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SM1. Implementation of isochron computations within CoCo. This guide walks through
the computation of two foliations of isochrons in region D, the forward-time isochron foliation
I(Γs) of the stable periodic orbit Γs and the backward-time isochron foliation U(q+) of the
equilibrium q+, as depicted in subsection 3.5. We approach the computation of each isochron
via the continuation of trajectory segements that solve suitable two-point boundary value
problems (BVPs), specifically those introduced in [SM10] and illustrated in [SM7, Figure 2].
To our knowledge this BVP approach to the computation of isochrons has been performed
exclusively with the collocation BVP solver and pseudo-arclength continuation routine of the
package AUTO-07P [SM3]. The implementation we present here uses the MATLAB-based
sofware CoCo [SM1, SM2], which offers a number of advantages. While it uses also collocation
and pseudo-arclength continuation, it has been designed specifically for setting up and solving
multi-segment BVPs, such as those required for computing isochron foliations. Namely, CoCo
allows for the native continuation of solutions to BVPs contructed from multiple orbit seg-
ments, each with its own and separate mesh discretization. CoCo inherently shifts mesh points
to adapt the different meshes during the continuation of solutions to a BVP; while it also uses
mesh adaptation, AUTO-07P uses a single mesh common to all segments of the overall BVP.
Moreover, CoCo provides the option to dynamically add or remove mesh points from the dis-
cretization during continuation. These features greatly improve the stability of computations
of solution families of multisegment BVPs. The user has the option of setting both a residual
and absolute tolerance for solutions in CoCo, whereas only residual tolerances are accessible
to users of AUTO-07P. While both packages consider their tolerances as an aggregate over
a trajectory segment as represented by collocation, this difference is significant because we
compute isochrons while referencing only one point along an orbit segment.

An improvement of our implementation is that we make use of the concept of a fundamental
domain (see subsection SM1.4.5) to avoid a discontinuity issue of trajectory segements used to
solve the BVP for different multiples of the period of the periodic orbit. Here we make use of
the feature that CoCo’s design invites the implementation of new toolboxes, which allows us
to implement the passing of tangent vectors to the continuation of the BVP to help ensure the
smoothness of the computed isochrons. While it is also possible to achieve this in AUTO-07P
in principle, we do not believe that any such implementation would be as straightforward or
user-friendly as in CoCo. Finally, an advantage of a Matlab implementation is that the data
is readily available for plotting or rendering.
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SM1.1. Overview of the BVPs required. The set up that we use involves a multi-step
process that involves a number of BVPs. A computation of isochrons of a periodic orbit starts
with an orbit segment γ(t) that represents it, which satisfies periodic boundary conditions
with period TΓ. A BVP is then set up for an orbit segment x(t) that defines the time-TΓ map
to a linear approximation of Iθ(Γ), given as a short line segment that acts as an (approximate)
fundamental domain. We then compute the one-dimensional isochron Iθ(Γ) as the smooth
manifold traced out by the start point x(0) during a continuation run, where the end point
x(TΓ) vary along the fundamental domain. We remark that, while both AUTO-07P and CoCo
rescale time such that orbit segments are defined over the time interval [0, 1], CoCo hides this
fact, allowing the user to implement the BVP in the natural time t ∈ [0,T ] of the original
(nonscaled) system.

The first BVP facilitates the rotation of a periodic orbit Γ by a phase θ relative to some
reference point γ0 ∈ Γ, which is by convention chosen as the maximal point in the first
coordinate of Γ. This is achieved by separating γ(t) = Γ into two segments, the phase segment

x1 = {γ(t) ∈ Γ | t ∈ [0, θ TΓ]},

and the anchoring segment

x2 = {γ(t) ∈ Γ | t+ θ TΓ ∈ [θ TΓ,TΓ]},

and then varying the phase θ to the desired phase θ∗ such that γθ∗ = x1

(
θ∗ TΓ

)
. The anchoring

and phase segments are subject to continuity boundary conditions at each end, and we further
require that F(x1(0)) · e1 = 0, where F(·) is the vector field and e1 is the unit vector of the
first coordinate of the system. The rotated periodic orbit γ∗(t) = Γ∗ is, hence, constructed by
appending x1(t) to x2(t) such that γ∗(0) = γθ∗ .

The second BVP is set up in two stages. Firstly, CoCo’s collocation toolbox natively
implements the variational equations, and a simple method for computing the Floquet mul-
tipliers and bundles using this toolbox is presented in [SM2]. We supplement this BVP with
that above to allow the rotation of both the periodic orbit and its Floquet vector at the base
point. To this end, the Floquet bundle from the previous stage is also separated into phase and
anchoring segments. We subject the Floquet bundle to constraints as presented in [SM6] at γθ,
and periodicity conditions at γ0. Then, as θ is varied during continuation, solutions for both
the periodic orbit and the Floquet vector of each desired phase are saved for the subsequent
computation of isochrons.

Next, we use the appropriately rotated periodic orbit as the first solution x(t) that satisfies
a BVP that defines the time-TΓ map to the linear approximation wθ of Iθ(Γ) as determined
previously. From this BVP we first construct the (approximate) fundamental domain sθ for
this isochron as given by the vector sθ between x(0) and x(TΓ), defined by a specified maximum
orthogonal distance δmax of x(0) from wθ (while x(TΓ) lies along wθ); the associated orbit
segment s(t) is saved for later use. We then consider the time-kTΓ map for increasing integer k
with x(kTΓ) along the vector s(t). This allows us to compute the isochron Iθ(Γ) as successive
arcs Ikθ (Γ), where each such arc is the smooth one-dimensional curve that is traced out by
x(0) as x(TΓ) varies during a continuation over the length of sθ under the time-kTΓ map.
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The arc number k is increased each time that x(kTΓ) reaches the end of sθ by appending the
orbit segment s(t) to x(t). The resulting orbit segment has its end point at the base of sθ
and, hence, its continuation traces out the next arc for the (k + 1)TΓ-map. When a sufficient
number of arcs has been computed, the respective branch of the isochron is simply given by
Iθ(Γ) =

⋃k
i=0 I

k
θ (Γ). The other branch of Iθ(Γ) is found in the same way by starting the

computation of the fundamental domain from the vector −wθ.

SM1.2. Toolboxes as part of the installation. The required BVPs, along with two addi-
tional toolboxes to facilitate the computation of initial solutions, are implemented with CoCo’s
trajectory collocation ('coll') and boundary value problem ('bvp') toolboxes. Rotation of
periodic orbits by a phase θ ∈ [ 0, 1) and rotation of periodic orbits to satisfy the zero-phase
convention are achieved with the rotate phase point toolbox ('rpp'), which is covered in sub-
section SM1.4.3. The computation of Floquet multipliers of a periodic orbit, as well as their
Floquet bundle via rotation of the periodic orbit, are achieved by the Floquet toolbox ('flqt
'); this is covered in subsection SM1.4.4. The computation of arcs of an isochron is achieved
by the isochron toolbox ('iscrn'), which is covered in subsection SM1.4.5 for attracting peri-
odic orbits, and in subsection SM1.5 for repelling equilibria. These toolboxes were developed
to compute isochrons in two-dimensional systems, and to provide a relatively user-friendly
implementation for isochron computation.

The function files that make up these toolboxes are included as part of the supplementary
materials with this paper, in a directory named iscrn. For temporary use, this folder may
simply be placed in the searchable path of the active MATLAB directory. For long term use
it is advised to add this folder to the CoCo install directory; see [SM1] for installation instruc-
tions. To add the ’iscrn’ toolbox to MATLAB’s path, open the file startup.m (which is added
when installing CoCo) located at the path returned by the MATLAB command userpath, add
the line addpath(fullfile(PATH_TO_COCO, 'iscrn', 'toolbox')), where PATH_TO_COCO is
a string containing the path to CoCo’s install directory. There are a number of files included
in the folder iscrn/examples that are intended for use by the reader when following along
this guide. These should simply be placed in the search path of the active MATLAB directory.
Specifically, the files po_forward_demo.m and ep_backward_demo.m in the tube subdirectory
contain the code presented in this guide, in subsection SM1.4 and subsection SM1.5, respec-
tively. Additionally, the file isochron_foliation/isochron_foliation.m is a script that
programatically computes a foliation of isochrons, forward-time or backward-time, of periodic
orbits or equilibria. The latter file is not directly discussed in this document, but may be
understood from the embedded comments and the general guidance provided here. The use of
the toolboxes within iscrn assume familiarity with CoCo, and the reader may find it useful
to also refer to the technical manuals located in the help folder, located in CoCo’s install
directory; specifically, the ‘Short Developer’s Reference for CoCo’ (COCO_shortRef.pdf) and
the ‘Trajectory Collocation Toolbox’ (COLL-Tutorial.pdf).

