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Abstract

Classical studies of chaos in the well-known Lorenz system are based on reduction to the
one-dimensional Lorenz map, which captures the full behavior of the dynamics of the chaotic
Lorenz attractor. This reduction requires that the stable and unstable foliations on a particular
Poincaré section are transverse locally near the chaotic Lorenz attractor. We study when this
so-called foliation condition fails for the first time and the classic Lorenz attractor becomes
a quasi-attractor. This transition is characterized by the creation of tangencies between the
stable and unstable foliations and the appearance of hooked horseshoes in the Poincaré return
map. We consider how the three-dimensional phase space is organized by the global invariant
manifolds of saddle equilibria and saddle periodic orbits — before and after the loss of the
foliation condition. We compute these global objects as families of orbit segments, which are
found by setting up a suitable two-point boundary value problem (BVP). We then formulate a
multi-segment BVP to find the first tangency between the stable foliation and the intersection
curves in the Poincaré section of the two-dimensional unstable manifold of a periodic orbit.
It is a distinct advantage of our BVP set-up that we are able to detect and readily continue
the locus of first foliation tangency in any plane of two parameters as part of the overall
bifurcation diagram. Our computations show that the region of existence of the classic Lorenz
attractor is bounded in each parameter plane. It forms a slanted (unbounded) cone in the
three-parameter space with a curve of terminal-point or T-point bifurcations on the locus of
first foliation tangency; we identify the tip of this cone as a codimension-three T-point-Hopf
bifurcation point, where the curve of T-point bifurcations meets a surface of Hopf bifurcation.
Moreover, we are able to find other first foliation tangencies for larger values of the parameters
that are associated with additional T-point bifurcations: each tangency adds an extra twist to
the central region of the quasi-attractor.
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1 Introduction

The Lorenz system [44] is regarded as a paradigm example of a chaotic dynamical system. It consists
of the three coupled ordinary differential equations





ẋ = σ (y − x),
ẏ = ρ x− y − x z,
ż = x y − β z,

(1)

with three positive dimensionless parameters: the Rayleigh number ρ, the Prandtl number σ, and
the coupling strength β. System (1) is invariant under rotation by π about the z-axis, so that its
dynamics are symmetric under the transformation

(x, y, z) 7→ (−x,−y, z). (2)

The origin 0 = (0, 0, 0) is always an equilibrium of system (1); it is stable for 0 < ρ < 1 and
becomes a saddle in a pitchfork bifurcation at ρ = 1. For ρ > 1 the origin is hyperbolic and has
two negative real eigenvalues and a third positive eigenvalue. Therefore, by the Stable Manifold
Theorem [48], there exists a two-dimensional stable manifold W s(0) that consists of all trajectories
that tend to 0 in forward time, and a one-dimensional unstable manifold W u(0) that consists of
all trajectories that tend to 0 in backward time. Under the symmetry (2), the stable manifold
W s(0) is invariant and the two branches of W u(0) map to one another. The stable manifold W s(0)
plays an important role in organizing the dynamics in phase space and is referred to as the Lorenz
manifold [41]. System (1) also has a pair of secondary equilibria

p± = (±
√
β(ρ− 1), ±

√
β(ρ− 1), ρ− 1),

which exist for ρ > 1 and are each other’s image under the symmetry (2). The equilibria p± arise
from the pitchfork bifurcation at ρ = 1 and are initially stable; they become saddles in a Hopf
bifurcation at

ρ = ρH :=
σ (β + σ + 3)

σ − β − 1
. (3)

Hence, as saddles, their stable and unstable manifolds, denoted W s(p±) and W u(p±), have dimen-
sions one and two, respectively. Famously, Lorenz found sensitive dependence on initial conditions
for ρ = 28, σ = 10 and β = 8

3
[44, 58]. At these now classical parameter values, the well-known

Lorenz attractor is the only attractor.
The route to chaos and the birth of the chaotic attractor, denoted by L, has been the subject of

much study, particularly for 0 < ρ ≤ 28 with σ = 10 and β = 8
3

fixed; for example, see [10, 22, 23,
24, 38, 51]. In 1977, Afraimovich, Bykov and Shilnikov studied the analogous route to chaos for β
and ρ fixed at their classic values and 0 < σ < 10 [1]. The occurrence in the system of trajectories
with arbitrarily long transients was investigated in 1979 by Kaplan and Yorke, who dubbed this
behavior preturbulence, and found it to be a precursor of the more complicated chaotic dynamics
discovered by Lorenz [38]. The concept of turbulence, meaning irregular and complicated chaotic
behavior, was coined by Ruelle and Takens in the 1970’s in their study of viscous fluids [52]. They
indicated that this behavior could be the result of the presence of a strange attractor and went on
to investigate the relationship between turbulence and the Lorenz attractor in [51].

The structure of the strange attractor in the Lorenz system was further investigated by Gucken-
heimer and Williams [30, 61]. In their work and independently in [1], one finds the first geometric
description of the dynamics on the Lorenz attractor and the introduction of the geometric Lorenz
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model. The analysis is done via reduction to a one-dimensional map with equivalent behavior. This
reduction is based on the two-dimensional (invertible) Poincaré return map that is defined on the
planar section Σρ := {z = ρ − 1} (chosen to contain the equilibria p±) in the region where the
flow is down. The behavior of contraction and expansion on Σρ is organized by so-called stable
and unstable foliations, each consisting of curve segments, or leaves, that are mapped in forward or
backward time to other leaves in the foliation; in particular, L is contained in the unstable foliation.
The one-dimensional map, called the Lorenz map [31], is obtained by projection along leaves of
the stable foliation. The Lorenz map completely represents the dynamics of L, provided the leaves
of the stable foliation are locally transverse to L, they map injectively under the flow, and the
dynamics on the stable leaves is a contraction towards L; this is called the foliation condition.

The foliation condition is satisfied for the geometric Lorenz model [1, 2, 30, 32, 61], and the dy-
namics on L are accurately described by the one-dimensional Lorenz map representing the dynamics
from leaf to leaf in the stable foliation. Tucker proved in 1999 [58] that the Lorenz system (1) for
the classical parameter values satisfies the conditions of the geometric Lorenz model; hence, the
foliation condition holds and the chaotic dynamics are described by the one-dimensional Lorenz
map. It is generally believed that this is also true for ρ ≤ 30 with σ = 10 and β = 8

3
. However,

for ρ past 30 there is a first tangency between the stable and unstable foliations and the foliation
condition fails [15, 34, 35, 57]. As a result, for larger ρ-values, the one-dimensional map no longer
captures the full dynamics on L and much less is known about the dynamics of the Lorenz system.

In this paper, we build on the recent approach taken in [21, 23], where the computation of stable
and unstable manifolds, via the continuation of suitable two-point boundary value problems (BVPs),
revealed the geometric mechanisms in the full three-dimensional phase space that are behind the
transition to chaotic dynamics for the Lorenz system (1). We are interested here in the precise
moment when the foliation condition fails. The only specific numerical estimate available for the
loss of foliation condition was computed by Sparrow [57] as lying in the interval ρ ∈ [30.1, 30.2]
for fixed σ = 10 and β = 8

3
. He found this interval by using numerical integration to determine

how vectors in Σρ align with the attractor upon return to the section. Furthermore, Bykov and
Shilnikov [14] computed, for fixed β = 8

3
, a locus in the (ρ, σ)-plane along which L changes to

a non-orientable or quasi-attractor; see also the translation [15]. A quasi-attractor is a complex
limit set that contains a dense set of stable periodic orbits with narrow basins of attraction [2,
55]. The quasi-attractor contains infinitely many windows of stability related to the creation and
destruction of stable periodic orbits; hence, the dynamics in this region are far more complicated.
This topological change corresponds to the loss of the foliation condition, and it was detected by
Bykov and Shilnikov as a change of orientability of homoclinic orbits. We refer to Sec. 5.1 for details
on their computational approach, and Fig. 9(b) for a reproduction of their sketch [15, Figure 3].
Although no precise values are given there, the value for σ = 10 appears to be ρ ≈ 31.0.

Our computational approach to investigating the loss of the foliation condition is to identify and
calculate the onset of a tangency between the stable and unstable foliations of the Poincaré section
Σρ, which we call a first foliation tangency and denote by F1. We approximate leaves of the stable
and unstable foliations in Σρ directly as intersection curves with Σρ of two-dimensional manifolds of
equilibria and periodic orbits. We detect the parameter values at which the first foliation tangency
occurs by solving BVPs with the software package Auto [18, 19]; for the general theory see [20, 41].
The BVP set-up has the particular benefit that it is straightforward to continue specific families
of solutions and, hence, the locus of the loss of the foliation condition, in any pair of the system
parameters.

More specifically, our results are as follows. Our estimate for the value of the loss of the foliation
condition when σ = 10 and β = 8

3
is ρ ≈ 31.01, which is correct to two decimal places. We also
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compute the locus F1 in the (ρ, σ)-plane for fixed β = 8
3

and find good agreement with the sketch
by Bykov and Shilnikov. We find that F1 is a smooth curve in this plane with a codimension-two
terminal-point or T-point, also known as a Bykov cycle [16, 28, 49]. At this T-point the one-
dimensional unstable manifold W u(0) is contained in the one-dimensional stable manifolds W s(p±),
creating a heteroclonic connection from 0 to p±; moreover, the two-dimensional manifolds W u(p±)
intersect W s(0) transversally forming a heteroclonic connection from p± to 0. There are many other
such T-points in the Lorenz system, corresponding to increasingly complicated windings of W u(0)
around p± before connecting to p±; see [16] for details. The bifurcation structure near a T-point
has been studied, for example in [37, 40, 56], but not in the context of the loss of the foliation
condition. The bifurcation curves of the main homoclinic and heteroclinic bifurcations of p± both
terminate at a T-point. These bifurcation curves lie extremely close to each other in the (ρ, σ)-plane
for fixed β = 8

3
. As was also shown in [16], each T-point in the Lorenz system is associated with a

phenomenon called an α-flip bifurcation, where the α-limits of the respective branches of W s(p±)
switch sides. The first or principal T-point was discovered by Petrovskaya and Yudovich [49] in
1980, and independently by Alsfen and Frøyland [3] in 1985. The first 25 T-points in the Lorenz
system are shown in [16] in relation to the homoclinic and heteroclinic bifurcations of p± and the
α-flip bifurcation of W s(p±).

