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Abstract. Global invariant manifolds play an important role in organising the behaviour
of a dynamical system. Together with equilibria and periodic orbits, they form the so-
called skeleton of the dynamics and offer geometric insight into how observed behaviour
arises. In most cases, it is impossible to find invariant manifolds explicitly and numerical
methods must be used to find accurate approximations. Developing such computational
techniques is a challenge on its own and, to this date, the focus has primarily been on
computing two-dimensional manifolds. Nevertheless, these computational efforts offer
new insights that go far beyond a confirmation of the known theory. Furthermore, global
invariant manifolds in dynamical systems theory not only explain asymptotic behaviour,
but more recent developments show that they are equally useful for explaining short-term
transient dynamics. This paper presents an overview of these more recent developments,
in terms of novel computational methods, as well as applications that have stimulated
recent advances in the field and highlighted the need for new mathematical theory.
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1. Introduction

Dynamical systems theory is very much characterised by its geometrical and topo-
logical aspects; classical textbooks, such as [6, 29, 33, 62, 63, 68], for example, rely
on sketches to illustrate ideas. Therefore, it seems natural to have a computational
toolbox that can produce numerical approximations to illustrate how this theory
manifests itself in actual dynamical systems. The development of such a toolbox
has proven to be a challenge in itself, which perhaps explains the apparent split of
the field into those who use sketches and those who employ numerical computa-
tions; the two groups tend to interact too little. In fact, numerical computations
are often used in realistic applications in collaboration with other scientists. There
seems to exist a perception that this direction of research may lead to new numer-
ical challenges, but does not contribute to the development of new theory, while
theoreticians push the boundaries of dynamical systems and offer new insights via
conjectures and then proofs. This paper aims to highlight how the development of
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dedicated computational methods arising from real applications can also lead to
new dynamical systems theory. The focus here will be on continuation methods
for the computation of global invariant manifolds of vector fields.

Continuation methods for dynamical systems were designed for the bifurcation
analysis of equilibria and periodic orbits. Pseudo-arclength continuation is used
to track such invariant objects in a parameter [41]. Continuation of equilibria is
relatively straightforward and involves finding an approximation to a uniquely de-
fined parametrised solution family of an algebraic problem. The continuation of
periodic orbits is already harder, because it requires solving a two-point bound-
ary value problem (2PBVP) in conjunction with a suitable restriction to select
a unique orbit from the infinite family of phase-shifted ones. The method of or-
thogonal collocation with piecewise polynomials [7, 10] is now widely adopted for
this purpose, because it is very accurate and allows adaptive mesh selection; this
particular solution method is implemented in the popular packages Auto [16, 17],
which is also part of the package XPPAut [21], and MatCont [15]. By extend-
ing the system to include suitable monitoring functions, the same approach can
be used to continue codimension-one bifurcations in two parameters. In fact, the
initiative behind the package MatCont [15] aims to have implementations for the
continuation of all codimension-one and -two bifurcations of equilibria and periodic
orbits, both for continuous- and discrete-time deterministic systems [27, 46].

The continuation of periodic orbits is only one example of a 2PBVP set-up.
Global invariant manifolds can also be formulated in terms of a 2PBVP. This
idea has been applied to detect and continue homoclinic and heteroclinic bifurca-
tions [36]. For example, the HomCont extension to Auto can be used to compute
such codimension-one bifurcations and determine the location of codimension-two
points, such as homoclinic flip bifurcations [12]; these methods have also been de-
veloped for discrete-time systems [9], which is implemented for one-dimensional
manifolds in the command-line version of MatCont. Here, we apply the 2PBVP
set-up in the context of computing two-dimensional global manifold of flows. We
used Auto to continue the 2PBVPs for the manifold computations in this paper.
Four case studies illustrate the fruitful interplay between advancing the reach of
the numerical methods and developing new dynamical systems theory.

This paper is organised as follows. In Section 2 we consider stable and unstable
invariant manifolds, that is, manifolds that are globally invariant under the flow of
the vector field and, either in forward or in backward time, converge to compact
invariant objects, such as equilibria and periodic orbits. As specific examples, we
consider the stable manifold of the origin in the Lorenz system in Section 2.1 and,
in a more applied context in Section 2.2, the interpretation of a stable manifold as
an isochrone for a particular phase point along a periodic orbit. In Section 3, we
consider invariant manifolds as a tool to explain the effects of finite-time perturba-
tions. In the example in Section 3.1, which is related to the notion of isochrones,
we predict a delay or advance of the phase in response to a short-time perturba-
tion. We then consider excitability in Section 3.2, and compute the excitability
threshold in the context of a system for which no saddle equilibria or other saddle
invariant manifolds are present. We conclude this review in Section 4 with a brief
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discussion that also mentions some directions of further research.

2. Stable and unstable manifolds

Stable and unstable manifolds of equilibria, periodic orbits, or other compact nor-
mally hyperbolic invariant manifolds of saddle type are an important part of the
so-called skeleton of a dynamical system. While the attractors organise the even-
tual, asymptotic behaviour of the system, stable and unstable manifolds describe
the global structure of the system, dictating which initial condition goes where,
and in what manner.

To fix ideas and notation, let us restrict to vector fields from now on and con-
sider global invariant manifolds of equilibria or periodic orbits. Recall that an
equilibrium p is hyperbolic if all eigenvalues of the Jacobian matrix evaluated at
p have non-zero real part; similarly, a periodic orbit Γ is hyperbolic if all Floquet
multipliers of the linearisation have magnitudes different from 1, except for the
Floquet multiplier associated with the direction tangent to Γ; we refer to [46] for
details. The stable manifold of p or Γ, denoted W s(p) or W s(Γ), consists of all tra-
jectories of the flow that converge to p or Γ in forward time; the unstable manifold
of p or Γ, denoted Wu(p) or Wu(Γ), is its stable manifold when considering the
time-reversed flow. The Stable Manifold Theorem [62] guarantees the existence of
local (un)stable manifolds of hyperbolic equilibria and periodic orbits associated
with their (un)stable eigenvalues or Floquet multipliers, and these manifolds can
be extended globally by the flow in either forward or backward time. Furthermore,
these manifolds are as smooth as the vector field itself, and they are tangent to
the manifolds of the corresponding linearisation.