We ask any reader who adapts and uses our CoCo toolboxes for their own research to
include a reference to this supplementary material in any published work.

SM1.3. CoCo-comparable vector field functions. We encode (10) below as the func-
tion tube for use throughout this guide. This specific encoding is in the format of a CoCo-
compatible function file for a vector field of a system of ODEs; it is in the vectorized format to
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speed up computation, which requires that each of these variables has a : in the last dimension
of their arrays. CoCo requires this function to return a single variable Y as the right hand side
of a vector field; it takes the variables u and system parameters p as input arguments.

function Y = tube(u, p)
%Tube

x = u(1,:);
y = u(2,:);

a = p(1,:);
b = p(2,:);
c = p(3,:);
d = p(4,:);
mu = p(5,:);

r2 = x .^2 + y .^2;

Y(1,:) = mu .* a .* x −y − b .* x .* r2;
Y(2,:) = x + mu .* (a + c) .* y − (b + d) .* y .* r2;

end

When using CoCo for relatively difficult continuation problems, it is advised to supply
the Jacobians of the vector field along with the vector field itself. CoCo is able to perform
continuation without user-supplied Jacobian functions, but CoCo’s default Jacobian approxi-
mations tends to be slower and less accurate. We encode the Jacobian with respect to the state
variables as tube_DFDX and the Jacobian with respect to the system parameters as tube_DFDP,
each each in the vectorized format.

SM1.4. Computing the isochrons of an attracting periodic orbit. This section covers
the steps required to compute the isochron foliation of the attracting periodic orbit Γs in re-
gionD; the required code is in the file po_forward_demo.m in iscrn/toolbox/examples/tube.
Subsection SM1.4.1 describes the settings used throughout these computations and subsec-
tion SM1.4.2 describes how the periodic orbit Γs can be found via numerical integration. Then
subsection SM1.4.3 covers the use of the 'rpp' toolbox; here the reader is guided through com-
puting Γs via numerical integration, followed by implementing a rotation of Γs to satisfy the
zero-phase convention. Subsection SM1.4.4 covers the use of the 'flqt' toolbox; here we first
show how to compute a single Floquet vector and then an entire bundle of Floquet vectors for
desired phases. Subsection SM1.4.5 describes the basic use of the 'iscrn' toolbox; here we
start with the computation of the fundamental domain and then guide the reader through the
computation of subsequent arcs of a given isochron.

SM1.4.1. Computational Settings. It is advised that the reader keeps the accuracy set-
tings similar throughout the various computations needed to compute the initial solution for
the 'iscrn' toolbox. To this end, we include below the function orbit_settings, which
modifies the continuation problem structure prob by using the function coco_set, which is
well documented in the ’Short Developer’s Reference for CoCo’ except for the options used in



SUPPLEMENTARY MATERIALS: ISOCHRON FOLIATIONS AND GLOBAL BIFURCATIONS SM5

line 8. For problems using the 'coll' toolbox, one should set computational tolerances by the
'all' option, instead of the options available under the 'coll' option.

function prob = orbit_settings( prob )

prob = coco_set( prob, 'ode', 'vectorized', 'on' );
prob = coco_set( prob, 'cont', 'ItMX', 1e6, 'NPR', 0, 'NAdapt', 1,...

'h_min', 5e−10, 'h0', 5e−3, 'h_max', 5e−2 );
prob = coco_set( prob, 'coll', 'NTST', 50 );
% prob = coco_set( prob, 'coll', 'NTST', 100 ); % C_u
prob = coco_set( prob, 'all', 'TOL', 5e−8 );

end

To ensure that all arcs of Iθ(Γ
s) are computed to the same level of accuracy, we use the

function iscrn_settings as below. This particular function is used for isochrons in each of
regions A–F ; certain isochrons require different settings and these are recorded in this file.
The tolerances and step sizes indicated in iscrn_settings are set for high accuracy at the
expense of computation time and file sizes. The changes to the 'ItMX' and 'NPR' settings of '
cont' instruct CoCo to only perform continuation in one (forward) direction and only save and
print to screen special solutions during continuation, respectively. As with orbit_settings,
we change the absolute tolerance using the 'all' option, rather altering the native 'coll'

toolbox option.

function prob = iscrn_settings( prob )

prob = coco_set( prob, 'ode', 'vectorized', 'on' );
prob = coco_set( prob, 'cont', 'ItMX', [ 0, 1e6 ], 'NPR', 0, 'NAdapt', 1,...

'h_min', 5e−10, 'h0', 5e−5, 'h_max', 5e−2 );
prob = coco_set( prob, 'coll', 'NTST', 50 ); % default
% prob = coco_set( prob, 'coll', 'NTST', 60 ); % B_u; C_u 0.4 0.5 0.7 0.9; D_eq 0.4
prob = coco_set( prob, 'all', 'TOL', 5e−9 ); % default
% prob = coco_set( prob, 'all', 'TOL', 5e−8 ); % B_u; C_u 0.4 0.5 0.7 0.9; D_eq 0.4
end

The choice of 'NTST' defines the number of mesh points that should be used in the initial
solution that satisfies the isochron BVP. Since the subsequent arc Ik+1

θ (Γs) of the computed
isochron is defined by the time-(k + 1)TΓ

s map, the number of mesh points involved in the
computation grows as k'NTST'. Naturally, this increases the memory and computation time
required for the computation. As such, 'NTST' should be chosen in consideration of the total
number of arcs required to compute the isochron, usually after a test computation. It is advised
to use the 'coll' toolbox’s mesh adaption option, which adds and removes mesh points during
continuation, for computational stability.

SM1.4.2. Computing Γs. To begin, we need a numerical representation of Γs, which can
be achieved in a number of ways for further use in CoCo. Typically when applying numerical
continuation to systems of ordinary differential equations (ODE’s) we may find a periodic
orbit as a result of related bifurcations. However, as described in section 2, Γs arises from
a saddle-node of periodic orbits and disappears in a heteroclinic bifurcation involving saddle
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points. Neither the saddle-node nor the heteroclinic bifurcations serve as vehicles to compute
Γs in CoCo, and instead we compute Γs by numerical integration.

CoCo-comparable functions for vector fields are designed for easy use with MATLAB’s
ODE integrators, such as ode45, and we may invoke the tube function anonymously with
ode45 to integrate (10) by prepending its call with @(t, x).

>> p0 = [−0.66; 0.5; 2.5; 2.5; 1.0];
>> [t0, x0] = ode45(@(t, x) tube(x, p0), [0, 100], [0; 0.25]);

Appropriate values for the system parameters of (10) are stored in p0, and we choose the
integration time, 100, to be sufficiently large for our choice of initial condition, [0; 0.25].
The trajectory computed with ode45 accumulates onto Γs. From its time series we make a
reasonable guess of the period TΓ

s of Γs. Next, either take a segment at the end of t0 and x0

commensurate with the guess for TΓ
s , or use ode45 to integrate approximately one period from

the end point of x0 to get a numerical approximation of Γs for use with the 'rpp' toolbox.

>> [t0, x0] = ode45(@(t, x) tube(x, p0), [0, 10.5], x0(end,:)');

As long as the estimate of TΓ
s is sufficiently accurate, t0 and x0 returned by ode45 will

converge to a solution that satisfies the periodic boundary conditions in ode_isol2rpp.

SM1.4.3. RPP: Rotating periodic orbits. The 'rpp' toolbox is designed to facilitate the
rotation of a periodic orbit Γ by a phase θ ∈ [ 0, 1) relative to some reference point γ0 ∈ Γ.
While the toolbox separates the supplied periodic orbits into two segments as described in
subsection SM1.1, both the input to its constructor ode_isol2rpp and the output form its
reader rpp_read_solution are single segment periodic orbits. This toolbox is capable of
rotating a periodic orbit to satisfy the zero-phase convention, and is extended into the 'flqt'
toolbox to facilitate the rotation of a periodic orbit with its Floquet vector.