The chaotic attractor L is created in a so-called EtoP bifurcation, at which W u(0) connects
to a (symmetric) pair of periodic orbits; we refer to Sec. 2 and [1, 38, 52] for details. We find
that the bifurcation curve EtoP and the locus F1 have two intersection points, meaning that the
region of existence of the Lorenz attractor L is bounded in the (ρ, σ)-plane for fixed β = 8

3
. This

discovery already goes beyond the work of Bykov and Shilnikov, who only found one intersection
point. Moreover, we determine that the region of existence of L is also bounded in the (ρ, β)- and
(σ, β)-planes, with σ = 10 and ρ = 28, respectively. By computing the curves EtoP and F1 in
the (ρ, σ)-plane for different values of β, we show that the region of existence of L has the shape
of a slanted cone in the three-dimensional (ρ, σ, β)-space, which is bounded by surfaces EtoP and
F1. There exists a curve T1 of principal T-points on the surface F1 that ends at the bottom or
tip of the cone in a degenerate T-point called a T-point-Hopf (TH) bifurcation; at this point, the
equilibria p± involved in the T-point bifurcation undergo a Hopf bifurcation. The codimension-
three bifurcation point TH has been studied in [4, 26] in general terms as an organizing centre
for homoclinic bifurcations of the origin in the Lorenz system; however, its role for the loss of the
foliation condition had not been recognized.

After the first foliation tangency, along the locus F1, the stable and unstable foliations are no
longer transverse and the foliation condition is lost. We find that, as ρ and σ are increased, additional
first foliation tangencies occur, and we adapt our BVP set-up to detect them. Specifically, we detect
a further two first foliation tangencies and compute their loci F2 and F3 in the (ρ, σ)-plane for fixed
β = 8

3
. We observe that the loci F2 and F3 also each have T-points T2 and T3 on them, respectively;

see Fig. 12. In [12], Barrio, Shilnikov and Shilnikov computed a color code for the kneading sequence
based on the number of revolutions of W u(0) around p±. Their image of the (ρ, σ)-plane with β = 8

3

shows regions of stability and the structure of homoclinic orbits around T-points. Our computation
of homoclinic bifurcation curves and boundaries of the regions of stability in the (ρ, σ)-plane are
in good agreement with their findings, and we discuss the loci of the first foliation tangency in
this context. Finally, we show how each additional first foliation tangency manifests itself as an
additional fold of W u(Γrl).

The layout of this paper is as follows. In the next section, we briefly review the bifurcations
involved in the route to chaos and the birth of L, and we discuss known properties of the Lorenz map
for parameters outside the region where the foliation condition is satisfied. We illustrate transverse
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and non-transverse foliations in Σρ in Sec. 3 and present more specific evidence for the existence of
a foliation tangency in Sec. 3.2. In Sec. 4 we formulate and implement as a BVP the computation
of the first foliation tangency associated with the loss of the foliation condition and determine its
ρ-value for σ = 10 and β = 8

3
fixed. In Sec. 5, we compute bifurcation diagrams near the principle T-

point in the planes defined by each possible parameter pair and, in Sec. 5.2, we present the locus F1

of the first foliation tangency in the full three-parameter space. Section 5.3 presents two additional
loci of first foliation tangencies in the (ρ, σ)-plane with β = 8

3
and discusses their manifestation in

terms of W u(Γrl). We finish with a discussion in Sec. 6. The list the parameters used for the BVP
computations and further computational details can be found in the Appendix.

2 Review of the bifurcations en route to and beyond the

creation of L
We briefly recall the main bifurcations that occur in the Lorenz system (1) in the transition to chaos
and the birth of L; see also [21, 23] and references therein. Here, we assume that σ = 10 and β = 8

3

are fixed at their classical values, and only ρ is varied.
As mentioned in the introduction, the origin 0 is stable for 0 < ρ < 1; at ρ = 1 a pitchfork

bifurcation occurs that gives rise to two stable equilibria p± that are rendered saddles in a Hopf
bifurcation at ρ = ρH ≈ 24.7368. A homoclinic bifurcation of 0 occurs at ρ ≈ 13.9266, when W u(0)
is contained in W s(0) and consists of a loop hr and its symmetric counterpart hl around p+ and
p−, respectively; we will use hr to denote this homoclinic bifurcation throughout. The homoclinic
bifurcation hr generates a chaotic saddle S containing infinitely many saddle periodic orbits; this
bifurcation is also called the homoclinic explosion. In particular, the homoclinic explosion creates the
symmetric pair of periodic orbit Γ+ and Γ−, which loop once around p+ and p−, respectively. The
periodic orbits Γ± have two-dimensional stable manifolds W s(Γ±) and two-dimensional unstable
manifolds W u(Γ±). A heteroclinic connection from 0 to Γ± forms when W u(0) is contained in
W s(Γ±) at ρ ≈ 24.0579; this is the EtoP connection referred to in the introduction. The parameter
interval between hr and EtoP is the preturbulent regime identified by Kaplan and York [38, 39].
In this regime the equilibria p± remain the only attractors but trajectories with arbitrarily long
chaotic transients can be found. The complicated dynamics can be attributed to the Cantor-like
structure of the stable manifold of S [23]. The EtoP bifurcation creates L [1, 38, 52], which initially
coexists with the attractors p± until their stability changes at the Hopf bifurcation. Except for Γ±,
the saddle periodic orbits created in the homoclinic explosion persist through the Hopf bifurcation
and are dense in L [44, 60].

The classic Lorenz attractor L is an attracting set in the Lorenz system that consists of an
infinite number of two-dimensional surfaces that join along the one-dimensional unstable manifold
of the origin W u(0) [1, 31, 44]. A sketch of L was already presented in Lorenz’s original paper [44].
The point 0 and the unstable manifold W u(0) are contained in L [1, 61] and W u(0) forms a natural
boundary of L. Furthermore, L does not enter a certain neighborhood of p± at the classic parameter
values. Points on the one-dimensional stable manifolds W s(p±) are the only points in phase space
that do not tend to L. Since saddle periodic orbits are dense in L [44, 60], their unstable manifolds
accumulate on L due to the stretching nature of the dynamics. In fact, L contains the sheets of all
the two-dimensional unstable manifolds of the periodic orbits, which lie very close together in phase
space due to the strong contraction in the system and connect up along W u(0) [30]. Therefore, the
two-dimensional unstable manifold of any saddle periodic orbit gives a good representation of L.

The geometric Lorenz model and the associated Lorenz map provide a way of accurately describ-
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ing the dynamics on L provided the technical conditions of the reduction hold. In particular, each
point of each intersection set of L with Σρ needs to intersect exactly one leaf (locally) of the stable
foliation [31]. Numerical investigations by Bykov and Shilnikov [15], Hénon and Pomeau [34, 35]
and Sparrow [57] show that the two-dimensional return map appears to develop hooked horseshoes,
which persist for large values of ρ. Then the above one-to-one correspondence in Σρ is violated, the
foliation condition is no longer satisfied and, therefore, L is no longer completely represented by
the geometric Lorenz model or the Lorenz map. The one-dimensional Lorenz map develops addi-
tional maxima and minima that enter through the boundaries of the interval. Luzzatto and Viana
studied Lorenz-like families of one-dimensional maps with such extra critical points in an attempt
to describe the change in dynamics before and after the loss of the foliation condition [45, 46];
however they do not use them to find the moment of the loss of the foliation condition. Hao, Liu
and Zheng created a series of one-dimensional maps of the Lorenz system, called first-return maps,
for 28 < ρ < 200 [33]. Their first-return maps develop additional maxima and minima as ρ is
increased, corresponding to tangency points between the stable and unstable foliations in Σρ. The
first of these tangencies appears to correspond to the loss of the foliation condition. Although Hao,
Liu and Zheng show some curves of the stable and unstable foliations of Σρ, they do not use these
to identify the loss of the foliation condition.

Dullin, Schmidt, Richter and Grossmann show diagrams of the (ρ, σ)-plane with β = 8
3
, for

the range (ρ, σ) ∈ [0, 2000] × [0, 2000], that are colored according to the asymptotic behavior of
trajectories in phase space [24]. These diagrams clearly show a layered periodic pattern due to
the alternating stability of symmetric and non-symmetric periodic orbits. Barrio and Serrano use
maximum Lyapunov exponents and look for chaotic orbits at points in the planes given by each pair
of parameters ρ, σ and β [10, 11]. Their computations show the regions in the parameter planes
where chaos exists. The scan methods of Dullin et al. [24] and Barrio and Serrano [10, 11] do not
give any indication of a topological change in L.

3 Transverse and non-transverse foliations in Σρ

The stable and unstable foliations in Σρ are not known analytically and can only be approximated
numerically. We compute them as intersection curves of stable and unstable manifolds of periodic
orbits and equilibria for fixed σ = 10 and β = 8

3
. Our computations are based on continuation of

a two-point boundary value problem and we refer to [16, 22, 23, 41] for more information on the
set-up.

3.1 Transverse foliations for ρ = 28

As described in Sec. 2, the chaotic attractor L consists of infinitely many surfaces each of which
intersects Σρ in a one-dimensional curve that is part of one of the leaves of the unstable foliation [29].
Furthermore, the two-dimensional unstable manifold of any periodic orbit lies dense in L. Therefore,
its intersection curves with Σρ form a dense subset of the intersection curves of L with Σρ. We
denote each periodic orbit in L by Γs1,...,sn , where s1, ..., sn is the symbol sequence of the orbit such
that si = r indicates a loop around p+ and si = l indicates a loop around p−. Throughout this
paper, we mainly work with the topologically simplest periodic orbit in L, the symmetric periodic
orbit Γrl that loops once around p+and then once around p−; however, we also consider Γrll to
confirm our calculations. The periodic orbit Γrll loops once around p+ and then twice around p−;
hence, it is not symmetric and co-exists with its symmetric counterpart Γlrr. Viswanath [60] uses
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a modified Newton method to find periodic orbits in L up to a high period and provides a list of
initial conditions in Σρ for each periodic orbit to high precision (14 decimal places). We take the
appropriate initial condition from this list and use it to compute and continue Γrl (or Γrll) with
Auto [18, 19] to any parameter values we require.

We approximate part of W u(Γrl) for ρ = 28 as a one-parameter family of orbits segments
that start close to Γrl in its linear unstable direction and are computed up to a maximum chosen
integration time τmax. We then compute a sufficient number of the intersection curves

W̃ u(Γrl) := W u(Γrl) ∩ Σρ

directly as end points of a one-parameter family of solutions of a suitable BVP. The intersection
curves W̃ u(Γrl) are part of the unstable foliation.

