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Abstract

An important tool for understanding complicated dynamics in the iteration of a
map is the ability to find certain orbits of interest. In particular, connecting orbits
between saddle fixed points and/or saddle periodic points are special orbits that are
closely associated with intersections of stable or unstable manifolds. They can be found
numerically and then be continued in parameters as solutions of suitably formulated
boundary value problems (BVPs). We address the key issue that one needs to find a
seed solution when solving a BVP with Newton’s method. In our setting, a seed solution
takes the form of a finite sequence of points that almost satisfies the required conditions
of the BVP. To construct such seeds, we modify a numerical method that finds and
represents a one-dimensional stable or unstable manifold of a diffeomorphism in such
a way that a so-called pseudo-orbit for any computed point is readily available from
the data. We explain how pseudo-orbits of relevant points on a computed invariant
manifold can successfully be used as seeds for solving a variety of BVPs in a systematic
and efficient way. We illustrate our findings with two three-dimensional diffeomorphism
with complicated dynamics, by computing many orbits on an invariant manifold that
end in a chosen section, as well as numerous homoclinic and heteroclinic connectiong
orbits.

1 Introduction

Many interesting dynamical systems are given in the form of a map that evolves points in
phase space in discrete time by iteration. Such maps can be given explicitly, as is the case
for the Hénon map [8], or they can be defined by a vector field as a Poincaré map to a
specified section [13]. Both of these and many other examples are diffeomorphisms, that is,
smooth maps with smooth inverses, and we restrict our attention to this class of dynamical
systems, for which every point in phase space has a unique forward and a unique backward
trajectory.

Describing and classifying the possibly very intricate dynamics produced by a diffeo-
morphism is a difficult task. The key is to find the relevant invariant sets: the fixed points
and periodic orbits, as well as their stable and unstable manifolds when they are saddles.
For example, a transverse intersection between the stable and unstable manifolds of the
same fixed or periodic point gives rise to a hyperbolic set with chaotic Smale horseshoe
dynamics [24]. Furthermore, non-transverse intersections of manifolds, such as homoclinic
tangencies and heterodimensional cycles, are the primary mechanism for generating robust
nonhyperbolic dynamics [2, 7, 20].



Stable and unstable manifolds cannot generally be found analytically and must, in-
stead, be computed numerically. Algorithms for computing one-dimensional manifolds of
fixed points have been available for a while, and most use the iteration of an initial (ap-
proximate) fundamental domain sufficiently near the fixed point; see, for example, [12, 26].
One-dimensional manifolds can also be computed step-by-step as an arclength parametrised
curve by adding one point at a time until a sufficient arclength has been reached [18]. Stable
and unstable manifolds of periodic points are usually found in the same way by considering
a suitable iterate of the map. Crucially, the quality of the computed one-dimensional mani-
fold is controlled by ensuring that mesh points lie closer to each other when the curvature of
the manifold is large [12, 18]. We remark that already the numerical computation of stable
and unstable manifolds of dimension two is a much more difficult task, as it requires the
construction of a two-dimensional mesh; see [17]. Therefore, in higher dimensions, compu-
tational efforts tend to be focussed on special orbits on such manifolds only, such as orbits
that end in a section of interest, or homoclinic and heteroclinic orbits. An immediate and
natural problem formulation is in the form of a boundary value problem (BVP) with condi-
tions that ensure the solution is an orbit of the underlying dynamical system, and boundary
conditions that characterise the special nature of the solution of interest.

The work presented here is based on the algorithm described in [5], which uses funda-
mental domain iteration with subsequent (vectorised) mesh refinement motivated by [18].
The computed one-dimensional manifold is represented as an arclength-parametrised curve,
specifically, as a list of mesh points that are ordered by arclength distance from the saddle
fixed point. We show here how this algorithm can be modified with minimal additional
computational effort and data storage requirements, so that a finite pseudo-orbit from or to
a very small neighbourhood of the fixed point is readily available for each mesh point of the
computed one-dimensional manifold. Pseudo-orbits are a concept associated with shadow-
ing, which guarantees the existence of a nearby actual (finite) orbit of the diffeomorphism;
see [4, 14, 25, 27] and references therein. Hence, pseudo-orbits are natural seeds for finding
an initial solution of a BVP with Newton’s method. As soon as a first solution has been
found, it can subsequently be continued in system parameters as part of a bifurcation study
of associated global objects, and additional seeds to compute an entire solution family are
automatically constructed by the continuation algorithm; see [15, 16] for background infor-
mation. In other words, our method provides the key step of constructing the seed for the
very first solution to a BVP, and offers a systematic approach to identifying and computing
entire solution families that represent important global objects in a dynamical system given
by a diffeomorphism. As we will show with two examples, this capability is especially useful
for the case study of diffeomorphisms with complicated geometric structures associated with
robust non-hyperbolic dynamics. In particular, these systems may exhibit: blenders, which
are hyperbolic sets with invariant manifolds that act as if they were of higher dimension;
and heterodimensional cycles between periodic points with unstable manifolds of different
dimensions.

This paper is organised as follows. In Section 2 we introduce some notation and then
describe how we compute a one-dimensional invariant manifold including all its pseudo-
orbits; the MATLAB implementation of our algorithm can be downloaded from github.com/
dcjulio. In Section 3, we consider a family of three-dimensional Hénon-like diffeomorphisms
and show how to find orbits on the one-dimensional unstable manifold of a fixed point that
end in a chosen two-dimensional section. A large number of such orbits—and, hence, the



intersection set of the manifold with the section—can then be continued to show when
and how a blender arises as a relevant parameter of the Hénon-like family is changed. In
Section 4, we demonstrate how to use pseudo-orbits to find connecting orbits in a three-
dimensional diffeomorphism with a complicated nonwandering set and heterodimensional
cycles. Specifically, we find many different structurally stable homoclinic orbits to one
and the same saddle fixed point, as well as many non-transverse connecting orbits between
two fixed points of different index (number of unstable eigenvalues). Section 5 presents a
conclusion and discussion of directions for future work.

2 Computing a one-dimensional invariant manifold with its
pseudo-orbits

We consider a diffeomorphism
f:R*" = R"

with a saddle fixed point p = f(p) € R™ that has a single positive, real, unstable eigenvalue
Ay > 1. Our goal is to compute its unstable manifold

W4(p) ={x € R" | f*k(az) — pas k — oo},

which is a one-dimensional smooth curve that is tangent at p to the unstable eigenspace
spanned by an eigenvector v, of A\, [23]. Note that W"(p) consists of infinitely many
orbits that converge to p under iteration of the inverse f~!. We assume ), > 1, which
means that W*(p) is orientation preserving; to find W*(p) for the orientation-reversing case
with negative ), one considers the second iterate f2. Likewise, one-dimensional unstable
manifolds of periodic points can be computed by considering the corresponding higher iterate
of f. Finally, in our setting, any one-dimensional stable manifold can, by definition, be
computed as the unstable manifold of .

