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ABSTRACT: We propose a novel approach to investigating the parameter dependence of system behaviour for models that are
subject to an external force. As a particular example we consider the analytical model of a tied rocking block on an elastic
foundation, which exhibits dynamics equivalent to that of a planar, post-tensioned frame on a shake table; we are interested in
predicting behaviour of models subject to an aperiodic external force (an earthquake), but in this paper we restrict to periodic
external forcings only. The failure boundary separates initial conditions, given by the angle and angular velocity of the rocking
block, for which trajectories starting from time 0 move past a given maximum angle (in absolute value) from those that remain
in the admissible regime for arbitrarily long time integration. There are no methods to compute such a failure boundary directly.
Instead, numerical studies have, so far, applied brute-force simulations over a grid of initial conditions.

This paper presents an efficient method, based on the fact that the failure boundary must consist of initial conditions that graze
the maximum-angle line. We set up a two-point boundary value problem (2PBVP) that defines trajectory segments starting from a
given initial condition and ending at the maximum angle (or its negative) with zero angular velocity. We use continuation to find a
one-parameter family of initial conditions that solve this 2PBVP; more precisely, we compute two continuous curves of solutions,
one for the positive and one for the negative maximum angle. The failure boundary is a piecewise-smooth curve composed of a
finite subset of bounded segments from these two families. We describe properties of the failure boundary in detail and discuss
how parameter variation can cause the admissible regime to split into two disjoint pieces.
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1 BACKGROUND

The possibility of an earthquake is a constant threat in many
countries. For example, New Zealand has recently been
experiencing quite a number of earthquakes that resulted in
minor to severe damage to buildings. Most notorious is the
2011 Christchurch earthquake, which followed a series of
earthquakes starting in September 2010; buildings constructed
using reinforced concrete suffered only minor to moderate
damage in this first series of earthquakes, but 135 of the
833 reinforced-concrete buildings were severely damaged in
the earthquake on 22 February 2011, including the complete
collapse of two such mid-rise buildings [5].

The system studied here models the behaviour of precast
concrete frames with post-tensioned tendons connecting ele-
ments. This type of frame is an example of a nonlinear elastic
moment resisting frame, which have received a lot of attention
in the past two decades, because such frames are capable
of exhibiting large deformations while still remaining elastic
(although nonlinearly). Experimental tests are very promising,
with only a minimal amount of damage observed all the way up
to design level, and satisfactory performance up to 50% beyond
it [11]. More recently, research has shifted from studying quasi-
static and slow dynamic behaviour, to the nonlinear dynamic
behaviour at a fast time scale for this class of structures [4]. This
works builds upon the mathematical models developed by civil
engineers at the University of Bristol [1], [2], [8], [9]. More

specifically, we use the model from [1] of a tied rocking block
on an elastic foundation as the representative example in this
paper. This model is given in non-dimensionalised form by the
second-order non-autonomous equation

ϕ̈ +2γ ϕ̇ +µ(ϕ) = Asin(ω t), (1)

which is valid only for the admissible regime |ϕ(t) |= 10. The
function µ(ϕ) is defined as

µ(ϕ) =

{
µ≤1(ϕ) := ϕ, |ϕ |≤ 1,

µ>1(ϕ), |ϕ |> 1,
(2)

with
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and ψ = (1+ β )
(
ϕ2 +β |ϕ |

)
. Note that µ(ϕ) is continuous

and continuously differentiable at |ϕ |= 1. For the purpose of
this short paper, we use the parameters β = 85 and γ = 0.05
and we fix the frequency of the periodic ground motion to ω =
0.575; see [1] for more details on this model.

The dynamics of system (1) is equivalent to that of a planar,
post-tensioned frame on a shake table [1], and the force term
on the right-hand side of this equation can be thought of as the



ground motion. System (1) provides information about the post-
earthquake structural integrity of the frame for any given forcing
amplitude A and frequency ω . In particular, we are interested in
the safe region

B∞ := {|ϕ(t) |< 10, for all 0≤ t ≤ Tend}, (3)

where Tend is some maximum integration time representing the
total duration of the earthquake.