The unstable manifold W u(0) forms the outer boundary to W u(Γrl). We approximate W u(0) as
two orbit segments that are computed up to a maximum arclength Lmax from their starting points
near 0 on the linear unstable direction vu. We compute the intersection points

W̃ u(0) := W u(0) ∩ Σρ

by detecting when W u(0) crosses Σρ. Values of τmax, Lmax and other accuracy parameters used to
create each figure are given in Sec. A.

Figure 1 shows L for ρ = 28 as represented by W u(Γrl), the intersection curves W̃ u(Γrl), and
as a sketch of the one-dimensional Lorenz map. Panel (a) shows the computed part of the two-
dimensional surface W u(Γrl) with Γrl and W u(0). The classic section Σρ through p± is also shown.

Panel (b) shows curves in W̃ u(Γrl); in this and subsequent similar panels we rotate Σρ by π
2

so the
horizontal axis is the diagonal where x = y. The four intersection points in γrl := Γrl ∩ Σρ lie on

W̃ u(Γrl) and are shown in panel (b). Also shown in panel (b) are the first eight intersection points

of W̃ u(0), which correspond to the end points of the main segments of W̃ u(Γrl). Furthermore,
panel (b) shows the tangency locus C that contains p± and separates Σρ into regions where the flow
is upward (�) and downward (⊗) [43]. A sketch of the one-dimensional Lorenz map is shown in
Fig. 1(c) with the line of discontinuity at 0 corresponding to points that lie on W s(0) and, hence,
do not return to the plane Σρ. The boundaries ±a = ±

√
β(ρ− 1) of the Lorenz map are the

x-components of p±, respectively. The empty square regions in the corners of panel (c) correspond
to the local regions around p± that are not part of L; see also [31].

On the level of Fig. 1(b), it appears that W̃ u(Γrl) consists of only four disjoint curves, but we
actually computed and plot 60 of them. The additional curves cannot be distinguished on the scale
of panel (b) because of the strong contraction towards the Lorenz attractor L; they are extremely

close to but shorter than the four visible curves. Further points in W̃ u(0), beyond the first eight

that are shown, correspond to end points of the shorter curves of W̃ u(Γrl). The intersection set

W̃ u(Γrl) does not cross C when ρ = 28 and so the curves of W̃ u(Γrl) in the outer regions, where the

flow is up, are the images under the flow of the central curves of W̃ u(Γrl), in which the flow points
down. Historically the Lorenz map is constructed from the central region of Σρ where the flow is
down, in between the two curves that form the tangency locus C.

Figure 2 compares W u(Γrl) in panel (a) with two alternative representations of L, generated by
the unstable manifolds W u(Γrll) of Γrll in panel (b) and W u(p+) of the equilibrium p+ in panel (c);
all these panels show the projection onto the (x, z)-plane along the y-direction. Note that W u(p+)
only accumulates on L, because the local manifold W u

loc(p
+) near p+ is not part of L. Panel (d)

shows all three manifolds together with the plane Σρ in the three-dimensional (x, y, z)-space. Also
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(a)

Wu(Γrl)

Γrl

Wu(0)

0

Σρ

p+

p−

��: x
@@R y

6
z

(c)

−a

a

a0

(b)Σρ ⊗ ⊙

⊗⊙ C

C

p+

p−

W̃u(Γrl)

W̃u(0)

γrl

Figure 1: Representation of the classic Lorenz attractor L for ρ = 28, σ = 10 and β = 8
3
. Panel (a)

shows W u(Γrl) with the periodic orbit Γrl (yellow), the first part of W u(0) (brown) and the Poincaré

section Σρ (green). The intersection curves W̃ u(Γrl) (red) in the plane Σρ are shown in panel (b),

together with the four intersection points of γrl (yellow) and the first eight of W̃ u(0) (brown). Also
shown are p± and the tangency locus C (grey) that divides Σρ into regions where the flow is up
� and where it is down ⊗; note that Σρ has been rotated so the diagonal (where x = y) is the
horizontal axis. Panel (c) shows a sketch of the one-dimensional Lorenz map with the vertical line
of discontinuity at 0 (blue).
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(a)

Wu(Γrl)

Γrl

Wu(0)

p+p−

(b)

Wu(Γrll)

Γrll

Wu(0)

p+p−

(c)

Wu(p+)

Wu(0)

p+p−

(d)

Σρ

��: x
@@R y

6
z

z

z

x x

Figure 2: Representation of L for ρ = 28, σ = 10 and β = 8
3

by three different unstable manifolds
(red), namely, of Γrl (yellow) (a), Γrll (orange) (b) and of p+ (black) (c). Panel (d) shows all three
unstable manifolds together with Σρ (green). Also shown in all panels is the first piece of W u(0)
(brown).

shown in each panel are the first parts of the two symmetrically related branches of W u(0), which
can be seen to bound W u(Γrl), W

u(Γrll) and W u(p+).
Each of the invariant manifolds shown in Fig. 2 was computed as a separate family of orbit

segments that start in the linear unstable direction of the periodic orbit or equilibrium. Due to
the strong contraction in the Lorenz system, it is impossible to distinguish each of the unstable
manifolds at the level of the surfaces shown in panel (d); however, they can be distinguished by the
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associated family of orbit segments. The close proximity of the computed surfaces in phase space
constitutes a confirmation of the accuracy of our computations.

The theory also tells us that the stable foliation contains the intersection curves of the two-
dimensional stable manifolds of all equilibria and periodic orbits [33]. To find curves of the stable
foliation we consider the intersection curves

W̃ s(0) := W s(0) ∩ Σρ

of the two-dimensional Lorenz manifold W s(0) with Σρ. The Lorenz manifold lies dense in phase
space due to the sensitivity on initial conditions [58], and therefore, its intersection curves with
Σρ form a dense subset of the curves of the stable foliation [33]. To compute these intersection
curves we start with the same approach as in [16, 22] where W s(0) is computed inside a suitably
large sphere SR with radius R. Here, we choose R = 70 to ensure that the entire attractor for
ρ = 28 and, hence, W u(Γrl), is fully contained in SR. The sphere is centered at (0, 0, ρ − 1) and,
therefore, Σρ bisects SR at the equator into two equal halves. We first compute an orbit segment
with one end point on an ellipse in the stable eigenspace of the origin, and the other end point on
SR. We then continue the orbit segment around the ellipse and detect each instance that the end
point on SR intersects Σρ at the equator. For each of these detected solutions we then constrain
the end point to lie on Σρ and continue around the ellipse to generate a family of orbit segments

whose end points in Σρ trace out curves in W̃ s(0). Recall that the manifold W s(0) is dense in the

phase space for ρ = 28 [58], which implies that the set of intersection curves W̃ s(0) is dense in Σρ

as well. Unfortunately, due to the finite-time nature of our computations, we can only compute a
finite number of curves in W̃ s(0).

Figure 3 shows the computed part of the Lorenz manifold W s(0) and its intersection curves
with Σρ. Panel (a) shows the initial piece of W s(0) within SR for R = 70, together with Σρ in the
three-dimensional phase space. Here, W s(0) is rendered as a solid blue surface beneath Σρ and a
transparent blue surface above it. The equator of SR is the black circle on Σρ. The intersection

curves W̃ s(0) in Σρ lie inside the equator and are shown as blue curves in each panel. Panel (b)

also shows W̃ u(Γrl) and panel (c) is an enlargement near the curves W̃ u(Γrl) in the rotated view.

Panels (b) and (c) also shows the sets of points p±, γrl, W̃
u(0) and the curve C; compare with

Fig. 1(c). Figure 3(c) shows that, locally near the attractor, the computed intersection curves in

W̃ s(0) and W̃ u(Γrl) are transverse, meaning that each curve in W̃ s(0) intersects each curve in

W̃ u(Γrl) exactly once near L. Figure 3 suggests that the foliation condition is satisfied, which is
indeed the case for ρ = 28 [15, 32, 57].

3.2 Non-transverse foliations for ρ = 60

Next, we consider the intersection curves W̃ u(Γrl) and W̃ s(0) in Σρ for ρ = 60. This value of ρ
was chosen well past the estimated ρ-value at which the foliation condition is lost. Figure 4 shows
W u(Γrl) and the corresponding intersection curves W̃ u(Γrl) and W̃ s(0). Panel (a) is a view of
W u(Γrl) with Σρ in three-dimensional phase space; compare with Fig. 1(a). Panel (b) shows curves

in W̃ u(Γrl) ⊂ Σρ with the points γrl that lie on W̃ u(Γrl) and the points of W̃ u(0) that lie at the

end of the visible curve segments. In panel (b) W̃ u(Γrl) appears to consist of two disjoint curve
segments but, again, 60 curves have actually been plotted. The points p± and curve C are also
shown in panel (b). The sheets of the two-dimensional manifold W u(Γrl) have been pulled up and
folded back near p± in Fig. 4(a); compare with Fig. 1(a). The boundary of W u(Γrl) is still formed
by W u(0) but it is no longer the curve that lies closest to p±.
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Figure 3: Section Σρ and the stable manifold W s(0) for ρ = 28, σ = 10 and β = 8
3
. Panel (a)

shows W s(0) (blue) computed inside the sphere SR for R = 70 with Σρ (green). The surface W s(0)
is rendered transparent above Σρ and solid below and the edge of the surface W s(0) has been

highlighted in black. Panel (b) shows curves of W̃ s(0) (blue) and W̃ u(Γrl) (red), and points of

γrl (yellow) and W̃ u(0) (brown) within the circle with radius R = 70 around (0, 0, ρ − 1) in Σρ.