Since W*(p) is orientation preserving, it consists of two f-invariant branches (on either
side of p). Each branch is computed separately, up to a finite arclength, and represented as
a list M of suitably spaced mesh points that are ordered according to their (approximate)
arclength along W"(p) from p. We are interested in computing W*"(p) in such a way that
the resulting data allows us to construct a pseudo-orbit [27] for any computed point in the
mesh M.

In our setting, a pseudo-orbit is a finite sequence {a_p,...,ap} of length N + 1 such
that the image of the point a;, for j = 1,..., N, lies in an e-ball centred at the next point
in the sequence for some € > 0; here, € is expected to be small, so that we can think of the
sequence as an approximate finite orbit of f. We say that {a;}_n<;<o is a pseudo-orbit, or
more precisely, an e-pseudo-orbit of a point on W*(p) if the following conditions are satisfied

ag € M,
Vi€ {1l N} @) — gyl <= and (1)
la-n —pll <e.

In our notation, we use a negative sign for the subscripts of the points a; to indicate that
we assume qg lies approximately on W"(p) and its pseudo-orbit {a;}_n<j<o approximates



a true (finite) orbit on W*(p); a sequence with positive subscripts suggests a pseudo-orbit
for f approximating a true orbit on W#(p), which we will encounter in Section 4.

Note that there always exists ¢ > 0 so that any {a;}_n<;<o with ap € M is a pseudo-orbit
of a point on W*"(p). We take advantage of this fact and construct sequences {a;}_n<j<o C
M, that is, each of the points a; in the pseudo-orbit is a mesh point of the computed
manifold W*(p). Consequently, our construction is such that £ depends on the mesh size
Amax of M: as Apax decreases, so does the minimum value for €, which guarantees that the
e-pseudo-orbit will converge to a true (finite) orbit on W*(p) in the limit Apax — 0. Hence,
provided we approximate W*(p) with a sufficiently fine mesh M, appropriate pseudo-orbits
can be used as seeds for Newton’s method to find orbits on W"(p) up to any precision as
solutions of a suitable boundary value problem (BVP).

2.1 Generating a mesh representation of the manifold

For completeness, we briefly explain our algorithm from [5] that computes a mesh M resp-
resenting one branch of W*(p) up to a finite arclength L; the algorithm constructs M in an
iterative manner as a sequence of images under f of a fundamental domain of W*(p). A
fundamental domain has the defining property that it is intersected exactly once by every
orbit of f on W"(p). Hence, we start by constructing a mesh M of a fundamental domain
near p, and proceed by adding additional mesh representations of successive images of this
fundamental domain until the required arclength is reached (or exceeded). The total num-
ber of images needed, denoted K, depends on L and the choice of the first fundamental
domain; in what follows, we merely assume that K is sufficiently large.

To define My, we take a set {s1,...,s,} of equally spaced and ordered points in the
unstable eigenspace from p up to s, = p+ d vy, with 0 < § < 1. We then define

Mo = {sm, f(sj+),- -, f(sm)},

where s;« is the first point in the sequence that satisfies || f(s;+) —pl| > 6. If § is sufficiently
small, the linear dynamics dominates and |[f(s;+) — p|| = Ay ||sj* — p|| = Ay %5. Hence,
f(sj+) is expect to map ‘beyond’ s,, as soon as j* > m/\,. To ensure that ¢ is chosen
sufficiently small, we check that the distance n from the endpoint s,, to the line segment
between p and f(s;+) is of order O(5?).

By construction, all points in My lie in a very small neighbourhood of p. We define each
of their pseudo-orbits as the mesh points themselves with N = 0; it is straightforward to
verify that all conditions (1) are satisfied for e & \, 0.

The construction of My is illustrated in Fig. 1 for m =5 and 6 = 10~7. Shown is actual
data for the (first two components of the) Hénon-like family H, defined in Section 3, with
fixed point p = pt; see already (3) with parameters given by (4). We consider f = H?
because the unstable eigenvalue \* ~ —3.5428 of p = p* is negative. For Fig. 1, we applied
a translation and a rotation of the (z, y)-plane, such that p lies at the origin and its unstable
eigenvector v, is horizontal. Observe that j* = 1 in Fig. 1; indeed, the unstable eigenvalue
associated with H? is (\,)?, so that j* = [5/(—3.5428)2]. The inset shows how we check
that § is sufficiently small: the point s; lies at distance n = 1.23 x 10714 = O(6?) from the
line through p and f(s1).

The mesh M, preceeded by the fixed point p, represents the first computed segment of
W(p). We obtain longer segments by generating mesh representations My, for 1 < k < K,
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Figure 1: Construction of My (dark red) representing a fundamental domain on W*(p) for
the map H, defined in (3) with (4); here, & and g are the first two components of H after
translation and rotation so that p = p™ lies at the origin and v, is horizontal. Shown are
the fixed point p (green dot) and m = 5 points {si,...,s5} (orange dots) on the unstable
eigenspace (orange line), together with their images. The inset shows an enlargement near
p to illustrate the line segment (grey) between p and f(s1) and its distance 7 to s5; note the
large difference in scale between & and g.

of the next K fundamental domains as images under f. More precisely, at step k, we
form the set Méo) = f(Mk=1) = {f(gmy_,),---, f(gm,)} and then add (or remove) mesh

points in stages until the set M} := M ,gl’“) at stage i satisfies curvature-dependent accuracy
conditions, which are a combination of those introduced in [12, 18]. Specifically, we define
the distance A; between consecutive mesh points ¢; and gj4+1 in M,EZ’“), and the angle a;
between consecutive triplets of points centered at g;, and verify the following requirements
in this order:

(A) Aj < Apax, to guarantee a suitable baseline distance between mesh points;
(B) @j < amax, to ensure an overall bound on the angle;

(C) Ajoj < (Aad)max and Aj_jj < (Aa)max, to control the distance between mesh
points according to the local curvature at ¢;; and

(D) Anin < Aj, to ensure a suitable minimum distance between mesh points, which pre-
vents excessive addition of new mesh points, for example, during sharp turns of the
manifold.