Our goal is to compute the boundary of B∞. In [1] this was
done with a brute-force simulation that integrates system (1)
over a large grid of initial conditions and selects those points
that lie in B∞. In this paper, we present a direct approach by
computing curves of initial conditions with the special property
that their corresponding trajectories graze the boundary |ϕ(t)|=
10 for some time 0≤ t ≤ Tend. We use the set-up of a two-point
boundary value problem (2PBVP) so that the boundary of B∞

can be found by continuation. This idea is based on the general
approach of computing invariant manifolds via the continuation
of a suitably formulated 2PBVP; see [6] for an overview.
We have used these ideas successfully for studying transient
effects in neurone models [7], [10]. Here, we apply this same
framework to study the transient effect of an earthquake lasting
over a time interval [0,Tend].

Initially, we fix A = 0.6, for which system (1) has three
periodic orbits. Two of these periodic orbits are attracting and
one is of saddle type. All three periodic orbits lie in B∞, that is,
ϕ(t) ∈ [−10,10] for all points on the periodic orbits. The main
purpose of this paper is to show how the failure boundary, that
is, the boundary of B∞ is formed by a combination of left- and
right-grazing trajectories, that is, trajectories that are tangent to
the line ϕ = −10 or the line ϕ = 10, respectively. We also
discuss this for amplitudes just beyond the value A = 0.6 to
show how the nature of the boundary changes.

This paper is organised as follows. In the next section, we
discuss how to set up a two-point boundary value problem
and use continuation to trace the families of left- and right-
grazing trajectories. We then discuss the properties of the failure
boundary for A = 0.6 in detail in Section 3. We increase the
forcing amplitude A in Section 4 to illustrate how the failure
boundary, and thus, how B∞ changes with A. Finally, we
conclude with a discussion in Section 5.

2 COMPUTING THE FAILURE BOUNDARY

We are interested in computing the failure boundary in the
(ϕ, ϕ̇)-plane of initial conditions at time t = 0. Points on one
side of this boundary lie in B∞, while points on the other
side of this boundary correspond to trajectories that will leave
the regime ϕ(t) ∈ [−10,10] for some 0 < t < Tend. In the
computations discussed here, we used Tend = 9× 2π

ω
, where 2π

ω

is the period of the external forcing.

2.1 Set-up of the two-point boundary value problem

We use a direct approach to compute the failure boundary by
considering the families of left- and right-grazing orbits as
solutions of a two-point boundary value problem (2PBVP). This
2PBVP is solved with continuation in the software package
AUTO [3]. Recall that any trajectory of the non-autonomous

system (1) is uniquely defined by selecting values ϕ and ϕ̇

associated with a particular time; we consider points in the
(ϕ, ϕ̇)-plane at time t = 0. Trajectories that graze the admissible
regime |ϕ(t)|= 10 satisfy the additional constraint ϕ(T ) =±10
and ϕ̇(T ) = 0 for some time t = T , where 0 ≤ T ≤ Tend is
not known. We formulate these constraints in a 2PBVP set-
up of three first-order differential equations with three boundary
conditions. To this end, we consider orbit segments u= {u(s) =
(ϕ(sT ), ϕ̇(sT )) | 0 ≤ s ≤ 1}, where t = 0 if s = 0 and t = T if
s = 1; note that u is simply a grazing trajectory with rescaled
time such that the orbit segment is always defined on the interval
[0,1]. This set-up allows us to formulate the moment of grazing
as a boundary condition on the end point u(1). By extending
system (1) with one additional equation for time, the system is
given as {

u̇(s) = T f(u(s), t(s)),
ṫ(s) = T, (4)

where the total integration time T is treated as a parameter.
In total, there are three first-order equations, because u(s) is
a two-dimensional variable. The three boundary conditions are
defined as follows:

t(0) = 0, (5)
u(1) = (±10,0). (6)

Here, boundary condition (5) specifies time at the begin point
of the orbit segment, and (6) gives the other two boundary
conditions, namely, that the end point of the orbit segment
should be a grazing point (ϕ̇ = 0) on the line ϕ = 10 or
ϕ = −10. The 2PBVP (4)–(6) defines two solution families
in the (ϕ, ϕ̇)-plane for t = 0 that are each parametrised by T ;
one family is the case u(1) = (10,0) and the other is the case
u(1) = (−10,0). Since system (1) is continous, the two solution
families are single continuous curves in the (ϕ, ϕ̇)-plane for
t = 0.

