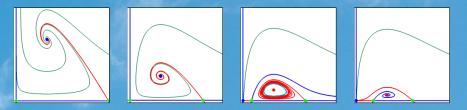
Continuation Methods in Dynamical Systems Basic Tutorial

Hinke Osinga and Bernd Krauskopf Department of Mathematics, The University of Auckland

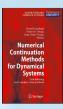


Acknowledgement

This lecture is heavily based on lecture notes written by Eusebius Doedel, Concordia University, Montreal.

For more information, see

http://cmvl.cs.concordia.ca/auto



[Krauskopf, Osinga & Galán-Vioque (Eds.) Springer, 2007]

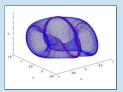
Continuation Packages

Numerical methods in dynamical systems and bifurcation theory are based on *continuation*

A CONTRACTOR OF CONTRACTOR OF

- AUTO by Eusebius Doedel (Concordia University)
- CoCo by Harry Dankowicz (UIUC, Champaign) and Frank Schilder (DTU, Copenhagen)

- MatCont by Willy Govaerts (Ghent University) and Yuri Kuznetsov (Utrecht University)
- XPPAUT by Bard Ermentrout (University of Pittsburgh)



Continuation of equilibria

Consider a predator-prey model

$$\begin{cases} u'_1 = 3u_1(1-u_1) - 2u_1u_2, \\ u'_2 = -u_2 + 3u_1u_2. \end{cases}$$

We can think of u_1 as 'fish' and u_2 as 'sharks'

The equilibria are

$$\begin{array}{rcl} 3u_1(1-u_1)-2u_1u_2&=&0\\ -u_2+3u_1u_2&=&0 \end{array} \right\} \Rightarrow (u_1,u_2)=(0,0), \ (1,0), \ (\frac{1}{3},1). \end{array}$$

Continuation of equilibria

Consider a predator-prey model with fishing

$$\begin{cases} u_1' = 3u_1(1-u_1) - 2u_1u_2 - \lambda(1-e^{-5u_1}), \\ u_2' = -u_2 + 3u_1u_2. \end{cases}$$

We can think of u_1 as 'fish' and u_2 as 'sharks'

The equilibria are

$$\begin{array}{rcl} 3u_1(1-u_1)-2u_1u_2 &=& 0\\ -u_2+3u_1u_2 &=& 0 \end{array} \right\} \Rightarrow (u_1,u_2) = (0,0), \ (1,0), \ (\frac{1}{3},1). \end{array}$$

What happens to the equilibria if we introduce a 'fishing-quota' $\lambda > 0$?

Persistence for $\lambda > 0$?

Theorem (Implicit Function Theorem (IFT))

Consider $\mathbf{f} : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ with $\mathbf{f}(\mathbf{u}_0, \lambda_0) = \mathbf{0}$ for $\mathbf{u}_0 \in \mathbb{R}^n$ and $\lambda_0 \in \mathbb{R}$. Suppose the following holds:

- The Jacobian matrix $f_u(u_0, \lambda_0)$ is nonsingular;
- **f** and $\mathbf{f}_{\mathbf{u}}$ are Lipschitz continuous (in both \mathbf{u} and λ)

Then there exists $\delta > 0$ and interval $\Lambda_{\delta} = (\lambda_0 - \delta, \lambda_0 + \delta)$, with a unique function $\mathbf{u}(\lambda)$ continuous on Λ_{δ} , such that

$$\begin{aligned} \mathbf{u}(\lambda_0) &= \mathbf{u}_0\\ \mathbf{f}(\mathbf{u}(\lambda), \lambda) &= \mathbf{0}, \text{ for all } \|\lambda - \lambda_0\| < \delta. \end{aligned}$$

We call \mathbf{u}_0 an *isolated* solution of $\mathbf{f}(\mathbf{u}, \lambda_0) = \mathbf{0}$

Hinke Osinga and Bernd Krauskopf

Equilibrium branches

The Jacobian matrix is

$$J(u_1, u_2; \lambda) = \begin{pmatrix} 3 - 6u_1 - 2u_2 - 5\lambda e^{-5u_1} & -2u_1 \\ u_2 & -1 + 3u_1 \end{pmatrix}$$

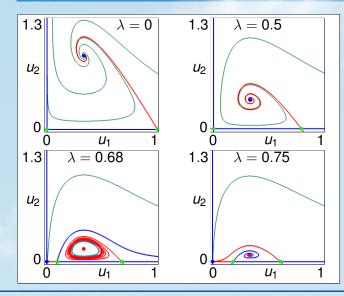
$$J(0, 0; 0) = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}, \qquad J(1, 0; 0) = \begin{pmatrix} 3 & -2 \\ 0 & 2 \end{pmatrix},$$

$$J(\frac{1}{3}, 1; 0) = \begin{pmatrix} -1 & -\frac{2}{3} \\ 6 & 0 \end{pmatrix},$$

All three Jacobians at $\lambda = 0$ are nonsingular.