Applying the zero-phase convention. To make sure that the numerical representation x0 of
Γs satisfies the zero-phase convention, that is, the zero-phase point γ0 is at the maximum in the
first coordinate along Γs, we employ the ode_isol2rpp constructor function with the option
'−zpp' set to 'zero_phase'. The following commands construct a continuation problem to
this effect.

>> p = {'a', 'b', 'c', 'd', 'mu_s'}; % paramter names
>> prob = coco_prob();
>> prob = orbit_settings(prob);
>> [~, PO_MAX, ind] = ode_isol2rpp(prob, 'po', @tube, @tube_DFDX, @tube_DFDP,...

t0, x0, p, p0, '−zpp', 'zero_phase');

First a cell-array of strings p is assigned to the system parameters of tube, then the continuation
problem structure is initialized in the call to coco_prob. Next, we make a call to the function
orbit settings to define some standardized settings for continuation problems of periodic
orbits; see subsection SM1.4.1. Finally, the call to the ode_isol2rpp constructor constructs
the continuation problem; as is uncommon for CoCo constructor functions it also initiates the
continuation and returns the index of the maximum in the first coordinate of the periodic
orbit. The constructor takes as arguments the continuation problem structure prob, function
handles for the vector field and (optionally) its Jacobians with respect to state variables and
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parameters, the elements t0 and x0 of the trajectory segement defining Γs, the cell array of
names of system parameters p and the values p0. While locating the maximum in the first
coordinate of Γs, the end point of the phase segment x1 is fixed, its start point x1(0) is allowed
to move around Γs subject to periodicity conditions with the anchoring segment x2(t). CoCo’s
event location functionality is used to determine solutions to the continuation problem when
x1(0) moves through a local extrema of Γs by detecting when tube(x1(0), p0)·( 1

0 ) = 0. These
solutions are given the type XTRM and may be searched for with the function coco_bd_labs.
In the output of this call to ode_isol2rpp below, we see columns for the phase θ relative to
γ0, the time derivative of the first coordinate of the system, and state variables at the start
point x1(0), labeled as theta, phi0, x0_1 and x0_2, respectively.
STEP TIME ||U|| LABEL TYPE theta phi0 x0_1 x0_2

0 00:00:01 1.7343e+01 1 EP −1.9440e−15 4.1529e−01 1.9247e−01 −5.7804e−01
21 00:00:03 1.5392e+01 2 FP 1.5143e−02 4.2857e−01 1.2538e−01 −5.2991e−01
273 00:00:22 1.2174e+01 3 XTRM 3.6063e−01 2.7756e−17 −4.7211e−01 4.0244e−01
397 00:00:31 1.1802e+01 4 FP 5.1514e−01 −4.2857e−01 −1.2538e−01 5.2991e−01
643 00:00:48 1.2753e+01 5 XTRM 8.6063e−01 1.3878e−17 4.7211e−01 −4.0244e−01
729 00:00:54 1.3949e+01 6 EP 1.0000e+00 4.1529e−01 1.9247e−01 −5.7804e−01

It follows that the solution which has x1(0) at the maximum of x0 is the one, marked XTRM,
with the largest value in the x0_1 column. The label number for this solution is returned in
the variable ind, as determined by the call to ode_isol2rpp above. This solution is read from
the output files via rpp_read_solution, as below, using the option 'zero phase' to insure
that the function concatenates x1(t) and x2(t) in the correct order.

>> sol = rpp_read_solution('po', 'zero_phase', ind);
>> t0 = sol.tbp;
>> x0 = sol.xbp;

The returned structure sol contains a number of fields, including the array of time instances
tbp corresponding to the array of state variable values xbp, the array of system parameter
values p, and the phase theta relative to the start point of the original periodic orbit.

SM1.4.4. FLQT: Computing the Floquet bundle. The 'flqt' toolbox is designed to
facilitate the computation of Floquet multipliers and Floquet bundles of periodic orbits for
use as linear approximations of isochrons. Floquet multipliers of a periodic orbit Γ, as well as a
numerical approximation of its Floquet bundle, are computed from the variational equations.
The methods for computing Floquet multipliers and bundles in [SM2] are encoded in the
constructor ode_isol2flqt and the utility flqt_read_solution for ease of access. Further,
the constructor uses the 'rpp' toolbox to facilitate the rotation of the Floquet bundle along
with a periodic orbit, such that the Floquet vector for any point γθ ∈ Γ may be determined
accurately without first rotating the periodic orbit and recomputing the Floquet bundle, or
the need for interpolation along the Floquet bundle.

Computing a Floquet vector. From the solutions stored in t0 and x0 obtained in subsec-
tion SM1.4.3 we compute the Floquet multipliers µ and Floquet bundle w(t) of Γs such that
w0 = w(0) is the zero-phase Floquet vector at γ0. The following commands encode the con-
tinuation problem; note that the function coco is called to perform continuation once the
continuation problem structure prob is constructed. In the call to coco a 0-dimensional mani-
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fold is requested; rather than performing continuation, a single solution to the boundary value
problem encoded by ode_isol2flqt is found by CoCo’s Newton solver by starting from the
supplied initial condition (t0, x0, and p0).

>> prob = coco_prob();
>> prob = orbit_settings(prob);
>> prob = ode_isol2flqt(prob, 'po', @tube, @tube_DFDX, @tube_DFDP,...

t0, x0, p, p0);
>> FLQT0 = coco(prob, 'floquet0', [], 0);
>> sol0 = flqt_read_solution( 'po', 'floquet0', 1 );

The solution is read using the utility flqt_read_solution, producing a structure sol0 with
fields including the array of time instances tbp corresponding to the array of state variable
values xbp, the array of system parameter values p, the Floquet multiplier mu, and the Floquet
vector w associated with γ0. With this solution, one may begin computation of the zero-phase
isochron I0(Γs) of Γs. However, should the reader wish to compute a foliation of isochrons,
ode_isol2flqt is able to rotate the Floquet vector computed at γ0, along with Γs to obtain
a set of distinct phases.

Rotating the Floquet bundle. The 'flqt' toolbox extends the 'rpp' toolbox to encode a
larger continuation problem structure allowing for the rotation of both a periodic orbit and
its Floquet bundle. The periodic orbit, and its Floquet bundle are separated into the phase
and anchoring segments, per subsection SM1.1; the Floquet bundle is subject to constraints
as presented in [SM6] at x1(θTΓ) = γθ, and periodicity conditions at x1(0) = γ0. With the
solution sol0 from above, the following commands may be used to encode a continuation
problem to rotate the Floquet vector around Γs.

>> theta = 0 : (1 / 20) : 0.99;
>> prob = coco_prob();
>> prob = orbit_settings(prob);
>> prob = ode_isol2flqt(prob, 'po', @tube, @tube_DFDX, @tube_DFDP,...

sol0.tbp, sol0.xbp, p, sol0.p, theta, '−flqt0', {sol0.mu; sol0.w});
>> FLQT = coco(prob, 'floquet', [], 1, {'theta', 'mu', 'wth_1', 'wth_2'},...

{[−1e−4, max(theta) + 1e−4], [], [], []});

First, an array of phases for which Floquet vectors are desired is set in the variable theta; note
that due to periodicity the phase θ = 1 is not included. The following two lines initialize the
continuation problem structure and its settings, and the call to ode_isol2flqt encodes the
Floquet vector rotation problem. After supplying function handles for (10) and its Jacobians,
the time and state variable arrays sol0.tbp and sol0.xbp defining Γs, the array strings p

and values sol0.p for systems parameters, we supply the array of phases theta, and the
stable Floquet multiplier and its Floquet vector in the array {sol.mu; sol.w} following the
option '−flqt0'. Continuation is initiated by the call to coco; here, 1 is input to request
a one-dimensional set of solutions to the continuation problem, the array of strings {'theta

', 'mu', 'wth_1', 'wth_2'} specify the variables allowed to change during continuation,
and {[−1e−4, max(theta)+ 1e−4], [], [], []} sets the computational bounds for each
continuation variable represented by a string in the previous array. The principle continuation
parameter is chosen as 'theta', the phase associated with points γθ ∈ Γ. The subsequent free
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continuation parameters 'mu', 'wth_1', and 'wth_2', represent the Floquet multiplier and
the coordinates of the Floquet vector µ and wθ, respectively. These strings, or replacement
strings representing these variables (type help ode_isol2flqt into MATLAB for details), are
required when rotating a Floquet bundle. The computational bounds on 'theta' should be set
slightly outside of [0, max(theta)] to avoid the initial solution given by t0 and x0 converging
outside of computational bounds. Each solution corresponding to a phase in theta is located
by CoCo’s event location algorithm and marked with the type THETA, as seen in the screen
output below.

