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Abstract

Wild chaotic attractors exhibit chaotic dynamics with a robustness property that
cannot be destroyed with small perturbations. We consider a discrete-time system with
the smallest possible dimension, namely, defined by a non-invertible map on the complex
plane. For this map, wild chaos has been proven to exist in a small parameter region.
Recently, it was conjectured to exist in a much larger region of parameter space, past a
so-called backward critical tangency, at which a sequence of preimages of a critical point
converges to a saddle fixed point. Geometrically, a backward critical tangency leads
to an abundance of homoclinic and heteroclinic tangencies between invariant manifolds
of different dimensions, generating precisely what are believed to be the necessary
ingredients for wild chaos. In this paper, we present corroborating evidence for this
conjecture by computing Lyapunov exponents associated with the attractor. When the
sum of the two (largest) Lyapunov exponents is positive, the dynamics is wild chaotic
for this non-invertible map. We find that the zero-sum locus matches the locus of
backward critical tangency, confirming its role as a boundary of the existence of wild
chaos.

1 Introduction

The definition of chaos that is commonly used in dynamical systems theory is that a system is
chaotic if there exists a compact invariant set that satisfies the following three properties [5]:

(i) trajectories in the invariant set exhibit sensitive dependence on initial conditions;

(ii) the invariant set contains a non-periodic trajectory (the system is topologically transi-
tive);

(iii) periodic orbits are dense in the invariant set.

The invariant set need not be an attractor, but for the purpose of this paper, we are only
interested in the case of a chaotic attractor. Attracting chaotic dynamics can also be defined
in terms of the Lyapunov exponents associated with the (attracting) invariant set [25, 32].
Lyapunov exponents are the expansion or contraction rates of the linearised system along
an arbitrary non-periodic trajectory on the attractor. In many cases, the attractor will be
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chaotic in the sense as defined above, if it has a positive Lyapunov exponent. Computing
Lyapunov exponents is a practical way of demonstrating the presence of a chaotic attractor in
experiments, or from numerical simulation. In dynamical systems theory, chaotic attractors
are studied with a combination of geometrical and numerical tools. It is well known that
typical trajectories on a chaotic attractor exhibit an expanding direction, which is measured
by a positive Lyapunov exponent [25, 32]. Geometrically, one is interested in the so-called
backbone or skeleton of the dynamical system, which comprises fixed points, periodic orbits,
and other compact invariant manifolds, along with their stable and unstable manifolds defined
by families of trajectories that converge to these compact invariant manifolds in forward or
backward time, respectively. A chaotic attractor contains infinitely many periodic orbits
that are all of saddle type; their stable and unstable manifolds intersect in homoclinic and
heteroclinic trajectories. The precise topological nature of the attractor is controlled via
tangencies between such manifolds, which give rise to an accumulation of tangencies in one-
parameter intervals [31, 36]. The number of Lyapunov exponents for a dynamical system is
the same as the dimension of its phase space. Hence, if chaos exists already when a single
Lyapunov exponent is positive, what can one say about the other Lyapunov exponents?
Or perhaps phrased differently, are there different kinds of chaos that can be classified by
properties of the Lyapunov exponents?

The idea of a chaotic attractor with two or more positive Lyapunov exponents goes back
to Rössler [33] who calls this type of chaotic behaviour hyperchaos. In this paper, we focus on
the weaker property that only the sum, and not both, of the largest two Lyapunov exponents
is positive. This property is associated with a different form of higher-dimensional chaos
that is called wild chaos in the more theoretical literature [26]; wild chaos is defined by
the robust existence of homoclinic and heteroclinic tangencies, that is, stable and unstable
manifolds of a hyperbolic set remain tangent to each other over an entire parameter interval.
Hence, wild chaos persists under C1-perturbation (in particular, there are no so-called periodic
windows) [3, 37]. As yet, it is an open question which geometric ingredients, or in other words,
which structure of the backbone of the dynamical system are necessary and sufficient for it
to exhibit wild chaos. In previous work by one of the authors, the geometric ingredients
necessary for generating wild chaos were investigated for a smooth non-invertible map on
the complex plane [17], which we call the Lorenz-like double-cover map. This example was
chosen because the Lorenz-like double-cover map has the lowest dimension possible and wild
chaos was proven to exist in a small neighbourhood of a specific point in parameter space [2].
The theory of wild chaos tends to consider only saddle-type hyperbolic sets, rather than
attractors with this property. More recently, wild chaotic attractors have been a focus of
study, and they are called pseudo-hyperbolic attractors in [14, 15].