Panel (c) is an enlargement of W̃ s(0), W̃ u(Γrl), γrl and W̃ u(0) in the rotated view of Σρ; compare
with Fig. 1(b).
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Figure 4: The unstable manifold W u(Γrl) for ρ = 60, well past the loss of the foliation condition.
Panel (a) shows W u(Γrl) (red) together with Γrl (yellow), W u(0) and Σρ (green); compare with

Fig. 1(a). Panel (b) shows W̃ u(Γrl) (red) and W̃ s(0) (blue) in Σρ; compare with Fig. 3(c).
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The structure of the intersection curves W̃ u(Γrl) in Fig. 4(b) is also different from those in

Fig. 3(c). For ρ = 60, some curves in W̃ u(Γrl) cross the tangency locus C. Intersections of W̃ u(Γrl)
and C are brought about by a tangency of W u(0) with Σρ that, by definition, occurs on C. The
tangency occurs at ρC ≈ 30.4318, which we found by continuation of the first-return point of W u(0)
to Σρ in ρ until a fold was detected. The tangency occurs near, but does not correspond to, the loss
of the foliation condition [22]. The second, and more important difference between Figures 3(c) and

4(b) is that some of the curves of W̃ s(0) in the central region of Σρ in Fig. 4(b) now intersect curves

of W̃ u(Γrl) twice. Moreover, there are points of (approximate) tangency between curves of W̃ u(Γrl)

and curves of W̃ s(0). Note that W̃ s(0) does not undergo a dramatic change between Figures 3(c)
and 4(b).

Indeed, Fig. 4(b) illustrates that W̃ u(Γrl) and W̃ s(0) are not locally transverse for ρ = 60.
Rather, there are structurally stable, quadratic tangencies arbitrarily close to L, which means that
the foliation condition does not hold. More specifically, each curve of W̃ u(Γrl) is diffeomorphic to

another curve of W̃ u(Γrl) under the flow (1). Hence, each curve of W̃ u(Γrl) has a point of tangency

with W̃ s(0); most tangency points are impossible to distinguish by eye, due to the strong contraction
of the system. Indeed, the sheets of the two-dimensional unstable manifolds of periodic orbits in L
connect along W u(0) [31], and so all intersection curves of these unstable manifolds with Σρ have

a point of tangency with W̃ s(0).

4 The first foliation tangency

We wish to find the ρ-value that corresponds to the onset of quadratic tangencies between W̃ u(Γrl)

and W̃ s(0); we call this onset a first foliation tangency bifurcation. From the estimates of Spar-
row [57] and Bykov and Shilnikov [15] the foliation condition fails between ρ = 30 and ρ = 32.
Figure 5 shows the stable and unstable foliations for ρ = 30 and ρ = 32, just before and just
after the loss of the foliation condition, respectively. Panel (a1) shows computed curves in W̃ u(Γrl)

and W̃ s(0) in Σρ for ρ = 30 and panel (b1) shows them for ρ = 32. Since p+ is the image of p−

under the symmetry (2), it suffices to consider a neighborhood of, say, p+. Panels (a2) and (b2) are

enlargements that show W̃ u(Γrl) near p+ for ρ = 30 and ρ = 32, respectively, and just two curves of

W̃ s(0) in the bottom-left corner of each panel. Points of W̃ u(0) are shown at the end of the main

curve segments as before; the point qu ∈ W̃ u(0) is the second intersection point of W u(0) with Σρ.
The tangency locus C is shown in each panel as before.

Figure 5 shows that W̃ u(Γrl) comes very close to p± for values of ρ near the loss of the foliation

condition. Unfortunately, the computed intersections curves in W̃ s(0) do not come sufficiently close

to p+ to make the comparison with W̃ u(Γrl), also not for much higher integration times. Since

W s(0) winds around W s(p+) without intersecting it, we approximate the direction of W̃ s(0) locally
near p+ by the stable eigenspace of p± projected orthogonally onto Σρ, that is we define

V := ΠΣρE
s(p±). (4)

The direction vector V can readily be computed and is shown as the light-blue curve through p±

and qu in Fig. 5. Observe that the curves in W̃ s(0) closest to p± appear to be parallel to V for all
practical purposes.

A qualitative change in W̃ u(Γrl) with respect to V occurs near the equilibria p± for ρ between
ρ = 30 and ρ = 32; compare Figs. 5(a2) and (b2). Figure 5(a2) shows that the direction V at
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Figure 5: Foliations in Σρ very close to the loss of the foliation condition. The curves W̃ u(Γrl)

(red) and W̃ s(0) (blue) and the points W̃ u(Γrl) (yellow) and W̃ u(0) (brown) in Σρ are shown in
column (a) for ρ = 30, and in column (b) for ρ = 32. Panels (a1) and (b1) show the region
(x, y) ∈ [−45, 45] × [−45, 45] and enlargements are shown in panels (a2) and (b2), where the
respective ranges for both x and y are [4, 13.5] and [4.5, 13.5], respectively. The direction V (light
blue) is shown both at p± and at the point qu.
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qu has only one intersection with each of the curves in W̃ u(Γrl), which indicates that the stable
and unstable foliations are transverse to each other and the foliation condition holds for ρ = 30.
Figure 5(b2) shows that the direction V at qu has additional intersections with curves in W̃ u(Γrl)

for ρ = 32. The curves in W̃ u(Γrl) have formed visible hooks in Fig. 5(b2). This means that the
foliation condition no longer holds.

4.1 Characterization of the first foliation tangency

To detect numerically the first foliation tangency, we select the curve from W̃ u(Γrl) that ends at the
point qu and corresponds to orbit segments on W u(Γrl) with the fewest returns to Σρ; we denote

this curve by W̃ u
F(Γrl). We define the direction vector Z as the unit vector tangent to W̃ u

F(Γrl)
at qu. The direction vectors V , defined above in (4), and Z both depend on ρ; indeed, the angle
between Z and V has a regular sign change between ρ = 30 and ρ = 32. We define the first foliation
tangency as the moment at which the angle is zero.

Our approach of detecting a zero angle between V and Z is based on the continuation of mul-
tiple orbit segments and motivated by Lin’s method [42]. The multi-segment BVP set-up for the
first foliation tangency is well defined and has user-specified accuracy parameters to allow for the
convenient continuation of its solutions in any of the parameters. This BVP can be set up readily
for invariant objects other than Γrl, and we consider also the two-dimensional unstable manifolds
W u(p+) of the equilibrium p+ and W u(Γrll) of the non-symmetric periodic orbit Γrll; a detailed
comparison of the different approximations can be found in Sec. B and Table 2. We also checked
that V is indeed a good approximation to the stable foliation in the vicinity of p+ and refer to
Table 3 in Sec. B for details.

We calculate an approximation of Z numerically as a secant in the following way. First, we
calculate an orbit segment u0(t) that lies on W u(0) with one end point in the unstable eigendirection
of 0 and the other end point at qu in Σρ. We then consider a circle Cκ ⊂ Σρ of radius κ centered
at qu and compute a second orbit segment, uΓ(t) on W u(Γrl), with one end point on the unstable

eigendirection of Γrl and the other end point on Cκ; we refer to the latter point on W̃ u
F(Γrl) as qκ.

The vector direction Z is then approximated by the normalized unit vector

Zκ =
(qu − qκ)

κ
. (5)

The direction Zκ is a good approximation of Z provided κ = |qu − qκ| is sufficiently small. In our
calculations we choose Zκ with κ = 10−4. Full implementation details are given in Sec. 4.2.

Figure 6 shows the set-up of the multi-segment BVP used to compute Zκ for ρ = 32; here, κ was
chosen very large to illustrate the different components. The orbit segment u0(t) on W u(0) (dark
red) starts near 0 and its other end point is qu in Σρ, which is not labeled but lies quite close to
p+. The orbit segment uΓ(t) on W u(Γrl) (red) starts near Γrl and its other end point is qκ in Σρ,
at distance κ from qu. The secant Zκ is shown in orange between qu and qκ, and the direction V in
Σρ is shown at p±.

We continue the multi-segment BVP that defines Zκ (for sufficiently small, fixed κ) in ρ; the
effect is that qκ moves along the circle Cκ. We monitor the test function

φκ(ρ) = φκ(ρ, σ, β) := V ⊥ · Zκ, (6)

where V ⊥ ∈ Σρ is perpendicular to V ; initially, σ = 10 and β = 8
3

are fixed. The function φκ(ρ)
is a regular test function in ρ, meaning that it is smooth and, generically, its roots are regular



Finding first foliation tangencies in the Lorenz system Creaser, Krauskopf & Osinga 16

uΓ(t)

u0(t)

Γrl

Σρ

p+

qκ Zκ V

V p−

0

���* y

XXXz x

6
z

Figure 6: Set-up of the multi-segment BVP at ρ = 32 with the orbit segments u0(t) ⊂ W u(0) and
uΓ(t) ⊂ W u(Γrl) that determine the direction Zκ (orange); also shown are the periodic orbit Γrl
(yellow) and the direction vector V (light blue) at p±.
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Figure 7: Illustration of the numerical set-up to detect the foliation tangency. Shown are the curve
W̃ u
F(Γrl) and the direction V at p+ and at qu in Σρ for ρ = 30 (a1), for ρ = ρF ≈ 31.01 (b1), and

for ρ = 32 (c1); the respective ranges for both x and y are [7.9150, 8.9932], [8.6053, 9.0255], and
[8.0615, 9.3203]. Panels (a2)–(c2) are enlargements that also show the circle Cκ for κ = 10−4 around
the point qu (brown) and the associated secant Zκ (orange line inside Cκ).

and isolated. During the continuation of the BVP in the direction of decreasing ρ, a root ρFκ of
the function φκ will be detected. Since Zκ → Z, the root ρFκ → ρF as κ → 0; for convenience of
notation, we write ρF instead of ρFκ from now on.

Figure 7 illustrates that the detection of a regular zero of φκ corresponds to a tangency between
W̃ u
F(Γrl) and V at qu. The curve W̃ u

F(Γrl) and the direction V are shown for ρ = 30 in column (a),
for ρ = ρF ≈ 31.01 in column (b), and for ρ = 32 in column (c). Panels (a1)–(c1) show the situation
locally near p+ and panels (a2)–(c2) show substantial enlargements of the circle Cκ with κ = 10−4

centered at qu. The point qκ ∈ W̃ u
F(Γrl) ∩ Cκ defines the secant Zκ. Figure 7(b1) corresponds to

the moment of first tangency between W̃ u(Γrl) and V , which can be confirmed in the enlargement

in panel (b2) that shows the alignment of Zκ and V , with W̃ u
F(Γrl) tangent to V in very good

approximation.

4.2 Implementation as a boundary value problem

We now give the specific boundary conditions for the computation of the multi-segment BVP to find
the point of tangency between the stable and unstable foliations in Σρ; for the general theory, we
refer to [25, 42]. Without loss of generality and for ease of notation we describe our implementation
for the unstable manifold W u(Γ) of a periodic orbit Γ.
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In all computations we use the time-rescaled Lorenz system

u′(t) = τf(u(t)), (7)

where f is given by (1). A solution u(t) of (7) is an orbit segment on the time interval t ∈ [0, 1]
with end points u(0) and u(1). This orbit segment is also a solution of (1), but with respect to
the unscaled time t τ , where τ is the total integration time for (1). In our formulation, τ is positive
when computing unstable manifolds and negative when computing stable manifolds.

