 and a second (backward) one just before the saddle-
node bifurcation SN10, indicating the existence of two paired cascades with base period ten, each in
between SN10 on one side and PD5 on the other. These paired cascades each generate two separate
subduction-crisis channels; we note that the channels close to SN10 are narrow in a. We observe from
Figure 1(b) that the two curves PD5 of period-doubling bifurcations cross as R increases, which can
be seen more clearly in panels (c) and (d), where φ = 0.25 and φ = 0.2, respectively. Another way
to look at this is that, for fixed R, two channels change places in a as φ decreases and the curves SN5

move further apart. Indeed, as shown in Figure 3(b1) for R = 0.935 and φ = 0.3, the boundaries for
the period-five channels are saddle-node bifurcations SN5, and the other boundaries are given by the
limits of infinite period-doubling cascades; we only show the first two period-doubling bifurcations
PD5 and PD10. Similarly, the channels with base period ten are bounded on one side by SN10 and on
the other by infinite cascades over narrow ranges in a. The cross-section for R = 0.82 and φ = 0.3
in Figure 3(b2) is qualitatively the same as for R = 0.935 in panel (b1), but the two saddle-node
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Figure 3: Bifurcation diagram of the period-five base orbit for cross-sections R = 0.935 and R = 0.82
in rows 1 and 2, respectively. Panels (a1) and (a2) are for φ = 0.4 and panels (b1) and (b2) for
φ = 0.3. In each panel, a varies over a range that includes the width of the right period-five channel;
see Figures 1(a) and (b). The value of x of only one of the points in the period-five orbit is shown
on the vertical axis, and two points are shown if the orbit has period ten. Stable solutions are black
and unstable solutions are grey; the bifurcations are labelled as in Figure 1.

bifurcations SN5 are very close together, indicating the presence of a cusp point for slightly smaller
value of R; this cusp point lies at R ≈ 0.819 and is shown in Figure 1(b).

3 Channel splitting due to boundary crisis

The period-five channels discussed in Section 2 are parameter-dependent versions of paired cascades.
The depth of the cascade may vary with φ, and the complexity increases as φ decreases. As soon
as φ is small enough and the paired cascade is complete, in the sense that it contains an infinite
sequence of period-doubling bifurcations with the limiting chaotic attractor, we may observe a
splitting of the channel for parameter values at which the chaotic attractor exhibits a boundary
crisis. We observe this phenomenon in Figure 1. For example, the grey shading in panel (d) inside
the fingers bounded by PD10 of the left period-five channel indicates that the chaotic attractor
created in the period-doubling cascade has disappeared. The period-five channel has split into (at
least) two channels: both are of classic subduction-crisis or (the reverse) crisis-subduction type,
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Figure 4: Enlargements of the bifurcation diagram in the (a,R)-plane near the first period-five
channel for the same values φ = 0.4, φ = 0.3, φ = 0.25 and φ = 0.2 in panels (a)–(d) as in Figure 1,
respectively. As before, the grey region indicates where only a stable fixed point exists; the loci of
saddle-node (grey), period-doubling (black) and homoclinic tangency bifurcation (thick black) are
labelled accordingly; see also Figure 1.

with the left-most channel being the widest and clearly showing the expected order of SN5 followed
by PD5 and PD10, indicating the existence of a homoclinic tangency HC5 between the (un)stable
manifolds of the saddle periodic orbit created in SN5 that bounds the channel on the right-hand
side.

Figures 1(b)–(d) illustrate that the fingers bounded by period-doubling bifurcations are oriented
such that their tips point towards decreasing R, which means that the complexity or depth of the
cascade is increasing as R increases, at least when φ is small enough. Since the complexity of
the paired cascade is ‘added at the top’ one might conclude that the channel splitting then also
originates at, say, R > 0.95 in the (a,R)-plane. We find that, in fact, the exact opposite occurs.

The mechanism that splits a channel is illustrated in Figure 4 with a closer inspection of the first
(left-hand) period-five channel in the (a,R)-plane for each of φ-values in Figure 1; the ranges for a
and R vary in these panels, sometimes beyond that of Figure 1. The first two panels in Figure 4 are
primarily for completeness, illustrating that the bifurcation structure near the homoclinic tangency
HC1 is, indeed, entirely explained by the slices for fixed R = 0.935 shown in Figures 2(a) and (b),
respectively. For φ = 0.4 in Figure 4(a), the period-five channel is bounded by the saddle-node
bifurcation SN5. The boundary remains unchanged for φ = 0.3, but a finger bounded by period-
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Figure 5: Sketch of the organisation in the (a,R)-plane near the grey-shaded finger nail of trivial
fixed-point dynamics inside one of the fingers bounded by PD10 for φ = 0.25. The locus HC1 is
intersected by the parabola-shaped locus HC5 of homoclinic tangency between (un)stable manifolds
of a period-five saddle. The intersection points are two double-crisis vertices, labelled V±

1,5, that
delimit a short segment along HC1 that corresponds to a boundary crisis.

doubling bifurcation PD5 has appeared inside the channel; see Figure 4(b).
The splitting of the period-five channel occurs in Figures 4(c) and (d), corresponding to φ = 0.25,

and φ = 0.2, respectively. At φ = 0.2, the period-five channel has split into three channels. Note
the classic subduction-crisis channel type including an infinite period-doubling cascade as indicated
by the successive order, from left to right, of curves SN5, PD5, PD10, ending in a boundary crisis. A
pair of subduction-crisis channels (reversed on the right) with base period five flank another crisis-
crisis channel with base-period ten. Two period-doubling cascades, starting with PD10 lie within
this crisis-crisis channel and face the flanking base-five cascades on each side.