In this paper, we focus specifically on the parameter region for which the Lorenz-like
double-cover map has an attractor and we compute the two Lyapunov exponents along rep-
resentative trajectories over a range of two parameters. From [15], we know that wild attrac-
tors not only have a positive Lyapunov exponent, but the sum of the two largest Lyapunov
exponents is also positive; in general, this is not a sufficient condition for wild chaos, but
due to the non-invertibility of the Lorenz-like double-cover map, a positive Lyapunov sum is
both necessary and sufficient for our study.

The Lorenz-like double-cover map from [2] is defined on the complex plane as the non-
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invertible map

f(z) = (1− λ+ λ |z|a)
(
z

|z|

)2

+ 1, (1)

with real parameters a > 0 and λ ∈ (0, 1). In [2], wild chaos was proven to exist for system (1)
provided (a, λ) ≈ (1, 1). However, wild chaos is conjectured to exist for a much larger region
in the (a, λ)-plane [17, 29]. Note that f is not defined for z = 0. This point is called the
critical locus. The conjecture made in [17] is that wild chaos arises from a specific global
bifurcation, called the (first) backward critical tangency, defined as the moment when the
critical locus is contained in the unstable set of a saddle periodic orbit, namely, a fixed point
of f . We wish to test this hypothesis more globally by comparison between the zero-sum
locus of the two Lyapunov exponents associated with the chaotic attractors of system (1) and
the conjectured locus of onset of wild chaos given by the curve of backward critical tangency
in the (a, λ)-plane.

In the next section, we provide basic definitions relevant for a non-invertible system like
system (1). In Section 3, we discuss a well-known route to chaos, which is representative
for the parameter-dependent transformations of the dynamics for system (1). We explain
how we compute Lyapunov exponents in Section 4 and compare the sign of the maximal
Lyapunov exponent in the (a, λ)-plane with the existence of a classical chaotic attractor. In
Section 5, we consider the sum of the two Lyapunov exponents and overlay the curve of first
backward critical tangency in the (a, λ)-plane. Our findings suggest that the zero-sum locus
of the Lyapunov exponents agrees well with the locus of first backward critical tangency. We
end with conclusions in Section 6 and discuss future directions of research.

2 Background and definitions

Let us first explain some properties of dynamical systems described by a non-invertible map
that are different from the more standard invertible case. Recall that system (1) is not well
defined on all of C, because f is not defined for z = 0. The image of f covers the complex
plane twice, except for a (closed) disk with radius 1 − λ centered at 1, which is not in its
range. The boundary of this disk can be thought of as the multi-valued image of 0. Following
the theory for non-invertible maps, we refer to 0 as the critical point, also denoted J0, and
its multi-valued image as the critical set, denoted J1 [22, 27]; the sequences of pre-images
(backward iterates) of 0 and images (forward iterates) of J1 form the backward critical set
and the forward critical set, respectively. The double-covering property of f implies that any
initial condition z ∈ C that does not lie on or in the interior of the critical set J1 has two
pre-images; hence, trajectories are not uniquely defined in backward time. We remark that
f(z̄) and f(z) are complex conjugate, so the system has the symmetry z 7→ z̄, and the real
axis is invariant.

Observe that f is continuous and its derivative is also continuous. Hence, locally and
away from z = 0, we can define a unique inverse for f . This means that locally we can apply
the theory for real invertible systems. To this end, we identify C with R2 and write f in terms
of coordinates (x, y) ∈ R2 with z = x + i y. For a sufficiently small, the map f has a saddle
fixed point p on the positive real axis; hence, f(p) = p and the Jacobian matrix of f evaluated
at p has one eigenvalue with modulus less than 1 and the other with modulus larger than 1.
Since, locally near p, say, in a neighbourhood Up ⊂ R2 of p, we can identify a unique local
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Figure 1: Backbone of system (1) for a = 0.6 and λ = 0.8. Shown are the backward critical
set (green dots), containing 0 and its pre-images, and the forward critical set (green closed
curves), containing the circle J1 and its forward images, together with the fixed point p
(bright-green cross), its stable set W s(p) (blue curves) and unstable set W u(p) (red curve),
and the two attracting fixed points q and q̄ (light-blue triangles).

inverse of f that maps p to itself, the Stable Manifold Theorem [30] guarantees the existence
of local stable and unstable manifolds of p, denoted W s

loc(p) and W u
loc(p), respectively. They

are defined as

W s
loc(p) := {(x, y) ∈ Up | lim

n→∞
f (n)(x+ i y) = p} and

W u
loc(p) := {(x, y) ∈ Up | lim

n→∞
f (−n)(x+ i y) = p},

and are tangent at p to the corresponding stable and unstable eigenvectors of p; here, the local
inverse is assumed for f (−n) in the definition ofW u

loc(p). These local manifolds can be extended
to global stable and unstable sets, denoted W s(p) and W u(p), respectively. The stable set
W s(p) contains all points in the complex plane that converge to p under forward iteration,
which means that W s(p) comprises W s

loc(p) and all possible pre-images of W s
loc(p) [11, 27].