STEP TIME ||U|| LABEL TYPE theta mu wth_1 wth_2
0 00:00:00 1.7723e+01 1 EP 0.0000e+00 1.3446e−03 −2.8737e−01 9.5782e−01
1 00:00:00 1.7723e+01 2 THETA 0.0000e+00 1.3446e−03 −2.8737e−01 9.5782e−01
1 00:00:00 1.7724e+01 3 EP −1.0000e−04 1.3446e−03 −2.8667e−01 9.5803e−01

STEP TIME ||U|| LABEL TYPE theta mu wth_1 wth_2
0 00:00:00 1.7723e+01 4 EP 0.0000e+00 1.3446e−03 −2.8737e−01 9.5782e−01
46 00:00:11 1.4566e+01 5 THETA 5.0000e−02 1.3446e−03 −5.7738e−01 8.1647e−01
88 00:00:20 1.4302e+01 6 THETA 1.0000e−01 1.3446e−03 −7.5328e−01 6.5770e−01
132 00:00:28 1.3984e+01 7 THETA 1.5000e−01 1.3446e−03 −8.5442e−01 5.1958e−01
181 00:00:37 1.3695e+01 8 THETA 2.0000e−01 1.3446e−03 −9.1382e−01 4.0611e−01
235 00:00:47 1.3536e+01 9 THETA 2.5000e−01 1.3446e−03 −9.5274e−01 3.0380e−01
297 00:00:57 1.3280e+01 10 THETA 3.0000e−01 1.3446e−03 −9.9504e−01 9.9447e−02
364 00:01:08 1.3028e+01 11 THETA 3.5000e−01 1.3446e−03 −8.7623e−01 −4.8189e−01
417 00:01:18 1.2518e+01 12 THETA 4.0000e−01 1.3446e−03 −4.9938e−01 −8.6638e−01
464 00:01:26 1.2406e+01 13 THETA 4.5000e−01 1.3446e−03 −1.0337e−01 −9.9464e−01
508 00:01:32 1.2485e+01 14 THETA 5.0000e−01 1.3446e−03 2.8737e−01 −9.5782e−01
548 00:01:38 1.2469e+01 15 THETA 5.5000e−01 1.3446e−03 5.7738e−01 −8.1647e−01
585 00:01:44 1.2580e+01 16 THETA 6.0000e−01 1.3446e−03 7.5328e−01 −6.5770e−01
622 00:01:52 1.2822e+01 17 THETA 6.5000e−01 1.3446e−03 8.5442e−01 −5.1958e−01
661 00:01:58 1.2926e+01 18 THETA 7.0000e−01 1.3446e−03 9.1382e−01 −4.0611e−01
706 00:02:05 1.3264e+01 19 THETA 7.5000e−01 1.3446e−03 9.5274e−01 −3.0380e−01
759 00:02:13 1.3325e+01 20 THETA 8.0000e−01 1.3446e−03 9.9504e−01 −9.9447e−02
821 00:02:22 1.3433e+01 21 THETA 8.5000e−01 1.3446e−03 8.7623e−01 4.8189e−01
871 00:02:29 1.3655e+01 22 THETA 9.0000e−01 1.3446e−03 4.9938e−01 8.6638e−01
923 00:02:38 1.4357e+01 23 THETA 9.5000e−01 1.3446e−03 1.0337e−01 9.9464e−01
923 00:02:38 1.4359e+01 24 EP 9.5010e−01 1.3446e−03 1.0255e−01 9.9473e−01

The rotated Floquet vector solutions are read with the utility flqt_read_solution. Each
solution may be stored individually, though when intending to compute a foliation of isochrons
it is best to store them in an array, which is achieved by the following.

>> THTlabs = coco_bd_labs(FLQT, 'THETA');
>> Nphase = numel(THTlabs);
>> sol = cell(Nphase, 1);
>> for phi = 1 : Nphase

sol{phi} = flqt_read_solution('po', 'floquet', THTlabs(phi));
>> end

Here, the first line produces an array of label numbers for each solution with the type THETA,
which is measured to determine the number solutions to be read and isochrons to be computed.
Each solution sol{phi} is a structure with fields including the array of time instances tbp

corresponding to the arrays of state variable values xbp and Floquet bundle wbp, the array
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of system parameter values p, the phase theta of the solution relative to γ0, the Floquet
multiplier mu, and the Floquet vector w associated with γθ.

SM1.4.5. ISCRN: Computing an isochron of Γs. The 'iscrn' toolbox is designed to
faciliate the computation of isochrons of planar systems as smooth one-dimensional manifolds
by the application of the boundary value problem set up described in subsection SM1.1. As
a guide for the use of the toolbox, we now explain the use of the constructors of the 'iscrn

'. While the guide in this section may simply be repeated to compute an isochron foliation,
the script isochron_foliation.m is the folder iscrn/help provides an example of how to
implement the computation of many isochrons of the respective foliation.

Computing the fundamental domain. We begin with the computation of the fundamental
arc I0

0 (Γs) of I0(Γs) in region D, and hence the computation of the fundamental domain s0
of I0(Γs). We use the solution structure sol0 returned from flqt_read_solution in subsec-
tion SM1.4.4 to set up the continuation problem below, starting by setting δmax, the maximal
distance from the periodic orbit, that bounds deltamax. The choice of this value governs the
accuracy of the approximation of I0(Γs); while it should be chosen sufficiently small, we note
that excessively small values of δmax lead to computational issues.

>> deltamax = 5e−4;
>> prob = coco_prob();
>> prob = iscrn_settings(prob);
>> prob = coco_set(prob, 'cont', 'ItMX', [0, 100]);

The function iscrn_settings is supplied in subsection SM1.4.1, and we note here that the
choice of 'NTST' should be made carefully considering the guidance given there. After invoking
iscrn_settings, the following line instructs CoCo to perform continuation only in the forward
direction with respect to the primary continuation parameter. This setting prevents CoCo from
moving the end point x(TΓ

s) backwards along w0, per default settings.
The fundamental arc of Iθ(Γ

s) is computed via the following commands.

>> prob = ode_isol2iscrn(prob, 'T0', @tube, @tube_DFDX, @tube_DFDP,...
sol0.tbp, sol0.xbp, p, sol0.p, sol0.w, [],...
'−fund', {deltamax; sol0.mu}, '−arc', {0, 20});

>> ISO{1} = coco(prob, 'Gs/arc00+', [], 1,...
{'tau', 'delta', 'x0_1', 'x0_2', 'l'},...
{[], [−1, 1], [], [], []});

The string 'T0' is the identifier allocated to the trajectory segement x(t), and will be used later
to read data from saved files. The solution structure sol0 from subsection SM1.4.4 contains
a numerical approximation of Γs, which is used as the initial solution for the BVP, as well as
a copy of the system parameters sol0.p. Additionally, sol0 contains the fields mu and w for
the Floquet multiplier µ and vector w0, respectively. These are passed to ode_isol2iscrn as
above; to compute the other branch of Iθ(Γ

s) (on the other side of Γs) sol.w is multiplied by
−1. The empty array [] following this is a dummy variable that is ignored when the option
'−fund' is invoked to compute the fundamental domain. This option is followed by the cell
array {deltamax; sol0.mu} that supplies our choice of δmax and the stable Floquet multiplier
of Γs. The option '−arc' instructs CoCo to measure the arclength along the numerical
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approximation of I0(Γs) during continuation; it must be followed by a cell array that contains
the bounds, in terms of arclength, at which the computation should stop when met. While we
do not expect a large arclength to be covered by the fundamental arc of I0(Γs), this option
should be used nonetheless if one intends to measure the arclength along subsequent arcs of
I0(Γs).