Thus, by the IFT, all three equilibria persist for (small) $\lambda \neq 0$.

Phase portraits for $\lambda \ge 0$

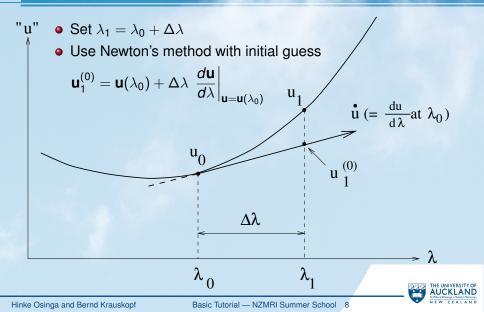


Note: moderate fishing quotas do not seem to have an effect on the number of fish, but greatly reduce the shark population!

Hinke Osinga and Bernd Krauskopf

Basic Tutorial — NZMRI Summer School 7

Parameter continuation



Regular solutions

Definition (Regular solutions)

A solution $(\mathbf{u}_0, \lambda_0) \in \mathbb{R}^n \times \mathbb{R}$ of $\mathbf{f}(\mathbf{u}, \lambda) = \mathbf{0}$ is called *regular* if

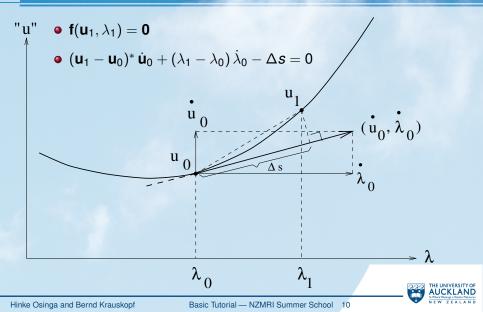
$$\operatorname{Rank}\left(\begin{array}{c|c} \mathbf{f}_{u}^{0} & \mathbf{f}_{\lambda}^{0} \end{array} \right) = n \Leftrightarrow \left\{ \begin{array}{cc} (i) & \mathbf{f}_{u}^{0} \text{ is nonsingular,} \\ \text{or} & \\ (ii) & \left\{ \begin{array}{c} \dim \mathcal{N}(\mathbf{f}_{u}^{0}) = 1, \\ \text{and} \\ \mathbf{f}_{\lambda}^{0} \notin \mathcal{R}(\mathbf{f}_{u}^{0}). \end{array} \right. \end{array} \right.$$

Here, $\mathcal{N}(\mathbf{f}_{\mathbf{u}}^{0})$ denotes the *null space* of $\mathbf{f}_{\mathbf{u}}^{0}$, and $\mathcal{R}(\mathbf{f}_{\mathbf{u}}^{0})$ denotes the *range* of $\mathbf{f}_{\mathbf{u}}^{0}$, i.e., the linear space spanned by the *n* columns of $\mathbf{f}_{\mathbf{u}}^{0}$.

Regular solutions include fold points with respect to $\boldsymbol{\lambda}$

Hinke Osinga and Bernd Krauskopf

Pseudo-arclength continuation



Newton's method in this context

Newton's method for pseudo-arclength continuation becomes

$$\begin{pmatrix} (\mathbf{f}_{\mathbf{u}}^{1})^{(\nu)} & (\mathbf{f}_{\lambda}^{1})^{(\nu)} \\ (\dot{\mathbf{u}}_{0})^{*} & \dot{\lambda}_{0} \end{pmatrix} \begin{pmatrix} \Delta \mathbf{u}_{1}^{(\nu)} \\ \Delta \lambda_{1}^{(\nu)} \end{pmatrix} = \\ - \begin{pmatrix} \mathbf{f}(\mathbf{u}_{1}^{(\nu)}, \lambda_{1}^{(\nu)}) \\ (\mathbf{u}_{1}^{(\nu)} - \mathbf{u}_{0})^{*} \dot{\mathbf{u}}_{0} + (\lambda_{1}^{(\nu)} - \lambda_{0}) \dot{\lambda}_{0} - \Delta s \end{pmatrix},$$

with the new direction vector defined as

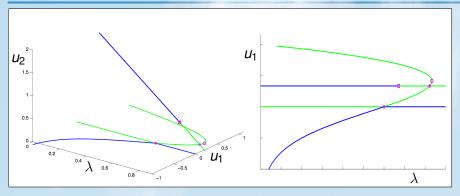
$$\left(\begin{array}{cc} f_u^1 & f_\lambda^1 \\ \dot{u}_0^* & \dot{\lambda}_0 \end{array} \right) \, \left(\begin{array}{c} \dot{u}_1 \\ \dot{\lambda}_1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 1 \end{array} \right),$$

The orientation of the branch is preserved for Δs small.

• Rescale direction vector: $\|\dot{\mathbf{u}}_1\|^2 + \dot{\lambda}_1^2 = 1$.

