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Continuation Packages

Numerical methods in dynamical systems and bifurcation theory
are based on continuation

AUTO by Eusebius Doedel
(Concordia University)
CoCo by Harry Dankowicz (UIUC,
Champaign) and Frank Schilder
(DTU, Copenhagen)
MatCont by Willy Govaerts (Ghent
University) and Yuri Kuznetsov
(Utrecht University)
XPPAUT by Bard Ermentrout
(University of Pittsburgh)

Hinke Osinga and Bernd Krauskopf Basic Tutorial — NZMRI Summer School 3

http://cmvl.cs.concordia.ca/auto
http://sourceforge.net/p/cocotools/wiki/Home/
http://sourceforge.net/projects/matcont/
http://www.math.pitt.edu/~bard/bardware/xpp/xpp.html


Continuation of equilibria

Consider a predator-prey model{
u′1 = 3u1(1− u1)− 2u1u2,
u′2 = −u2 + 3u1u2.

We can think of u1 as ‘fish’ and u2 as ‘sharks’

The equilibria are

3u1(1− u1)− 2u1u2 = 0
−u2 + 3u1u2 = 0

}
⇒ (u1,u2) = (0,0), (1,0), (1

3 ,1).
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Continuation of equilibria

Consider a predator-prey model with fishing{
u′1 = 3u1(1− u1)− 2u1u2−λ(1− e−5u1),
u′2 = −u2 + 3u1u2.

We can think of u1 as ‘fish’ and u2 as ‘sharks’

The equilibria are

3u1(1− u1)− 2u1u2 = 0
−u2 + 3u1u2 = 0

}
⇒ (u1,u2) = (0,0), (1,0), (1

3 ,1).

What happens to the equilibria if we introduce a ‘fishing-quota’ λ > 0?
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Persistence for λ > 0?

Theorem (Implicit Function Theorem (IFT))
Consider f : Rn × R→ Rn with f(u0, λ0) = 0 for u0 ∈ Rn and λ0 ∈ R.
Suppose the following holds:

The Jacobian matrix fu(u0, λ0) is nonsingular;
f and fu are Lipschitz continuous (in both u and λ)

Then there exists δ > 0 and interval Λδ = (λ0 − δ, λ0 + δ), with
a unique function u(λ) continuous on Λδ, such that

u(λ0) = u0

f(u(λ), λ) = 0, for all ||λ− λ0 ||< δ.

We call u0 an isolated solution of f(u, λ0) = 0
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Equilibrium branches

The Jacobian matrix is

J(u1,u2;λ) =

(
3− 6u1 − 2u2 − 5λe−5u1 −2u1

u2 −1 + 3u1

)

J(0,0; 0) =

(
3 0
0 −1

)
, J(1,0; 0) =

(
3 −2
0 2

)
,

J(1
3 ,1; 0) =

(
−1 −2

3
6 0

)
,

All three Jacobians at λ = 0 are nonsingular.

Thus, by the IFT, all three equilibria persist for (small) λ 6= 0.

Hinke Osinga and Bernd Krauskopf Basic Tutorial — NZMRI Summer School 6



Phase portraits for λ ≥ 0
λ = 0
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Note:
moderate
fishing quotas
do not seem to
have an effect on
the number of
fish, but greatly
reduce the shark
population!
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Parameter continuation
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Set λ1 = λ0 + ∆λ

Use Newton’s method with initial guess

u(0)
1 = u(λ0) + ∆λ

du
dλ

∣∣∣∣
u=u(λ0)
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Regular solutions

Definition (Regular solutions)
A solution (u0, λ0) ∈ Rn × R of f(u, λ) = 0 is called regular if

Rank
(

f0
u

∣∣∣ f0
λ

)
= n⇔



(i) f0
u is nonsingular,

or

(ii)


dimN (f0

u) = 1,
and
f0
λ 6∈ R(f0

u).

Here, N (f0
u) denotes the null space of f0

u, and R(f0
u) denotes the range

of f0
u, i.e., the linear space spanned by the n columns of f0

u.

