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Abstract

Given an attracting periodic orbit of a system of ordinary differential equations, one can
assign an asymptotic phase to any initial condition that approaches such a periodic orbit.
All initial conditions with the same asymptotic phase lie on what is known as an isochron.
Isochrons foliate the basin of attraction, and may have intriguing geometric properties. We
present here two cases of a planar vector field for which the basin boundary — also referred to
as the phaseless set — contains saddle equilibria and their stable manifolds. A continuation-
based approach, in combination with Poincaré compactification when the basin is unbounded,
allows us to compute isochrons accurately and visualise them as smooth curves to clarify their
overall geometry.

1 Introduction

Many physical systems feature stable oscillations. One practical approach to studying such
an oscillation is to apply a prescribed perturbation and record how the system returns to
oscillatory behaviour. Of specific interest is the relative phase between the original stable
oscillation and the oscillation to which the system settles down after the perturbation, which
depends on when in the cycle the perturbation is applied. When the associated mathematical
model is a system of ordinary differential equations, such an oscillation is represented by
an attracting periodic orbit. The relative phase as a result of any perturbation can then be
understood geometrically by considering what are known as the isochrons of the stable periodic
orbit.

To introduce isochrons, we consider a system given by the vector field

d~x

dt
= F (~x), (1)

where ~x ∈ Rn, the function F is sufficiently smooth and the associated flow is denoted Φ(t, ~x0).
We suppose that system (1) has a (hyperbolic) attracting periodic orbit Γ of period TΓ with
basin of attraction B(Γ). We associate a phase with each point in Γ. By convention the
point γ0 ∈ Γ with zero phase is chosen as the global maximum of Γ with respect to the first
coordinate; the periodic orbit is then parametrised by the phase θ ∈ [0, 1) with γθ ∈ Γ defined
by γθ = Φ(θTΓ, γ0). We can then assign an asymptotic phase Θ : B(Γ) → [0, 1) to any point
~x0 ∈ B(Γ) by the condition

lim
t→∞

||Φ(t, ~x0)− Φ(t+ Θ( ~x0)TΓ, γ0) ||= 0,
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meaning that all points with the same phase Θ( ~x0) = θ will synchronise with γθ ∈ Γ.
In the 1970s, Arthur Winfree investigated the distribution of phase throughout the basin

of attraction of oscillators of physical systems [14]. He coined the term isochron to describe
the level sets of the asymptotic phase function Θ and he stated that these geometric objects
are (n − 1)-dimensional, unique, non-intersecting curves or surfaces inside the basin B(Γ).
Moreover, Winfree observed that the isochrons accumulate on the basin boundary ∂B, which
he referred to as the phaseless set because this accumulation property makes it impossible to
determine the phase of a point in ∂B; see also the textbooks [2, 15]. The notion of an isochron
was subsequently formalised in terms of dynamical systems theory by Guckenheimer [4]. The
isochron I(γθ) is actually the stable manifold of the point γθ ∈ Γ under the time-TΓ map
Φ(TΓ, ·). This point of view allowed Guckenheimer to prove properties of isochrons that were
conjectured by Winfree in [14]. In particular, the set of isochrons

I(Γ) = {I(γθ) for θ ∈ [0, 1)}

is a foliation of B(Γ) by (n − 1)-dimensional leaves over the (topological) circle Γ. Moreover,
the flow is transverse to each isochron (i.e., leaf) I(γθ), which is also the diffeomorphic image
of every other isochron in I(γψ) under the flow Φ((θ − ψ)TΓ, ·).

There has been a recent resurgence in the interest in isochrons, which has been motivated
to a considerable extent by new methods of computing them. Huguet and Guillamon [5, 6]
compute isochrons locally by making use of a functional equation, Osinga and Moehlis [11]
and Langfield et al. [7] use a boundary value approach to compute isochrons of planar systems
as curves parametrised by arclength, while Mauroy et al. [9] consider discretisations of the
Koopman operator. Isochrons have been computed to investigate transient behaviour [1], to
study their complicated geometry in slow-fast systems [7, 11], and to characterise the onset
of phase sensitivity in terms of the loss of transversality of forward-time and backward-time
isochrons [8].

As is the case in almost all literature on isochrons, we take the vector field (1) to be planar.
In this case, the isochrons are smooth one-dimensional curves that foliate the two-dimensional
basin B(Γ) ⊂ R2. More specifically, we are concerned with the properties of isochrons near the
basin boundary ∂B. In the simplest case ∂B consist of a single repelling point, which directly
implies that all the isochrons in B(Γ) accumulate on it. Slightly more complicated is the case
that the basin boundary is formed by a repelling periodic orbit. Under the genericity condition
that its period is different from TΓ, all isochrons in I(Γ) accumulate on this periodic basin
boundary; see [4] for the proof that, generically, the isochrons in I(Γ) accumulate on ∂B.