The first argument of the call to coco, the string 'Gs/arc00+', names the directory in
which output files are stored. We advise using the format

'<isochron name><isochron number>/<arc name><arc number><side>',

where 'side' is either the string '−' or '+', to construct this name such that the output files
for each arc are sorted into directories of their respective isochron, and also not overwritten.
The post-processing functions provided in subsection SM1.6 to read these files assume this
format. The cell array of continuation parameters {'tau', 'delta', 'x0_1', 'x0_2', '

l'} must be included, although the final string may be omitted if the option '−arc' is
not being used. The following cell array of bounds for the continuation parameters {[],

[−1, 1], [], [], []} is also required, even though we are only concerned with setting
the computational bounds of delta when computing the fundamental arc of Iθ(Γ

s). The
constructor ode_isol2iscrn rescales both continuation variables tau and delta by

√
µ δmax

and δmax, respectively. As a result, we set the computational bounds on delta to ±1 instead
of ±δmax. The rescaling of tau attempts to improve computational stability by predicting the
value of tau at which delta = δmax. True values for tau and delta can be computed by
multiplying each by

√
µ δmax and δmax, respectively.

We advise to check CoCo’s screen output, making sure that the continuation has terminated
with both a positive value of tau and delta = ±1, as below.
STEP TIME ||U|| LABEL TYPE tau delta x0_1 x0_2 l

0 00:00:00 1.3782e+01 1 EP 0.0000e+00 0.0000e+00 4.7211e−01 −4.0244e−01 0.0000e+00
38 00:00:02 1.4112e+01 2 EP 9.7594e−01 −1.0000e+00 4.6565e−01 −3.8264e−01 2.0825e−02

Should the terminal value of tau be negative, then the computed fundamental domain s0
belongs to the other branch of I0(Γs). The preceding commands should then be repeated,
except that prob = coco_set(prob, 'cont', 'ItMX', [100, 0]) should replace the appro-
priate line in order to initiate backward continuation with respect to tau. If instead the
terminal value for delta has absolute value less than one, the above commands should also be
repeated with a higher value given for the non-zero number following 'ItMX'.

In addition to being saved to file, the above output is assigned to the variable ISO{1}, and
any continuation parameter may be extracted from ISO{1} using standard the CoCo function
coco_bd_col as below, where the final argument passed to this function is a string or cell
array of strings of names of the continuation parameters that one wishes to extract; the names
of these columns can be quickly queried via ISO{1}{1,:}, but this is beyond what this guide
aims to explain.

>> tau = coco_bd_col(ISO{1}, 'tau');
>> delta = coco_bd_col(ISO{1}, 'delta');
>> x0 = coco_bd_col(ISO{1}, {'x0_1', 'x0_2'});
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The change in the scaled orthogonal deviation delta from the linear approximation of Iθ(Γ
s),

while the scaled distance along that linear approximation tau is varied, is viewed with the
following commands.
>> plot(tau, delta)
>> xlabel('tau')
>> ylabel('delta')

The short arc of Iθ(Γ
s) computed while locating the fundamental domain is thus viewed by

the following commands.
>> plot(x0(1,:), x0(2,:))
>> xlabel('x')
>> ylabel('y')

Alternatively, one may use the provided reader iscrn_read_arc instead of coco_bd_col to
extract this data; this function is covered in subsection SM1.6.

Computing subsequent arcs of the isochron. Computing the further arcs of I0(Γs) is best
achieved via the constructor ode_iscrn2iscrn. This constructor passes the tangent vector
to the continuation problem to ensure smoothness along the boundaries of adjacent isochron
arcs. In this section we show the computation of the first and second arcs I1

0 (Γs) and I2
0 (Γs)

of the isochron, using the results of the computation of the fundamental arc I0
0 (Γs). These

instructions may be altered to compute further arcs of I0(Γs).
We first choose a reasonable number of mesh points ntst for the trajectory segement x(t)

that implement the map defining the isochron. As iscrn_settings turns the 'NAdapt' option
on the reader is advised to carefully set the 'NTST' and 'NTSTMX' settings as below. Specifically,
'NTST' should be set to match the actual number of mesh points used in the solution to start
the continuation, and 'NTSTMX' should be set as the desired maximum number of mesh points
for x(t) as k · ntst. Below we choose ntst as 50, which is relatively high for the observed
geometric complexity of this isochron. The second line extracts the true number of mesh
points used in the final solution of the previous continuation run, stored in the 'T0.iscrn.

NTST' column of ISO{1} at label number 2, using the post-processor function coco_bd_val.
This string is constructed as '<object identifier>.<toolbox>.NTST', referring to the object
identifier that we set in the call to ode_isol2iscrn in the paragraph on the fundametal domain
in subsection SM1.4.5.
>> ntst = 50;
>> s_NTST = coco_bd_val(ISO{1}, 2, 'T0.iscrn.NTST');
>> prob = coco_prob();
>> prob = iscrn_settings(prob);
>> prob = coco_set(prob, 'coll', 'NTST', s_NTST, 'NTSTMX', ntst);
>> prob = ode_iscrn2iscrn(prob, 'T1', 'Gs/arc00+', 'T0', 2, 'Gs/arc00+', 'T0', 2);
>> ISO{2} = coco(prob, 'Gs/arc01+', [], 1, {'tau', 'x0_1', 'x0_2', 'l'},...

{[−0.1, 1], [−1,1], [−1,1], []});

The next two lines initialize the continuation problem and its settings, and the following line
sets the number of mesh points as described above. Specifically, for the first arc of I0(Γs) we
move the end point x(TΓ

s) over the fundamental domain s0. Since we use the time-TΓ
s map

to compute I0(Γs) we do increase the number of mesh points of the continuation problem.
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The call to ode_iscrn2iscrn takes the continuation problem prob, followed by the object
identifier T1 that identifies this construction. The following three inputs refer to the solution
from which to start the computation of the isochron, in this case the terminal solution of
the fundamental arc. Specifically, the directory storing the solution 'Gs/arc00+', the object
identifier for the solution 'T0', and the label number of that solution 2. The final three input
arguments refer again to the terminal solution of the fundamental arc, but now to identify
the solution s(t) that defines the fundamental domain s0. While these arguments are indeed
not necessary to construct the continuation problem for the first arc, all subsequent arcs of
I0(Γs) append s(t) to the end of the terminal solution of the previous isochron arc in order
to construct their starting solution. The function coco initiates the continuation, and stores
the output in ISO{2}, saving files to 'Gs/arc01+'. The arguments to this function are as is
subsection SM1.4.5, except for the exclusion of delta and its corresponding bounds, as well as
the addition of computational boundaries to tau. Again tau is scaled such that its continuation
should terminate when tau = 1 and x(TΓ

s) reaches the end of s0, while the left boundary is
set past 0 to avoid the initial solution not converging. Computational bounds on the arclength
l of I0(Γs) are read from the previous solution, and automatically passed to the constructor.

Constructing the second arc I2
0 (Γs) of the isochron is achieved via commands very similar

to those above, except that the number of mesh points should be increased. The first line
below shows the command required to extract the number of mesh points in the terminal
solution stored in ISO{2}. Note that we reference the object identifier 'T1' as set above to
name the trajectory segment that solves the BVP defining I1

0 (Γs). The continuation problem
is then initialized, and has its settings set, followed by the careful setting of the number of
mesh points to be used in computing the second arc of I0(Γs). We set the true number of mesh
points 'NTST' as k_NTST + s_NTST, the number of mesh points of the terminal solution in the
previous arc added to the number of mesh points in the terminal solution of the fundamenal
arc, respectively. Given that we now use the time-2TΓ

s map to compute I0(Γs), we increase
the maximum number of mesh points to 2 · ntst.
>> k_NTST = coco_bd_val(ISO{2}, 2, 'T1.iscrn.NTST');
>> prob = coco_prob();
>> prob = iscrn_settings(prob);
>> prob = coco_set(prob, 'coll', 'NTST', k_NTST + s_NTST, 'NTSTMX', 2 * ntst);
>> prob = ode_iscrn2iscrn(prob, 'T2', 'Gs/arc01+', 'T1', 2,...

'Gs/arc00+', 'T0', 2);
>> ISO{3} = coco(prob, 'Gs/arc02+', [], 1, {'tau', 'x0_1', 'x0_2', 'l'},...

{[−0.1, 1], [−1,1], [−1,1], []});

In the call to ode_iscrn2iscrn we pass the continuation problem structure prob, and supply
the object identifier 'T2' of the trajectory segment that represents the new map for I2

0 (Γs).
The following three arguments refer to the terminal solution of the previous arc, which will be
concatenated with the terminal solution of the fundamental arc, as identified by the next three
arguments, to construct the initial solution for the continuation problem to compute I2

0 (Γs).
The following call to coco initiates continuation, storing output in ISO{3} and in files in the
directory 'Gs/arc00+'. Its other arguments remain as explained above.