Starting with condition (A), we check that it is satisfied for all mesh points in Méo); this
is implemented in a vectorised way. If (A) is not satisfied, points are added to the mesh,
the stage iy is increased, and condition (A) is checked again. The process is repeated until

)

condition (A) is satisfied for all points in M ,g““ ; only then is the next condition considered,

in the same way, and so on, until M}, := M,gik) satisfies (A)—(D) and the step is complete.
Crucially, every point that is added to My, is found as the image of a point on the previous
fundamental domain, as represented by piecewise-cubic Hermite interpolation between mesh
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Figure 2: Illustration of the integer pointers (grey arrows) to previous mesh points in Mj_q
that are approximate preimages of mesh points in M. The mesh points qy_o, ..., qr+3 € My
all have either ¢;_1, gi, ¢i+1 € My_1 as preimages (red dots), or they have been added during
a stage and their preimages (red open dots) lie on the cubic interpolation (light red curve)
of Mj_1 in between these three points. Also shown are disks of radius Apax (yellow) to
indicate the corresponding pseudo-orbits.

points in Mj_q. This way of constructing the overall mesh M = Up<p<x M}, in steps and
stages ensures that M represents the computed part of the branch of W*(p) to an accuracy
that is controlled by Apax, Omax, (A)max, and Apin; see [5] for more information on the
mesh refinement, accuracy conditions and error control.

2.2 Construction of pseudo-orbits of the manifold

Our approach for adding points M ,20) = f(Mj—_1) in successive stages, provides us with an
efficient way to record additional information that encodes pseudo-orbits of all mesh point
in My, for k > 1. Since every point in M}, is found either as the image of a mesh point in
Mj._1 (at the first stage), or as the image of a point on the cubic interpolation through mesh
points of My_; (at successive stages), the preimages of the points in My, are known when they
are added. We construct their pseudo-orbits by recording not their actual preimages, but
merely the indices of the mesh points in M1 that are closest to them. To this end, we only
need to expand the data structure by equipping every mesh point g, € M}, with a pointer
to the respective mesh point in Mp_1; specifically, we consider the pair (qgj,€j+1), where
£j+1 is the index of the point gy, , € My_; closest to the preimage. When the preimage
of q; is not already a mesh point, we define gy, , € My as the earlier (in arclength) of
the two mesh points that bound the small cubic curve segment containing the preimage;



choosing the earlier rather than closest mesh point allows for easier implementation without
compromising in accuracy. This methodology is illustrated in Fig. 2 for three mesh points
¢i-1,Gi> Gi+1 € My_1 and their images f(¢i-1), f(¢), f(¢i+1) € M.

Our method comprises a computationally inexpensive way of determining ¢;41 in a
unique way. This tracking of approximate inverse images of mesh points in My ensures that
the backward image error is bounded by the distance between mesh points in My_1, which
is at most Apax according to accuracy condition (A). This is true for any k and, therefore,
for all points of the final computed mesh M. Hence, for any mesh point agp = gy, € M, the
recursive expanded sequence of data points

{(CIZK,O); (qu—17£K)7 SRR (q517£2)7 (qfovgl)}v

with g7, € My (and pointer index 0 to p), allows us to define the corresponding pseudo-orbit

{qu?qﬁK,p"'vqflaqfo}' (2)

By construction, ||qe]- w—f _I(QZJ-)H < Anax for the pre-specified accuracy parameter A ax.
Since f is a diffeomorphism, and we only consider W*(p) up to a finite arclength, i.e., K
is finite, the forward difference ||f(qs,,,) — ;|| < € is also bounded for some ¢ > 0. While
this bound is not readily computable, because it depends on local contraction rates given
by Lipschitz constants, we still have that all conditions (1) are satisfied, because g,, € M
and |lqs, —pll <9 <e.

In conclusion, the sequence (2) can serve as a pseudo-orbit for either f or f~! or both,
depending on what is required for the BVP that is to be solved with this data as a seed.
The fact that € is not explicitly known is not a limitation from a practical perspective:
because € goes to zero linearly with Ap.x, it can always be guaranteed that (2) is a suitable
seed also under forward iteration of f. As the examples in the next two sections show, we
found that, when W*"(p) is computed to good accuracy as a curve, the pseudo-orbits of any
of the mesh points involved are successful seeds for the different BVPs. More specifically,
Newton’s method converges to an initial solution without a problem, regardless of whether
the set-up concerns orbits of f and/or f~!.

3 Finding and continuing the intersection set of a
one-dimensional manifold with a section

The Hénon-like family
H(:E,y,z)Z(y,a—y2—B:L‘, fz—i—y) (3)

has been introduced and studied as the first example of an explicitly given family of dif-
feomorphisms that has a blender [5, 10, 11]. A blender is a hyperbolic set A with a one-
dimensional stable or unstable manifold that cannot be avoided by an open set of curves [2].
Colloquially speaking, this one-dimensional invariant manifold of A acts like a surface so
that one cannot ‘see through it’ when viewed from an open set of directions.

In [10, 11], it was shown that H has a blender when the parameters « and (3 are chosen
such that the underlying Hénon map in the (x,y)-plane has a full Smale horseshoe, and
the contraction rate £ in the z-direction is sufficiently close to 1. The key to numerically
verifying whether H has a blender lies in checking the so-called carpet property of whether



the relevant one-dimensional invariant manifold of a saddle fixed point is dense in a suitable
projection. This is achieved by computing a large intersection set of the manifold with
a chosen two-dimensional section X, taken to be a plane. These intersection points are
then projected onto an interval to check for denseness; see [5, 10, 11] for details. In these
references, each intersection point is computed by interpolation between mesh points on the
computed one-dimensional manifold that lie either side of the chosen plane.

In a departure from this approach, we now show how to use pseudo-orbits on the invariant
manifold as seeds for a BVP that defines an orbit from (very near) a saddle point to the
chosen section Y. Crucially, each final point lies exactly in X, and the entire orbit with this
property can then be continued in any of the parameters of H.

To be specific, we consider the parameter choice

a=4.2 and (=-0.3, (4)

for which the underlying Hénon map is known to have a full horseshoe [6]; moreover, we
consider [¢| < 1 sufficiently close to 1 and initially take £ = 0.8. The map H has two fixed

points
+ + + PjE
p ::(p,p,l_g), (5)

where p* = 1 (—1 — B+ 4a+ (1 —i—ﬂ)z), which (certainly) exist for all « > 0. For

a =42, 8 =—0.3, and any |¢| < 1, both fixed points p* have one-dimensional unstable
manifolds W*(p*) and two-dimensional stable manifolds W*(p*).
We compute the intersection set of W*(p™) with the half-plane

S={(z,y.2) ER® |z =y, x>0},

which contains p*. While weaving through X, the manifold W¥(p*) makes longer and
longer excursions near infinity. Therefore, we follow [5] and compactify (z,y, z)-space by
the transformation

T(z,y,2) = (2,9, 2) == (

(z,y) z
141+ (22492 1+V1+ 22
to the cylinder

C=DxIT={x,9,2 cR®||(z, 9) <1and |z <1}.