From these definitions, we deduce that a one-dimensional stable or unstable
manifold of an equilibrium p of a vector field consists of two trajectories; each
trajectory converges to p in forward or backward time, in a direction tangent to
the eigenvector associated with the (strong) stable or unstable eigenvalue, such
that the two trajectories together with p form a single smooth (immersed) man-
ifold [62]. From a computational point of view, it is straightforward to compute
such one-dimensional manifolds: by selecting an initial point along the appropriate
eigenvector at a small distance from p, integration backward (for the stable mani-
fold) or forward in time (for the unstable manifold) generates an orbit segment as
an approximation of an arbitrarily long first piece of the manifold. Such an inte-
gration produces an ordered list of suitably distributed points on this first piece of
the manifold, allowing for its straightforward visualisation as a smooth curve.

A two-dimensional (un)stable manifold, on the other hand, is a lot more difficult
to compute and visualise. The challenge lies in the fact that the manifold is now a
surface formed by a one-parameter family of trajectories. Hence, a computational
method must include instructions how to generate a suitable mesh representation of
this surface. Perhaps the simplest approach for designing an algorithm to compute
two-dimensional (un)stable manifolds is to select (discretised) orbit segments from
the one-parameter family that defines the manifold. Here, a first orbit segment
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is computed in the same way as for one-dimensional manifolds, by integration
up to the time or length required. Continuation can then be used to follow this
first orbit segment as its starting point is varied along a one-dimensional curve in
the two-dimensional eigenspace; additional orbit segments are selected from the
family as dictated by the spacing between them. This approach often requires
a post-processing step of remeshing to visualise the surface. The complementary
approach is to ignore the dynamics on the manifold and view it geometrically, for
instance, as a family of geodesic level sets. In this case, the mesh is generated as
a growing structure based on geometric features, and this aspect can be used for
direct visualisation; the disadvantage is that the dynamics on the manifold may
cause geometric obstructions, e.g., when there exists a connecting orbit from one
equilibrium or periodic orbit to another. We refer to the survey paper [45] for more
details on these two (and other) approaches.

In the case studies presented here, we use both approaches, and each uses a
formulation via two-point boundary value problems (2PBVP) that are solved by
one-parameter continuation with the 2PBVP solver Auto [16, 17]. We compute a
finite set of (discretised) geodesic level sets with the algorithm from [42, 43] if we
are interested in the two-dimensional manifold as a surface; this method generates
a mesh with good geometric properties and allows for elaborate visualisation. We
compute a one-parameter family of orbit segments [44, 45] if we are interested in
how a manifold intersects another two- (or higher-)dimensional object, such as a
plane or a sphere. Here, we compute the orbit segments up to this intersection
and then consider and plot their end points; the orbit segments are selected based
on a maximum distance between them, and so the end points give a good mesh
representation of the intersection curves.

In the next sections we show how these computational methods can be employed
to help understand the topological and geometric nature of the dynamics of a given
system. In particular, they allow us to gain insights into different aspects of global
dynamics, and we are even able to formulate precise conjectures based on our
numerical findings.

2.1. The Lorenz manifold. As the leading example, we consider the stable
manifold of the origin of the Lorenz equations. Recall that Lorenz introduced these
equations as a much simplified model of convection in the atmosphere [48]. They
take the form of three ordinary differential equations,





ẋ = σ (y − x),
ẏ = % x− y − x z,
ż = x y − β z.

(1)

Lorenz used the classical values σ = 10, % = 28 and β = 8/3 as representative
parameters. The famous butterfly attractor is the associated globally attract-
ing chaotic set. Note that the origin 0 is always an equilibrium of system (1),
and it is of saddle type for the classical parameter values. There are two fur-
ther, symmetrically-related equilibria, denoted p± that lie at the centres of the
‘wings’ of the butterfly attractor. The origin is hyperbolic with one unstable and
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Figure 1. The Lorenz manifold W s(0), computed up to geodesic distance 162.5, and
its intersection with the plane Σ%; the section Σ% and the part of W s(0) above it are
rendered transparent. Also shown are the equilibria 0 and p±, the one-dimensional man-
ifolds Wu(0) and W s(p±), and the tangency locus C on Σ%. Reproduced from Osinga,
Krauskopf, Hittmeyer, “Chaos and wild chaos in Lorenz-type systems,” in Z. Al-Sharawi,
J. Cushing and S. Elaydi (eds.) 19th Conference on Difference Equations and Applications
(in press), with permission from Springer-Verlag; see [59, Figure 4].

two stable eigenvalues, which means that it has a one-dimensional unstable and
a two-dimensional stable manifold. The equilibria p± each have a pair of com-
plex conjugate unstable eigenvalues, with corresponding two-dimensional unstable
manifolds, and one stable eigenvalue, with associated one-dimensional stable man-
ifold. The two-dimensional stable manifold of the origin received its name Lorenz
manifold in the survey paper [45] where all contributors used it as their test-case
example. From a computational point of view, it is challenging to compute the
Lorenz manifold, because there is an order of magnitude difference between the
two stable eigenvalues. This means that, locally near the origin, a small disk will
quickly transform into an elongated ellipse when carried by the flow backward in
time. The nonlinear terms do not balance this effect, so that it is very hard to
design algorithms that construct a high-quality mesh on the surface.