For fixed ρ = 32, σ = 10 and β = 8
3
, we compute an orbit segment u0(t) ⊂ W u(0) satisfying (7)

by continuation in τ subject to the boundary condition

u0(0) = δ0vu, (8)

where vu is the normalized unstable eigenvector of 0 and δ0 = 10−7. We monitor the z-component
u0
z (1) of u0(1). Whenever u0

z (1) = ρ− 1, the end point u0(1) lies in Σρ. We choose the end point
that corresponds to qu ∈ Σρ, and impose the boundary condition

u0
z (1)− (ρ− 1) = 0, (9)

which constrains u0
z (1) to lie in Σρ.

We compute a second orbit segment uΓ(t) on W u(Γ) in the following way, where we assume that
we have available Γ and its unstable Floquet bundle (as solutions of an additional BVP [41, 42]).
Since trajectories on W u(Γ) spiral away from Γ, it suffices to consider only one normalized vector
vu(γ) of the unstable Floquet bundle. For convenience, we choose γ as the intersection point of Γ
with Σρ. The point wu0 is defined as

wu0 = γ + δΓvu(γ), (10)

where δΓ is a fixed distance from Γ along vector vu(γ). We define the point wu1 as the first return of
the trajectory through wu0 to the local planar section spanned by vu(γ) and a vector vΣ ∈ Σρ that
is perpendicular to vu(γ). The line segment between wu0 and wu1 can be viewed as an approximate
fundamental domain for W u(Γ), and we consider the boundary condition

uΓ(0) = wu0 + ζ(wu1 − wu0 ), (11)

where ζ ∈ [0, 1). The orbit segment uΓ(t) is computed as satisfying (7) and (11), and we again
monitor its z-component uΓ

z (1) to detect the returns to Σρ. We choose the point uΓ(1) = qκ that

lies on W̃ u
F(Γ) near p+ and corresponds to the orbit segment with the lowest number of returns to

Σρ, namely, 16 returns. We then impose the boundary condition

uΓ
z (1)− (ρ− 1) = 0. (12)

The distance between the two points u0(1) and uΓ(1) in Σρ is initially large, as in Fig. 6. We
continue the BVP for uΓ satisfying (7) and boundary conditions (11) and (12) with ζ as a free
continuation parameter, and monitor

κ = |qu − qκ| = |u0(1)− uΓ(1)|,

until κ = 10−4. We then impose the additional boundary condition

|qu − qκ| − κ = 0, (13)
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and continue the BVP for u0 and uΓ with (8), (9), and (11)–(13), where the system parameter ρ is
decreasing. We detect ρF as the moment when (6) is zero, which means that Zκ is aligned with V .

The radius κ of Cκ determines the accuracy of Zκ with respect to the actual tangent Z of W̃ u
F(Γ)

at the end point qu. The difference between Zκ and Z is O(κ2) since W̃ u
F(Γ) is smooth. On the

other hand, there is a trade-off and κ should not be chosen too small: as κ decreases, the point qκ
approaches the point qu, which implies that uΓ(t) passes very close to 0. In the limit of κ → 0,
the orbit segment uΓ(t) connects to 0 and the integration time τ goes to ∞. Numerically, this
means that it is difficult to calculate uΓ(t) accurately for very small κ. We found that κ = 10−4 is
the most suitable value for the calculations we present here, and we have confidence in our value
of ρF ≈ 31.01 to two decimal places. This statement is corroborated by performing the above
computation of ρF for each of the manifolds W u(Γrl), W

u(Γrll) and W u(p+) and for several choices
of κ. We found that the ρF -values for each κ only change in the fourth decimal place; see Sec. B
and the data in Table 2 for details.

5 The locus of the first foliation tangency

The advantage of our method is that, once a zero of (6) has been detected, it can be continued in
any pair of the system parameters. To this end, we impose the additional boundary condition

V ⊥ · Zκ = 0 (14)

and continue the BVP for u0 and uΓ with (8), (9), and (11)–(14) with either ρ and σ; ρ and β; or
σ and β as continuation parameters. In this way, we find the locus F1 of the loss of the foliation
condition in any two-parameter plane.

When starting the computation of F1 in the (ρ, σ)-plane from the detected value of ρF for
σ = 10, we find that ρ decreases and σ increases. As we continue F1 in the direction of decreasing
ρ, the point qu moves closer to p+ in Σρ and the integration time τ increases dramatically. In the
limit when qu coincides with p+, the computed branch of the one-dimensional unstable manifold
W u(0) coincides with the respective branch of the one-dimensional stable manifold W s(p+); by
the symmetry (2), the other branch of W u(0) connects to p−. This configuration is known as a
T-point [28, 49], and the locus F1 is associated with the first or principal T-point, denoted T1 that
is located at (ρT , σT ) ≈ (30.8680, 10.1673). There exists an infinite sequence Ti of T-points, each of
which can be found accurately and systematically with a BVP set-up; we refer to [16] for details.

We cannot continue the curve F1 of first foliation tangency through the point T1, but we can
find the other side of F1 past T1 by setting up the BVP anew. This is illustrated in Fig. 8. Panel (a)
shows that the locus F1 has two branches that meet at the point T1. From the point T1 emerge two
curves, labeled α1 and h1. Along α1 there is a sudden switch in the direction of escape to infinity
for the one-dimensional stable manifolds W s(p±). This phenomenon, refered to as an α-flip [16],
leads to an additional half turn for one branch of W s(p±). There are other curves αi for any integer
i that end at the respective principal T-points Ti; see [16] for details. The curve h1 represents the
main homoclinic and heteroclinic connections of p±, which lie extremely close together so that they
cannot be distinguished in the (ρ, σ)-plane. Also shown is a circle Cη with center T1 and radius
η = 2.8729, which is parameterized as

{
ρ = ρT + η cos(θ),
σ = σT + η sin(θ).

(15)
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Figure 8: Computing the locus F1 past the T-point T1. Panel (a) shows the curves F1 (brown), h1

(green) and α1 (teal) in the (ρ, σ)-plane with the circle Cη for η = 2.8729 centered at T1. Panel (b)
shows intersection curves of W u(Γrl) in Σρ at θ = 0.3142, indicated by the black dot on Cη, together
with the direction V at p+; the range shown is the square with all sides at distance 5 from p+.

The curve F1 intersects Cη at θF ≈ 2.1231 and θF ≈ −0.7680, while α1 intersects Cη at θα ≈ 3.28720
and h1 at θh ≈ 0.14097. The black dot on the circle Cη labeled (b) corresponds to θ = 0.3142; the
situation on Σρ for this parameter point is illustrated in Fig. 8(b), which shows intersection curves

in W̃ u(Γrl) near p+, the point qu, the direction V at p+ and the curve C. We observe that the phase
portraits in Fig. 8(b) and Fig. 5(b2), for (ρ, σ)-pairs on either side of h1, are topologically different.

Nevertheless, the curve W̃ u
F(Γrl) has the end point qu in Σρ also in Fig. 8(b). This allows us to set

up a BVP as in Sec. 4.2, but now with the additional condition that the values of ρ and σ lie on
a circle Cη. That is, we continue the BVP for u0 and uΓ with conditions (8), (9), (11)–(13), and
(15), where θ is a decreasing (or increasing) continuation parameter, until (6) is again satisfied. We
then compute the new branch of F1 as before with ρ and σ as continuation parameters and without
requiring (15). Indeed, the top branch of F1 in Fig. 8(a) was computed in this way. Note that the
overall curve F1 is smooth at T1.

5.1 Tangency locus in the (ρ, σ)-plane

Figure 9 is a direct comparison of our computed bifurcation diagram in panel (a) with the corre-
sponding sketch by Bykov and Shilnikov [14, 15] in panel (b). The main elements of comparison are
the curve EtoP of heteroclinic connections from the origin to Γrl and the curve F1 of first foliation
tangency, with the T-point on it; they are denoted EtoP, F1 and T1, respectively, in panel (a), and
la, lk and Q, respecitvely, in panel (b). The agreement between these objects is very good. Notice,
in particular, that the intersection K1 ≈ (27.74, 17.87) of EtoP and F1 in panel (a) agrees well
with the intersection point K ≈ (27.7, 17.7) of la and lk in panel (b); similarly, the location of T1 at
(ρT , σT ) ≈ (30.8680, 10.1673) in panel (a) agrees well with Q ≈ (30.4, 10.2) in panel (b). The region
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Figure 9: First foliation tangency locus F1 and associated bifurcation curves of (1) in the (ρ, σ)-
plane for β = 8

3
. Panel (a) shows our computations, where the curves EtoP (blue) and F1 (brown)

intersect at points K1 and K2 and bound the region where the Lorenz attractor L exists (purple
shading). Also shown are T1 and the curves hr (black), H (red), h1 (green) and α1 (teal); the region
of preturbulence is shaded grey and the region for which a quasi-attractor exists is shaded blue;
darker tints indicate regions of multistability. Panel (b) is the sketch [15, Figure 3] by Bykov and
Shilnikov. It shows the curve la of EtoP connections and the curve lk of first foliation tangency,
which intersect at the point K; the T-point is the point Q and the Lorenz attractor exists in the
shaded region A; reproduced from Springer and Birkhäuser, Selecta Mathematica Sovietica, On the
boundaries of the domain of existence of the Lorenz attractor, 11, 1992, 375–382, V V Bykov and
A L Shilnikov, with kind permission of Springer Science+Business Media.
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shaded purple in panel (a) agrees with the shaded region labeled A in panel (b), where the Lorenz
attractor L was found to exist by Bykov and Shilnikov.