Subsequent arcs of I0(Γs) may be computed by repeating the commands above, but chang-
ing arguments so that the terminal solution of the second arc of the isochron is used and the
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data is stored in the appropriate directory. Care should be taken to update the number of
mesh points as specified. The other branch ofI0(Γs) is likewise computed by following the
instructions in this section after changing the sign of the Floquet vector when computing the
fundamental domain, as discussed in subsection SM1.4.5. A foliation of isochrons is computed
by following these instruction for each solution returned by ode_isol2flqt as described in
subsection SM1.4.4. Alternatively, the script isochron_foliaiton.m located in the folder
iscrn/examples may be used to automate that process.

To visualize the results of these computations, follow the directions at the end of the
paragraph on the fundametal domain in subsection SM1.4.5, or see subsection SM1.6.

SM1.5. Computing isochrons of a repelling focus equilibrium. Isochrons may be defined
and computed for focus-type equilibria such as the repellor q+ in region D; the required code
discussed in this sections is in the file ep_backward_demo.m in iscrn/toolbox/examples/tube.
The approach of continuing the solution to a BVP defining the time-Tq+ map is identical to
that for periodic orbits and the only difference lies in computating the linear approximation of
such isochrons. We now guide the reader through the computation of the first three arcs of the
zero-phase backward-time U0(q+), which, notably, also is an example of using the '−u' option
of the 'iscrn' toolboxes when computing backward-time isochrons. Given the similarity in
procedure and steps with those in subsection SM1.4, we keep this section quite brief.

SM1.5.1. Computing the linear approximation of an isochron of the focus. The func-
tion ep_bundle is used when computing a set of linear approximations of isochrons of a focus
equilirbium q for phases θ stored in an array theta. This function constructs the ellipse that
represents a blow-up about q [SM8], and returns the linear approximation in a structure that
mimics that returned by flqt_read_solution. The commands below return a cell-array of
structures sol given an array of phases theta.

>> theta = 0 : (1 / 20) : 0.99;
>> Nphase = numel(THTlabs);
>> sol = cell(Nphase, 1);
>> for phi = 1 : Nphase
>> sol{phi} = ep_bundle(@tube_DFDX, x0, p0, 5e−4, theta(phi));
>> end

Each call to ep_bundle requires the handle to the Jacobian with respect to the state variables
of the system, the equilibrium x0, the array of parameter values p0, a scaling variable for the
magnitude of the ellipse, and a phase theta(phi) for which the linear approximation of the
isochron is requested.

SM1.5.2. Computing an isochron. The initial solution requires a trajectory segement,
in this case the steady-state solution, and the linear approximation of the isochron as above.
The real part of the equilibrium’s eigenvalues are used in place of the Floquet multiplier for
determining a scale on the linear approximation of the isochron, while Tq+ is given by the
complex part of the focus’ eigenvalues. While the subsequent computations follow those in
subsection SM1.4.5, we go over them here briefly as well to demonstrate the use of the '−u'
option used when computing backwards-time isochrons.
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Computing the fundamental domain. For the computation of the fundamental arc U0
0 (q+) of

U0(q+) in regionD, and hence the computation of the fundamental domain s0 of U0(q+), we set
deltamax as in subsection SM1.4.5, and invoke iscrn_settings. The next line instructs CoCo
to perform continuation only in the forward direction with respect to the primary continuation
parameter.

>> deltamax = 5e−4;
>> prob = coco_prob();
>> prob = iscrn_settings(prob);
>> prob = coco_set(prob, 'cont', 'ItMX', [0, 100]);

The fundamental arc of U0(q+) is computed via the following commands, where the argu-
ments for ode_isol2iscrn are as described in subsection SM1.4.5 and the final option '−u'
instructs the constructor to reverse time of the vector field and its Jacobians; in other words,
a backward-time isochron is computed as a forward-time isochron of the time-reversed system.

>> prob = ode_isol2iscrn(prob, 'T0', @tube, @tube_DFDX, @tube_DFDP,...
sol.tbp, sol.xbp, p, sol.p, sol.w, [],...
'−fund', {deltamax; sol.mu}, '−arc', {0, 20}, '−u');

>> ISO{1} = coco(prob, 'ep/arc00+', [], 1,...
{'tau', 'delta', 'x0_1', 'x0_2', 'l'},...
{[], [−1, 1], [], [], []});

Likewise, the arguments given to coco are as in subsection SM1.4.5, except that output files
are instead instructed to be saved to 'ep/arc00+'. Also, here the value of tau is rescaled
as
√
α δmax. Again, we advise the user to check CoCo’s screen output to make sure that the

continuation has terminated with positive values of tau and delta = ±1, as below.

STEP TIME ||U|| LABEL TYPE tau delta x0_1 x0_2 l
0 00:00:00 1.1565e+01 1 EP 0.0000e+00 2.2710e−02 3.2526e−01 −2.4137e−01 5.2456e−05
55 00:00:04 1.0413e+01 2 EP 1.5742e+00 1.0000e+00 3.4932e−01 −2.6616e−01 3.4608e−02

Should the terminal value of tau be negative, then the computed fundamental domain s0 is
that of U0.5(q+). The preceding commands should then be repeated, except that prob =

coco_set(prob, 'cont', 'ItMX', [100, 0]) should replace the appropriate line in order to
initiate backward continuation with respect to tau. If instead the terminal value for delta

has absolute value less than one, the above commands should also be repeated with a higher
value for the non-zero number following 'ItMX'.

Computing further arcs of U0(q+). Computing the further arcs of U0(q+) is achieved via
the constructor ode_iscrn2iscrn, which passes the tangent vector to the continuation prob-
lem to ensure smoothness across adjacent isochron arcs. This constructor also passes the
option'−u', and hence this option is not required for further arcs of U0(q+). Instructions for
the computation of a the foliation U(q+) of backward-time isochrons of q+ are identical to
those for the computation of I(Γs) given in subsection SM1.4.5. Note from the comments in
iscrn_settings.m that the absolute tolerance and number of mesh points required to com-
pute U0.4(q+) are reduced and increased, respectively, to ensure that CoCo’s Newton solver
converges; see also subsection SM1.4.1. A visualization of a computed foliation can be found
in subsection SM1.6.3.
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SM1.6. Extracting isochron data. We provide post-processing functions to read solutions
from an isochron continuation, as well as a set of functions that process the isochron from the
files stored in the data directory to which CoCo saves output files, or a different directory in
the MATLAB path. Each of these functions assumes that such files are named in the format:

'<isochron name><isochron number>/<arc name><arc number><side>'

This is indeed the case when following the instructions in this guide. Eeven when moving
isochron files out of the data directory, as long as they have the above format and are in the
MATLAB path, the post-processing functions discussed in this section will extract the data
as desired.

SM1.6.1. Extracting trajectory segements. The trajectory segement that solves the
time-kT map associated with the isochron computation for a given label is read from file
by the post-processor iscrn_read_solution. The following commands read the terminal so-
lution of the fundamental arc on the isochron 'Gs/arc00+', computed per instructions in
subsection SM1.4.5 and hence identified by 'T0' with terminal solution label 2.

>> sol = iscrn_read_solution('T0', 'Gs/arc00+', 2);

The resulting solution structure sol has a number of useful fields, including the representation
of x(t) in the fields tbp and xbp, the state parameter values in the field p, the normalized
fundamental domain and its original length in the fields s and tau_max, and the true number
of mesh points used for this solution in NTST. Other fields are included in this structure, and
they are explained in the help section of iscrn_read_solution.

SM1.6.2. Extracting isochrons. The post-processing function iscrn_read_isochron ex-
tracts the one-dimensional curve representing the isochron as the union of the computed
isochron arcs. In the example below we extract one branch of the zero-phase isochron of
I(Γs) as computed following the instructions in subsection SM1.4.5. The isochron name for-
mat 'Gs/arc%02d+' is passed as the first argument, followed by the object identifier format
'T\%d'. These strings are formatted as described in [SM11]. The final argument is a cell array
of names of continuation variables that the reader wishes to extract. In this case, the coodi-
nates of the isochron. The option '−trunc' indicates that either the 'initial' or 'final'
points of each arc of the isochron should be truncated during concatenation, since the first
and last points on successive arcs of an isochrons are near identical.