Figure 1 shows the Lorenz manifold W s(0) computed as a surface, that is, com-
puted as a family of geodesic level sets [42, 43]. The outer boundary corresponds
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to the approximate geodesic level set at distance 162.5. The surface W s(0) is inter-
sected with the plane Σ% = {z = %−1 = 27}, and the part of W s(0) that lies above
Σ%, as well as Σ% itself, is rendered transparent. In this way, we can see the three
equilibria 0 and p±, with their one-dimensional manifolds: the unstable manifold
Wu(0) of 0 and the stable manifolds W s(p±) of p±. The intersection curves and
points of these manifolds with Σ% are also indicated. The plane Σ% is the Poincaré
section that was used to analyse the nature of the dynamics on the attractor, which
is believed to be the closure of Wu(0). The return map is typically defined on the
part in between p±, where the flow points down from Σ%. The two hyperbolic
curves denoted C separate this region from the regions where the flow points up;
the flow is tangent to Σ% on C. The restriction of this return map to the Lorenz
attractor can be approximated by a one-dimensional map, for which it is relatively
straightforward to prove that it has chaotic dynamics [1, 30, 77]. The proof that
the Lorenz attractor is indeed chaotic was completed only in 1999, and required
computer assistance in the form of interval arithmetic [73, 76]. The reduction
to a one-dimensional map requires the existence of a (one-dimensional) invariant
foliation on Σ% that is transverse to the Lorenz attractor. We can see a few of

the leaves in this foliation, namely, the intersection curves W
s
(0) := W s(0) ∩ Σ%;

see [59] for more details.

The Lorenz manifold is a complicated surface. It cannot intersect (contain) the
one-dimensional manifolds W s(p±), and for the classical parameter values, it also
does not intersect Wu(0). In particular, due to the spiralling nature of Wu(0)
(and the attractor), W s(0) winds in a helical manner around the z-axis, which is
contained in W s(0), while additional helices are formed in symmetric pairs very
close to but off the z-axis. At the same time, W s(0) spirals around W s(p±).
Over the years, the challenge of computing the Lorenz manifold has shifted to
the challenge of understanding its geometry. We view the Lorenz manifold as a
key object for understanding how the chaotic dynamics manifests itself globally
in the Lorenz system (1). Chaotic dynamics is characterised by the presence of
sensitive dependence on initial conditions. Two nearby points on the Lorenz at-
tractor quickly diverge under the flow; as a quantative measure, the signature or
pattern of oscillations around p+ and p− will initially be identical, but after some
time the two trajectories will move apart in such a way that the signature will
be completely different. Switches between oscillations around p+ and p−, respec-
tively, are organised by the close passage near 0. More precisely, W s(0) acts as a
local separatrix between trajectories that continue oscillating around p+, say, and
those that switch to oscillating around p−. Since the Lorenz attractor is a global
attractor, any two points in phase space exhibit sensitive dependence on initial
conditions, and this is organised globally by W s(0). This means that the global
invariant manifold W s(0) separates any two points in R3 and is dense in R3.

It is mind-boggling to realise that such innocent-looking equations as the Lorenz
system (1) give rise to a two-dimensional surface that lies dense in its three-
dimensional phase space! This is an actual realised example of a space-filling
surface. In order to visualise this topological property, and to study its charac-
teristics further, we consider the intersection of W s(0) with a sphere SR that is
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Figure 2. The Lorenz manifold W s(0) for % = 28 intersecting the sphere SR with R =

70.7099 in the set Ŵ s(0); also shown are the equilibria 0 and p− and the one-dimensional
manifolds Wu(0) and W s(p±). Reproduced from Osinga, Krauskopf, Hittmeyer, “Chaos
and wild chaos in Lorenz-type systems,” in Z. Al-Sharawi, J. Cushing and S. Elaydi (eds.)
19th Conference on Difference Equations and Applications (in press), with permission
from Springer-Verlag; see [59, Figure 2].

centred at the point (0, 0, 27) ∈ Σ% on the z-axis (the mid-point on the line segment
between p±) and has large enough radius so that all bounded invariant objects are
inside it; more precisely, we choose R = 70.7099, which is the distance from the
centre of SR to the second intersection point of the small-amplitude branch of
W s(p±) with Σ%. Note that SR is a compact surface so that any intersection curve
with W s(0) must either be a closed curve or an arc with ends that accumulate on
some sets, in this case the intersection points W s(p±) ∩ SR. Since W s(0) is dense

in R3, the intersection curves in Ŵ s(0) must densely fill SR.

Figure 2 showsW s(0) intersected with the sphere SR. To highlight the situation
on and inside SR, only one half of W s(0) is shown, corresponding to the part that
lies in the half space {y ≥ 0}; the sphere SR is rendered transparant. Many

more curves in Ŵ s(0) are shown than those generated by the computed part of

the surface W s(0). Indeed, the curves in Ŵ s(0) were computed directly, using the
continuation of the family of trajectories that start on SR and end on a small ellipse
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around 0 in the linear stable eigenspace of 0; the selected curves are associated
with trajectories that satisfy these boundary conditions with a given maximal
integration time [19]. The relatively large unfilled region on SR shown in Figure 2
would be filled eventually, but only when an extremely large maximal integration
time is used; two nearby points in these regions, while converging quickly to the
Lorenz attractor, will take a comparatively large time to separate. Note the single
curve that crosses through the middle of this region; it is the first intersection
of W s(0) with SR, that is, trajectories starting from points on this curve flow
straight to 0 without excursions around p+ or p−. Hence, the unfilled region
is directly related to the fact that trajectories on the Lorenz attractor visit a
small neighbourhood of 0 far less frequently than similarly small neighbourhoods
elsewhere on the Lorenz attractor [70, Appendix F]. Figure 2 also illustrates the

structure of Ŵ s(0); the computed curves in Ŵ s(0) are the first of this set of curves
that fills SR densely, and they show that this process is taking place in a certain
order associated with a Cantor set; see [19, 59] for more details.