Its boundary OC represents infinity of (x,y, z)-space, and H acts on the interior of C as the
conjugate 7 o H o T~!. For simplicity, we refer to this conjugate map as H as well, and
also use the same labels for its fixed points and invariant manifolds. Crucially, excursions
of W%(p™) near infinity are bounded in arclength in C; this important property of the
compactification makes it possible to find hundreds of its intersection points with X.

3.1 BVP formulation of orbits on W*(p*) up to X

For the parameter values in (4), the fixed point p™ has the single unstable eigenvalue \, ~
—3.5428 < —1 with unit eigenvector

0.5452
vy ~ | —0.8383
0.0107



Since A\, < 0, the map H is orientation reversing on W*(p™) and we need to consider the
second iterate H2. To be specific, we say that a branch of W*(p™) is positive or negative
when it extends away from p™ in the direction of v, or —v,, respectively.

An orbit of H? on W¥(pT) that starts near p™ and ends in X, is a sequence

O={e_N,...,e_1,e0} with e; 1 = H?(e;) forall — N <i< —1, (6)
that satisfies the boundary conditions

€E.N = p+ + 0y Vu, (7)
€p-n = 0. (8)
Here, &, is sufficiently small and n = (1, —1,0)7 is the vector normal to X.

A standard approach to solving the BVP (6)—(8) is to formulate it as a single, large zero
problem. Specifically, since H is a three-dimensional map, this BVP comprises 3N +4 scalar
equations: 3N from the mapping requirement in (6), three from the boundary condition (7),
and a single one from the boundary condition (8). There are also 3N + 4 scalar unknowns:
the coordinates of the N + 1 points e; € R? and the scalar parameter §,, which needs to
be solved for to ensure boundary condition (8) is satisfied. Hence, this system of nonlinear
equations is well posed and can be solved with Newton’s method.

We implemented the BVP (6)—(8) in Julia and use the Julia function nlsolve. Any
solution O found this way can readily be followed in a parameter by pseudo-arclength
continuation, provided we account for the change in coordinates of the fixed point and the
appropriate unit eigenvector; note that p™ is known explicitly, as given by (5), and we find
v, numerically with the Julia function eigen, where we stipulate that its first component
be positive. We used the Julia function continuation(prob, PALC(), ...) provided as
part of the software package BifurcationKit.jl [28].

3.2 Finding and correcting a seed solution

A crucial step in solving the BVP (6)—(8) is to find an initial approximate orbit
6 = {g*Nv s 7571550}7

as a seed to ensure that Newton’s method converges to 0. Simple iterations of selected
points cannot be used for this purpose, because we are dealing with saddle objects that are
repelling in both forward and backward time.

Rather, we find the seed O as a pseudo-orbit on W*%(pT). To this end, we compute
the unstable manifold W*(p™) with the algorithm from Section 2, where we impose the
relatively stringent accuracy settings

Apax = 0.01,  amax = 0.3, (A)max = 0.03, and Ay, = 1077,

To find points on W*(p™) that lie approximately in ¥ we proceed as follows. For each
mesh point ¢ in the computed mesh M that has a positive z-coordinate, we evaluate the
expression d(¢) = ¢ - n as in (8) to identify pairs for which the sign changes; note that d
represents the (signed) distance of ¢ from the section ¥. From such pairs, we select the
mesh point closest to ¥, which we refer to as ap = qg,. We construct its pseudo-orbit (2) by



Figure 3: Seeds for the first and second intersections of the negative branch of W*(p™) (red
curve) with ¥ (yellow plane), constructed as pseudo-orbits {a;}_g<ij<o (orange triangles)
and {b;} _s<i<o (pink squares) under H? (with a = 4.2, 8 = —0.3, and ¢ = 0.8). The last
three e-balls of each pseudo-orbit are displayed (yellow balls of radius 0.14 around a;, pink
balls of radius 0.08 around b;), which contain H2(@;) and H2(b;) (red points), respectively.
Panel (a) shows these objects in C; panel (b) is an enlargement near g and bo; and panel (c)
shows the distance d(q) along the branch of W*(p™) versus arclength L, with the values for
{@;} and {b;} labelled.

following the respective integer pointers. Hence, we use as seed the pseudo-orbit of length
K + 1 given by B
O={a_k,...,a-1,a0} ={qeg,Qosc_1s---> 901,90 }-

This choice of seed is illustrated in Fig. 3 for the negative branch of W*(p™), which is
visualised up to its second intersection with . Also shown are the pseudo-orbits {a; } _s<i<o
up to the point ag nearest the first, and {E;}_ggigo up to Eg nearest the second intersection
with 3. Balls of radius 0.14 and 0.08 around the last three points of the respective orbit
illustrate that these are e-pseudo-orbits for H2. Panel (a) of Fig. 3 shows these objects in the
compactified cylinder C. Observe how the negative branch of W*(p™) makes an excursion
towards large negative z, before intersecting ¥ near ag, turning around and intersecting X
for the second time near 50. An enlargement near the points p™, ag and Zo is shown in
panel (b). How the points @ and by are found is illustrated in Fig. 3(c), where we plot d(q)
as a function of the arclength L of the computed branch. Note that the first two crossings
of the L axis are for z < 0 and, hence, do not represent intersections with the half-plane 3.

Figure 4 illustrates the orbit segments {a;}_g<i<o and {b;} _g<i<o that have been cor-
rected with Newton’s method from the seeds {a;}_g<i<o and {Bi}_ggigo. Panel (a) shows
the two orbits in the compactified cylinder C with p™, W¥(p*) and X, and panel (b) is an
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Figure 4: The resulting Newton-corrected orbits {a;}_s<i<o (yellow points) and {b;}_s<i<o
(pink points) that satisfy the BVP (6)—(8) for the first and second intersection points of
negative branch of W*(p™) (red curve) with ¥ (yellow plane), respectively. Panel (a) shows
the situation in C, and panel (b) is an enlargement near ag and by; compare with Fig. 3.

enlargement near pT, ap and by; compare with Fig. 3. Also shown are the initial mesh points
ap and by, which are already very close to the corrected points ag, by € 3; indeed, W¥(p™)
was computed here with a high mesh resolution.

