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ABSTRACT 

It is very difficult to model analytically the response of a structure under earthquake excitation. The 

conventional harmonic equation of motion is a linear model subjected to a load defined as the 

product of the mass of the structure and the ground acceleration. Shake table tests on a model 

structure using three different earthquake excitations were conducted. There is a significant 

difference between the responses generated from the classical linear model and the experimental 

measurements. Our hypothesis is that the load experienced by the structure is actually different 

from the load generated by the ground acceleration. We investigate possible adjustments to the load 

applied in the linear model based on the resonance frequency and the power spectrum of the 

measured responses. Our results indicate that successful adjustments can be made, so that the linear 

model generates a better approximation to the actual structural response. 

1 INTRODUCTION 

The structural response to an earthquake is notoriously hard to predict and structural damage is still an accepted consequence of when 

an earthquake strikes. Even the most advanced building designs cannot avoid structural failure when subjected to strong earthquakes 

(Chouw, 1996; Chouw & Hao, 2012; Kawashima et al., 2011; Orense et al., 2014), but damage can also occur at milder ground 

excitations, despite major efforts to understand such soil-structure interactions. The international workshop “Seismic Performance of 

Soil-Foundation-Structure (SFS) systems,” held at The University of Auckland in November 2016 (Chouw et al., 2017), focussed 

particularly on facilitating communication between geotechnical and structural engineers, in a bid to gain a better understanding of 

the compound effects between the movements of soil and structure. The goal was to explain the underlying mechanisms and then 

quantify the effects of such SFS interactions. However, there is already an issue with the assumed load exerted on the structure. The 

classical view is to consider the structure as rigid, which means that the load exerted at the top of an SDOF structure is the same as at 

its base, and it is further assumed that this load is defined as the product of the mass of the structure and the ground acceleration, 
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which is supposed to be given (Chopra, 2001). Indeed, this is a fundamental modelling assumption that directly influences the 

predictable power of a theoretical analysis. 

What is the precise load exerted on the structure? There are different ways to measure the load at the base of a structure and 

experimental results suggest that the classical view of structural mass times ground acceleration is not correct; see also (Qin et al., 

2018) in this volume. This paper considers the hypothesis that the force exerted at the top of the SDOF structure is different from that 

exerted at its base, and it is this discrepancy that causes the error between experimental measurements and computed results from the 

theoretical equation. Here, we address the inverse problem of finding a correction to the load in the theoretical equation, that is, the 

identification problem of determining the system parameters when given the input and output (Crisp et al., 1990).  

  

 

 System 
parameters 

Unit 

mass: 𝑚 =  10 kg 

damping ratio:  𝜁 =  0.083   

stiffness:  𝑘 =  1.62  kN / m  

damping:  𝑐 =  21.13  N s / m  

 

 

 

 

 

 

This paper reports on the analysis of the experiment of a mass on a (near massless) supporting structure that is subjected to three 

different excitations. Figure 1 shows the experimental set-up with mass 𝑚 = 10 kg and centre of mass at height 425 mm positioned 

on a fixed base of size 280 mm × 230 mm. The fundamental frequency was measured as 𝑓𝐹 = 1.97 Hz and the damping ratio was 

𝜁 = 8.3 %, respectively. Three different ground accelerations were applied, and measurements were taken at 5 ms intervals of the 

relative displacement 𝑢𝑚𝑒𝑎𝑠 and the corresponding acceleration �̈�𝑚𝑒𝑎𝑠.  

The measured displacement 𝑢𝑚𝑒𝑎𝑠 of this SDOF structure is compared with the relative displacement 𝑢 generated by the idealised 

theoretical equation, a (linear) harmonic oscillator forced by the product of the mass and the applied ground acceleration. The 

equation is then given by  

𝑚 �̈� +  𝑐 𝑢  +  𝑘 𝑢 =  −𝑃(𝑡),  (1) 

where 𝑘 is the stiffness or spring constant, estimated as 1.62 kN / m, the viscous damping coefficient 𝑐 = 2𝜁√𝑚 𝑘 is estimated as 

21.13 N s / m, and 𝑃(𝑡) = 𝑚 𝑔 �̈�𝑔 is the load (in Newton) generated by the ground acceleration �̈�𝑔, which is measured in g. 