The study of the Lorenz manifold is ongoing, with a focus on the transitions
that occur en route to chaos as a parameter is varied; often, % is varied, which is
proportional to the Rayleigh number of the convection [48]. For % small enough,
there is no chaotic dynamics. After a first homoclinic bifurcation, called the
homoclinic explosion point, a so-called pre-turbulent regime is created, where a
chaotic saddle is present; this first transition has been widely studied, for exam-
ple, in [2, 18, 19, 38, 39, 40, 51, 52, 53, 64, 65, 70]. For details on the transition
from pre-turbulent to turbulent dynamics, see also [18, 26, 80]; for more recent
developments, see [13].

2.2. Isochrones. Isochrones were introduced in 1974 by Winfree [78] to char-
acterise the behaviour of an oscillating system subjected to a brief external stim-
ulus; the same external stimulus can have different effects depending on when it
is applied. Such studies are useful, for example, to understand how signalling in
neuronal networks is organised. Conceptually, the idea is very simple: the os-
cillations in the model are generated by an attracting periodic orbit Γ, which is
typically assumed to be the only attractor in the system; any perturbation away
from the periodic orbit, will result in a transient response that converges back to
Γ, but perhaps with a different phase as before. The isochrones foliate the basin
of attraction of Γ in such a way that points on the same isochrone converge to Γ
with the same phases. Guckenheimer [28] in a follow-up paper from 1975 explained
that isochrones are nothing other than the pointwise stable manifolds of Γ. This
means that each ischrone is invariant under the time-T map, where T is the period
of Γ, and manifold theory can be used to show that isochrones must, therefore, be
as smooth as the vector field itself and tangent to the linear stable eigenbundle of
Γ [33].
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From a geometric point of view, the isochrones form a nice manifold family
that foliates the basin of attraction such that all isochrones accumulate on each
other near the basin boundary. Winfree already realised this [25, 79], and studied
the accumulation of one-dimensional isochrones in the two-dimensional FitzHugh–
Nagumo system [24, 54] onto a repelling equilibrium enclosed by the attracting
periodic orbit. Winfree expected to be able to compute the isochrones and visualise
their geometry spiralling towards this repelling equilibrium, but to his surprise, he
encountered serious numerical accuracy issues that could not be overcome at the
time [79].

Isochrones have recently enjoyed a new surge of interest, fuelled in part by
developments requiring controlled positioning onto specific isochrons. Numerous
examples can be found in the context of biological applications, such as neuronal
models, where the external stimulus represents a current injection coming from
a large underlying neuronal network [23]. However, isochrones are also studied,
for example, when regulating synchronisation of power networks that contain a
large number of small energy generators, such as wind mills; see [47, 50, 60] for
references. These important applications go hand in hand with a renewed interest
in the development of appropriate numerical methods to compute isochrones [22,
31, 32, 37, 47, 49, 60, 69, 72]. In particular, we have overcome the accuracy issues
reported by Winfree and are now able to compute the isochrones of the FitzHugh–
Nagumo system reliably [47].

To illustrate some of these recent results, and discuss the difficulties encoun-
tered, we consider here a Hodgkin–Huxley model [35] that is reduced to the two-
dimensional form studied in [60]. The model is described by the following system
of two equations in terms of the membrane potential V and one of the gating
variables n, {

V̇ = −[INa + IK + ILeak] + Iapp,
ṅ = αn(V ) (1− n)− βn(V )n.

(2)

Here, the different currents are given by

INa = gNa [m∞(V )]3 (0.8− n) (V − VNa),

IK = gK n
4 (V − VK),

ILeak = gL(V − VL),

and Iapp is the applied current to stimulate the system so that an attracting peri-
odic exists; we use Iapp = 10 throughout. The so-called quasi-steady-state function
m∞(V ) is derived from the equilibrium assumption of a second gating variable m
and is given by an equation of the same form as for n, that is,

m∞(V ) =
αm(V )

αm(V ) + βm(V )
.

The functions αj(V ) and βj(V ), with j = n,m have the form

αj(V ) =
aj(V + Vj)

1− exp[−(V + Vj)/kj ]
and βj(V ) = bj exp

(−(V + Ej)

τj

)
.
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gNa = 120.0 gK = 36.0 gLeak = 0.3
VNa = 50.0 VK = −77.0 VL = −54.4

an = 0.01, Vn = 55.0, kn = 10.0 bn = 0.125, En = 65.0, τn = 80.0
am = 0.1, Vm = 55.0, km = 10.0 bm = 4.0, Em = 65.0, τm = 18.0

Table 1. Parameters used in the two-dimensional reduced Hodgkin–Huxley model (2).

The particular constants used in this example are given in Table 1.
System (2) evolves on two different time scales; the membrane potential varies

fast over a range of order O(102), while n, which represents a fraction of open
potassium channels, varies slowly over a unit range. While this time-scale sepa-
ration is not made explicit in the model, one can see it in its spiking behaviour:
the time series in V of the attracting periodic orbit Γ of this system has a long
subthreshold plateau followed by a rapid large-amplitude spike. One main interest
in such systems arises from the question whether it is possible to elicit a spike from
the system via a small perturbation from an arbitrary point along the subthresh-
old plateau. It is generally believed that such a pertubation need only bring the
system to a high enough level for V , the precise value of which is called the spiking
threshold.