3.3 Continuing intersection points in one parameter

A significant advantage of computing points in W*(p™) N'Y in the form of orbits that solve
the BVP (6)—(8) is that we can continue any such solution in parameters. As an example,
we treat £ as a free parameter (while keeping v and 3 fixed) and continue the intersection
points as entire orbit segments on W*(p™). Following the notation in [5], we denote by
wh (4;€) the fth intersection point of W*(p™) with ¥ at the given parameter value £, where
the index ¢ € Z\ {0} is positive for the positive branch and negative for the negative branch.
We already found the two points w™(—1;0.8) = ag and w*(—2;0.8) = by, and many more,
on both branches, can be found in the same way.

We consider the range £ € [0.01,0.99] and compute all -parametrised curves of inter-
section points, that is, we compute the family

wt(0) :={w(¢¢) | € €[0.01,0.99]}.

Our computational set-up automatically computes each curve, starting from & = 0.8, by
successively selecting all values of ¢ from a given (finite) index set. In combination with
the automated detection of the required seeds, this continuation approach is considerably
more efficient and accurate than the method employed in [5, 10], where many intersection
points over a fine grid of £-values were found by interpolation and then rendered, again by
interpolation, as é&-dependent curves.

We computed &-parametrised curves w™ (£) with 0 < [¢| < 2!, For each fixed value of
¢, pseudo-arclength continuation was performed with initial step size ds = 1073, minimum
step size dsmin = 1074, and maximum step size dsmax = 1073, The resulting 2'2 curves are
shown in Fig. 5 in terms of their z-values. Most curves w™ (¢) are coloured dark (¢ > 0)
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Figure 5: The continued &-parametrised intersection curves w™ (¢) of points in W¥%(p*t)NX
for 0 < |¢] < 2!, shown in the (€, 2)-plane, together with p™ (green). Highlighted are the
curves wT(—1) (orange) and w*(—2) (pink), as well as those for ¢ = —3,...,—10 (red) and
¢ =1,...,5 (purple); all other curves are shown in light grey when ¢ < 0 and dark grey
when ¢ > 0.

or light (¢ < 0) grey, with true colours only assigned when ¢ = +1,...,+5, as well as
¢ = —6,...,—10; also shown is the z-value of p™, which forms the upper boundary of all
curves. The curves w'(—1) and w™(—2) were continued from the points w*(—1;0.8) = ag
and w™ (—2;0.8) = by from Fig. 3. Note that these two curves are the lower bounds for visible
gaps that appear approximately when & < 0.5. The other highlighted curves in Fig. 5 have
been selected and labelled because, likewise, they are lower boundaries of such gaps. The
capability to continue the curves w™ (¢) reliably as functions of ¢ is a key tool for studying
how and when the gaps close as £ increases. For ¢ sufficiently close to 1, the curves {w™(£)}
fill a solid region in the (£, z)-plane. The latter is strong evidence that W*(p™) has the
carpet property and, therefore, the hyperbolic set A (containing p™) is a blender. Due to
its shape, we also refer to the representation in Fig. 5 as the ‘carpet of carpets’ [5, 10].

We remark that intersection points with X of the unstable manifolds of the other fixed
point p~ and/or of selected periodic points in A can be found in the same way. Moreover,
their corresponding orbits can also be continued as curves, not just with respect to £, but
also with respect to any other system parameter. How this enhanced capability can be
brought to bear in the further analysis of the Hénon-like family H is the subject of ongoing
research.
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4 Finding transverse and non-transverse connecting orbits

Homoclinic and heteroclinic orbits of fixed points and/or periodic orbits are intersections of
their respective stable and unstable manifolds. Such connecting orbits are closely associated
with recurrent dynamics that underly and organise chaotic behaviour of different kinds [3,
24]. Depending on the dimensions of the invariant manifolds involved and the nature of their
intersection, the resulting connecting orbit may be transverse, that is, structurally stable,
or non-transverse and, hence, break under small perturbations. Examples of the latter are
homoclinic tangencies and heterodimensional cycles, which are particularly interesting as
they are the primary mechanism for generating persistent non-hyperbolic dynamics [2, 7, 20].

Connecting orbits are global objects that are generally not known analytically and, there-
fore, need to be computed with dedicated numerical methods. We find an (approximate)
connecting orbit as the solution of a BVP that defines an orbit from near one fixed point to
near the same or another fixed point; see [1, 9] for examples of this approach for planar maps.
Crucially, our method for finding pseudo-orbits along one-dimensional invariant manifolds
of a three-dimensional diffeomorphism can be used to solve the problem of finding suitable
initial guesses—for both transverse and non-transverse connecting orbits—that converge to
solutions of the respective BVP set-up.

Specifically, we consider the diffeomorphism of R? given by

T(x,y,2) = (z+k[2* +y* — 2], 2, y),

where k£ € R is a parameter. This map is part of a larger class of quadratic volume-
preserving maps studied in [22], and was first explicitly investigated in [21] for k = v/20.
Unless otherwise stated, we also fix k& = /20 as in [21] to demonstrate our approach to
finding homoclinic and heteroclinic (and heterodimensional) connections.

The map T combines a nonlinear shear on x with a rotation of the three coordinates,
and it is reversible: T is invariant under the transformation

R([L‘, Y, Z) = (_Za -Y —.SC)

in conjunction with the reversal of (discrete) time. As a result, any fixed points and periodic
orbits come in symmetric pairs with complementary stability properties. The map T has
the two hyperbolic fixed points

p+ = (15 ]-’ ]-) and p_ = (_1, _17 _1) = R(p+)a
which exists for all £ > 0, as well as the two hyperbolic period-three orbits

q+ = {Qf_vqg_aq;_} = {(17 -1, _1)7 (_1> 1, _1)7 (_17 _171)} and
(]_ = {Q1_7Q2—7q3_} = { (_1’ 17 1)7 (1> _17 1)7 (17 17 _1)} = R(q+),

which exists for all & > 1. Note that these eight points lie at the corners of a cube,
irrespective of the value of k.

We focus on the two fixed points and the one-dimensional unstable manifold W% (p*)
and one-dimensional stable manifold W#(p~). Since W#(p~) = R(W"(p™)), it suffices to
compute W*%(p™) with the method from Section 2 and, when required, obtain W#(p~) by

13



applying R to the computed mesh. As was the case in Section 3, it is important and practical
to compactify phase space. We rescale R? to the open unit ball B? via the transformation

= (Z,9.2) = (xjy’Z)
C(z,y,2) = (2,9, %) 1+ /O + (2,9, 2)[?)

with the action of 7" on B? given by CoT oC~!. To keep the notation simple, we again refer
to the conjugate map as 7', and use the same labels for its invariant objects.