Equation (1) generates the relative displacement 𝑢 in metres, but the experimental measurements are in millimetres; all figures show 

the displacement in the unit mm.  

Equation (1) is only an approximate mathematical model, and it is expected that there is a difference between 𝑢 and 𝑢𝑚𝑒𝑎𝑠. The goal 

in this paper is to find simple corrections to Equation (1), such that |𝑢 − 𝑢𝑚𝑒𝑎𝑠| is significantly decreased. The difference between 

the load experienced by the structure and the load generated by the earthquake may be intrinsic to the structure itself, or its origins 

could be that the load applied by the actuators during the experiment is not the same as the intended load. Rather than include a 

nonlinear correction to, say, the stiffness coefficient or other structure-dependent terms on the left-hand side of Equation (1), our 

intention is to apply a correction to its right-hand side.  

2 COMPARING EXPERIMENT AND EQUATION  

Three different ground accelerations were applied, of which the first is reported on in detail. Figure 2 shows the resulting measured 

displacement 𝑢𝑚𝑒𝑎𝑠 (green) as a function of time 𝑡 in panel (a). Panel (b) shows the corresponding relative displacement 𝑢 (blue) 

versus time 𝑡, which was generated by numerical integration of Equation (1) over the time interval [0, 24]. Overlayed is the applied 

ground acceleration �̈�𝑔 (grey), corresponding to the vertical axis on the right in both panels. There are two obvious differences 

between the responses 𝑢 and 𝑢𝑚𝑒𝑎𝑠: the maximum displacement for 𝑢 is substantially larger than for 𝑢𝑚𝑒𝑎𝑠 (8.92 mm and 5.26 mm, 

Figure 1: Experimental set-up of the inverted pendulum with mass 10 kg and height 425 mm; the pendulum is mounted on a fixed 

base of size 280 mm × 230 mm.  

. 
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respectively); and the amplitude envelopes are quite different, particularly for 10 ≤  𝑡 ≤  15. Indeed, the difference in power or 

energy of the responses, defined as   

𝐸(𝑢) ∶= ∫  |𝑢(𝑡)|2
24

0
𝑑𝑡 ≈ 125.21 mm2 s and   

𝐸(𝑢𝑚𝑒𝑎𝑠) ∶= ∫  |𝑢𝑚𝑒𝑎𝑠(𝑡)|2
24

0
𝑑𝑡 ≈ 61.94 mm2 s,  

is of the same order of magnitude as the responses themselves! This is a clear indication that the approximation error of Equation (1) 

is likely of first rather than higher order.  

  

The responses also exhibit significant differences when considered in the frequency domain. Figure 3 shows the Fourier amplitude  

| �̂�𝑓
𝑚𝑒𝑎𝑠 | and | �̂�𝑓 | of the Fourier transforms of the measured and computed responses 𝑢𝑚𝑒𝑎𝑠 and 𝑢, respectively. Their squares 

| �̂�𝑓
𝑚𝑒𝑎𝑠 |2 and | �̂�𝑓 |

2
 represent the respective power at each frequency. The horizontal axis shows only the frequencies 𝑓 up to 5 

Hz, because the power for the higher frequencies is almost 0. Both power spectra are shown in panel (a), while panel (b) shows the 

power spectrum of the difference | �̂�𝑓 − �̂�𝑓
𝑚𝑒𝑎𝑠  |. Note that the maxima for both | �̂�𝑓

𝑚𝑒𝑎𝑠 | and | �̂�𝑓 | (at are 14.17 mm s and 11.84 

mm s, respectively) are achieved at 𝑓 = 47/24 ≈ 1.96 Hz, which is the sampling frequency nearest to the fundamental frequency 𝑓𝐹. 

However, the power spectrum for �̂� is much broader around 𝑓𝐹 ; this is more clearly seen when considering | �̂�𝑓 − �̂�𝑓
𝑚𝑒𝑎𝑠 |.  

The total power can also be calculated from the power spectrum. For example,  

𝐸(𝑢) = ∫  |𝑢(𝑡)|2
24

0
𝑑𝑡 = ∫  |�̂�(𝑓)|2

100

−100
𝑑𝑓 ≈

1

24
∑  |�̂�𝑓(𝑖)|

2100
𝑖=0 ≈ 125.21 mm2 s,   

where 𝑛 = 4800 is the sampling size, and �̂�𝑓(𝑖) is the Fourier coefficient associated with frequency 𝑓 = 𝑖/24.  