>> iscrn = iscrn_read_isochron('Gs/arc%02d+', 'T%d', {'x0_1', 'x0_2'},...
'−trunc', 'initial');

The structure iscrn has a number of fields, of which iscrn is of primary interest. The
requested variables in the cell array can be accessed in iscrn.iscrn, which is returned as a
matrix with columns assigned to each variable requested. If the option '−arc' is used during
computation, the field l contains the computed arclength for each point along the isochron.
Additional fields include the periodic orbit via tpo and xpo, the trajectory segments defining
the fundamental domain tbp_s and xbp_s, state parameters in p, the stable Floquet multiplier
and its Floquet vector in mu and w, respectively, and the normalized fundamental domain and
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Figure SM1. Left: The branch of the zero-phase isochron I0(Γ
s
) (blue) in region D inside of Γ

s (black) as
computed in subsection SM1.4.5. Right: Arclength along I0(Γ

s
) in region D against its x-coordinate; compare

with subsection 3.5.

its original norm in s and taumax, respectively, along with various other fields as documented
in the help section of iscrn_read_isochron.

Visualisation of this branch of I0(Γs), along with Γs is achieved by the following commands,
together with a separate plot of the arclength of I0(Γs) against its x-coordinate.

>> figure(1)
>> plot(iscrn.iscrn(:,1), iscrn.iscrn(:,2), 'b')
>> hold on
>> plot(iscrn.xpo(:,1), iscrn.xpo(:,2), 'k')
>> xlabel('x')
>> ylabel('y', 'rotation', 0)
>> figure(2)
>> plot(iscrn.iscrn(:,1), iscrn.l, 'b')
>> xlabel('x')
>> ylabel('l', 'rotation', 0)

The resulting plots are shown in Figure SM1.

Extracting arcs of isochrons. Particularly when troubleshooting an isochron computation, it
may be useful to extract only the data of a single arc with iscrn_read_arc. The example below
extracts the fundamental arc of the zero-phase isochron of I(Γs) as computed by following the
instructions in subsection SM1.4.5. The isochron name 'Gs/arc00+' is passed as the first
argument, followed by the object identifier 'T0', then a cell array of names of continuation
variables that the reader wishes to extract, in this case, the coodinates of the isochron.

>> arc = iscrn_read_arc('Gs/arc00+', 'T0', {'x0_1', 'x0_2'});

The structure arc contains similar fields as those of iscrn from subsection SM1.6.2; informa-
tion on further fields is contained in the help section of iscrn_read_arc.
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Figure SM2. Two foliations of isochrons computed using the supplied script isochron_foliation.m. Left:
Twenty forward-time isochrons (cyan–blue) of the foliation I(Γ

s
) of Γ

s (black) in region D, equally spaced in
phase and colored according to the color bar. Right: Ten backward-time isochrons (yellow–red) of the folia-
tion U(q+) of q+ in region D, equally spaced in phase and colored according to the color bar. Compare with
subsection 3.5.

SM1.6.3. Extracting an entire isochron foliation. Extracting the data of a foliation of
isochrons is achieved with iscrn_read_foliation. The function takes very similar arguments
to iscrn_read_isochron, except that the isochron name must be formatted as in the exam-
ple below. The following commands extract both sides of the foliation I(Γs) that is stored
somewhere in MATLAB’s search path, in a directory with the name format described in sub-
section SM1.6. Specifically, the computed isochrons of the foliation I(Γs) are read from the
po directory, with sub-directories iscrn%02d, arc%01d+ and arc%01d- storing the isochrons
Iθ(Γ

s), and their arcs Ikθ (Γs) for both sides, respectively.
>> GsP = iscrn_read_foliation('po/iscrn%02d/arc%01d+', 'T%d', {'x0_1', 'x0_2'},...

'−trunc', 'initial');
>> GsM = iscrn_read_foliation('po/iscrn%02d/arc%01d+−', 'T%d', {'x0_1', 'x0_2'},...

'−trunc', 'initial');

The output assigned to GsP and GsM are arrays of structures with fields similar to those of the
structure iscrn from subsection SM1.6.2. Further details on the fields of these structures can
be found in the help section of iscrn_read_foliation.

A foliation of forward-time isochrons is visualized by the following commands; note that
each structure contained in the array GsP is accessed here with curved brackets rather than
braces.
>> figure(1)
>> plot(GsP(1).xpo(:,1), GsP(1).xpo(:,2), 'k')
>> hold on
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>> for i = 1:length(fol)
>> plot(GsP(i).iscrn(:,1), GsP(i).iscrn(:,2),...

'Color', iscrn_map_forward((i − 1) / length(GsP)))
>> end
>> xlabel('x')
>> ylabel('y', 'rotation', 0)
>> cmpf = iscrn_map_forward(0:1/100:0.99);
>> colormap(cmpf)
>> colorbar('Location', 'SouthOutside')

Each isochron is colored accordingly to its phase by the function iscrn_map_forward, which
returns an rgb-value from the color-map used throughout this paper when supplied with a
phase. A color map is easily constructed by passing a linear array of phases between 0 and
1 to the function, as in the third to last line above. MATLAB returns the left-hand plot in
Figure SM2; compare with Figures 3 and 12.

The commands required to extract the foliation U(q+) stored with the name format '

ep/iscrn%02d/arc%01d+' are similar to those for periodic orbits, although the isochrons of
equilibria have only one side.

>> qPP = iscrn_read_foliation('ep/iscrn%02d/arc%01d+', 'T%d', {'x0_1', 'x0_2'},...
'−trunc', 'initial');

The output assigns to qPP an array of structures with the same fields as GsP above. This
foliation of backward-time isochrons is visualized by the following commands.

>> figure(2)
>> plot(qPP(1).xpo(:,1), qPP(1).xpo(:,2), 'k')
>> hold on
>> for i = 1:length(qPP)
>> plot(qPP(i).iscrn(:,1), qPP(i).iscrn(:,2),...

'Color', iscrn_map_backward((i − 1) / length(qPP)))
>> end
>> xlabel('x')
>> ylabel('y', 'rotation', 0)
>> cmpb = iscrn_map_backward(0:1/100:0.99);
>> colormap(cmpb)
>> colorbar('Location', 'SouthOutside')

Again, each isochron is colored according to its phase, with rgb-values for backward-time
phase returned by iscrn_map_backward. The resulting output is shown as the right-hand plot
of Figure SM2; compare with Figures 3 and 12.
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Figure SM3. Compactified phase portraits of (10) in regions A, B, and F . The unit circle S1 repre-
sents the direction of escape to infinity and consists two repellors q

∞
( ), two saddles p

∞
± ( ) and their stable

manifolds W
s
(p

∞
±) (blue curves). Also shown are the unstable manifolds W

u
(p

∞
±) (orange curves) and the re-

spective finite invariant sets q± ( ) and 0 ( ), with manifolds W
s
(0) (light-blue curve), Wu

(0) (orange curve)
and W

uu
(0) (orange curve), and the periodic orbit Γ

s (blue curve); compare with Figure 2.

SM2. Dynamics at infinity. The phase portraits near infinity can be studied by compact-
ifying phase space. This is achieved via Poincaré compactification [SM4, SM9], which maps R2

diffeomorphically to the open unit disc D2 such that its boundary S1 represents the direction
of approach or departure from infinity; see also [SM5] for more details and explicit formulas.
This coordinate change preserves the geometry of invariant objects and results in a continuous
vector field defined on a (bounded) closed unit disc D2 ∪ S1. Phase portraits in the compacti-
fication are equivalent to those in the original system, but with a non-linear rescaling of time;
here, points of S1 correspond to direction of escape to infinity of the original system, which
are determined by the higher-order terms.