The subject of this contribution is the question of how isochrons accumulate on a basin
boundary that contains saddle equilibria. In this case ∂B is formed by the (closure of) stable
invariant manifolds of the saddles. For the planar case considered here, the invariant manifolds
are trajectories that converge to saddle equilibria, in forward time for a stable manifold W s(·),
and in backward time for an unstable manifold W u(·). The invariant manifolds separate the
plane into regions of qualitatively different behaviour. More specifically, the stable manifold
W s(·) of a saddle on the basin boundary acts as a separatrix for trajectories that converge to Γ
and trajectories that do not. Hence, W s(·) forms a part of ∂B. Conversely, one branch of W u(·)
will converge to Γ and, thus, will intersect each isochron infinitely many times. Apart from
these general statements, the overall geometry of isochrons in systems with basin boundaries
formed by stable manifolds, especially in the case that they extend to infinity, has not been
explored fully. Guckenheimer and Sherwood [13] study isochrons of a planar fast-slow system
with a saddle point near a homolicinc bifurcation but do not consider the global geometry
of the isochrons, Mauroy et al. [9] consider the local accumulation of isochrons along a stable
manifold outside Γ, and likewise do not consider their global geometry. Finally, Shaw et al. [12]
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briefly consider the isochrons of a piecewise linear system on a torus, where periodic orbits are
separated by heteroclinic connections of invariant manifolds between saddle points.

In this paper we present the overall geometry of isochrons near the basin boundary ∂B
for two cases that have not yet been investigated: firstly, for an unbounded basin B(Γ) in the
form of a strip formed by two stable manifolds in ∂B that extend to infinity and, secondly,
for a bounded component of ∂B consisting of the stable manifold of a single saddle whose two
branches end at two repelling fixed points. To this end, we consider the planar vector field{

ẋ = µax− y − b x(x2 + y2),

ẏ = x+ µ(a+ c) y − (b+ d) y(x2 + y2),
(2)

which we constructed as a modification of the Hopf normal form in the spirit of the example
systems considered by Winfree [14] and Guckenheimer [4]. The origin 0 is always an equilibrium
and system (2) is invariant under rotation by π; hence, all nonzero equilibria come in symmetric
pairs. The effect of parameters c and d is to increase the velocity in the y-direction, where
c has a greater affect near the origin, and d has a greater affect further away. Throughout,
we fix a = −0.1, b = 0.05, c = 0.9 and d = 0.45, which allows us to study the isochrons of
an attracting periodic orbit Γ for two different cases of phaseless sets with saddles by setting
µ = 2.0 and µ = 4.0. We compute and present the relevant equilibria, their stable and unstable
manifolds and a representative number of isochrons in B(Γ).

We show how isochrons in an unbounded basin can by computed reliably after Poincaré
compactification of the plane, so that we can confirm and visualise their accumulation near
infinity. For the case of a stable manifold of finite arclength inside Γ, we show how the isochrons
spiral around and accumulate onto this type of component of ∂B. Our findings agree with the
theory, but we find that determining the precise geometry of isochrons in these situations is
numerically very sensitive and presents considerable computational challenges. Throughout,
we employ continuation of solutions of a suitably defined two-point boundary value problem
to compute global isochrons accurately and efficiently as smooth curves paramaterised by
arclength; see [7, 11] for more details of this approach.

2 Two phaseless sets generated by saddles

Figure 1 is the starting point of our investigation. It shows the phase portraits of system (2) for
µ = 2.0 and µ = 4.0 in panels (a1) and (b1), respectively, consisting of the attracting periodic
orbit Γ, repelling equilibria marked by squares and saddle equilibria marked by crosses, and
their respective stable and unstable maniolds. Panels (a2) and (b2) additionally show ten
isochrons that are uniformly distributed in phase θ, which is represented by colour as indicated
in the colour bar.