Figure 3 shows Γ together with 100 isochrones. The isochrones are distributed
uniformly in time along Γ. This means that most isochrones are located on the
subthreshold part, which is the lower, approximately horizontal segment of the
closed (grey) curve in Figure 3(a). The isochrones are coloured according to a
(cyan-to-magenta) colour gradient, starting from the maximal point on Γ (with
respect to V ), in the (clockwise) direction of the flow. Any perturbation away
from Γ will land on a particular isochrone and relax back to Γ in phase with the
point on Γ associated with this isochrone. The colour coding seems to reveal a clear
spiking threshold, where all isochrones appear to align with each other. We focus
on the situation near n = 0.525 and zoom into a neighbourhood of the perceived
spiking threshold for this n-value, as shown in Figure 3(b). Here, we see that
the isochrones do not merely align, but form a much more complicated structure,
where each isochrone passes n = 0.525 several times while preserving its order
in the foliation. This means that a perturbation close to the perceived spiking
threshold could result in any arbitrary phase shift and the relationship between
the size of the perturbation and the resulting phase shift, at least in this region of
sensitivity, is highly nontrivial.

The characterisation of this stretched region of extreme phase sensitivity is
related to the accumulation of isochrones near the basin boundary. Due to the
two-dimensional nature of the flow, the periodic orbit Γ encloses an equilibrium
at (n, V ) ≈ (0.4026,−59.61), which is repelling. The enlargement in Figure 3(c)
illustrates the intricate spiralling nature of the isochrones accumulating onto this
equilibrium. The extreme phase sensitivity, not only near the equilibrium, is or-
ganised by the repelling slow manifold associated with the repelling branch of the
cubic critical manifold; see [47, 60] for more details.

The computation of the isochrones uses a two-point boundary value set-up
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Figure 3. Extreme phase sensitivity near the excitability threshold in the reduced
Hodgkin–Huxley model (2). Shown are the isochrones of 100 points along the periodic
orbit (grey) that are distributed uniformly in time. Panel (b) shows the phase sensitivity
in an enlargement near n = 0.525; and panel (c) illustrates how the isochrones organise
the phase sensitivity near the equilibrium at (n, V ) ≈ (0.4026,−59.61).

that is essentially the same as a stable-manifold calculation [47, 60]. We continue
a one-parameter family of orbit segments with integration times equal to integer
multiples of the period of Γ. By restricting one end point to a small interval along
the linear stable eigendirection at a point γ ∈ Γ, the points at the other end of such
a family of orbit segments forms the isochrone associated with γ. The resulting
algorithm computes the isochrone as a curve parametrised by arclength and avoids
the numerical accuracy issues reported by Winfree [79]. The continuation of the
2PBVP can trace the isochrone through regions of extreme phase sensitivity, be-
cause the entire orbit segments associated with ends points on different isochrones
that are indistinguishable in this region, remain well separated.

3. Slow manifolds and transient effects

The example of the Hodgkin–Huxley model (2) in Section 2.2 illustrates that an ex-
citability threshold can be much more complicated than generally assumed. More-
over, it highlights the need for a deeper mathematical understanding of bursting
behaviour. The analysis of bursting goes back to the 1980s when Rinzel, at the
1986 ICM, proposed a simple approach to classifying bursting mechanisms in ex-
citable systems [67]. Rinzel utilises the fact that excitable systems typically feature
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variables that evolve on rather different time scales. More precisely, the model can
be written as {

ẋ = f(x, y),
ẏ = ε g(x, y),

(3)

where x ∈ Rn and y ∈ Rm, with n,m ≥ 1. Here, 0 < ε � 1 represents the
single time-scale separation between y and x. If we take the singular limit ε → 0
then y becomes a vector of parameters and the equation for x, called the fast
subsystem, exhibits dynamics that depends on the choice for y. Rinzel discusses
the case with m = 1 in detail. Bursting, or spiking, occurs when the one-parameter
bifurcation diagram in y of the fast subsystem exhibits hysteresis, and the y-
nullcline is positioned such that the slow evolution of y causes an oscillation of
y across this hysteresis regime. This idea of freezing the slow variable can even
be used when ε is not explicitly present in the equations. For example, in the
reduced Hodgkin–Huxley model (2), the variable V was found to be at least 100
times faster than n. Hence, one can view n as a parameter and analyse the one-
dimensional fast subsystem given by the equation for V . Three equilibria co-
exists for n approximately in the interval [0.3085, 0.7072], both end points of which
are fold points; the branches corresponding to the highest and lowest V -values
are stable. Furthermore, n is decreasing on the lower branch and increasing on
the upper branch in the hysteresis interval. One concludes that the full two-
dimensional system exhibits a relaxation oscillation that traces the two branches
of stable equilibria, interspersed by two (fast) jumps approximately at the fold
points; the relaxation oscillation is the (gray) periodic orbit shown in Figure 3(a).

Different bursting patterns arise when there are additional bifurcations along
the branches of equilibria. For example, multi-spike bursting oscillations arise when
the upper branch includes a Hopf bifurcation, so that the fast subsystem exhibits
periodic oscillations over a range of y-values; this case was already discussed in [67],
but see also the example in the next section, where the fast subsystem undergoes
a subcritical Hopf bifurcation, which gives rise to a family of unstable (saddle)
periodic orbits, but nevertheless, generates a multi-spike burst. Bursting behaviour
can also be organised by a slow-fast system with two or more slow variables; see [14]
for a detailed discussion and literature overview.

The case studies presented in the following two sections are using the same
ideas as introduced by Rinzel [66, 67], but utilise recent developments in manifold
computations to enhance this approach and enlarge it applicability.
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3.1. Predicting the phase response. In complete analogy to the two-
dimensional reduced Hodgkin–Huxley model (2), we consider, here, the problem
of phase resetting for a model of a pituitary cell. The model is four dimensional
and uses the same Hodgkin–Huxley formalism as described in detail for system (2).
One equation is for the membrane potential V , two are for channel gating variables
n and m, and one is for calcium balance in the cell body:





CmV̇ = −[ICaL + ICaT + IK + IKCa + ILeak] + Iapp,

ṅ =
n∞(V )− n

τn
,

ṁ =
m∞(V )−m

τm(V )
,

Ċa = Jexchange + f β (Jinflux − Jefflux).