It is important to realise that solutions u to the 2PBVP (4)–(6)
do not necessarily lie on the boundary of B∞, because we only
consider the grazing trajectories up to the moment of grazing,
at t = T , instead of resolving the trajectory until t = Tend.
In particular, the trajectory corresponding to u may leave the
regime ϕ ∈ [−10,10] before time Tend is reached, which could
be either before or after the moment of grazing. It turns out
that solutions with T ≤ Tend are quite useful and help interpret
the structure and geometry of the failure boundary; see already
Section 3.

2.2 Start solution for the 2PBVP

To start the continuation of solutions to the 2PBVP (4)–(6) in
AUTO [3], one needs to have a first solution. For each of the
two cases, we actually know one solution explicitly, namely the
initial conditions (±10,0) at the left- and right-grazing points
solve (4)–(6) with T = 0. Of course, (±10,0) are mere points,
but as soon as T > 0, they give rise to proper orbit segments
that correspond to left- or right-grazing trajectories. Hence, for
each forcing amplitude A under consideration, we perform two
continuation runs: one starting from (−10,0) and one starting
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Figure 1. Families of left- and right-grazing trajectories of (1)
with A= 0.6; the curve of left-grazing trajectories (orange)
is labelled gL and the curve of right-grazing trajectories
(brown) is labelled gR.

from (10,0). Starting from T = 0, we continue the 2PBVP (4)–
(6) in T until T = Tend is reached, at which point we stop the
computation.

3 CONTINUATION OF THE 2PBVP WITH A = 0.6

As an example, we consider system (1) with A = 0.6. We
continue the two solution families of the 2PBVP (4)–(6)
with AUTO [3], starting from the ‘orbit segments’ {u(s) =
(±10,0) | 0 ≤ s ≤ 1}, which start and end at (±10,0), and
with T = 0; we denote the two families gL and gR, indicating
whether the grazing is on the left, at ϕ = −10, or on the right,
at ϕ = 10, respectively. Figure 1 shows the corresponding two
curves in the (ϕ, ϕ̇)-plane. Even though all points on these two
curves correspond to trajectories that graze the lines ϕ = 10
(brown curve) or ϕ = −10 (orange curve) for some time 0 ≤
T ≤Tend, most of them contain segments that lie well outside the
admissible domain ϕ ∈ [−10,10]. This is the case, because all
trajectories converge to either one of the two attracting periodic
orbits, which lie in B∞. Hence, all initial conditions outside
the domain ϕ ∈ [−10,10] will eventually enter this domain,
and some of these do so while grazing the lines ϕ = −10 or
ϕ = 10. Furthermore, there are also initial conditions that start
with ϕ(0) ∈ [−10,10], but leave this domain (and then return to
it) before the moment of grazing.

The curves gL and gR extend forever further in the (ϕ, ϕ̇)-
plane as Tend increases. However, the boundary of B∞ must be
contained in the subset of those segments from gL and gR that
correspond to solutions u(s) with |u(s)|≤ 10 for all s∈ [0,1]. In
fact, for the case A = 0.6, these admissible segments on gL and
gR satisfy 0≤ T < 4× 2π

ω
. All points on gL or gR with T ≥ 4×

2π

ω
already correspond to trajectories that leave the admissible

domain before grazing. Hence, the chosen Tend = 9× 2π

ω
is more

than large enough to find the boundary of B∞.
Figure 2 shows only the admissible segments on gL and gR,

namely, the segments that correspond to trajectories entirely
contained in the admissible domain ϕ ∈ [−10,10]; they all lie
in the region (ϕ, ϕ̇)∈ [−10,10]× [−8,7], as shown in panel (a).
There are two admissible segments, labelled g(0)L and g(0)R that
start at (−10,0) and (10,0), respectively, and go to the other
side of the admissible domain; g(0)L ends on ϕ = 10 and g(0)R