3 LINEAR CORRECTION  

Equation (1) is supposed to approximate the true (relative) displacement to first order, but the experimental data suggests that this is 

not the case. As mentioned in the introduction, the cause of this discrepancy may be due to the fact that the SDOF structure 

experiences a different load than that resulting from the ground acceleration. In fact, it is likely that the actual load applied to the 

structure during the experiment is already different from the intended load due to the earthquake. However, there may be other 

effects that are intrinsic to the structure or due to the fact that Equation (1) assumes 𝑃(𝑡) = 𝑚 𝑔 �̈�𝑔, even though 𝑃(𝑡) is supposed to 

be the load that acts at the top of the SDOF structure, 425 mm above ground. We investigate the latter suggestion and attempt a 

linear correction of 𝑃(𝑡) as follows. Consider Equation (1) with the adjusted right-hand side 

𝑚 �̈� +  𝑐 𝑢 +  𝑘 𝑢 =  −(1 − 𝛾) 𝑃(𝑡),  (2) 

Figure 2: Measured and computed relative displacements 𝑢𝑚𝑒𝑎𝑠 (green) and 𝑢 (blue) versus time 𝑡, shown in panels (a) and (b), 

respectively, together with the applied ground acceleration �̈�𝑔 (grey, measured in g).  

 

Figure 3: Power spectrum of the measured and computed relative displacements versus frequency 𝑓 in Hz. Panel~(a) shows the 

modulus of the respective Fourier coefficients �̂�𝑓
𝑚𝑒𝑎𝑠

(green) and  �̂�𝑓 (blue), and panel~(b) shows their difference | �̂�𝑓 − �̂�𝑓
𝑚𝑒𝑎𝑠 |. 
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where 𝛾 is the correction parameter and the generated relative displacement 𝑢𝛾 depends on 𝛾. Note that Equation (2) is still linear, 

which means that 𝑢𝛾 is proportional to the displacement 𝑢 obtained from Equation (1). Recall that 𝐸(𝑢) > 𝐸(𝑢𝑚𝑒𝑎𝑠). By using the 

total power 𝐸(𝑢𝛾 − 𝑢𝑚𝑒𝑎𝑠) of the difference as a quantification of improvement, the goal is to find the value 𝛾∗ for 𝛾 that minimises 

𝐸(𝑢𝛾 − 𝑢𝑚𝑒𝑎𝑠). 

 

Figure 4(a) shows how the total power of the difference depends on 𝛾. The graph is an almost-perfect parabola, which can be 

appreciated by considering the curve below the horizontal grey dashed line at 50.10 mm2 s, which is the (approximate) value of 

𝐸(𝑢 − 𝑢𝑚𝑒𝑎𝑠), given by 𝐸(𝑢𝛾 − 𝑢𝑚𝑒𝑎𝑠) at 𝛾 = 0; the integral norm of the difference with a quadratic fit is of order 𝑂(10−2). This 

suggests again that the correction as given in Equation (2) is of first order. Figure 4(b) and (c) show the resulting relative 

displacement from Equation (2) with 𝛾 = 0, that is, the result obtained from Equation (1), and 𝛾 = 0.452, which is the location of the 

approximate minimum 𝛾∗, respectively; the grey time series in the background is the measured displacement umeas. The total power 

of the difference between computed and measured displacements has reduced to approximately 24.44 mm2 s at the optimal value 

𝛾 = 𝛾∗.  

Figure 5 shows these results in the frequency domain. Panel (a) shows the Fourier amplitudes | (�̂�𝛾∗)𝑓 | and | �̂�𝑓 | of the computed 

displacements 𝑢𝛾∗  and 𝑢, that is the generated response from Equation (2) with 𝛾 = 𝛾∗and 𝛾 = 0, respectively; here | (�̂�𝛾∗)𝑓 | is 

coloured teal and | �̂�𝑓 | is blue. Note the linear property of this correction: each frequency satisfies 

| (�̂�𝛾∗)𝑓 
| ≤ 𝐾| �̂�𝑓 |,  

where the constant 𝐾 = 1 − 𝛾∗ is indeed found to be approximately 𝐾 = 0.548.  