(4)

A full description of the model can be found in [71]; we only mention here that
Iapp = 0 by default; it is only used for perturbing the spiking behaviour of the
cell. Rather than eliciting a single spike, system (4) with Iapp = 0 exhibits a
series of spikes during the active phase of the periodic orbit Γ. As for the reduced
Hodgkin–Huxley model (2), most of the time is spent on a subthreshold plateau,
and one is interested in understanding the response to perturbations away from this
subthreshold segment of Γ. One particular difficulty with this model is to achieve
an ‘active’ phase shift, in the sense that the perturbation brings the membrane
potential up into the active phase and gives rise to a spike train before V drops
back down to subthreshold levels.

System (4) has three different time scales: just as for the reduced Hodgkin–
Huxley model (2), the membrane potential V varies on a much faster time scale
than the two gating variables n and m. The calcium concentration varies even
more slowly than the gating variables and it is this variable Ca that is singled
out in the geometric singular perturbation theory, leaving a three-dimensional fast
subsystem for analysis. The (V, n,m)-subsystem has two families of Ca-dependent
stable equilibria, denoted eH and eL for the active and silent phases, respectively.
The branch eL exists only for large enough Ca, and coexists with a family eM of
saddle equilibria that meet at a fold. The branch eH destabilises in a subcritical
Hopf bifurcation for a Ca-value to the right of this fold point. Hence, there is a
Ca-interval for which the two stable equilibria eH and eL coexist. The situation
seems similar to the case discussed in Section 2.2, but the Hopf bifurcation gives
rise to a family of saddle periodic orbits ΓH that coexist with eH and eL for large
enough Ca in the bistability interval.

We use the analysis of the fast subsystem to explain the difficulty in achieving
an active phase shift. To this end, we focus on a single Ca-value, namely Ca = 1,
for which all three equilibria as well as the saddle periodic orbit are present. A
perturbation in the form of a current Iapp is applied during the silent phase, such
that Ca = 1, that is, (approximately) from the equilibrium eL. We assume that
the transient effects caused by the perturbation are of such a short-time nature
that Ca remains practically at 1. If this is indeed the case, then Iapp must be such
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Figure 4. Stable manifolds of the equilibrium eM and periodic orbit ΓH of the fast
subsystem of (4) with Ca = 1.

that eL, which for this new value of Iapp is most certainly no longer an equilibrium,
flows towards the basin of attraction of eH. Again, we assume that this transient
motion is so fast that Ca hardly changes. As soon as the basin boundary is crossed,
Iapp can be switched off and we may assume that the dynamics will switch back to
its unperturbed course with the required phase shift. Figure 4 shows the equilibria
and periodic orbit of the fast subsystem for Ca = 1. Also shown are the two-
dimensional stable manifolds W s(eM) and W s(ΓH) of eM and ΓH, respectively. The
manifolds W s(eM) and W s(ΓH) were computed with the same method described
in Section 2.1. The basin boundary of eH is the separatrix W s(ΓH), but W s(eM)
also acts as a kind of separatrix, because a crossing of W s(eM) leads to one or
more spikes before relaxation back to eL.

For Iapp > 0 small enough, the fast subsystem has a similar set of three equilib-
ria and one periodic orbit. Hence, for Iapp > 0 small enough, the flow will simply
push eL to the corresponding (lower) stable equilibrium for the new value of Iapp;
this will not lead to an active phase shift. For Iapp > 0 large enough, however,
only one equilibrium exists, which can be associated with the active phase. For
example, if Iapp = 6.69, a unique attracting equilibrium exists near eH. Unfortu-
nately, this equilibrium lies outside the basin of attraction of eH. This is the case
for all values of Iapp for which only one equilibrium exists. Figure 5 illustrates
the possible transient behaviour while Iapp = 6.69. The trajectory departs from
eL and spirals towards the attractor for this Iapp-value. On its way, W s(ΓH) is
crossed four times, creating two short time windows in which the applied current
could be reset to Iapp = 0 and an active phase shift could possibly occur.

From this analysis we predict two successful perturbation protocols, both of
which require holding Iapp at a positive value for a certain (nontrivial) amount
of time. Subsequent dynamic testing of these perturbation protocols for the full
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Figure 5. Starting from eL, an applied current Iapp = 6.69 results in two excursions inside
the basin of attraction of eH while spiralling towards an attractor outside this basin.

four-dimensional system indeed showed that an active phase shift can be achieved
only for two particular segments in the silent phase. Perhaps more importantly,
this research provided the precise ranges of values to use for Iapp and the time
duration befor reset to Iapp = 0; until these results were known, researchers had
been unable to find any kind of active phase reset for this type of pituitary cell
model. We refer to [71] for more details.

It is interesting to note that the stable manifold of the coexisting saddle equilib-
rium eM controls the number of spikes seen in a transient burst. The accumulation
of W s(eM) onto W s(ΓH) occurs in the fast subsystem, but it is very similar to
the isochrones accumulating onto a slow manifold, which occurs in the full system;
for example, see the structure of the isochrones for the reduced Hodgkin–Huxley
model in Section 2.2. As yet, there are no good methods available to compute
higher-dimensional isochrones and the precise analogy remains a challenging area
of research.
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3.2. Excitability thresholds. The idea of using an applied current to
elicit a spike or spike train from the model can be further refined to establish
exactly how many spikes will be generated after such a perturbation. In [56, 57]
we considered a five-dimensional model that closely mimics the bursting behaviour
of a pyramidal neurone in the so-called CA1 and CA3 regions of the hippocam-
pus. Such CA1/CA3 cells are known to play an important role in the onset of
Alzheimer’s disease [5, 11, 55]. In experiments, these cells are subjected to a
short current injection and the response of their membrane potential is recorded.
A model for such a cell, constructed with the Hodgkin–Huxley formalism, offers
insight into how the different currents bring about the various responses. Further-
more, the model can give a precise mathematical mechanism explaining how new
spikes in the spike train are added when a parameter is varied.