ends on g(0)L , just before reaching ϕ = −10. Points on these
two segments (roughly) correspond to trajectories that move to
the left (ϕ̇(0)< 0) or right (ϕ̇(0)> 0) and immediately leave the
admissible domain. The other admissible segments all appear in
the top-left corner, and an enlargement of that region, namely,
(ϕ, ϕ̇) ∈ [−10,−2.8]× [−1.3,6.3] is shown in Figure 2(b). The
additional segments are labelled as follows. The next segment
from gL that satisfies the constraint ϕ(t) ∈ [−10,10] for all
0 ≤ t ≤ T , that is, up to the moment of grazing is labelled
g(1)L ; the superscript indicates that the trajectories corresponding
to points on this segment make (almost) a full rotation with
respect to the (ϕ, ϕ̇)-plane. Indeed, most points on g(1)L satisfy
ϕ̇(0) > 0, such that the trajectory first moves to the right, then
passes ϕ̇(t) = 0 for some 0 < t < T and moves to the left until
the moment of grazing with ϕ(T ) = −10 and ϕ̇(T ) = 0; there
is a short segment on g(1)L with ϕ̇(0) > 0, which correspond to
trajectories that move through ϕ̇(t) = 0 twice before reaching
ϕ(Tend) = −10 with ϕ̇(Tend) = 0. The segments g(2)L and g(3)L

are defined in the same way; these segments both lie entirely
in the region with ϕ̇(0)> 0, and trajectories will pass ϕ̇(t) = 0
three and five times, respectively, before reaching ϕ(T ) =−10
with ϕ̇(T ) = 0. Similarly, the segments g(1)R and g(2)R lie entirely
in the region with ϕ̇(0)> 0, so that trajectories starting at points
on these segments make one and two oscillations, respectively,
plus another about half a turn until the moment of grazing with
ϕ(Tend) = 10 and ϕ̇(Tend) = 0.

The admissible segments from gL and gR intersect at a
number of points. More precisely, each additional segment
g(k)L on gL starts at a point on g(0)R , labelled ϕ

(0,k)
RL and ends at

a point on g(k−1)
R , labelled ϕ

(k−1,k)
RL ; we gave the last point on

g(1)L label ϕ
(0,−1)
RL , because the label ϕ

(0,1)
RL is already in use for

its first point. All these points correspond to trajectories that
satisfy ϕ(T ) = −10 with ϕ̇(T ) = 0, as well as ϕ(t) = 10 with
ϕ̇(t) = 0, for some 0 < t < T . Hence, each trajectory has a
double grazing, namely, a first one at ϕ = 10 and a second one
at ϕ =−10. These six double-grazing trajectories are shown in
Figure 2(c), where the horizontal axis marks integer multiples of
the forcing period. As we can see in Figure 2(c), each successive
pair of double-grazing orbits makes an additional oscillation,
which takes slightly more time than the forcing period 2π

ω
. Note

that the trajectories ϕ
(0,k)
RL (t) satisfy ϕ = 10 when ϕ̇

(0,k)
RL (t) = 0

for the first time, that is, within the first oscillation, while the
trajectories ϕ

(k−1,k)
RL (t), for k = 2,3, graze ϕ = 10 only within

the (k−1)st oscillation.
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Figure 2. Admissible segments selected from the families gL (orange) and gR (brown), which define the boundary of B∞ for
A = 0.6; the superscripts (k) with k = 0,1,2,3 represent the number of oscillations until grazing, as an indication of the
moment of grazing at t = T . Panel (a) shows all admissible segments and panel (b) is an enlargement that includes the points
labelled ϕ

(0,k)
RL or ϕ

(k−1,k)
RL at which the left-grazing trajectory also grazes the boundary ϕ = 10 for some time t < T ; here,

the point on g(0)R ∩ g(1)L with ϕ̇(0) < 0, is labelled ϕ
(0,−1)
RL . Time series of these six double-grazing trajectories are shown in

panel (c).

The right-grazing segments g(k)R , for k = 1,2,3, similarly start
at points on g(0)R and end at points on g(k)L . The first points on
g(k)R , k = 1,2,3, graze ϕ = 10 upon crossing ϕ̇ = 0 for the first
time and again at t = T , while the last points graze ϕ = −10
within the kth oscillation and ϕ = 10 at t = T .

The boundary of B∞ itself is piecewise smooth and consists
of parts of each of the admissible segments shown in Figure 2.
Indeed, a trajectory corresponding to any point above g(0)R

will leave the admissible domain more or less immediately
through the line ϕ = 10; similarly a trajectory corresponding



to any point below g(0)L will leave the admissible domain well
within the first oscillation through the line ϕ =−10. However,
points on the other sides of these segments do not necessarily
correspond to trajectories that remain inside the admissible
domain. For example, points inside the region bounded by
g(0)R and g(1)L will ‘miss’ the line ϕ = 10, but then leave the
admissible domain through the line ϕ = −10. Since it takes
about half a forcing period to make half an oscillation, the
time it takes for these points to leave the admissible domain
is about π/ω longer than for nearby points above g(0)R . In other
words, the admissible segment g(0)R marks a line of discontinuity
in the time it takes to leave the admissible domain. This
discontinuity manifests itself in a complicated way, because the
gap is different across each of the segments g(k)L with k = 1,2,3,
as well as the segments g(1)R and g(2)R . For example, points in the
region bounded by the three admissible segments g(0)R , g(1)R and
g(2)L take about 2× 2π