Regular solutions include fold points with respect to λ
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Pseudo-arclength continuation
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f(u1, λ1) = 0

(u1 − u0)∗ u̇0 + (λ1 − λ0) λ̇0 −∆s = 0
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Newton’s method in this context

Newton’s method for pseudo-arclength continuation becomes(
(f1

u)(ν) (f1
λ)(ν)

(u̇0)∗ λ̇0

) (
∆u(ν)

1

∆λ
(ν)
1

)
=

−

(
f(u(ν)

1 , λ
(ν)
1 )

(u(ν)
1 − u0)∗ u̇0 + (λ

(ν)
1 − λ0) λ̇0 −∆s

)
,

with the new direction vector defined as(
f1
u f1

λ

u̇∗0 λ̇0

) (
u̇1

λ̇1

)
=

(
0
1

)
,

The orientation of the branch is preserved for ∆s small.
Rescale direction vector: || u̇1 ||2 +λ̇2

1 = 1.
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Effects of fishing on equilibria

u2

u1
λ

u1

λ

Non-trivial equilibrium is stable until λ = λH ≈ 0.6716
Fishing does not seem to affect fish population for small λ
All other stable equilibria are non-physical or correspond to
extinction of fish (and shark)
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The Hopf bifurcation

Theorem (Hopf bifurcation)
Suppose that along an equilibrium branch (u(λ), λ), of

u′ = f(u, λ),

a complex conjugate pair α(λ)± i β(λ) of eigenvalues of fu(u(λ), λ)
crosses the imaginary axis transversally, i.e., for some λ0,

α(λ0) = 0, β(λ0) 6= 0, and α̇(λ0) 6= 0.

Also assume that there are no other eigenvalues on the imaginary axis.

Then there is a Hopf bifurcation and a family of periodic solutions
bifurcates from the stationary solution at (u0, λ0).
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Continuation of periodic orbits
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Bifurcation theory and
centre manifold theory are
used to determine a first
approximation of the
periodic orbit and its period{

u1 = a cos (β(λH)t),
u2 = a sin (β(λH)t)

with 0 ≤ t < 2π, amplitude
a =

√
|λ− λH |, and period

T =
2π
β(λ)
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A BVP approach

Consider the first-order system

u′(t) = f(u(t), λ), u(·), f(·) ∈ Rn, λ ∈ R.

Fix the interval of periodicity by the transformation t 7→ t
T .

Then the equation becomes

u′(t) = T f(u(t), λ), u(·), f(·) ∈ Rn, T , λ ∈ R,

and we seek an orbit segment u subject to the boundary condition

u(0) = u(1)

Note that the intergation time T , the period, is one of the unknowns.
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(Families of) orbit segments

One-parameter family of solutions to BVP

u̇(t) = T f(u(t), λ),
u(0) ∈ L(θ),

with L(θ) curve on linear approximation, and one additional boundary
condition, e.g.:

Fixed integration time: T = T0

Fixed arclength: ∫ 1

0
T || f(u(s)) || ds − L = 0

Constrained end point: g(u(1), θ,T )− α = 0
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Orthogonal Collocation
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Solutions u(t) are
piecewise polynomials

Pm
h = {ph ∈ C[0,1] |

ph|[tj−1,tj ] ∈ P
m
}
,

where Pm is the space of
(vector-valued) polynomials of
degree ≤ m.
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Nonuniqueness of periodic orbit

Assume that we have computed

(uk−1(·),Tk−1, λk−1)

and we want to compute the next solution

(uk (·),Tk , λk )

Then uk (t) can be translated freely in time:

If uk (t) is a periodic solution, then so is uk (t + σ), for any σ.

We define (uk (·),Tk , λk ) uniquely using a phase condition
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Pseudo-Arclength Continuation

For the continuation of periodic solutions, we solve the system

u′k (t) = T f(uk (t), λk ),

uk (0) = uk (1),∫ 1

0
uk (t)∗ u′k−1(t) dt = 0,∫ 1

0
(uk (t)− uk−1(t))∗ u̇k−1(t) dt + (Tk − Tk−1) Ṫk−1

+(λk − λk−1) λ̇k−1 = ∆s,

where
u(·), f(·) ∈ Rn, λ, T ∈ R.
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Oscillating fish
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Attracting periodic orbits
exist as λ increases
The period increases and
becomes infinite at λ ≈ 0.7
This final orbit is called a
heteroclinic cycle
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Oscillating fish in 3D
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Attracting periodic orbits exist as λ increases
The period increases and becomes infinite at λ ≈ 0.7
This final orbit is called a heteroclinic cycle
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Global manifold computations

Famous test example: the Lorenz system


ẋ = σ(y − x)
ẏ = %x − y − xz
ż = −βz + xy

Classical parameters:
σ = 10
% = 28
β = 22

3
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The Lorenz manifold

Manifold is viewed as
family of geodesic level
sets (GLS)

Points on a new GLS
found by continuation
of 2PBVP
Curve L(θ) is
boundary of manifold
computed so far
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