Similarly, W u(p) contains all points in the complex plane for which there exists a sequence of
pre-images that converge to p; this means that W u(p) may have self-intersections at points
for which both pre-images lie on sequences of pre-images converging to p [12, 22]. For this
reason, W s(p) and W u(p) are typically not manifolds, which is why we refer to them as stable
and unstable sets.

Figure 1 shows the backbone of system (1) generated by the map f with a = 0.6 and
λ = 0.8. The origin 0 and the other points in the backward critical set are shown as green
dots, and J1 with the other curves in the forward critical set are the green closed curves. The
stable set W s(p) (blue curves) of the fixed point p is composed of disjoint manifolds that are
pre-images of the positive coordinate axis (which contains p and W s

loc). The closure of W s(p)
forms a regular tree of degree four with the points in the backward critical set as vertices.
Observe that W s(p) includes points inside the disk bounded by J1, because such points do
have forward iterates and some converge to p; similarly, W s(p) contains points in the interior
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of all (green) closed curves in the forward critical set. The unstable set W u(p) of p consist of
two complex-conjugate branches and is a manifold for this choice of parameters; indeed, each
branch is associated with a uniquely defined inverse of f . The unstable set W u(p) cannot
intersect J1 (or images of J1), because such points do not have (a sequence of) pre-images that
could converge to p. Rather than intersect, the forward critical set accumulates on W u(p).
Each branch of W u(p) spirals in and accumulates onto an attracting fixed point q or q̄ (light-
blue triangles); the complex-conjugate pair q and q̄ is given by q = exp (iπ/3) = 1

2
+ 1

2

√
3 i

and, hence, does not depend on a or λ. The fixed points q and q̄ are stable (attractors) when
a and λ are small enough; they become repelling in a Nĕımark–Sacker bifurcation [23] when
a = 1

2λ
, that is, when the eigenvalues of the associated Jacobian matrix lie on the unit circle

in the complex plane.
Variation of a or λ may induce an interaction between the stable and unstable sets of

system (1). A homoclinic tangency occurs when W s(p) and W u(p) have a non-transverse
intersection, which forms a trajectory that converges to p in both forward and backward
time. As soon as the intersection is transverse, we speak of W s(p) and W u(p) forming a
homoclinic tangle [31]. Intersections between stable and unstable sets of two different fixed
points or periodic points also occur and this is called a heteroclinic tangency or tangle. (A
periodic point is a fixed point of the k-th iterate of f for some k ∈ N with k > 1, and its
stable and unstable sets are defined similarly by using the k-th iterate of f .) The presence of
a bounded homoclinic orbit forces the stable and unstable sets to accumulate on themselves,
leading to the existence of an accumulating sequence of parameter values of further homoclinic
tangencies between the same stable and unstable sets [31].

The geometric study of wild chaos in [17] focused on the interactions of W s(p) and W u(p)
with each other and with the forward and backward critical sets. Indeed, the proof of existence
of wild chaotic dynamics for (a, λ) sufficiently close to (1, 1) assumes that the chaotic invariant
set contains p and W u(p) [2]. A classical chaotic attractor in this situation is given by the
closure of W u(p). Hence, a bifurcation that changes the chaotic attractor to a wild chaotic
attractor is expected to involve W u(p).

3 Route to chaos

As mentioned in the previous section, the complex-conjugate pair of fixed points q and q̄
destabilise in a Nĕımark–Sacker bifurcation. Such a bifurcation gives rise to an invariant
circle on which the dynamics of the map f is quasi-periodic or phase locked. In fact, the
bifurcation is supercritical for a < 1, which means that the invariant circle is attracting. As
is well known, a small perturbation of such quasi-periodic dynamics is expected to lead to
the existence of strange attractors, that is, chaotic behaviour [34]. We present this route
to chaos (and subsequence bifurcations to wild chaos) for a representative set of parameter
values on the horizontal line with λ = 0.8 in the (a, λ)-plane.