The agreement of the two panels of Fig. 9 over the parameter range of panel (b) confirms
simultaneously the validity of our continuation approach for finding F1, as well as Bykov and
Shilnikov’s method for finding the equivalent curve lk. Indeed, their approach is quite different
and not based on continuation. Rather, to compute the locus lk, Bykov and Shilnikov consider
W u(0) at the boundary of the chaotic attractor as a separatrix. Specifically, they consider the
separatrix value A, which describes the orientation of the Poincaré return map: for A < 0, a hooked
horseshoe exists, and for A > 0, it does not. Therefore, the locus A = 0 are the points at which
there is a topological change in the chaotic attractor that corresponds to the loss of the foliation
condition. To approximate the value of A, Bykov and Shilnikov determine in [15] a change in the
orientation of homoclinic orbits of 0. The manifold W s(0), when followed around a homoclinic loop
of W u(0), may form either an orientable surface, homeomorphic to a cylinder, or a non-orientable
one, homeomorphic to a Möbius band. The homoclinic orbit switches from being orientable to
being non-orientable when A = 0, which occurs at a codimension-two bifurcation point called an
inclination flip [37]. For the Lorenz system there are many different homoclinic loops to 0 and
the associated inclination flip points appear to lie on a curve; it is not clear, however, that lk is
indeed a curve. Bykov and Shilnikov computed lk by following a trajectory close to a homoclinic
loop of W u(0) and checking on which side of W s(0) this trajectory returns to a cross-section close
to 0 and transverse to W s(0); the cross-section used by Bykov and Shilnikov had to be chosen
carefully, especially for parameter values near T-points [54]. Further computational details are not
given in [15] of how and for which homoclinic orbits the inclinination flip points were identified to
determine and sketch the curve lk in the (ρ, σ)-plane.

Figure 9(a) shows the (ρ, σ)-plane over a larger range; moreover, apart from the curves EtoP
and F1, we also computed and show the curve hr of the first homoclinic bifurcation, the curve H
of Hopf bifurcation, and the curves α1 and h1 associated with the T-point T1. In this way, we
are able to distinguish regions of different dynamics of the Lorenz system. In the white region to
the left of the hr curve the equilibria p± are stable and the only attractors. In the grey-shaded
region between hr and EtoP one finds the preturbulent regime [38], where p± are still the only
attractors but arbitrarily long chaotic transients can be found. To the right of EtoP one finds a
chaotic attractor, which coexists with the attractors p± to the left of the curve H. As was already
mentioned, the Lorenz attractor L exists in the purple-shaded region bounded by the curves EtoP
and F1. As Fig. 9(a) shows, we find a second intersection point between these two curves at
K2 ≈ (48.02, 4.02), which was not known to Bykov and Shilnikov. Hence, we conclude that the
region of existence of L is, in fact, bounded in the (ρ, σ)-plane. In the blue-shaded regions a so-called
quasi-attractor exists [2, 55]. In this region of the parameter space the quasi-attractor undergoes
many more bifurcations, including periodic-doubling cascades, which are not shown in the figure;
see [10, 24, 57] for more details.

5.2 The locus in the full parameter space

An advantage of our BVP continuation approach is that, once we have identified points on either of
the two branches of the curve F1 in the (ρ, σ)-plane, we can follow them as curves in any combination
of two parameters. Figure 10 shows the locus F1 of first foliation tangency as part of the bifurcation
diagram in the (ρ, β)-plane for fixed σ = 10 in panel (a) and in the (σ, β)-plane for fixed ρ = 28 in
panel (b); the labels and shading are as in Fig. 9(a). Note that the principal T-point T1 also appears
in each of these parameter planes, at T1 ≈ (30.4744, 2.6232) in panel (a) and at T1 ≈ (8.9466, 2.3490)
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Figure 10: First foliation tangency locus F1 and associated bifurcation curves of (1) in the (ρ, β)-
plane for σ = 10 in panel (a), and in the (σ, β)-plane for ρ = 28 in panel (b); compare with
Fig. 9(a).
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Figure 11: The surfaces EtoP (blue) and F1 (brown) up to their intersection curves K1 and K2

form a cone in (ρ, σ, β)-space, shown here for (ρ, σ, β) ∈ [10, 120]× [0, 50]× [1, 7]; also shown is the
surface H (red) inside the cone. The curve of T1 lies on F1 and it meets K1 and K2 at the T-point-
Hopf bifurcation point TH at (ρ, σ, β) ≈ (16.4907, 3.9297, 1.0324). The (ρ, σ)-plane for β = 8

3
from

Fig. 9(a) is shown in grey with the corresponding intersections of F1, EtoP and H highlighted as
curves.

in panel (b), and again divides the curve F1 into two branches. Moreover, we find that the curves
EtoP and F1 have two intersection points, at K1 ≈ (18.86, 1.64) and K2 ≈ (155.98, 9.03) in the
(ρ, β)-plane of panel (a), and at K1 ≈ (3.23, 1.53) and K2 ≈ (18.10, 2.70) in the (σ, β)-plane of
panel (b). Hence, we conclude that the region of existence of L between the curve F1 and EtoP
is a bounded region in all three parameter planes in Figures 9(a) and 10. Notice further that the
general features of the three two-parameter bifurcation diagrams are very similar.

Figure 11 shows that, in the full (ρ, σ, β)-space, the region of existence of the Lorenz attractor L
is a slanted cone bounded by the surfaces EtoP and F1 that intersect transversally in curves K1 and
K2. Also shown are the surface H of Hopf bifurcation inside the cone and the curve T1 of T-points
on the surface F1. The slanted conical shape explains why a bounded region of existence of L can
be found in each cross-section defined by a parameter pair, provided the respective third parameter
is large enough. Moreover, we conjecture that in these three cross-sections the relative positions
of the curves EtoP, F1 and H are always topologically as shown in Figures 9(a), 10(a) and 10(b).
We illustrate this observation in Fig. 11 by showing the corresponding segements of the bifurcation
curves in the (ρ, σ)-plane for β = 8

3
. In fact, the surfaces in Fig. 11 were obtained by computing

the curve segments of EtoP, F1 and H in the (ρ, σ)-plane for 60 different values of β ∈ [1, 7] and
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then rendering the corresponding data as individual surfaces; intersection data was used to obtain
the curves K1 and K2, and the intersection between H and F1, while the curve T1 was computed
directly by continuation.

The tip of the slanted cone in Fig. 11 is formed by a point TH of T-point-Hopf bifurcation at
(ρ, σ, β) ≈ (16.4907, 3.9297, 1.0324). As the name suggests, at the codimension-three bifurcation
point TH, the equilibria p± involved in the T-point heteroclinic connection undergo a Hopf bifurca-
tion and, hence, are nonhyperbolic. In (ρ, σ, β)-space, this corresponds to the curve T1 ending on the
surface H. Past the point TH, the (pair of) connecting orbits from the origin 0 to p± are no longer of
codimension two, but rather structurally stable because p± are now attractors. The T-point-Hopf
bifurcation point in the Lorenz system has been found and studied by Algaba et al. in [4]. They
show that a curve of codimension-two T-point bifurcation emerges from this codimension-three
point and that codimension-one connections from 0 to the bifurcating saddle periodic orbits exist
nearby. The latter correspond to the surface EtoP in Fig. 11, which indeed meets the surface H
exactly at the point TH.

The new observation in Fig. 11, which goes well beyond the results in [4], is that the T-point-Hopf
bifurcation point TH also involves the locus F1 of first foliation tangency and, hence, the emergence
of a region of existence of the Lorenz attractor L. In fact, we find that the two intersection curves
K1 and K2 of the surfaces EtoP and F1 are two branches of a smooth curve K that is transverse to
T1 at TH; the intersection curve of F1 and H is also smooth and tangent to K at TH. Our results
show that the codimension-three point TH emerges as the organising center that gives rise to the
Lorenz attractor L and the cone that bounds its region of existence. It is a natural conjecture from
Fig. 11 that the the region of existence of L is unbounded in (ρ, σ, β)-space. This is corroborated by
the work of Barrio and Serrano in [7, 10, 11], who use numerical integration and the computation
of Lyapunov exponents to identify regions of chaotic dynamics via the computation of Lyapunov
exponents. More specifically, these authors consider where chaotic dynamics exists in the (σ, β)-
plane of the Lorenz system for various values of ρ; they find that the corresponding regions grow as
ρ increases, yielding an overall conical shape of the region of existence of chaotic dynamics in the
(ρ, σ, β)-space. Barrio and Serrano, do not distinguish the region of existence of L within the overall
parameter set of chaotic dynamics. Yet, for low values of the parameters ρ, σ and β, the cone of
existence of L in Fig. 11 appears to agree well with the parameter region of chaotic dynamics found
in [11].

5.3 Further first foliation tangencies in the (ρ, σ)-plane

The first foliation tangency created by crossing F1 corresponds to the loss of the foliation condition
and provides a boundary to the region of existence of L. However, we find that there are further
first foliation tangencies Fi associated with further T-points Ti. Figure 12 shows a larger region of
the (ρ, σ)-plane with the additional loci F2 and F3 that pass through the T-points T2 and T3, respec-
tively. As discussed earlier, each T-point Ti comes with associated curves hi of homo/heteroclinic
connections and αi of α-flips. We also show the first homoclinic bifurcation hr, the heteroclinic
connection EtoP and the Hopf bifurcations H from Fig. 9(a) with the same shading of the different
regions. The periodic orbit Γrl is an attractor in the dark-grey shaded region, bounded by the curve
PD1 of a period-doubling bifurcation, which is part of a cascade of period-doubling bifurcations;
we plot the fifth period-doubling bifurcation curve PD5, which indicates the limit of this cascade.
Finally, we show four further curves of homoclinic bifurcations, labeled hrl, hrlr, hrlrr and hrlrll
indicating the respective symbol sequence of the associated homoclinic orbit. Notice that hrlrr and
hrlrll spiral into T2 and T3, respectively, while hrl and hrlr pass in between T-points.
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Figure 12: Bifurcation diagram in the (ρ, σ)-plane with the first three first foliation tangency
curves Fn for n = 1, ..., 3 (brown); they contain the T-points (purple) T1 ≈ (30.8680, 10.1673),
T2 ≈ (85.0292, 11.8279) and T3 ≈ (164.1376, 12.9661), respectively, with the associated curves of
homo/heteroclinic connections hi (green) and α-flips αi (teal). Also shown are the curves hr, EtoP,
and H, using the same colors and shadings as in Fig. 9(a), and further homoclinic bifurcation curves
hrl, hrlr, hrlrr and hrlrll (black). The curve PD1 bounds the dark-grey region where the periodic
orbit Γrl is an attractor. The limit of a cascade of period-doublings in the light-grey region is in-
dicated by the curve PD5 of fifth period-doubling bifurcation. The black diamonds labeled (a)–(c)
correspond to columns of Fig. 13.