The mechanism that brings about the splitting of the period-five channel is implied by the
situation shown for φ = 0.25 in Figure 4(c), which illustrates a transitional phase. For large R,
the channel has split into two channels: the channel on the right exhibits the classic (reversed)
subduction-crisis type with base period five, and the channel on the left exhibits this same cascade
starting with SN5, but interspersed with a paired cascade of base period ten on the period-doubled
branch that starts and ends with PD10; this paired cascade is not infinite when R is large, but for
values of R just above HC1 it becomes a complete paired cascade, as indicated by the grey-shaded
finger, or better, finger nail of trivial fixed-point dynamics that protrudes up with its tip pointing
towards increasing R. As can be inferred from Figure 4, the tip of the finger moves up in R as φ
decreases; at φ = 0.2, the splitting of the period-five channel is complete, so that there are now
three channels in Figure 4(d).

The paired cascade starting from SN5 on either side of the original period-five channel is expected
to complete with a homoclinic tangency between the stable and unstable manifolds of the co-existing
saddle periodic orbit with the same base period of five. Unfortunately, while we could confirm the
existence of this tangency HC5, we have been unable to continue it as a curve in the (a,R)-plane;
there is a numerical difficulty caused by the extreme stretching along the stable manifold. Figure 5
shows a sketch of the organisation in the (a,R)-plane near the grey-shaded finger nail of trivial
fixed-point dynamics at φ = 0.25. The entire finger is bounded by a curve HC5 of homoclinic
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tangency bifurcation involving the global stable and unstable manifolds of the period-five saddle
that originates from SN5. The nail is created due to the intersection of HC1 with HC5. The boundary
of the grey-shaded region corresponds to a boundary crisis, which involves a single-component
chaotic attractor along HC1 and a five-component chaotic attractor along HC5. The intersection
points, labelled V±

1,5, are double-crisis-vertices. In the direction of increasing a, the nature of the
homoclinic tangency HC1 changes at V+

1,5 from a basin boundary metamorphosis, where the basin
boundary changes from being the stable manifold of a saddle fixed point to the stable manifold of
the period-five saddle, to a boundary crisis; at V−

1,5, the it changes back from a boundary crisis to
a basin boundary metamorphosis. In the direction of increasing R, the nature of the homoclinic
tangency HC5 changes at V+

1,5 from an interior crisis to a boundary crisis, and the same occurs at
V−
1,5.

Note that the appearance of the finger bounded by HC5 occurs inside the finger bounded by
PD10, which points in the opposite direction; see Figure 1(c). One could conclude that HC5 must,
therefore, have a minimum in the (a,R)-plane, which means that the finger is actually an oval
bounded by a closed curve. However, the homoclinic tangency HC5 is not constrained by the
presence of a period-doubling bifurcation, which stipulates the nested nature of the curves PD5 and
PD10. It is our hypothesis that HC5 behaves similar to HC1, that is, it consists of a single curve that
connects this segment of HC5 with the other two homoclinic tangeny bifurcations of the period-five
saddle that enter or leave Figure 4(c) through the R-axes at R = 0.95 and R = 0.9. This means
that HC5 must intersect each of the curves PD10 and all other higher-period period-doubling curves,
which would change the number of components of the chaotic attractor involved in the interior crisis
along HC5. The precise details of how this is organised are left for future work.

4 Discussion

We studied the nature and organisation for the Ikeda map (1) of periodic channels persisting in
a parameter regime of predominantly trivial dynamics, where the main chaotic attractor has been
destroyed in a boundary crisis. Due to the higher-order nonlinearity of the Ikeda map, these periodic
channels are not as structured and ordered as for the Hénon map. Rather they arise from so-called
paired cascades [24, 25] associated with a particular base periodic orbit. The splitting of a channel
occurs via the completion in a paired cascade of a period-doubling sequence to chaos, culminating
in a homo- or heteroclinic tangency involving (one of) the manifolds of the base periodic orbit that
occurs inside the channel; the tangency causes a boundary crisis of the chaotic attractor created in
the period-doubling cascade.

We found that the direction of variation in R, such that there is an increase in the complexity
of the paired cascade is precisely opposite from that which brings about the manifold tangency.
Hence, as φ decreases, the channel splits from the inside with a finger or bubble of boundary
crisis involving a chaotic attractor with a different number of components that protrudes from the
main boundary crisis locus. Such bubbles have been observed before in a three-parameter study of a
quasi-periodically forced Hénon map [18], but have not previously been observed in two-dimensional
maps.

In future work, we hope to tackle the numerical challenge of continuing a homoclinic tangency
associated with a period-five orbit that has a strongly contracting eigenvalue. It would also be of
interest to identify bubbles associated with splitting of a periodic channel for other two-dimensional
systems, and perhaps for a channel with a lower base period; we have checked the period-three
channels for the Ikeda map, where such bubbles do not seem to exist [19]. A complete understanding
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of this kind of channel splitting for two-dimensional maps would certainly help in the investigation
of similar behaviour for quasi-periodically forced or other higher-dimensional systems.
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