4.1 BVP formulation of homoclinic orbits

We now show how to find homoclinic orbits to p™. The BVP set-up for this type of con-
necting orbit is similar to that described in Section 3.1. We consider an orbit

O={e_n,...,e_1,ep} with e;41 =T(e;) forall — N <4< —1. (9)

As before, we stipulate that e_x lies on W%(p*) near p*, but for the final point ey, we now
require that it lies in the two-dimensional stable linear eigenspace of p™. This is expressed
by the boundary conditions

E_N = p+ + 0uVu, (10)
€p = p+ + 55Vs + 5SSV887 (11)

where v, is the (unit) unstable eigenvector, and v4 and vgs are the (unit) weak and strong
stable eigenvectors of the Jacobian matrix DT (p™); this formulation of the boundary con-
dition can be interpreted as a version of projection boundary conditions [1]. The real pa-
rameters d,, d; and d,, are solved for as part of the overall BVP; they control the distances
from p* to e_n and ey along the respective eigenvectors. These three parameters all need
to be suitably small to ensure that O, indeed, represents a homoclinic orbit to p™. Note
that the BVP (9)—(11) is well posed, featuring 3N + 3 + 3 equations for the 3(N + 1) + 3
unknowns.

4.2 Constructing a homoclinic pseudo-orbit as a seed

To find a seed solution for a homoclinic orbit to p™, we first compute the one-dimensional un-
stable manifold W*(p™) with the algorithm from Section 2; we set the accuracy parameters
to

Apax = 0.1,  omax = 0.3,  (AQ)max = 1072, and Ay, = 107,

We then use this data to construct a pseudo-orbit that can serve as a seed solution for the
BVP (9)—(11).

Figure 6 presents an example, where we consider W*%(p™) only up to arclength L = 20.
We now consider the distance of points on W¥(p*) to p*, which we also refer to as d; it
is shown in panel (a) as a function of L. Any local minimum of d corresponds to a close
pass of W¥(p*) past pT and, hence, to a possible (approximate) end point of a homoclinic
orbit; note that d is shown on a logarithmic scale. We select the smallest minimum, at
L =~ 16.922, as the point a9 = q¢,, and then construct its pseudo-orbit {a;}_13<j<o as
explained in Section 2.2; the first point a_13 practically lies at p™ (with ||a_13—p™|| < 0.05).
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Figure 6: Identifying a pseudo-orbit {a;}_13<j<o (orange triangles) of T as a seed for a
homoclinic orbit to p*™. Panel (a) shows on a logarithmic scale the distance d to p* of
points along W¥(p™*) (red curve) versus their arclength L; its smallest local minimum up to
L = 20 defines the point ag. Panel (b) shows these objects in compactified coordinates with
W (pT) (blue disk) and images T'(a;) (red points) that lie in e-balls (yellow) with ¢ = 0.03
around @;41; and panel (c) is an enlargement near p* (black point).

The location of {a;}_13<j<o in B® is shown in Fig. 6(b). Here, the local stable manifold
Wi .(pT) is represented by a small disk in the plane spanned by v, and v,. For each point
a; in the pseudo-orbit we find ||7'(a;) — aj4+1|| < 0.03, which is illustrated by the e-balls of
radius e = 0.03 centred at a;. Note in the enlargement near p*, shown in panel (c), that
T(a—1) lies in the e-ball centred at ag, and likewise for T'(a_g) and a_5. The defining point
ap satisfies ||ap — pt|| = d(16.922) ~ 0.0324, so is quite close to p™ but does not actually lie
in the linear approximation of W} (p™).

We found that Newton’s method does converge if we use the pseudo-orbit {a;}_13<j<o
as a seed for solving the BVP (9)—(11). However, the finite orbit only represents an accurate
connecting orbit if the internal parameters d,, ds and dss in (10) and (11) are sufficiently
small; only then will the linear eigenspace be a good approximation of the respective in-
variant manifold [1, 16]. By construction of the pseudo-orbit, d,, is sufficiently small, but
correcting ap to satisfy boundary condition (11) result in arguably too large values for dg
and ds5. To obtain a seed solution that does not have this issue, we extend the pseudo-orbit
{@;}-13<j<0 by adding points to its tail that are successively closer to p*. To this end, we
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Figure 7: The homoclinic orbit to p* found as the solution {a;}_13<j<s (magenta dots) to
the BVP (9)—(11) with the extension O = {@;}_13<j<s of the pseudo-orbit from Fig. 6 as
seed. At each point a;, the manifolds W"(p*) (red curve) and W*(p™) (shown locally as blue
disks) intersect. Panel (a) shows these objects in compactified coordinates and panel (b) is
an enlargement near p™ (black point). Compare with Figs. 6(b) and 6(c).

invoke the action of the linearisation DT (p™) and define
aj:=p" + (N\s) (@ —p") for 1 < j <8,

where A\; &= —0.7887 is the weak stable eigenvalue. This definition encodes slow contraction
towards pT along the weak stable direction, which is a good approximation of the nonlinear
action of T" in a neighbourhood of p™. The extended pseudo-orbit of length 22 is then given
by B

O = {&} -a1<i<o = {@;} ~13<j<s; (12)

where now ||eg — pT|| = ||as — p™|| < 0.005. N

We apply Newton’s method with the extended pseudo-orbit O from (12) as seed. The
converged solution {a;}_13<;<g satisfies the BVP (9)-(11) with 6, < 0.005 for a_3 in
boundary condition (10) and ds,0ss < 0.05 for ag in boundary condition (11). Figure 7
illustrates this computed homoclinic orbit in B?, in a global view in panel (a) and in an
enlargement near p* in panel (b); compare with Figs. 6(b) and 6(c). In Fig. 7, small disks
represent the linear approximations of the two-dimensional manifold W#*(p™) locally at each
of the homoclinic points a;; these are obtained by propagating the stable eigenvectors under
the linearisation DT'. Panel (b) also shows the defining point ag of the pseudo-orbit, which
has been corrected to the point ap. Note that all points a; with 1 < j < 8 lie very close
to the linear eigenspace of p*. This constitutes visual confirmation that {a;}_13<j<g is an
accurate approximation of an actual homoclinic orbit to p*.