ω
to leave the admissible regime, through

the line ϕ = −10, while points in the region bounded by the
three admissible segments g(0)R , g(2)R and g(2)L take about 2.5× 2π

ω
,

and leave through the line ϕ = 10.
It is this alternating behaviour of trajectories leaving through

the lines ϕ =−10 and ϕ = 10 that characterises the piecewise-
smooth nature of the boundary of B∞; in particular, this is
not caused by the fact that system (1), or more precisely, the
function µ(ϕ) given by equation (2) is piecewise smooth. The
discontinuities in the second derivative of µ(ϕ) at | ϕ |= 1
cause the slight kinks on the segments g(0)L and g(0)R observed
in Figure 2(a); these slight kinks occur repetitively along the
curves gL and gR, as shown in Figure 1. However, the
admissible segments of gL and gR that lie entirely in the regions
|ϕ |> 1 are all smooth curves (with boundary).

4 INCREASING THE FORCING AMPLITUDE

If we vary the forcing amplitude A, we find a similar set
of admissible segments on the curves gL and gR of left- and
right-grazing trajectories that collectively define the boundary
of B∞. Figure 3 shows the admissble segments on gL and
gR for A = 0.61. This small increase in forcing amplitude
creates more admissible segments, namely, there are now six
admissible segments on gL and also six on gR. Even though
the total area of B∞ is somewhat reduced, overall, the situation
is much the same as in Figure 2(a): the segment g(0)L starts on
the line ϕ = −10 and ends on ϕ = 10; the segment g(0)R starts
on the line ϕ = 10 and ends on g(0)L ; each admissible segment
g(k)L with k = 1, . . . ,5 starts on g(0)R and ends on g(k−1)

R ; and
each admissible segment g(k)R with k = 1, . . . ,5 starts on g(0)R and
ends on g(k)L . As for A = 0.6, it is not really necessary to use
Tend = 9× 2π

ω
, because all left- and right-grazing trajectories

with grazing times T ≥ 6× 2π

ω
are not admissible. This fact

changes when we increase the forcing amplitude to A = 0.611.
The situation for A = 0.611 is shown in Figure 4. The

number of admissible segments has increased again, but now,
the segments g(7)L and g(7)R do not connect to the segments g(6)R
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Figure 3. Admissible segments selected from the families
gL (orange) and gR (brown) that define the boundary of
B∞ for A = 0.61; the superscripts (k) with k = 0,1, . . . ,5
represent the number of oscillations until grazing.
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∞ and BL
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k = 0,1, . . . ,7 represent the number of oscillations until
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and g(7)L , respectively. Instead, they end on the line ϕ = 10.
Similarly, the segment g(6)R starts on g(0)R as expected, but ends
on the line ϕ = 10, and then ‘returns’ through ϕ = 10 before
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ending on g(6)L ; only the latter segment of g(6)R is labelled in
Figure 4. As soon as an admissible segment that starts on g(0)R

ends on the line ϕ = 10, the region B∞ is no longer connected.
It now consists of two regions, which we label BR

∞ and BL
∞,

depending on whether part of the boundary is contained in g(0)L

or in g(0)R , respectively. The region BL
∞ is bounded by the

admissible segments g(0)L –g(6)L and g(1)R –g(5)R , together with the
first segment of g(6)R (not labelled in Figure 4). The region BR

∞

is bounded by only two admissible segments, namely, g(0)R and
g(7)R . Note that not all admissible segments on gL and gR play a
role in defining the failure boundary; in particular, g(7)L nowhere
acts as a separatrix.