Figure 2 shows phase portraits of this transition for λ = 0.8, with panels (a), (b), (c)
and (d) showing phase portraits for a = 0.63, a = 0.65, a = 0.67, and a = 0.7, respectively.
As in Figure 1, we plot the fixed point p (bright-green cross) with its stable and unstable sets
W s(p) (blue curves) and W u(p) (red curve), respectively, together with the forward critical
set (green closed curves), the bacward critical set (green dots), and the complex-conjugate
fixed points q and q̄ (dark-red squares). Indeed, a > 1

2λ
= 0.625 for all four cases, so that q

and q̄ are unstable (sources). Furthermore, we also plot the different attractors that exist for



Jelleyman & Osinga Characteristics of wild chaos 6

0 1 2 3

-2

-1

0

1

2

0 1 2 3

-2

-1

0

1

2

0 1 2 3

-2

-1

0

1

2

0 1 2 3

-2

-1

0

1

2 (a)

p

q

q̄

W s(p)

Wu(p)

(b)

p

q

q̄

W s(p)

(c)

p

q

q̄

W s(p)

(d)

p

q

q̄

Figure 2: Phase portraits of system (1) with λ = 0.8. Here, panels (a) to (d) are for a = 0.63,
a = 0.65, a = 0.67, and a = 0.7, respectively. Panel (a) shows the complex-conjugate pair
of invariant circles (light-blue curves) that are created in a Nĕımark–Sacker bifurcation of
the fixed points q and q̄ (dark-red squares). Panel (b) also shows two coexisting complex-
conjugate pairs of period-8 orbits, one attracting (light-blue triangles) and one of saddle
type (green crosses). Panel (c) shows a complex-conjugate pair of chaotic attractors, each
represented by a single trajectory (orange dots), and panel (d) shows a single chaotic attractor
after a homoclinic tangency between the sets W u(p) and W s(p). See Figure 1 for more details
on what is shown.

the specified parameter values. Figure 2(a) illustrates that the Nĕımark–Sacker bifurcation
initially gives rise to two complex-conjugate attracting invariant circles (light-blue curves)
that surround q or q̄. The two complex-conjugate branches of W u(p) (red curves) each
accumulate on the respective invariant circle; the dynamics on the two attractors is quasi-
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periodic and there is no chaos. Here, the basins of attraction of the two invariant circles
are separated by the closure of W s(p). From the theory, we know that such quasi-periodic
invariant circles are not likely to persist over a large range of parameters [34]. Indeed, as a
increases to a = 0.65, we appear to be close to their break-down: surrounding each invariant
circle is a (complex-conjugate) pair of period-8 orbits, one of saddle type (green crosses)
and the other attracting (light-blue triangles). Figure 2(b) shows that the invariant circle
comes close to the period-8 saddle; there are now a total of four coexisting attractors and
each branch of W u(p) appears to accumulate onto both an invariant circle and a period-8
attractor, suggesting the existence of a heteroclinic connection between W u(p) and the stable
set of the saddle period-8 orbit (not shown).

When a = 0.67, shown in Figure 2(c), both the invariant circles and the period-8 attractors
have disappeared; instead each branch of W u(p) accumulates on a chaotic attractor, which
we represent by 104 points of a single orbit (orange), obtained from iterating the (arbitrary)
initial condition 1 + i and discarding the first 1000 iterates; the sequence of bifurcations that
transforms or destroys the non-chaotic attractors occurs in an extremely small parameter
interval and we consider the precise details beyond the scope of this paper. Note that the
complex-conjugate pair of chaotic attractors lies close, in places, to the stable set W s(p),
which forms their shared basin boundary. As a increases further, a homoclinic tangency
between W s(p) and W u(p) occurs where the two attractors merge into one large chaotic
attractor that is itself complex conjugate; see Figure 2(d) for a = 0.7. This transition is a
form of interior crisis [16]. We remark here that the homoclinic tangle between W s(p) and
W u(p) necessarily implies that the unstable set W u(p) has self-intersections and is no longer
a manifold; the homoclinic orbits arising from the intersection of W s(p) and W u(p) include
points on the real axis that will, by definition, lie on both branches of W u(p).

The route to chaos described above for fixed λ = 0.8 is representative for the dynamics
exhibited by system (1). (However, the periods of the periodic orbits near the invariant circle
will vary.) We remark that the perhaps more common route of period-doubling to chaos [5]
also occurs in this system, but only leads to a chaotic attractor if the system is embedded in
a larger three-parameter class of non-invertible maps; we refer the interested reader to [18]
for more details.