The homoclinic orbit visualised in Fig. 7 is not unique. Other homoclinic orbits to
pt can be found in a similar way by considering W*(p™) up to larger arclength. This is
illustrated in Fig. 8, where we consider W¥(p*) up to arclenth L = 170 and selected the
three smallest local minima of the distance function d: they define (in order of increasing
values of d) the points by at L ~ 126.582, ¢y at L ~ 155.070, and dy at L ~ 98.357. In fact,
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Figure 8: Three additional homoclinic orbits of T' to pt. Panel (a) identifies pseudo-orbits
{bj}—15<j<5 (yellow squares), {¢;}_15<j<5 (brown diamonds) and {d;}_15<j<5 (orange tri-
angles) as local minima of d(L). Panel (b) and the enlargement near p™ in panel (¢) show
the corresponding homoclinic orbits {b;}_15<;<5, {¢j}-15<j<5, and {d;}_15<;<5 in B? with
matching colours, together with local linear segments of W*“(p™) (red) and disks of W#(p*)
(blue); compare with Figs. 6(a) and 7.

these three mesh points lie in a single fundamental domain of W¥(p*) and, therefore, lie on
three distinct orbits. As before, we construct three pseudo-orbits and extend them to near
p+ to obtain the seeds {bj}_15gj§5, {5j}_15§j§5, and {dj}_15§j§5 for the BVP (9)*(11).
Each of the three seed solutions converges to an approximate homoclinic orbit, denoted
{bj}715§j§5, {Cj}715§jg5, and {dj}715§jg5, respectively. They are presented in Fig. S(b)
in the style of Figure 7, with W%(p™) shown as a curve for L < 20, together with local
segments of W*(p™) and disks of W#*(p™) at each homoclinic point. The enlargement near
pt in Fig. 8(c) shows that, effectively, the tails with 1 < j <5 of all three homoclinc orbits
already lie on the linearisation of Wi _(p™), which is again a confirmation of the accuracy
of these computations.

The homoclinic orbits {b;}_15<;j<5 and {cj}_15<j<5 have further excursions away from
pT than {d;}_15<j<5. This can be seen in Fig. 8(a): already b_y and ¢_s lie at O(1) distance
from p*, while J_g and even J_3 remain of order O(1072) close to p*; notice also that the
short disjoint segments of W¥(p™*) in Fig. 8(b) (bottom right) only pass through homoclinic
points from {b;}_15<j<5 and {c¢;}_15<j<5. Upon further inspection, we find that, in fact,
the homoclinic orbit {d;}_15<j<5 is actually the same as the one shown in Figure 7. Indeed,
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5_3 effectively lies at the same local minimum at L = 16.922 that we used to identify ayg;
compare Figs. 8(a) and 6(a). Indeed, the corrections ag and d_3 are equal to within the
computed accuracy, which can be inferred when comparing Figs. 8(b) and 7(a). In fact,
|a; —d;—3|| < 10710 for all j where both points exist, which means that they both represent
the same homoclinic orbit. This issue that different minima may give the same homoclinic
orbit can be dealt with by comparing the computed representations, or by ensuring that the
chosen seeds all lie in a single fundamental domain.

We remark that the same approach can be used to find transverse heteroclinic orbits
formed by a one-dimensional invariant manifold between two different saddle fixed or peri-
odic points. To this end, boundary condition (11) is replaced by the equivalent boundary
condition for the stable manifold at the other saddle point, and the distance function d(L)
defined accordingly.

4.3 BVP formulation of a non-transverse heterdimensional orbit

A heterodimensional cycle of a diffeomorphism consists of a non-transverse connection be-
tween two fixed points of different unstable dimensions, as well as a transverse return con-
nection. We now show how a non-transverse heterodimensional orbit of the map 71" between
its two fixed points p™ and p~ can be found. This connecting orbit lies at the intersection
of the one-dimensional invariant manifolds W*%(p*) and W*(p~), which we also formulate
as a BVP with appropriate projection boundary conditions. More precisely, we consider an
orbit of length N, + Ng + 1 of the form

O = {e_n,,..-.,e_1,€0,€1,...,en,} with

eit1 = T(e;) forall — N, <i < N, (13)

which we require to lie on both W*(p*) and W#*(p~). This is achieved by imposing the
boundary conditions:

e-N, = pT 46 v, (14)
en, = p +o5vg, (15)

where v, is the single unstable eigenvector of p*, and v is the single stable eigenvector of
p~. A solution to the BVP (13)-(15) is an approximation of a non-transverse heterodimen-
sional connection between p™ and p~ when the internal parameters d;" and §; are sufficiently
small. Note that condition (14) is the same as (10), but the notation now distinguishes the
respective eigenvalues and eigenvectors of the two fixed points. The two real parameters
8} and d; are included in the 3(N, + Ny + 1) + 2 unknowns of the overal BVP (13)—(15),
which constitutes 3(V, + Ns) + 3 + 3 equations. Hence, one free parameter is required to
ensure the BVP has a unique (isolated) solution. In our context, the single parameter k of
T needs to be varied and solved for in order to find the non-transverse heterodimensional
connection, which is of codimension one.

4.4 Constructing a non-transverse heterodimensional connecting pseudo-
orbit as a seed
The key for finding a solution of the BVP (13)-(15) is again the construction of a successful

seed. This is a difficult task because two curves in R3 do not necessarily come close to
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Figure 9: Construction of a seed for a non-transverse heterdimensional orbit of T between
pT and p~ in B3. The one-dimensional manifolds W*(p™) (red curve) and W*(p~) (blue
curve) intersect the plane ¥ (yellow) at the small red and blue points, respectively; the two
manifolds are shown fainter below X. Two pseudo-orbits {u;} on W*(p™) (orange triangles
and balls containing preimages) and {s;} on W#*(p~) (light-blue trianges and balls containing
preimages) end at the points ug, Sp € X, respectively, which lie in the same (magenta) e-ball.
Their concatenation is a successful seed solution for the BVP (13)—(15).

each other. We take an approach that is motivated by Lin’s method for finding connecting
orbits [19]. We consider the intersection sets of W*(p*) and W#*(p~) with a chosen plane
> to identify two points, one from either intersection set, that are close to each other in 3.
Their respective pseudo-orbits define a heterodimensional connecting pseudo-orbit from p™
to p~ as seed. As before, we apply Newton’s method to the defining BVP to yield a true
orbit, which can be interpreted as closing all e-gaps of the seed.

Figure 9 illustrates this approach. The one-dimensional manifolds W¥(p*) and W#(p™)
are shown up to arclength L = 10.25 in B?, together with the plane

Y :={(2,5,2) €B®: 7z = z},

which contains p* and p~, and the intersection sets W*(p™) NX and W#(p~) NX. The two
mesh points 1y € W¥%(p*) and 59 € W#(p~) are closest to two corresponding intersection
points that lie near each other in ¥. In fact, ||ag — S0l < € = 0.03, and the we show in
Figure 9 e-balls of radius € = 0.03 at each of the points of the corresponding pseudo-orbits
{W;}—14<i<o and {3;}o<i<14 on W¥(p™) and W*(p~), respectively, which were obtained as
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Figure 10: The non-transverse heterodimensional connecting orbit {aj}_14§j§14 of T from
pT to p~ that is found as a solution of the BVP (13)—(15) with k ~ 2.81. Shown in B3
are W% (p™) (red curve) and W#(p~) (blue curve) up to arclength L = 9.5 (just past their
intersection point ag highlighted by a magenta ball), as well as local approximations of these
manifolds at each point a;; compare with Fig. 9.

in Section 3.2; also shown is an e- ball that contains ug and sy. Concatenation of the two
pseudo-orbits results in the heterodimensional connecting pseudo-orbit

O={e_n, ..., en.} = {U_14,- .., U_1,T0, 51,514} (16)

with N, = Ny = 14. Note that the choice of €y = ug as the midpoint is for definiteness and
not significant; we could equally have chosen sy or the average of the two points, instead.