In the phase portrait for µ = 2.0 in Fig. 1(a1) the origin 0 is a source and forms the
component of ∂B inside Γ. Outside Γ there are two saddle equilibria p+ and p−, which are
counterparts under the symmetry of (2). Their stable manifolds W s(p±) act as separatricies
and, with the equilibria p±, they form the outer part of ∂B. Since W s(p±) extend to infinity
in the positive and negative y-directions, the basin B(Γ) is an unbounded vertical strip. The
branches of the unstable manifolds W u(p±) outside B(Γ) have no phase with respect to Γ as
they extend to infinity in the positive and negative x-directions. The branches of W u(p±) that
lie inside B(Γ), on the other hand, converge to Γ, and thus each point in W u(p±) ∩ B(Γ) has
a phase. This means that each isochron of Γ must intersect W u(p±) infinitely many times; in
particular, since W u(p±) converge to p± in backward time, the isochrons must accumulate on
W s(p±) near p±.
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Figure 1: Phase portraits and isochrons of (2) for µ = 2 in row (a) and for µ = 4 in row (b). Shown
are the periodic orbit Γ (black), equilibria (green crosses for saddles, and red squares for sources),
and the stable (blue) and unstable (red) manifolds of the saddle equilibria. The right column also
shows ten isochrons that are distributed uniformly in phase θ along Γ, where colour indicates the
phase according to the central colour bar.
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Figure 1(a2) shows the same phase portrait but with ten isochrons, which are equally dis-
tributed in asymptotic phase and coloured according to the colour bar. Inside Γ the isochrons
simply accumulate on the source 0 ⊂ ∂B. On the outside of Γ, and beyond its immediate vicin-
ity, we observe that each isochron intersects the unstable invariant manifold W u(·) of either p+

or p− once, but then appears to run parallel to the respective branch of W s(p±) and extends
out of the frame. We computed these ten isochrons up to excessively large arclength, yet they
do not appear to turn around and come back into the frame, near the other saddle equilibrium,
to intersect W u(p±) again. Hence, the isochrons in Fig. 1(a2) do not appear to accumulate on
∂B, which would contradict the theory. The issue is the extreme growth towards infinity of
the isochrons of system (2) in the unbounded strip B(Γ), which we will address and solve in
Sec. 3 by means of Poincaré compactification.

Figure 1(b1) is the phase portrait for µ = 4.0, where we now concentrate on the component
of ∂B inside Γ; the phase portrait outside Γ is topologically as that for µ = 2.0 in panel (a1).
As panel (b1) illustrates, the origin 0 is now a saddle point. In fact, two sources q± have
bifurcated from 0 in a pitchfork bifurcation at µ ≈ 3.5355, and the two branches of the stable
manifold W s(0) converge in backward time to q+ and q−. Note that W s(0) is a curve of
finite arclength; its closure, which includes 0 and q±, forms the component of ∂B inside Γ.
The unstable manifold W u(0) lies entirely inside B(Γ), and its to branches converge to Γ very
rapidly in forward time. Therefore, each point in W u(0) has a phase and each isochron of
Γ must intersect each of the two (symmetrically related) branches of W u(0) infinitely many
times; hence, the isochrons must accumulate on W s(0) near 0.

Figure 1(b2) shows the phase portrait and additionally ten isochrons uniformly distributed
in phase. Inside Γ the isochrons indeed approach W s(0) very rapidly, and it unclear how
exactly they approach the inner component of ∂B. Moreover, it seems from this figure that
outside some neighbourhood of Γ each isochron intersects W u(0) only once, which is due to
very strong contraction towards 0 along W u(0). In fact, the isochrons quickly reach a distance
to W s(0) that is on the order of the computational accuracy. The accumulation of isochrons
on the component of ∂B in the region enclosed by Γ is detailed and illustrated in Sec. 4.

3 The geometry of isochrons near infinity

The issue with the phase portrait and ischrons of (2) for µ = 2.0 in Figure 1(a2) is that the
basin of attraction B(Γ) extends to infinity in the positive and negative y-directions while it is
bounded in the x-direction. This means that isochrons make long excursion in the y-direction
before returning back to the region of interest near the origin; in fact, the isochrons would
need to be computed for impractically large arclengths in the state space R2 of (2) to show
them returning. Since (2) is a polynomial vector field, this issue can be addressed effectively
by means of Poincaré compactification; see for example [3, 10]. For the planar case considered
here, the idea is to map R2 diffeomorphically to the open unit disk D2, where the circle ∂D2 = S1

represents the directions of approach to, or departure from infinity. The transformed vector
field on D2 is then conjugate to the original vector field on R2 and, moreover, it is continuous
on the closed disk D2 ∪ S1 after an appropriate rescaling of time. In particular, the phase
portrait as well as the isochron structure remain qualitatively the same. However, as we will
see, isochrons of (2) that approach infinity can be computed efficiently as curves in the new
coordinates because arclength is now measured in the bounded space D2.