4 Lyapunov exponents as a measure to detect wild

chaos

Lyapunov exponents represent the average contraction or expansion rates on an attractor that
admits an invariant measure [25, 28]. An m-dimensional discrete-time system will associate m
Lyapunov exponents to each trajectory. Hence, an attractor of system (1) has two Lyapunov
exponents, Λ1 ≥ Λ2. For a fixed-point attractor, we have Λi := ln (σi) for i = 1, 2, where σi
are the singular values of the Jacobian matrix associated with the fixed point. (The singular
values of a matrix A are the square-roots of the eigenvalues of the semi-positive definite
matrix product ATA.) Similarly, for an attracting periodic orbit of period k, the Lyapunov
exponents Λ1 and Λ2 are derived from the singular values, say, µ1 and µ2 of the Jacobian
matrix of the kth iterate. The Jacobian matrix of the kth iterate is, in fact, a chain of k
Jacobian matrices for the map evaluated at successive iterates of the initial point. Hence, on
average in each of the k iterations, the contraction or expansion rates will be Λi := 1

k
ln (µi) for

i = 1, 2. Considering now an arbitrary non-periodic trajectory on the attractor, one obtains
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the Lyapunov exponents from the time-varying linear system given by the linearisation along
this trajectory [19]; effectively, we have an infinite chain of Jacobian matrices, and the average
contraction or expansion rates must be calculated as a limit where the number of iterates
goes to infinity.

The calculation of Lyapunov exponents can numerically be rather delicate, particularly
when both expansion and contraction are involved; see [13] for an overview of different
approaches. We follow the description in [4] of the method from [10, 38], which is essentially
a (time-varying) power method with orthonormalisation to avoid alignment of vectors along
the direction associated with the largest Lyapunov exponent; see also [7, 8, 9]. More precisely,
assuming z0 ∈ C is an initial condition on the attractor, we generate the linearised system

Mn+1 = Df(zn)Mn, (2)

where zn = f (n)(z0) is the nth iterate of z0 and M0 ∈ SO(2) is a 2×2 orthogonal matrix with
determinant 1. Instead of calculating singular values of the matrix chainMN MN−1 · · · M1M0

for large N , we apply Gramm-Schmidt orthogonalisation before each successive multiplica-
tion and keep track of the change in magnitude of the first column vector, as well as the
determinant of the matrix. Hence, we generate a sequence Λ

(n)
1 associated with the maximal

Lyapunov exponent Λ1, defined recursively as

Λ
(n+1)
1 = Λ

(n)
1 + log (‖Mne1‖),

(here, e1 is the vector with 1 as its first component and 0 otherwise), and another sequence
D(n) associated with the determinant of the matrix product (in logarithmic form), given by

D(n+1) = D(n) + log (det (Mn)).

Hence, in theory, both the maximal Lyapunov exponent and the sum of the two Lyapunov
exponents is obtained as a limit:{

Λ1 = limN→∞
1
N

Λ
(N)
1 ,

Λ1 + Λ2 = limN→∞
1
N
D(N).

In practice, we use the values of 1
N

Λ
(N)
1 and 1

N
D(N) for large, finite N to estimate these limits.

When computing Lyapunov exponents, it is implicitly assumed that the trajectory generated
from the initial condition z0 ∈ C lies on the attractor.

Recall that we must also take into account that system (1) exhibits multi-stability, and
each attractor will be associated with different Lyapunov exponents. For the computations
that follow, we generate a uniform grid of 25 points (x, y) ∈ (0, 10)× (0, 10) and iterate each
pair of points ±x + i y a total of 106 times to obtain 50 initial conditions z0 ∈ C that are
assumed to lie on an attractor. We then use the above algorithm, starting from randomly
selected matrices M0 ∈ SO(2), and determine the Lyapunov exponents as the computed
values at iteration N = 104. We checked the accuracy of our computations against known
Lyapunov exponents for the case when the attractor is a fixed or periodic point. In such
cases, we find that our approximations for Λ1 and Λ1 +Λ2 are correct to two or three decimal
places. The approximation error is larger for a chaotic attractor, especially when the attractor
covers a large portion of phase space and may not be sufficiently represented by a trajectory
of N = 104 iterates. Nevertheless, based on the significant variation of the 50 approximations
of Λ1 and Λ2 at parameter points for which we know that a single chaotic attractor exists,
we estimate that we can determine the zero-locus of either Λ1 or Λ1 + Λ2 in the (a, λ)-plane
up to an error of 0.05 in the parameters.
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Figure 3: Maximum Lyapunov exponent Λ1 of system (1) computed for (a, λ) ∈ [0.5, 0.995]×
[0.5, 0.995] with mesh size 0.005. Panel (a) shows the largest and panel (b) the smallest
computed estimates of Λ1, using the color shading from magenta to yellow as given by the
color bar. Overlayed are the curve NS (dark green) of Nĕımark–Sacker bifurcation and the
curve HC (dark blue) of (first) homoclinic tangency. The five (red) crosses indicate the
parameter points at a = 0.6, a = 0.63, a = 0.65, a = 0.67, and a = 0.7 with λ = 0.8, for
which phase portraits are shown in Figures 1 and 2.