Apart from the fact that B∞ is disconnected for A = 0.611,
the nature of the failure boundary related to BR

∞ has also
changed. More precisely, the boundary of BL

∞ does not depend
on the finite maximal integration time Tend; just as for the
failure boundaries shown in Figures 2 and 3, it remains the
same even if Tend → ∞. However, the boundary of BR

∞ does
depend on Tend. The segments g(7)L and g(7)R are the beginning
of an accumulation of (ordered) segments g(k)L and g(k)R , with
k > 7, that need integration times T > Tend. The limit of this
accumulation is not an admissible segment on either gL or gR,
but a finite curve segment on the basin boundary that separates
the two attracting periodic orbits (not shown). Hence, in the
limit Tend→∞, the boundary of BR

∞ no longer consists solely of
left- or right-grazing orbits.

The failure boundary changes rapidly as A increases. Figure 5
shows the situation for forcing amplitude A = 0.612. We find
that g(6)L now consists of two segments, but not because this
admissible segment ends on ϕ = 10, but because it ends on g(0)L .
Only the second segment of g(6)L , which starts on g(0)L and ends
on g(5)R , is part of the boundary of BL

∞. Hence, the total number
of admissible segments that are part of the boundary of BL

∞ has
decreased. As before, the boundary of BL

∞ is independent of
Tend. On the other hand, the region BR

∞ is now bounded by
g(0)R and g(7)L , but this depends on the value chosen for the total
integration time Tend. Here, the admissible segment g(6)R plays
no role in defining the failure boundary.

5 CONCLUSIONS

We presented a numerical method for the direct computation
of the failure boundary. Our approach is to use a two-
point boundary value problem set-up and continue curves of
left- and right-grazing trajectories in the (ϕ, ϕ̇)-plane for time
t = 0. These two families, denoted gL and gR, contain
segments corresponding to trajectories that lie entirely inside
the admissible domain ϕ ∈ [−10,10] and the failure boundary
is obtained by selecting only those admissible segments. As an
example, we used the model of a rocking block on an elastic
foundation subject to a periodic force with fixed frequency. We
focussed on a small interval of forcing amplitudes near A = 0.6.
The failure boundary is piecewise smooth, but this is not due to
the piecewise-smooth nature of equation (2). It is organised by
the fact that the grazing occurs either at the left (ϕ = −10) or
right (ϕ = 10) side of the admissible domain. For small enough
forcing amplitudes, the failure boundary is a piecewise-smooth
curve that consists of a finite number of segments alternatingly
from gL and gR and encloses a single region denoted B∞. The
points at which two admissible segments intersect correspond
to double-grazing trajectories. These points also mark a
discontinuity along the failure boundary with respect to the
total integration time needed to reach the moment of grazing;
the discontinuity is roughly given by half the forcing period,
because this is about the time needed to complete half of an
oscillation. The failure boundary does not depend on the value
used for the total integration time Tend (provided it is large
enough). If the forcing amplitude A increases, the nature of
the failure boundary changes. It splits into two piecewise-
smooth curves that enclose two regions denoted BL

∞ and Bs f R
∞ .

The boundary of BL
∞ is independent of Tend and similar in

nature to the failure boundaries for smaller A. However, the
boundary of Bs f R

∞ now depends on Tend. The fact that the failure
boundary may enclose two disjoint regions is related to the fact
that there are two attracting periodic orbits for our choice of
forcing amplitudes. The presence of more than one attractor,
of a saddle periodic orbit and its role in changing the nature of
the boundary of Bs f R

∞ needs further investigation and will be
reported elsewhere.

Our direct computational approach complements brute-force
methods that use simulation on a grid of initial conditions. For
example, brute-force simulation was used to produce Figure 18



in [1]. In particular, when one compares [1, Figure 18(a)]
with Figure 2, which are both for A = 0.6, our computed
piecewise-wise smooth curve of left- and right-grazing orbit
segments precisely delimits the failure boundary obtained from
the brute-force simulation. Furthermore, a colour-coding is
used in [1, Figure 18(a)] to indicate the integer multiples of the
forcing period needed before a trajectory through a given initial
condition leaves the admissible regime. Our computations
provide information about when the colour changes in [1,
Figure 18(a)]. Indeed, the subsets of admissible segments
from the families of left- and righ-grazing orbits can also
be viewed as discontinuity boundaries in the time it takes to
leave the admissible regime ϕ ∈ [−10,10]. We found that
the discontinuity jumps are of the same order as half a period
of the forcing, which may explain why the colour seems to
change precisely upon crossing admissible segments from the
family of right-grazing orbits. These observations need further
investigation and will also be reported elsewhere.
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