Figure SM3 shows compactified phase portraits in regions A, B, and F . The invariant
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objects on the unit circle S1 representing infinity are unaffected by the linear terms of (10).
Since the bifurcation parameter a only appears in the linear terms of (10), the dynamics on S1

remain unchanged throughout regions A–F . On S1 there are two nodal repellors q∞
± (0,±1)

and two saddles p∞
± at (±1, 0); their stable invariant manifolds Ws(p∞

±) accumulate onto q∞
±

and trace out S1. The presence of the equilibria q∞
± and p∞

± on S1 mean that trajectories of (10)
do not spiral towards infinity, but escape to infinity (in forward or backward time) along the
directions represented by the points q∞

± and p∞
±. Hence, the only isochron foliations that we

need to concern ourselves with are those of finite invariant objects.
The compactified phase portrait of region A in Figure SM3 shows that the two branches of

Ws(0) accumulate in backward time to the repelling equilibria q∞
− and q∞

+, respectively. This
shows that the curveWs(0), which forms the finite part of ∂A(q±), winds around the equilibria
0 and q± only finitely many times. As a result, the (shaded) basin A(q−) encompasses most of
the right-hand side of the image; in particular, the semicircle Ws(p∞

+) is also in the boundary
∂A(q−), and the equivalent statement is true for A(q−). Hence, the isochron foliations I(q±)
must accumulate onto both finite and non-finite invariant objects. Notice further that each
basin A(q±) contains the unstable manifold Wu(p∞

∓) which, hence, converges in forward time
to q±.

In the compactified phase portrait of region B in Figure SM3 the pair of periodic orbits
Γs and Γu now surround 0 and q±. Hence, Ws(0) accumulates onto Γu in backward time
and is no longer able to reach the points q∞

±, so that we now have a pair of winding basins
of attraction A(q±) inside of Γu. Similarly, the unstable manifolds Wu(p∞

±) accumulate onto
Γs and no longer reach the attractors q∓. Note that the basin A(Γs) outside Γs is bounded
by the circle S1, that is, by the closure Ws(p∞

−) ∪Ws(p∞
+). The situation outside the stable

periodic orbit Γs remains unchanged in the transitions through regions regions C to F , as
is illustrated in Figure SM3 with the compactified phase portrait of region F . Hence, any
qualitative changes of isochron geometry from region B onwards occur strictly inside Γs.

SM3. Table of isochron properties across the transition. We summarize the transitions
from regions A–F in a compact way in Table SM1 (continued over three pages) in terms of
the properties of the invariant objects and the isochron foliations in the different basins. This
information is very dense and will be very hard to digest on a stand-alone basis; rather this
summary is provided as a look-up table that the reader may wish to consult in conjunction
with the detailed explanations in section 3. Table SM1 is organized into subtables for each
region, separated by subtables for each of the transitions between them. Each subtable for a
region presents all equilibria and periodic orbits, the invariant manifolds of saddle equilibria,
the basins of attractors/repellors and their boundaries, and the properties of the relevant
isochron foliations; we then list the intersections of basins of attraction and repulsion in which
isochron foliations coexist, and denote whether the forward-time and backward-time isochron
foliations are transverse or have quadratic tangencies. Each subtable for a transition indicates
the bifurcation in terms of the invariant objects that characterize it, and then details the
associated changes to invariant objects, basins and isochron foliations.
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Table SM1
Summary of the phase portraits for regions A–F and the transitions between them. The subtables for each
region present the respective label (first column), the invariant objects (second column), and their invariant
manifolds for saddles and basins of attraction/repulsion, their boundaries and any isochron foliations (third
column); we also indicate whether basins are unbounded or winding and list separately the intersection sets with
interacting isochron foliations, where −t denotes transverse and 6−t tangent foliations. The subtables for each
transitions between regions show the transition and bifurcating objects (first column) and then list the respective
changes to the relevant invariant objects and foliations.

A 0 Ws(0), Wu(0)

p∞
± Ws(p∞

±), Wu(p∞
±)

q∞
± R(q∞

±) (unbounded)
∂R(q∞

±) = q− ∪ q+ ∪W
u(0) ∪Wu

±(p∞
−) ∪Wu

±(p∞
+)

q± I(q±) ⊂ A(q±)A(q±) (unbounded)
∂A(q±)A(q±) = Ws(0) ∪Ws(p∞

∓) = Ws(0) ∪ q∞
− ∪ q

∞
+ ∪W

s(p∞
∓)

A(q−)A(q−) ∩R(q∞
±) I(q−)

A(q+)A(q+) ∩R(q∞
±) I(q+)

A↔ B ∅ ↔ Γs ∅ ↔ I(Γs)

SNL ∅ ↔ Γu ∅ ↔ U(Γu) lim
t→−∞

Ws(0) : q∞
± ↔ Γu

Γs = Γu A(q±)A(q±) : unbounded↔ winding basins
∂A(q±)A(q±) : Ws(0) ∪Ws(p∞

∓)↔Ws(0)

B 0 Ws(0), Wu(0)

q± I(q±) ⊂ A(q±)A(q±) (winding basins)
∂A(q±)A(q±) = Ws(0) = Ws(0) ∪ Γu

Γu U(Γu) ⊂ R(Γu)

∂R(Γu) = Wu(0) ∪· Γs = q− ∪ q+ ∪W
u(0) ∪· Γs

Γs I(Γs) ⊂ A(Γs)A(Γs)

∂A(Γs)A(Γs) = Γu ∪· ∞ = Γu ∪· q∞
− ∪ q

∞
+ ∪W

s(p∞
−) ∪Ws(p∞

+)

A(q±)A(q±) ∩R(Γu) I(q±) 6−t U(Γu)

A(Γs)A(Γs) ∩R(Γu) I(Γs)−t U(Γu)

B ↔ C Γu ↔ ∅ U(Γu)↔ ∅ lim
t→∞

Wu(0) : q± ↔ Γs

HOM ∅ ↔ Γu± ∅ ↔ U(Γu±) lim
t→−∞

Ws(0) : Γu ↔ Γu±

Ws(0) = Wu(0) A(q±)A(q±) : winding basins↔ disks
∂A(q±)A(q±) : Ws(0)↔ Γu±
∂A(Γs)A(Γs) : Γu ∪· ∞ ↔Ws(0) ∪· ∞
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Table SM1
continued.

C 0 Ws(0), Wu(0)

q± I(q±) ⊂ A(q±)A(q±)

∂A(q±)A(q±) = Γu±
Γu± U(Γu±) ⊂ R(Γu±) (winding basins)

∂R(Γu±) = q± ∪· W
u(0) = q± ∪· W

u(0) ∪ Γs

Γs I(Γs) ⊂ A(Γs)A(Γs)

∂A(Γs)A(Γs) = Ws(0) ∪· ∞ = Ws(0) ∪ Γu− ∪ Γu+ ∪· ∞

A(q±)A(q±) ∩R(Γu±) I(q±)−t U(Γu±)

A(Γs)A(Γs) ∩R(Γu±) I(Γs) 6−t U(Γu±)

C ↔D Γu± ↔ ∅ U(Γu±)↔ ∅ lim
t→−∞

Ws(0) : Γu± ↔ q±

H A(q±)A(q±)↔ ∅ I(q±)↔ ∅ q± : attractor↔ repellor
hyperbolic q± R(q±)↔ ∅ ∅ ↔ U(q±)

D 0 Ws(0), Wu(0)

q± U(q±) ⊂ R(q±) (winding basins)
∂R(q±) =Wu(0)= Wu(0) ∪ Γs

Γs I(Γs) ⊂ A(Γs)A(Γs)

∂A(Γs)A(Γs) = Ws(0) ∪· ∞ = q− ∪ q+ ∪W
s(0) ∪· ∞

A(Γs)A(Γs) ∩R(q±) I(Γs) 6−t U(q±)

D ↔ E I(q±)↔ ∅ q± : focus↔ node
CC

q± : repeated eigenvalue and eigenvector

E 0 Ws(0), Wu(0)

q± R(q±) (winding basins)
∂R(q±) =Wu(0)= Wu(0) ∪ Γs

Γs I(Γs) ⊂ A(Γs)A(Γs)

∂A(Γs)A(Γs) = Ws(0) ∪· ∞ = q− ∪ q+ ∪W
s(0) ∪· ∞

A(Γs)A(Γs) ∩R(q±) I(Γs)
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Table SM1
continued.

E ↔ F q± ↔ ∅ R(q±)↔ ∅ 0 : saddle↔ repellor
PF ∅ ↔ R(0) Wu(0)↔Wuu(0)

0 = q±

F 0
R(0), Wuu(0)

∂R(0) = Γs

Γs I(Γs) ⊂ A(Γs)A(Γs)

∂A(Γs)A(Γs) = 0 ∪· ∞

A(Γs)A(Γs) ∩R(0) I(Γs)
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