4.1 Maximal Lyapunov exponent and classical chaos

Figure 3 shows approximations of the maximal Lyapunov exponent Λ1 computed on a square
grid of 100 × 100 parameter pairs (a, λ); here, both a and λ take the values 0.5 + k 0.005
with k = 0, 1, . . . , 99. Panel (a) shows the largest and panel (b) the smallest values found
for Λ1 at each parameter point, where we used shades of magenta and yellow for negative
and positive values, respectively, as indicated by the color bar. Overlayed are the curve
NS (dark green) of Nĕımark–Sacker bifurcation (given by a = 1

2λ
) and the curve HC (dark

blue) of (first) homoclinic tangency between W s(p) and W u(p) (computed with the software
MatContM [24]). The parameter points on the line λ = 0.8 for the phase portaits in
Figures 1 and 2 are indicated by crosses (red). Figure 3 confirms our expectation that Λ1

changes sign in between the curves NS, to the left of which the complex-conjugate fixed
points q and q̄ are the only attractors, and HC, which is a limit of accumulating homoclinic
tangencies in the (a, λ)-plane that guarantees the onset of classical chaos [31, 36].

For a more quantitative discussion of the computed values for Λ1, we consider again the
specific transition to chaos along the line λ = 0.8. As expected, the parameter point for
a = 0.6, associated with Figure 1(a), lies in the region where Λ1 < 0. Indeed, the two
attractors q and q̄ both have the same pair of stable complex-conjugate eigenvalues, with
associated Lyapunov exponents Λ1 = Λ2 ≈ log (0.9798) ≈ −0.0204. For each of the 50 initial
conditions z0, our numerical approximations give Λ1 = −0.02 when rounded to two decimal
places. When a = 0.63, (almost) all initial conditions converge to one of the two invariant
circles, which means that Λ1 = 0. Our computations consistently give 0 < Λ1 ≤ 0.0005. As a
increases to a = 0.65, two different complex-conjugate pairs of attractors exists, which means
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that Λ1 depends on the chosen initial condition: for points ±x+ i y inside an invariant circle,
or just outside of it, iterates end up at initial conditions z0 (almost) on the invariant cirlce and
Λ1 = 0, and the same happens for any preimage of such points; for (almost) all other points,
the iterates end up at initial conditions z0 (almost) on one of the complex-conjugate period-8
orbits and Λ1 ≈ −0.0342 is determined by their (equal) eigenvalues. When approximating Λ1

by simulation, we get Λ1 ∈ [−0.0342, 0.0004]. Hence, the pale magenta color in Figure 3(a)
at this parameter point is determined by the invariant circles, while it has a darker shade
in panel (b), corresponding to the period-8 attractors. When a = 0.67, the approximations
give Λ1 ∈ [0.1272, 0.1399], even though the two complex-conjugate chaotic attractors have
identical maximal Lyapunov exponents. However, all values are positive, which confirms that
classical chaos appears before the first homoclinic tangency between the stable and unstable
sets W s(p) and W u(p) of the real saddle p. Finally, when a = 0.7, our computed values for
Λ1 range from about 0.2323 to about 0.2442, suggesting that this parameter point lies firmly
in the chaotic regime.

For the five parameter points discussed above, we found that Λ1 changes sign as a in-
creases, but the sum Λ1 + Λ2 remains negative. More precisely, Λ1 + Λ2 is about −0.04
when a = 0.6 and about −0.03 when a = 0.63, and it varies in the ranges [−0.0694,−0.0475],
[−0.1457,−0.1361], and [−0.2327,−0.2162] when a = 0.65, 0.67 and 0.7, respectively. Hence,
the chaotic dynamics exhibited by system (1) for the parameter points (a, λ) = (0.67, 0.8)
and (a, λ) = (0.7, 0.8), at which Λ1 > 0, are examples of classical chaotic attractors.

5 Wild chaos and associated Lyapunov exponents

Classical chaos is associated with accumulations of homoclinic tangencies [31, 36] and can
occur for any two-dimensional systems given by a continuously differentiable map. On the
other hand, wild chaos is associated with robust homoclinic and heteroclinic tangencies and
can only be found for planar maps that are non-invertible, such as the map f given in (1).
As discussed in [2], wild chaos arises from interactions of the chaotic invariant set with the
critical point at 0; here, the chaotic attractor is given by the closure of the unstable set
W u(p). Indeed, the existence of forward and backward critical sets are the specific features
that distinguish f from an invertible map.

The conjecture in [17] states that wild chaos in system (1) arises as soon as W u(p) contains
the critical point 0, which occurs at a bifurcation that the authors refer to as a backward
critical tangency. Similar to the homoclinic tangency, the accumulating nature of W u(p)
implies that the backward critical tangency is immediately followed by an accumulation of
backward criticial tangencies; the first backward critical tangency is the limit of this sequence.
We remark that the backward critical tangency can only occur for non-invertible maps. The
equivalent bifurcation for a three-dimensional invertible map is more complicated, involving
a heteroclinic tangency between a one-dimensional unstable manifold and a one-dimensional
stable manifold of a different fixed or periodic point; we refer to [3, 6] for details.