Figure 5(b) shows the power spectrum of the difference with 𝑢𝑚𝑒𝑎𝑠, again for (�̂�𝛾∗)𝑓  (teal)  and �̂�𝑓 (blue). The effect of the linear 

correction is a sharpening of the power spectrum, with the maximum achieved at the sampling point 𝑓 = 47/24 ≈ 1.96 Hz, closest 

Figure 4: Improvement obtained by Equation (2) quantified in terms of the total power 𝐸(𝑢𝛾 − 𝑢𝑚𝑒𝑎𝑠) of the difference with the 

measured displacement. Panel (a) shows that a value 𝛾 = 𝛾∗ exists that minimises 𝐸(𝑢𝛾 − 𝑢𝑚𝑒𝑎𝑠) (teal dot). The original computed 

response 𝑢 = 𝑢𝛾 with 𝛾 = 0 is shown in blue versus 𝑡 in panel (b), and the scaled response 𝑢 = 𝑢𝛾 with 𝛾 = 𝛾∗  is shown in teal in 

panel (c); the measured displacement is also shown in grey in panels (b) and (c), for reference. 

 

Figure 5: Power spectrum of the relative displacements computed with Equation (2) for 𝛾 = 𝛾∗, denoted | (�̂�𝛾∗)𝑓
| (teal), and 

computed with Equation (1), denoted | �̂�𝑓| (blue), versus frequency 𝑓 in Hz in panel (a), and of their respective differences with the 

measured displacement, denoted | (�̂�𝛾∗)𝑓
− �̂�𝑓

𝑚𝑒𝑎𝑠| (teal) and | �̂�𝑓 − �̂�𝑓
𝑚𝑒𝑎𝑠| (blue), in panel (b). 

 



2018 NZSEE Conference 5 

A new approach to modelling structural responses to earthquakes 

 

 

 

to the fundamental frequency for both computed displacements; the values of the peaks are 10.65 mm s for (�̂�𝛾∗)𝑓 and 10.24 mms 

for �̂�𝑓.  

The experiment was repeated with two other ground accelerations that have main frequencies increasingly closer to the fundamental 

frequency of the SDOF structure. Figure 6 shows the measurements from these two additional experiments. Panel (a) shows the 

measured relative displacement 𝑢2
𝑚𝑒𝑎𝑠 overlayed on the associated ground accelaration, which corresponds to the vertical axis on 

the right. Panel (b) shows the same plot for the measured relative displacement 𝑢3
𝑚𝑒𝑎𝑠associated with the third experiment. The 

same comparisons and corrections were made for these two additional data sets.   

 

Figure 7 shows the results for the experiment associated with 𝑢2
𝑚𝑒𝑎𝑠. As for the first experiment, Equations (1) and (2) were used to 

generate computed displacements. Panel (a) shows the total power of the difference between the displacement 𝑢𝛾 generated from 

Equation (2) and 𝑢2
𝑚𝑒𝑎𝑠 as a function of the correction 𝛾. As before, the graph is parabolic with a well-defined minimum; the 

optimal correction for this case is to adjust the load by a factor 1 − 𝛾∗ with 𝛾∗ ≈  0.385. Panel (b) shows the power spectrum of the 

difference with 𝑢2
𝑚𝑒𝑎𝑠 for the responses 𝑢𝛾 with 𝛾 = 0 (blue), which is the same as the response generated from Equation (1), and 

with 𝛾 = 𝛾∗ (teal).  

Figure 6: Measured relative displacements, each shown with the applied ground acceleration, for the other two experiments, where 

the main frequency of the applied ground acceleration lies increasingly closer to the fundamental frequency of the SDOF structure; 

compare with Figure 2(a).  

 

 

Figure 7: Results for the response generated from Equation (2) with the load as in the second experiment. Panel (a) shows the total 

power of the difference with 𝑢2
𝑚𝑒𝑎𝑠 as a function of 𝛾, and panel (b) shows the corresponding power spectra for the cases 𝛾 = 0 

(blue) and 𝛾 = 𝛾∗ ≈ 0.385 (teal); compare with Figure 5.  

 

 

2  

spectra for the cases γ = 0 (blue) and γ = γ∗  ≈ 0.385 (teal); compare with Figure 5.  