Finding first foliation tangencies in the Lorenz system Creaser, Krauskopf & Osinga 27

(a1)

p+

p−

Wu(Γrl)

Γrl

Wu(0)

0

Σρ

�
�
��

y

XXXz x

6
z

(a2)

W̃u(Γrl)

W̃ s(0)

p+
p−

⊙ ⊗

⊗ ⊙

Figure 13: The unstable manifold W u(Γrl) (red) and the two foliations in Σρ after F1 for (ρ, σ) =
(50, 15) in colum (a), after F2 for (ρ, σ) = (100, 20) in column (b), and after F3 for (ρ, σ) = (170, 255)
in column (c); see the correspondingly labeled points (black diamonds) in Fig. 12. Panels (a1)–(c1)
show Γrl (yellow) with W u(Γrl) (red), W u(0) (brown), and Σρ (green), and panels (a2)–(c2) show

W̃ u(Γrl) (red), W̃ s(0) (blue) and the tangency locus C (grey) in Σρ; compare with Figs. 3 and 4.
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Figure 13: (continued).
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Figure 13: (continued).
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A successive crossing of the curves Fi as ρ and/or σ increase corresponds to the onset of ad-

ditional tangencies between the intersection curves W̃ u(Γrl) and W̃ s(0) with Σρ. How this works
geometrically is illustrated in Fig. 13 with images of the respective invariant manifolds at the pa-
rameter points (black diamonds) labeled (a)–(c) in Fig. 12. Specifically, the top panels of Fig. 13
show Γrl with its two-dimensional unstable manifold W u(Γrl), the one-dimensional unstable mani-
fold W u(0), and the intersection plane Σρ; the bottom panels show the corresponding intersection

curves W̃ u(Γrl) and points W̃ u(0) with Σρ, together with W̃ s(0). Observe from panels (a2)–(c2)

that none of the curves in W̃ u(Γrl) crosses the tangency locus C. Fig. 13(a) is for (ρ, σ) = (50, 15),
a parameter pair in between F1 and F2, and panel (a2) clearly shows that there are tangencies

between W̃ u(Γrl) and W̃ s(0) in the central region where the flow is down; compare with Fig. 4(b).

These tangencies are due to the U-shape of curves in W̃ u(Γrl); there is a single point of tangency

with a curve of the stable foliation on each of the curves in W̃ u(Γrl). When F2 is crossed, the
central part of W u(Γrl) appears to scroll around the z-axis; see Fig. 13(b1). Panel (b2) shows that

the curves in W̃ u(Γrl) now make a full turn around the origin of Σρ; hence, each curve in W̃ u(Γrl)
now has two points of tangency with the stable foliation. When F3 is crossed, one finds an addi-
tional half-scroll of W u(Γrl) around the z-axis in Fig. 13(c1), so that curves in W̃ u(Γrl) now make
one-and-a-half turns around the origin of Σρ and each curve has three points of tangency with the
stable foliation.

We remark that Dellnitz et al. [17] computed the closure of the unstable manifold W u(p+) of
p+, which is a global attractor, for different values of β ∈ [0.4, 8

3
] and fixed ρ = 28 and σ = 10

to illustrate their box covering method. As β is decreased, their computed attractor shows an
increasing amount of spiraling behavior around the z-axis. With their focus on computation and
visualization, the authors of [17] did not further investigate this phenomenon. Their global attractor
is reminiscent of W u(Γrl), shown in Fig. 13(c1), since decreasing β for fixed ρ = 28 and σ = 10 is
analogous to increasing ρ for fixed β = 8

3
and σ = 10; compare Figs. 9 and 10.

We detected and continued the first foliation tangencies along the loci F2 and F3 with our
multi-segment BVP set-up from Sec. 4.2 as follows. The computation is started at fixed θ = 0.3142
on the circle Cη with radius η, shown in Fig. 8(a). We continue the BVP with conditions (8),
(9), (11)–(13), and (15), and increase η as a continuation parameter until we detect further zeros
in (6). Each such zero corresponds to the moment of onset of another foliation tangency. Once
it is detected, the new first foliation tangency is continued in ρ and σ as the solution of the BVP
with conditions (8), (9), and (11)–(14). In this way, we compute the loci F2 and F3 above and up
to the T-points T2 and T3, respectively. To detect and compute the other sides of F2 and F3, we
continue the BVP with conditions (8), (9), (11)–(13), and (15), and increase η until η = 60 and
η = 140, respectively. We then fix η at each of these values and continue the same BVP but now
with θ as a decreasing continuation parameter. In this way, a zero of Fig. 6 is detected in each case,
and continuation in ρ and σ of the BVP with conditions (9), (11)–(14) yields the other sides of F2

and F3, below T2 and T3. Notice from Fig. 12 that the loci F1, F2 and F3 end very near the curve
PD5, that is, near the limit of the period-doubling cascade starting from the periodic orbit Γrl that
is used in our computational set-up.

It is interesting to compare the bifurcation diagram in Fig. 12 with the figure by Barrio et al.
from [12, Figure 8(a)] that illustrates the type of attractor of the Lorenz system. Specifically, these
authors considered a grid of parameter points in the (ρ, σ)-plane and determined numerically “solid-
color regions associated with constant values of the kneading invariant [that] correspond to simple
dynamics dominated by stable equilibria or stable periodic orbits” [12]. The curves hr and EtoP
are readily identified. More importantly, one can observe changes of color between neighboring
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regions that appear to lie along curves associated with T-point bifurcations Ti. These color changes
correspond to the addition of a half-twist in the template of the attractor, and they align very well
with the loci F2 and F3 in Fig. 12.

6 Conclusions and outlook

We characterized and found the moment of loss of the foliation condition, where the geometric
Lorenz map no longer faithfully describes the dynamics of the classic Lorenz attractor L. More
specifically, we identified and computed the onset of tangencies between the stable and unstable
foliations in the classic Poincaré section Σρ through the secondary equilibria p±. To this end, we
computed the two-dimensional unstable manifold W u(Γrl) of the symmetric periodic orbit Γrl and

its intersection curves W̃ u(Γrl) with Σρ, which lie in the unstable foliation. We also computed

curves of the stable foliation as the intersection curves W̃ s(0) of the stable manifold W s(0) of the
origin 0 with Σρ. To find the moment of first foliation tangency we formulated and implemented
a multi-segment boundary value problem to define a regular test function that is zero when the
tangent vector at the end point of a curve in W̃ u(Γrl) is collinear with the direction of the stable
foliation. This allowed us to determine the value of ρ = ρF ≈ 31.01 as the moment when the
foliation condition fails for σ = 10 and β = 8

3
. This value was confirmed as accurate to two decimal

places by independent computations with unstable manifolds W u(Γrll) of Γrll and W u(p+) of p+.
Our approximation of ρF lies outside the interval suggested by Sparrow [57] (from simulations of
how vectors return to Σρ), but matches very well the approximation found in the work of Bykov
and Shilnikov [15].

An advantage of our approach is that the locus F1 of the first foliation tangency can be continued
readily as a curve in two parameters. There is very good agreement between the curve F1 in the
(ρ, σ)-plane with β = 8

3
fixed and the corresponding curve lk found by Bykov and Shilnikov [15],

who identified numerically when flip bifurcations of various homoclinic orbits occur; we view this
agreement as a mutual verification of two complimentary approaches. Our implementation of simply
the condition that the foliations in Σρ become tangent does not require making assumptions about
the underlying dynamics such as the existence of homoclinic orbits. We were able to continue the
locus F1 further in the (ρ, σ)-plane and show that it intersects the curve of EtoP connections twice;
hence, the region of existence of the Lorenz attractor L is, in fact, bounded. We find that it is
bounded for all sufficiently large values of β, as well as in the (ρ, β)-plane and the (σ, β)-plane for
sufficiently large values of σ and ρ, respectively. By computing segments of the respective bifurcation
curves in the (ρ, σ)-plane for 60 values of β ∈ [1, 7] we show that the region of existence of L has the
shape of a slanted cone in the three-dimensional (ρ, σ, β)-parameter space; this is consistent with
the findings of Barrio and Serrano [7, 10, 11] regarding parameter regions with chaotic dynamics.

In each of the different two-parameter planes, we find that the curve of first foliation tangency
has two branches on either side of a point of principal T-point bifurcation, where one finds a
codimension-two heteroclinic cycle between the origin 0 and the equilibria p±. Hence, in (ρ, σ, β)-
space, there exists a curve of principal T-point bifurcation that lies on the surface of the loss of
the foliation condition, and we find that the tip (ρ, σ, β) ≈ (16.4907, 3.9297, 1.0324) of this cone
is a codimension-three T-point-Hopf bifurcation point. The bifurcation structure near a T-point-
Hopf bifurcation in the Lorenz system has recently been studied by Algaba et al. [4] but is not
yet complete. Our results are consistent with their analysis and, furthermore, show that the locus
of the loss of the foliation condition and the Lorenz attractor L are effectively created by this
codimension-three point. Determining the exact connection between the T-point-Hopf bifurcation
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and the loss of the foliation condition is an interesting subject for further research.
There exists a sequence of further T-point bifurcations in the Lorenz system, which can be found

systematically by identifying and continuing the phenomenon we refer to as an α-flip [16]. It is a
natural conjecture that a first foliation fangency Fi is associated with any of the infinitely many
T-points Ti. Indeed, we find further curves F2 and F3 of first foliation tangencies in the (ρ, σ)-plane
that are associated with the T-points T2 and T3, respectively. Each such tangency between the
stable and unstable foliations leads to changes of the observed attractor. Our bifurcation diagram
with loci of first foliation tangencies in the (ρ, σ)-plane is in very good agreement with the numerical
images by Barrio et al. [12] that illustrate the symbolic type of the attractor. The boundary of the
quasi-attractor was also found by Shilnikov et al. in the related Shimizu-Morioka system, again
with the method from [15] of finding and connecting inclination flip points of homoclinic orbits in a
two-parameter plane [53, 55]. Their Figure 13 in [55] shows a sequence of additional T-points, and
it would be interesting to identify associated loci of further first foliation tangencies by continuation
in this system as well.