The model combines equations for the membrane potential and four gating
variables, corresponding to activation of slow inward and fast and slow outward
currents, and inactivation of the slow inward current. Here, we consider only
the model for a CA3 pyramidal neurone; the model for the CA1 neurone can be
obtained by using a different set of parameters [55]. The parameters are such
that the system is at its resting potential, which is an attracting equilibrium in
the model; we refer to [56] for more details on the model equations. We study
the transient response of this system when it is perturbed away from the stable
equilibrium by an applied current of 20µA/cm2 for a duration of only 3 ms. When
the conductance parameter gSI corresponding to the slow inward current is varied,
this same short current-injection protocol leads to a variety of responses. More
precisely, the strength and duration of the applied current is chosen such that, over
a range of gSI-values, the perturbation pushes the system past the top of a first
spike; the difference between responses is characterised by what happens after the
current injection, during the transient phase when the applied current is switched
off and the system relaxes back to its stable equilibrium. Figure 6 shows three
such responses, namely, for gSI = 0.1, for which the response immediately relaxes
back to equilibrium, gSI = 0.5, for which the relaxation occurs via a non-monotonic
route, and gSI = 0.6 mS/cm2, for which the response exhibits two further spikes
before relaxation back to equilibrium.

The transformation from a single-spike to a three-spike response occurs via a
spike-adding sequence, but the gSI-interval of the two-spike response is very small
and an example of such a response is not shown in Figure 6. In fact, experimental
findings also report that it is difficult to obtain a two-spike response [11]. In order
to investigate the mechanism underlying the spike-adding behaviour, at least from
a mathematical point of view, we use geometric singular perturbation theory by
utilising the different time scales in the model. Both the gating variables mSO and
hSI, corresponding to activation of the slow outward current and inactivations of
the slow inward current, respectively, are much slower than the other variables.
Therefore, we consider the fast subsystem, represented by the membrane potential
V , and the gating variables mSI and mFO corresponding to the slow inward and
fast outward currents, respectively.

Since we now have two slow variables, the equilibria in this fast subsystem are
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Figure 6. The same short current-injection protocol leads to different responses when a
parameter is varied. Reproduced from Nowacki, Osinga, Tsaneva-Atanasova, “Dynamical
systems analysis of spike-adding mechanisms in transient bursts,” Journal of Mathemat-
ical Neuroscience 2 (2012): 7, with permission from Springer-Verlag; see [56, Figure 1].

organised in families that form surfaces in the five-dimensional phase space. In fact,
they form a single folded sheet, if one allows hSI to attain non-physical values. The
lower segment (with respect to V ) of this sheet consists of attracting equilibria, one
of which corresponds to the stable equilibrium of the full five-dimensional system.
The upper segment (with respect to V ) is organised in much the same way as for
the fast subsystem of (4) in Section 3.1: there exists a curve of subcritical Hopf
bifurcations, which give rise to a two-parameter family of saddle periodic orbits.
For the CA3 neurone model, this family of saddle periodic orbits undergoes a
fold that stabilises the family before ending at a curve of homoclinic bifurcations.
Figure 7 shows these two-parameter families of equilibria and maxima and minima
of the periodic orbits for gSI = 0.5615, which is a special value with respect to the
behaviour of the full system, but representative for the geometric organisation of
the equilibria and periodic orbits of the fast subsystem. The projection is onto
(hSI,mSO, V )-space, showing V against the two slow variables hSI and mSO. The
surface of equilibria is labelled in segments according to the stability changes due
to fold or Hopf bifurcations. The lower sheet is labelled Sa

1 ; past the first fold, —
which occurs along a curve with hSI outside its physical range and is not shown
in Figure 7, — the equilibria are of saddle type and labelled Sr

1 . There are two
further folds that occur in quick succession, leading to an attracting segment Sa

2

and another saddle segment Sr
2 . The upper fold (with respect to V ) gives rise to
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Figure 7. A spike-adding transition for the CA3 pyramidal neurone model with gSI ≈
0.5615 increasing over an exponentially small interval. Reproduced from Nowacki, Osinga,
Tsaneva-Atanasova, “Dynamical systems analysis of spike-adding mechanisms in tran-
sient bursts,” Journal of Mathematical Neuroscience 2 (2012): 7, with permission from
Springer-Verlag; see [56, Figure 5].

a segment for which the equilibria have two unstable eigenvalues, and is labelled
Sr

3 ; the upper attracting segment, on the other side of the Hopf curve, is labelled
Sa

3 . Similarly, the families of periodic orbits are denoted P r and P a.