The heterodimensional connecting pseudo-orbit O defined by (16) is indeed a good seed
for the non-transverse heterodimensional orbit that solves the BVP (13)—(15). Newton’s
method converges to the solution {aj}_14§j§14 from p™ to p~ that is shown in Fig. 10. As
part of this iterative process, the parameter k has changed from k = /20 ~ 4.47 to the
specific value k = 2.81, at which this non-transverse heterodimensional connecting orbit
exists. Note that the two segments of the overall orbit are now ‘glued together’ at the
central point ag € W¥(p™T) N W?*(p~); in other words, the ‘Lin gap’ between g and 5p has
been closed.
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Figure 11: Representations of the chaotic, non-wandering set of T, shown in R? with the
cube with corners p™, p~, ¢ and ¢~. Panel (a) shows 3,388 computed homoclinic orbits to
pT with 28 points each (orange dots) for & = v/20; and panel (b) shows 150 non-transverse
heterodimensional connecting orbits with k£ € [4,5] (purple dots) in a color gradient from
darker for k = 4 to lighter for k = 5.

4.5 Investigating the chaotic set of T’

The ability to find transverse homoclinic and non-transverse heterodimensional connecting
orbits in a systematic and efficient way, via the construction of suitable pseudo-orbits as seeds
for Newton’s method, is a powerful tool for the study of complicated chaotic sets. Figure 11
shows two different approximations of the chaotic, non-wandering set of T', together with
the cube formed by the corner points at p*, p~, and the period-three orbits ¢™ and ¢~.

Figure 11(a) shows 3,388 different computed transverse homoclinic orbits to p™ for the
fixed parameter k = v/20; each (approximate) homoclinic orbit comprises 28 points, and
there are 94,864 points in total. The homoclinic orbits were found by computing W¥(p™)
up to L = 21,140.95 with the method from Section 2, and then constructing pseudo-orbits
as explained in Section 4.1 for all local minima of d(L) with d(L) < 0.01 that are associated
with mesh points in the last fundamental domain. We then applied Newton’s method to
the BVP (9)—(11), starting from each of the 3,388 seeds. In a post-processing step, we
confirmed the validity of each computed homoclinic orbit by ensuring that their end points
all lie within 0.05 of p™. The homoclinic points in Fig. 11(a) are seen to accumulate on a
complicated, seemingly connected set of curves.

Figure 11(b) shows a total of 150 different non-transverse heterodimensional connect-
ing orbits from p* to p~ with values of the parameter k in the interval [4,5]. They were
found in the same manner as explained in Section 4.4, by constructing heterodimensional
pseudo-orbits as seeds for the BVP (13)—(15). More precisely, we compared the computed
intersection set W#(p~ )N, consisting of 29, 995 points, with the intersection set W*(p*)NT
restricted to a particular fundamental domain of W%(p*). We then identified the closest
150 pairs of points, one from each set, and constructed the corresponding non-transverse
heterodimensional pseudo-orbits. While determining these pairs, we found that some points
in the fundamental domain of W"(p') are sufficiently close to more than one point in

21



W#(p~) N'E; note that such pairs still yield topologically different non-transverse heterodi-
mensional pseudo-orbits. Starting from these constructed seeds, Newton’s method for the
BVP (13)—(15) converged to the 150 non-transverse heterodimensional connecting orbits
shown in Fig. 11(b). In comparison with the example in Figure 9, the pairs of points in ¥
lie closer to each other. As a result, the k-values for which these codimension-one objects
exist, lie much closer to k = /20, namely, k € [4,5] for all 150 solutions of the BVP. While
the heteroclinic orbits in Figure 11(b) do not exist for the same k-value, they nevertheless,
give us an impression of where the overall set of non-transverse heterodimensional orbits
is located in phase space. In particular, notice that this set of points has a very similar
shape to that of the transverse homoclinic orbits in panel (a). Our ongoing numerical inves-
tigations strongly suggest that the non-wandering set of 1" and, hence, T itself are robustly
non-hyperbolic. In particular, this means that heterodimensional cycles occur robustly, and
Figure 11 provides numerical evidence for this assertion.

5 Conclusions

We modified the algorithm from [5] for the computation of a one-dimensional (un)stable
manifold of a fixed or periodic point of a diffeomorphism, so that it stores, effectively at
no additional cost, approximate preimages for any point in the resulting mesh. This allows
us to construct, or rather read off, pseudo-orbits of selected mesh points. The constructed
pseudo-orbits serve as initial data or seeds for the solution of a boundary value problem
that represents orbits of interest, including homoclinic and heteroclinic connecting orbits.
Provided the mesh size of the computed mesh is sufficiently small, Newton’s method will
converge when starting from the respective pseudo-orbit, even if ¢ is relatively large. The
modified algorithm is available at github.com/dcjulio. It can be used to construct pseudo-
orbits along any one-dimensional stable or unstable manifold of a diffeomorphism of interest.

We demonstrated the benefits of this modification with two examples. First, we showed
how (a large number of) intersection points of the one-dimensional unstable manifold of
a fixed point of a three-dimensional Hénon-like map with a chosen section can be found.
These were then continued as curves in a parameter to determine whether or not there exists
a blender, specifically, by checking the characterising property that a suitable projection
of the intersection points is dense. As a second example we considered a one-parameter
family of three-dimensional diffeomorphisms that exhibits a non-wandering set with partially
hyperbolic dynamics. Here, we used pseudo-orbits to generate seeds for the systematic
computation of thousands of transverse homoclinic orbits at a fixed value of the parameter,
as well as of many non-transverse heterodimensional connecting orbits at corresponding
specific parameter values.

The two examples we presented showcase the capability of our algortihm with the aim
of motivating computations of connecting orbits more widely—as an efficient tool for in-
vestigating complicated dynamics in explicitly given parameter-dependent diffeomorphisms.
Further research, including for the two families of diffeomorphism considered here, is ongoing
and will be reported elsewhere.
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