Geometrically, the transformation is best described in two steps. Consider the unit sphere
S3 in R3, centred at the origin (0, 0, 0), and the plane R2 ∼= {(x, y, z) ∈ R3 with z = 1}, which
is tangent to S3 at its north pole (0, 0, 1). The first coordinate transformation projects the
point (x, y, 1) ∈ R2 to a point (s1, s2, s3) on, say, the upper half-sphere of S3 by determining
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the intersection point of the line through (x, y, 1) and (0, 0, 0) with S3 where s3 is positive;
the equator of S3 then represents the asymptotic directions (of trajectories) at infinity. The
second step is the projection of the closed upper half-sphere (that is, including the equator)
back to the plane R2 by considering its intersection point with the line through the given point
(s1, s2, s3) ∈ S3 and the south pole (0, 0,−1). The image is the closed disk of radius 2 which
is scaled to D2. The overall coordinate transformation from (x, y) ∈ R2 to the (u, v) ∈ D2 is
given by [

u
v

]
=

1

1 +
√
x2 + y2 + 1

[
x
y

]
, (3)

and its inverse by [
x
y

]
=

2

1− u2 − v2

[
u
v

]
. (4)

Transforming an actual planar vector field requires multiplication of the right-hand side by
the Jacobian of the coordinate transformation (3). This generally results in the transformed
vector field being singular on ∂D2 = S1; for polynomial vector fields this issue can be dealt

with by desingularisation in the form of a time rescaling with sn3 =
(

1−u2−v2

1+u2+v2

)n
, where n is

the (highest) order of the polynomial vector field.
For the specific case of (2), the compactified vector field on D2 ∪ S1, written as a matrix-

vector product, takes the form:[
u̇
v̇

]
=

1

(1 + u2 + v2)3

[
1 + v2 − u2 −2uv
−2uv 1 + u2 − v2

]
[

(1− u2 − v2)2 (µau− v)− 4b u(u2 + v2)
(1− u2 − v2)2 (u+ µ(a+ c) v)− 4(b+ d) v(u2 + v2)

]
.

(5)

The phase portrait on D2 of (5) for µ = 2 is shown in Fig. 2(a). Indeed, it features qualitatively
the same, although transformed, invariant objects found in the phase portrait of (2), shown in
row (a) of Fig. 1; for simplicity, we refer to these also as Γ, 0, p±, W s(p±) and W u(p±). Also
shown in Fig. 2(a) is the circle S1, which is invariant and represents the asymptotic directions
of trajectories at infinity. There are four equilibria on S1, two sinks s±∞ at (u, v) = (±1, 0) onto
which the respective branches of W u(p±) converge, and two sources q±∞ at (u, v) = (0,±1)
onto which the respective branches of W s(p±) converge in backward time. In particular, B(Γ)
is the compact region bounded on the outside by W s(p±) ∪ p± ∪ q±∞, which is the closure of
W s(p±). Also shown in Fig. 2(a) are the same (but transformed) ten isochrons from Fig. 1(a2).
Inside Γ, the compactification has little effect. On the other hand, as Fig. 2 shows clearly, their
properties near the outside component of ∂B now become apparent. Outside Γ, all isochrons
accumulate on ∂B in a spiralling fashion, and in this way each isochron, indeed, intersects
W u(p±) infinitely often near p±. The close passage of the isochrons near q−∞ is illustrated in
Fig. 2(b).

As Fig. 2 clearly shows, Poincaré compactification allows us to determine and illustrate the
geometry of the isochrons globally throughout an entire basin B(Γ) that is unbounded. Note
that each isochron of (5) has maxima and minima in v at successively larger |v|-values, but
these are bounded by 1. By contrast, in the original coordinates of (2), the arclength of the
isochrons up to the second maximum or minimum is already prohibitively large; this is why
Fig. 2(b2) does not show the computed isochrons returning. After Poincaré compactification,
on the other hand, the isochrons are confined to a bounded region, and this makes it possible
to compute them efficiently as global parametrised curves.
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Figure 2: Accumulation on ∂B ⊂ D2 ∪ S1 of isochrons of (5) for µ = 2. Shown are Γ (black),
0 (red square), p± (green crosses), W s(p±) (blue) and W u(p±) (red), the unit circle S1 (grey),
representing the asymptotic directions of trajectories at infinity, with sinks s±∞ at (u, v) = (±1, 0)
(blue triangles) and sources q±∞ at (u, v) = (0,±1) (red squares), and ten isochrons distributed
uniformly in phase θ (shades of blue). Panel (a) shows all of D2 ∪ S1 and should be compared with
Fig. 1(b), while panel (b) is a enlargement near q−∞.
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Figure 3: Accumulation on ∂B of isochrons of (2) for µ = 4. Panel (b1) shows the very rapid
accumulation onto W s(0)∪ 0∪ q± of ten isochrons that are uniformly distributed in phase. Panels
(a1) and (a2) show the x- and y-components of I(γ0) against its arclength ds; also shown are the
respective components of 0 (green line) and q± (red line). Panel (b2) is a sketch of how I(γ0) spirals
onto ∂B.