Overlayed on the two-parameter families of equilibria are orbit segments of
trajectories of the full five-dimensional system, starting from the point when the
current injection has been switched off. From panels (a) to (f), the conductance
gSI ≈ 0.5615 is increasing, but only over an exponentially small interval; all gSI-
values round to 0.5615. Figure 7 illustrates the significance of this value gSI ≈
0.5615, because in an exponentially small interval near this value, the orbit segment
undergoes a dramatic transition that causes the creation of a new spike. While
it is hard to see from such three-dimensional projections how this is organised in
the five-dimensional phase space, Figure 7 gives a clear impression that the orbit
segment tracks the unstable sheets Sr

1 and Sr
2 during the transition; we checked that

this is indeed the case. A new spike is created when, at a special parameter value
for gSI, the orbit segment does not immediately relax back to Sa

1 , but is captured
by the sheet Sr

1 . At first, the orbit segment tracks Sr
1 for only a short while before
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Figure 8. The stable manifold of the saddle equilibrium eM on Sr
1 with hSI = 0.6865 and

mSO = 0.02534.

dropping down to Sa
1 ; see Figure 7(a). However, as gSI increases, the orbit segment

not only tracks Sr
1 , but continues along Sr

2 up to its fold with Sr
3 before dropping

back downd to Sa
1 ; see Figures 7(b) and (c). The transformation proceeds via the

topological change that, after tracking Sr
1 and Sr

2 , the orbit segment jumps up
before dropping down to Sa

1 ; see Figure 7(d). Subsequently, the tracking along Sr
1

and Sr
2 is gradually withdrawn, while the jump up develops into a real spike. We

remark that the spike-adding transition for the CA3 neurone model is relatively
complicated, involving two slow variables and a transition between two saddle-
unstable sheets Sr

1 and Sr
2 . There features are important for the biology and help

mimic precise details of the experimental results. However, the minimal ingredients
for a spike-adding transition as illustrated in Figure 7 can be provided by a three-
dimensional model with a single slow variable; see [61].

The spike-adding transition is initialised at the moment when the perturbation
at the end of the short current injection is such that the orbit segment is captured
by Sr

1 . If we assume that the two slow variables hSI and mSO hardly change, we
can illustrate this capture in (mSI,mFO, V )-space with respect to the fast subsys-
tem. Figure 8 shows two views of the stable manifold of the saddle equilibrium
eM on Sr

1 for the fast subsystem in (mSI,mFO, V )-space with hSI = 0.6865 and
mSO = 0.02534; in both views, the vertical axis is V . The manifold W s(eM) sep-
arates the basins of attraction of the two stable equilibria eL on Sa

1 and eH on
Sa

3 ; compare Figure 7. In the full five-dimensional phase space, W s(eM) is not a
separatrix; it is not even an invariant manifold and eL, eM and eH are not equilib-
ria. We interpret Figure 8 in the following way. A spike-adding transition occurs
when the parameter gSI is such that the trajectory perturbed from the stable equi-
librium of the full system lands exponentially close to W s(eM) immediately after
the 3 ms current injection. Here, W s(eM) represents the stable manifold of the
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equilibrium eM on Sr
1 that corresponds to the (approximate) hSI- and mSO-values

at the time immediately after the 3 ms current injection. As shown in Figure 8,
the trajectory of the full five-dimensional system starts at a point near eH, because
the perturbation gave rise to a first spike. It lies (approximately) on W s(eM) and,
thus, converges to eM. Since the fast directions dominate, hSI and mSO hardly
change at first, and we can follow the convergence almost up to eM in this ‘frozen’
image. Close to eM, or more precisely, close to Sr

1 , the slow dynamics dominates
and the trajectory starts tracking Sr

1 with hSI and mSO varying over a relatively
large range; see Figure 7.

The excitability threshold in this system is not organised by the existence of a
stable manifold in the full system, associated with a saddle equilibrium or other
saddle-type invariant object. The role of the excitability threshold is taken over
by unstable (saddle) slow manifolds that exist due to the presence of multiple
time scales in the system. As argued here, the spike-adding dynamics is organised
by the special events when a perturbation causes a shift exactly onto the stable
manifold of a saddle slow manifold. One must be cautious here, because neither
slow manifolds nor their stable manifolds are uniquely defined [14, 20]. In our
case study, we consider the situation in the singular limit, for which the required
stable manifold is uniquely defined, but for the full system, this means that the
spike adding will be spread over an exponentially small parameter interval, during
which the pertubation causes a shift onto stable manifolds of a family of saddle slow
manifolds. The precise nature of such a transition, while observed numerically, has
yet to be analysed in detail theoretically.

4. Conclusions

The case studies presented in this paper demonstrated that the continuation of two-
point boundary value problems for the computation of global invariant manifolds
is a powerful tool for the investigation of practical issues arising in applications,
as well as questions in dynamical systems theory. In fact, these methods are so
accurate that they allow for detailed quantitative predictions and the formulation of
specific conjectures. Computations based on boundary-value-problem formulations
can be used widely in dynamical systems; in particular, they are very well suited
for the investigation of systems with multiple time scales. Moreover, they allow
for a systematic investigation of transient phenomena.

We conclude this paper by mentioning a few directions of future research. In
related and ongoing work, we consider the organisation of phase space near global
bifurcations, including the Shilnikov bifurcation [4] and homoclinic flip bifurca-
tions [3]. We also want to explore higher-dimensional systems, with a particular
focus on hetero-dimensional cycles; an example with explicit equations of a system
with hetero-dimensional cycles has only recently been found [81]. Such cycles are
known to be related to the existence of wild chaos that can arise in vector fields
of dimension at least four [8, 34, 74, 75]. We also continue our study of systems
with multiple time scales and are particularly interested in interactions between
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slow manifolds and global invariant manifolds of such systems [14]. Furthermore,
we would like to characterise the different mechanisms of spike adding in transient
bursts [57, 61]. Finally, the computational approach to analyse transient bursts
can also be employed in different applications. We are particularly interested in
the stability analysis of a structure during an earthquake. The so-called failure
boundary in this problem is similar to the excitability threshold studied in this
paper. Initial computations that employ continuation of a two-point boundary
value problem to find such failure boundaries directly, show that the boundary is
formed in a complicated way, composed of piecewise-smooth segments from the
solution family [58].
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