A related interesting question is to study further how other global bifurcations of the Lorenz
system relate to the overall bifurcation diagram in the (ρ, σ)-plane presented in this paper. In
particular, many (structurally stable) heteroclinic connections from p+ to 0 were identified in [21]
as part of an infinite sequence. All of these emerge from the first homoclinic bifurcation hr; when
continued in ρ, each of these connecting orbits, except for the basic one, has a fold for some high value
of ρ and, when continued past the fold for decreasing ρ, ends at a particular secondary homoclinic
bifurcation. The many secondary homoclinic bifurcations found in [21] give rise to curves in the
(ρ, σ)-plane in the range 0 ≤ ρ ≤ 200 that accumulate on the the curve EtoP. In the process, these
curves cross the loci Fi of first foliation tangency and, therefore, the corresponding homoclinic
bifurcations are expected to undergo inclination flip bifurcations [15]. The systematic investigation
of these numerous inclination flip bifurcations, of which there exist several types [37], and their role
for the organisation of nearby (chaotic) dynamics is left for future work.

The BVP approach presented here allows one to find and investigate systematically (first) tan-
gencies between invariant manifolds that lead to topological changes of chaotic attractors, including
their creation and destruction. We expect that this will also be relevant for the study of other
systems, especially of other three-dimensional dissipative systems. Examples are the Rössler sys-
tem and the Rosenzweig-MacArthur models considered by Barrio, Blesa and Serrano [6, 8, 9]. In
particular, Barrio et al. identify [9, Figure 1] a boundary curve in a two-parameter plane that
“determines a change in the topological structure of chaotic attractors [of the Rössler system and
a tritrophic food chain] from spiral [. . . ] to screw shaped [. . . ]” [9]. This curve passes through a
central or focal point of a bifurcation structure that is strikingly similar to that near a T-point of
the Lorenz system. The Rössler system [50] has different attractors for different parameter values,
which are referred to in [27] as the simple single-scroll Rössler attractor and the more complicated
funnel. The appearance of additional extrema in the first-return map corresponds to a topological
change in the structure of the attractor via the creation of additional funnel structures [6, 9]; a
transition from scroll to funnel attractor has also been observed in a Chua’s circuit experiment in
this way [47]. It would be interesting to find and visualize the stable and unstable manifolds in
these systems, to determine how their interactions organize the observed topological changes, and
to compute loci of first foliation tangencies directly by continuation.

Finally, we mention that it will be an interesting challenge to consider with similar methods
bifurcations of Lorenz-like attractors in higher dimensions. Higher-dimensional geometric Lorenz
attractors have been constructed, for example, by Bamón, Kiwi and Rivera-Letelier [5] and Shilnikov
and Turaev [59]. The system constructed in [5] is a non-invertible map of the plane that has been
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shown to contain a so-called wild Lorenz-like chaotic attractor, which is a higher-dimensional version
of a Lorenz attractor that contains a hyperbolic set with robust homoclinic tangencies. Bifurcations
that generate this type of dynamics in this map were studied recently in [36]; in particular, tangency
bifurcations of stable and unstable manifolds of different hyperbolic sets were identified as important
ingredients. In the vector-field context, the role of a T-point might be played by a heterodimensional
cycle formed by intersections of the stable and unstable manifolds of saddle periodic orbits with
different unstable dimensions. This type of structure has been shown to imply the robustness
of homoclinic tangencies in higher dimensions [13]. The minimal example of a heteroclinic cycle
between two saddle periodic orbits in a four-dimensional vector field has been identified recently
in a model of intracellular calcium dynamics [62]. The investigation of the bifurcation structure of
invariant manifolds in this vector-field model is ongoing work.
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A List of accuracy parameters and Auto constants

The accuracy of the computations with our multi-segment BVP continuation set-up depends on the
number and distribution of mesh points and the starting distances in the (un)stable eigenspaces
from the equilibrium or periodic orbit [20]. Since we used Auto [18, 19] for the continuation
of the BVPs, we specify the Auto constants along with other accuracy parameters used in the
computations. For each of the figures in this paper, the one-dimensional unstable manifold W u(0)
for fixed ρ, σ and β was approximated starting at a distance δ0 = 10−7 from 0 and computed up
to the tenth intersection with Σρ using NTST = 400, DSMIN = 1.0 and DSMAX = 10−5; a shorter

segement of W u(0) was plotted in Figs. 1, 2, and 4. The intersection points were plotted as W̃ u(0)
in Figs. 1, 3, 4, 5, 8, and 13.

The values used to compute the manifolds W u(Γrl), W
u(Γrll), W

u(p+), W s(0) and bifurcation
curves hr, hrl, hrlr, hrlrr and hrlrll are summarized in Table 1. The first column indicates the
figure number and we then specify the following data: the label of the manifold or bifurcation
curve computed; the distance δΓ, δ0 or δp+ of u(0) from periodic orbits Γrl or Γrll, the origin 0 or
the equilibrium p+, respectively; the maximal arclength Lmax of the orbit segments; the maximal
integration time τmax; the number of mesh points NTST; the minimal step size DSMIN and the
maximal stepsize DSMAX of the Auto computation; throughout we used NCOL = 4 collocation
points per mesh interval. The curves αi and hi in Figs. 8, 9, 10, and 12 were computed as in [16].
The EtoP connection in Figs. 9, 10, 11, and 12 was computed with Lin’s method as described in [42].

B Dependence of ρF on chosen κ and V

We briefly discuss how the accuracy of the approximation of ρF as a zero of (6) depends on the
choices for the radius κ, which determines the tangent at the end point qu of a leaf in the unstable
foliation, and the direction V , which represents the tangent at qu to the corresponding leaf in the
stable foliation.
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Table 1: Accuracy parameters used in the computations for the given figures.

Figure Manifold δΓ, δ0 or δp+ Lmax τmax NTST DSMAX DSMIN

1 W u(Γrl), W̃
u(Γrl) 0.1 700 7.0 400 0.1 10−6

2 W u(Γrl) 0.1 700 7.0 400 0.1 10−6

W u(Γrll) 0.1 500 5.0 400 0.1 10−6

W u(p+) 1.0 700 7.0 400 0.2 10−4

3 W s(0), W̃ s(0) 1.0 −3.0 300 0.2 10−3

W̃ u(Γrl) 0.1 700 7.0 400 0.1 10−6

4 W u(Γrl), W̃
u(Γrl) 0.1 12.0 1200 0.1 10−6

W̃ s(0) 1.0 −4.0 1000 0.001 0.2

5 W̃ u(Γrl) 1.0 9.0 300 0.1 10−4

W̃ s(0) 1.0 −5.0 300 0.1 10−4

6, 7 W u(Γrl) 0.1 400 1.0 10−5

8 W u(Γrl) 0.1 7.0 400 1.0 10−5

9, 10, 12 W u(Γrl) 0.1 400 1.0 10−5

hr – hrlrll 0.01 400 1.0 10−5

11 W u(Γrl) 0.1 400 1.0 10−5

13 W̃ s(0) 1.0 −3.0 200 1.0 10−4

(a) W u(Γrl), W̃
u(Γrl) 0.1 5.0 500 0.1 10−5

(b) W u(Γrl), W̃
u(Γrl) 0.1 3.5 500 0.1 10−5

(c) W u(Γrl), W̃
u(Γrl) 0.1 2.5 500 0.1 10−5

Table 2: Estimates of ρF computed with each of the unstable manifolds W u(Γrl), W
u(Γrll) and

W u(p+) and various choices of κ.

κ ρF using W u(Γrl) ρF using W u(Γrll) ρF using W u(p+)

10−1 32.67338078 32.67348098 32.67337765

10−2 31.08704778 31.08707035 31.08704696

10−3 31.01406849 31.01410824 31.01406675

10−4 31.00714539 31.00740473 31.00713356

10−5 31.00653795 31.00642548

Leaves of the unstable foliation can be approximated using the unstable manifolds of periodic or-
bits or of p±. We computed ρF using three different unstable manifolds, namely, W u(Γrl), W

u(Γrll)
and W u(p+), and increasingly smaller values of κ. The results are shown in Tabel 2. The com-
putations were performed with other accuracy parameters as listed in Table 1. We approximated
ρF for κ = 10−k, where k = 1, . . . , 5, except for W u(Γrll), for which we only got κ down to 10−4;
as mentioned in Sec. 4.2, smaller values of κ are impractical due to the associated very close pas-
sage near the origin of the orbit segment uΓ. Table 2 suggests that the relative error appears to
decrease quadratically with κ for each of the three manifolds. This is in line with the theoretical
expectation because we are approximating a tangent of a generically quadratic curve with a secant
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Table 3: Estimates of ρF computed with the vectors V , Vint, and VF , together with the associated
angular difference from V , in both radians and degrees.

using V using Vint using VF

ρF 31.007145 31.007306 31.008982

angle (rad) 0 0.003453 0.039461

angle (deg) 0 0.197854 2.260963

through points at distance κ. We checked that an increase in the number of mesh points along
each orbit segment affects the values of ρF in Table 2 only in the fourth decimal place. Overall,
Table 2 provides the evidence that estimates for ρF are accurate to two decimal places when using
κ = 10−4.

As discussed in Sec. 4, we use the line V , given as the direction of W s(p+) projected onto Σρ, as

a convenient local approximation of tangent to the stable foliation W̃ s(0) at the point qu near p+.
To check the influence of the choice of V on the accuracy of the computed value of ρF we proceed
in the following way. For fixed ρ = 31.0, we compute the curves in W̃ s(0) up to total integration
time τmax = −5 and consider the curve nearest p+ in the central region of the Poincaré section,
where the flow points downwards. The normalized tangent vector to this curve at its intersection
point (x, y) ≈ (6.83797910, 4.87689754) with W̃ u

F(Γrl) is the vector

VF =

(
−0.94203910

0.33550312

)
.

The normalized vector V at p+ ≈ (8.94427191, 8.94427191), on the other hand, is

V =

(
0.85008957
−0.34111521

)
.

Since the stable direction changes linearly along W̃ u
F(Γrl), to first approximation, we interpolate

linearly between VF and V to find the improved vector

Vint =

(
−0.85751589

0.34066195

)

at qu ≈ (8.8294691, 8.75783413). Instead of V , we then use Vint, as well as the arguably less accurate
vector VF in our computation of ρF , as described in Sec. 4.1. The first row in Table 3 summarizes
the estimates of ρF for each of these vectors. The next two rows are the angle difference from V
in both radians and degrees. We find that both Vint and VF lead to the same approximation of ρF

to two decimal places, in spite of an angle difference at ρ = 31 of up to about 2.26 degrees. This
suggests that our BVP set-up is quite insensitive to the exact choice of direction vector for the
stable foliation at qu.
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