A numerical characteristic for the existence of a wild chaotic attractor is that the sum of its
two largest Lyapunov exponents is positive [14, 37]. In general, this is not sufficient, because
the linearised dynamics transverse to the attractor must also be sufficiently (dominating)
contracting; we refer to [15] for precise details. For the planar example presented in this
paper, this additional condition is trivially satisfied and the requirements that Λ1 + Λ2 > 0
is both necessary and sufficient for the existence of wild chaos.
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Figure 4: Wild chaos in system (1). Panel (a) shows the phase portrait for a = 0.8 and
λ = 0.8. Panel (b) shows the sum Λ1 + Λ2 of the two Lyapunov exponents, computed for
(a, λ) ∈ [0.5, 0.995]× [0.5, 0.995] with mesh size 0.005. Here, the largest value of Λ1 + Λ2 for
each parameter point is shown, using the color shading from magenta to yellow as given by
the color bar in Figure 3. Overlayed in panel (b) are the curves NS (dark green) of Nĕımark–
Sacker bifurcation, HC (dark blue) of (first) homoclinic tangency, and BWT (brown) of (first)
backward critical tangency. The (red) cross indicates the point (a, λ) = (0.8, 0.8) for which
the phase portrait is shown in panel (a); see also Figures 2 and 3.

Figure 4(a) shows the phase portrait of system (1) with a = 0.8 and λ again fixed at
0.8. While similar to the phase portrait in Figure 2(d) (with a = 0.7), the chaotic attractor
(orange dots) for this case is believed to lie in the wild chaotic regime. In both Figures 2(d)
and 4(a), the chaotic attractor is formed by the closure of the unstable set W u(p) (red curves)
of the fixed point p (bright-green cross). Note that W u(p) has ‘thickened’ considerably in
Figure 4(a) such that many more self-intersections are seen; moreover, the stable set W s(p)
(blue curves) is more prominently filling the complex plane. The essential difference, however,
is that the ‘first’ self-intersection of W u(p), the point with the shortest arclength distance to
p along W u(p), now lies to the left of 0, on the negative real axis. Indeed, several computed
points of the backward critical set (green dots) now lie inside the cardioid formed by p and
these two segments of W u(p) up to the first self-intersection.

Figure 4(b) shows the (maximal) sum Λ1 + Λ2 of the Lyapunov exponents computed on
the same square grid of parameter pairs (a, λ) as in Figure 3; the magenta and yellow color
shades again correspond to negative and positive values, respectively, as given by the color bar
in Figure 3. The (red) cross corresponds to parameter point (a, λ) = (0.8, 0.8) of the phase
portrait in panel (a); note that it lies in the yellow-shaded region. Ineed, for this point we
find Λ1+Λ2 ∈ [0.0647, 0.0811], which confirms the wild chaotic nature of this attractor. With
an adaptation of the continuation toolbox in MatContM [24] for heteroclinic tangencies,
we can numerically verify that the (first) backward critical tangency for λ = 0.8 occurs when
a ≈ 0.7366, in between a = 0.7 and a = 0.8. We can subsequently compute a curve of first
backward tangency in the (a, λ)-plane by continuation of a (not necessarily unique) sequence



Jelleyman & Osinga Characteristics of wild chaos 12

of backward iterates in the backward critical set that converges to p; we label this curve BWT
and it is overlayed (brown curve) in Figure 4(b), together with the curve NS (dark green) of
Nĕımark–Sacker bifurcation and the curve HC (dark blue) of homoclinic tangency. Observe
that the parameter points on the line λ = 0.8 for the phase portaits in Figures 1 and 2 all lie to
the left of BWT, in the magenta-shaded region. Of course, if Λ1 < 0 then Λ1 +Λ2 < 0 as well.
The points for a = 0.67 and a = 0.7, with λ = 0.8 fixed, correspond to cases with Λ1 > 0; see
Figures 2 and 3. As mentioned in the previous section, we find that Λ1 + Λ2 varies for these
two parameter points in the ranges [−0.1457,−0.1361] and [−0.2327,−0.2162], respectively.
Hence, the sum Λ1 + Λ2 appears to be decreasing as a increases towards the curve BWT; this
counter-intuitive behaviour continues until the homoclinic tangency HC at a ≈ 0.6841, after
which Λ1 + Λ2 appears to increase monotonically. All computed values for Λ1 + Λ2 lie above
−0.005 as soon as a ≥ 0.735, just as a crosses the curve BWT.