4 The geometry of isochrons near W s(0)

We now return to the question of how the isochrons of (2) for µ = 4 accumulate on the
component W s(0)∪ 0∪ q± of ∂B inside Γ. Figure 3(a) illustrates that the isochrons, of which
again ten are shown, accumulate on ∂B so rapidly that they lie less that the computational
tolerance of 10−8 from W s(0) ∪ 0 within one revolution after passing 0 closely for the first
time. This is owing to the fact that the expansion along the unstable direction over one period
of Γ is of the order eλuTΓ ≈ 8× 107, where λu is the unstable eigenvalue of 0. We remark that
such rapid accumulation
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such rapid accumulation of isochrons on a stable manifold must be regarded as not so unusual,
because it arises from the fact that the period TΓ is generally reasonably large; hence, con-
secutive intersection points of an isochron with the same branch of W u(0) converge to 0 at a
very fast rate, even when λu is only of moderate magnitude.

This explains why it is not possible to visualise the accumulation of the isochrons in
Fig. 3(a). To determine its exact nature, column (b) of Fig. 3 shows the x- and y-components
of points on I(γ0) plotted as a function of the arclength ds along I(γ0) measured from γ0. The
equilibria 0 and q± are shown as labelled horizontal lines, which allow us to see that I(γ0)
oscillates between q+ and q− in both the x-component and the y-component. Taken together,
panels (b1) and (b2) are evidence that I(γ0) spirals around W s(0) ∪ 0 ∪ q± and, hence, inter-
sects both branches of W u(0) infinitely often in the process. To illustrate what this looks like
qualitatively in the (x, y)-plane of (2), Fig. 3(c) shows 0, q±, W s(0) and W u(0) overlaid with
a sketch of I(γ0). This sketch is based on the evidence in panels (b1) and (b2), and can be
interpreted as a rescaling of the vector field along the direction of the unstable eigenvector.

5 Conclusion

We have investigated the geometry of isochrons in a planar system as they accumulate on
a basin boundary that is formed by the stable manifolds of saddle equilibria. As theory
states, the isochrons accumulate (generically) on such a boundary and we investigated how
this happens geometrically. We considered first the case of an unbounded basin formed by
the stable manifolds of two saddles. In the original coordinates it is practically impossible to
compute and visualise the accummulation of the isochrons on such a boundary. After Poincaré
compactification of the vector field, on the other hand, the isochrons can be computed readily
and the accummulation becomes apparent. We also considered a component of the basin
boundary consisting of the stable invariant manifold of a saddle of finite arclength that begins
at two repellors. The isochrons can be computed in this case, but the issue is that their
accumulation onto this type of boundary is very rapid. Nevertheless, we were able to show
how they spiral around the boundary, intersecting the unstable manifold of the saddle infinitely
many times in the process.

We presented here two case studies of how isochrons may accummulate on the boundary of
the basin of attraction — the phaseless set. There are other, qualitatively different possibilities
for what a component of the boundary of a basin of attraction of a planar vector field may
look like. Different cases will be addressed in the same spirit, by a combination of two-point
boundary value problem methods and Poincaré compactification. Ongoing research will also
consider the foliation by one-dimensional isochrons of the stable and unstable manifolds of
a saddle periodic orbit of a vector field in R3. There are interesting possibilities for these
invariant objects to interact, for example, along homoclinic orbits.

The next challenge will then be the computation of two-dimensional isochrons of an at-
tracting periodic orbit in R3 as invariant manifolds. This will allow the investigation of the
geometry of two-dimensional isochrons that foliate the basin of attraction; this geometry is
expected to be much more complex, given the multitude of dynamics that one may find in a
three-dimensional state space. In particular, the question will again be how isochrons accumu-
late on the basin boundary, which may include saddle equilibiria, saddle periodic orbits and
their stable manifolds. The latter may extend to infinity or accummulate on other invariant
sets. Poincaré compactification of R3 to the inside of a sphere will be crucial for studying the
geometry of two-dimensional isochrons globally.
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