 

 

 

Figure 8: Results for the response generated from Equation (2) with the load as in the third experiment. Panel (a) shows the total 

power of the difference with 𝑢3
𝑚𝑒𝑎𝑠 as a function of 𝛾, and panel (b) shows the corresponding power spectra for the cases 𝛾 = 0 

(blue) and 𝛾 = 𝛾∗ ≈ 0.139 (teal), which lie practically on top of each other; compare with Figures 5 and 7. 
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Similarly, Figure 8 shows the results for the experiment associated with 𝑢3
𝑚𝑒𝑎𝑠. Again, Equations (1) and (2) were used to generate 

computed displacements. Panel (a) illustrates the parabolic nature of the total power of the difference between the displacement 

𝑢𝛾  generated from Equation (2) and 𝑢3
𝑚𝑒𝑎𝑠 as a function of 𝛾. The minimum occurs at 𝛾∗  ≈  0.139. Panel (b) shows the power 

spectrum of the difference with 𝑢3
𝑚𝑒𝑎𝑠 for the responses 𝑢𝛾 with 𝛾 = 0 (blue), which is again the same as the response generated 

from Equation (1), and with 𝛾 = 𝛾∗ (teal). The main frequency of the ground acceleration for this third experiment is approximately 

the same as the fundamental frequency of the SDOF structure. Consequently, the correction from Equation (2) has very little effect 

and the two curves in Figure 8(b) almost lie on top of each other. Indeed, as can be seen in Figure 8(a), the minimum at 𝛾∗ lies very 

close to 0 and the reduction of the total power 𝐸(𝑢𝛾 − 𝑢3
𝑚𝑒𝑎𝑠) is only from 86.67 mm2 s at 𝛾 =  0 to 84.65 mm2 s at 𝛾∗  =  0.139.  

4 CONCLUSIONS  

Three different ground accelerations were considered to study how well the relative displacement calculated from the conventional 

harmonic equation matches the measured relative displacement. The results indicated that the discrepancy is of first order, that is, this 

linear equation appears not to take into account linear effects. We tested the hypothesis that the load experienced by the SDOF 

structure is actually different from the load generated by the ground acceleration.  

This investigation led to the following conclusions:  

1. A linear correction of the form  

𝑚 �̈� +  𝑐 𝑢 +  𝑘 𝑢 =  −(1 − 𝛾) 𝑃(𝑡), 

as given in Equation (2), can lead to an improvement in terms of the total power 𝐸(𝑢𝛾 − 𝑢𝑚𝑒𝑎𝑠) of the difference with the 

measured response. Here, the response 𝑢 obtained from the conventional harmonic equation is the same as the response 𝑢𝛾 with 

𝛾 = 0. 

2. The corrected response 𝑢𝛾 satisfies  

𝑢𝛾 = (1 − 𝛾) 𝑢, 

but the total power E(𝑢𝛾 − 𝑢𝑚𝑒𝑎𝑠) does not depend linearly on 𝛾. 

3. There exists an optimal value 𝛾 ∗ for which 𝐸(𝑢𝛾 − 𝑢𝑚𝑒𝑎𝑠) is minimal. In fact, 𝐸(𝑢𝛾 − 𝑢𝑚𝑒𝑎𝑠) < 𝐸(𝑢 − 𝑢𝑚𝑒𝑎𝑠) as soon as 𝛾 >

 0 up to a certain maximum that is approximately equal to 2𝛾∗, that is, 𝛾∗ lies approximately at the midpoint of the 𝛾-interval for 

which 𝐸(𝑢𝛾 − 𝑢𝑚𝑒𝑎𝑠) < 𝐸(𝑢 − 𝑢𝑚𝑒𝑎𝑠).  

4. Unfortunately, 𝛾∗ depends on the ground acceleration. It seems that 𝛾∗  →  0 in the limit as the main frequency of the ground 

acceleration moves towards the fundamental frequency of the SDOF structure.   

An important observation is that the relative displacements generated from the equations of motion are larger than those measured in 

the experiments. In contrast, the findings in (Qin et al., 2018) suggest that Equation (1) generates a smaller relative displacement if 

the ground acceleration is a pure sine wave. However, similar to what is observed here, the results reported in (Qin et al., 2018) also 

show a significant discrepancy centred at the fundamental frequency of the SDOF structure. 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