In [2], a complete proof of existence of wild chaos in system (1) is given for (a, λ) close to
the top-right corner (1, 1). This proof does not consider W u(p) directly, because such a global
invariant set can only be found numerically. Instead, the authors impose strong conditions
on the eigenvalues of p to show that wild chaos certainly exists for parameters in the (a, λ)-
plane close to the point (1, 1). The numerical results in [17] give a geometric perspective
and show that the first backward critical tangency bounds a region in the (a, λ)-plane that
contains (1, 1) and has topologically the same backbone structure of the dynamical system.
Hence, the authors conjectured that the region of wild chaos is bounded by the curve BWT of
(first) backward critical tangency [17, 29]. Our computations of the sum Λ1 + Λ2 of the two
Lyapunov exponents corroborates this hypothesis; see Figure 4(b). The match is particularly
good along the lower segment, although roughly for λ > 0.7, the zero-locus of Λ1+Λ2 deviates
away from the curve BWT in the direction of increasing a. Upon closer inspection, we find
that the computed values for the sum Λ1 + Λ2 are almost all larger than −0.05 when (a, λ)
lies to the right of the curve BWT; the different approximations obtained for each (a, λ)-pair
immediately to the right of BWT always lie in the range [−0.0652, 0.0033]. For the 100 data
points immediately to the right of BWT, there are 17 with a minimum of Λ1 + Λ2 below
−0.05, but only the data point (a, λ) = (0.625, 0.995) also records a maxmimum sum below
−0.05; the first positive Lyapunov sum is detected when (a, λ) = (0.665, 0.995). We conclude
that our computations confirm the hypothesis that the curve BWT bounds the region of
existence for wild chaos, to within an accuracy of O(10−1). On the other hand, we note that
the numerical evidence becomes slightly less convincing for λ-values very close to the limiting
case of λ = 1.

6 Conclusions

We presented a quantitative investigation of the existence of both classical and wild chaotic
dynamics for the non-invertible discrete-time system from [2] that is defined on the punctured
complex plane by the Lorenz-like double-cover map (1) with parameters a > 0 and λ ∈ (0, 1).
This system is well studied and a proof was provided in [2] that wild chaos exists for (a, λ) ≈
(1, 1). The geometric characteristics of wild chaos were investigated in detail in [17, 29] and a
conjecture was made that the first backward critical tangency is the boundary of wild chaos.
We complemented the evidence for this conjecture with the computation of the maximum
and sum of the Lyapunov exponents for a broad range of parameters. We found that there
is a very good match between the conjectured onset of wild chaos and the moment when the
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sum Λ1 + Λ2 of the Lyapunov exponents becomes positive: the curve BWT of first backward
critical tangency in the (a, λ)-plane lies very close to and always slightly to the left of the
zero-locus for Λ1 + Λ2, confirming that wild chaos only arises for sufficiently large values of
a and λ as given by the locus BWT.

Geometrically, the map (1) is an example of a system with hetero-chaotic attractors [35];
these are characterised by the existence of (saddle) periodic points on the attractor with
different stability indices (different numbers of stable and unstable eigenvalues). In future
work, we plan to investigate parameter-dependent versions of the paradigm models from [35]
as other possible wild chaotic maps with the conjectured bifurcation structure. This larger
class of hetero-chaotic systems also includes systems with so-called hyperchaotic attractors [1,
20, 21], which exhibit two positive Lyapunov exponents; such systems cannot be planar
and are, therefore, computationally more challenging. It would be of interest to study the
transition from chaotic to hyperchaotic attractors via a wild chaotic attractor, which may
well both be organised by (different) forms of backward critical tangencies; however, this is
also left for future research.

In general, very few explicit examples of wild chaotic systems exist and there are no further
studies of a possible backward critical tangency causing the onset of wild chaos. The authors
of [15, 37] present a four-dimensional Lorenz-like vector field for which the computation
of Lyapunov exponents has provided insight in the existence of wild chaos. For a four-
dimensional continuous-time system, it is not sufficient to check the sign of the sum of the
Lyapunov exponents; the expansion characteristic becomes more elaborate and involves the
computation of invariant subspaces [15]. The backward critical tangency for noninvertible
maps, corresponds in vector fields, to a particular form of heteroclinic tangency between
periodic orbits that have associated unstable eigenspaces with different dimensions [17]. From
a computational point of view, such a heteroclinic tangency can be found in a similar way,
and we still expect that the bifurcation structure is similar, although it will be challenging to
identify the periodic orbits involved in this bifurcation. We plan to investigate the geometric
organisation of this four-dimensional Lorenz-like system in future work to obtain further
evidence of matching geometric and expansion characteristics of wild chaos.
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