Hinke Osinga and Bernd Krauskopf

Effects of fishing on equilibria



- Non-trivial equilibrium is stable until $\lambda = \lambda_H \approx 0.6716$
- Fishing does not seem to affect fish population for small λ
- All other stable equilibria are non-physical or correspond to extinction of fish (and shark)

The Hopf bifurcation

Theorem (Hopf bifurcation)

Suppose that along an equilibrium branch $(\mathbf{u}(\lambda), \lambda)$, of

 $\mathbf{u}'=\mathbf{f}(\mathbf{u},\lambda),$

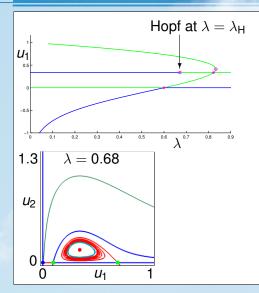
a complex conjugate pair $\alpha(\lambda) \pm i \beta(\lambda)$ of eigenvalues of $\mathbf{f_u}(\mathbf{u}(\lambda), \lambda)$ crosses the imaginary axis transversally, i.e., for some λ_0 ,

$$\alpha(\lambda_0) = 0, \quad \beta(\lambda_0) \neq 0, \quad and \quad \dot{\alpha}(\lambda_0) \neq 0.$$

Also assume that there are no other eigenvalues on the imaginary axis.

Then there is a Hopf bifurcation and a family of periodic solutions bifurcates from the stationary solution at (u_0, λ_0) .

Continuation of periodic orbits



Bifurcation theory and centre manifold theory are used to determine a first approximation of the periodic orbit and its period

$$\begin{cases} u_1 = a \cos(\beta(\lambda_{\rm H})t), \\ u_2 = a \sin(\beta(\lambda_{\rm H})t) \end{cases}$$

with $0 \le t < 2\pi$, amplitude $a = \sqrt{|\lambda - \lambda_{\rm H}|}$, and period

Hinke Osinga and Bernd Krauskopf

Basic Tutorial - NZMRI Summer School 14

A BVP approach

Consider the first-order system

 $\mathbf{u}'(t) = \mathbf{f}(\mathbf{u}(t), \lambda), \qquad \mathbf{u}(\cdot), \, \mathbf{f}(\cdot) \in \mathbb{R}^n, \quad \lambda \in \mathbb{R}.$

Fix the interval of periodicity by the transformation $t \mapsto \frac{t}{T}$. Then the equation becomes

 $\mathbf{u}'(t) = T \mathbf{f}(\mathbf{u}(t), \lambda), \qquad \mathbf{u}(\cdot), \mathbf{f}(\cdot) \in \mathbb{R}^n, \quad T, \, \lambda \in \mathbb{R},$

and we seek an orbit segment u subject to the boundary condition

u(0) = u(1)

Note that the intergation time T, the period, is one of the unknowns.

(Families of) orbit segments

One-parameter family of solutions to BVP

$$\begin{aligned} \dot{\mathbf{u}}(t) &= T\mathbf{f}(\mathbf{u}(t),\lambda), \\ \mathbf{u}(0) &\in L(\theta), \end{aligned}$$

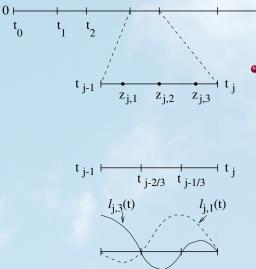
with $L(\theta)$ curve on linear approximation, and one additional boundary condition, e.g.:

- Fixed integration time: $T = T_0$
- Fixed arclength:

$$\int_0^1 T \| f(\mathbf{u}(s)) \| \ ds - L = 0$$

• Constrained end point: $g(u(1), \theta, T) - \alpha = 0$

Orthogonal Collocation



• Solutions **u**(*t*) are *piecewise polynomials*

$$\begin{aligned} \mathcal{P}_h^m &= \left\{ \mathbf{p}_h \in C[0,1] \mid \right. \\ \left. \mathbf{p}_h \right|_{[t_{j-1},t_j]} \in \mathcal{P}^m \right\}, \end{aligned}$$

where \mathcal{P}^m is the space of (vector-valued) polynomials of degree $\leq m$.

Nonuniqueness of periodic orbit

Assume that we have computed

 $(\mathbf{u}_{k-1}(\cdot), T_{k-1}, \lambda_{k-1})$

and we want to compute the next solution

 $(\mathbf{u}_k(\cdot), T_k, \lambda_k)$

Then $\mathbf{u}_k(t)$ can be translated freely in time:

If $\mathbf{u}_k(t)$ is a periodic solution, then so is $\mathbf{u}_k(t + \sigma)$, for any σ .

We define $(\mathbf{u}_k(\cdot), T_k, \lambda_k)$ uniquely using a *phase condition*

Pseudo-Arclength Continuation

For the continuation of periodic solutions, we solve the system

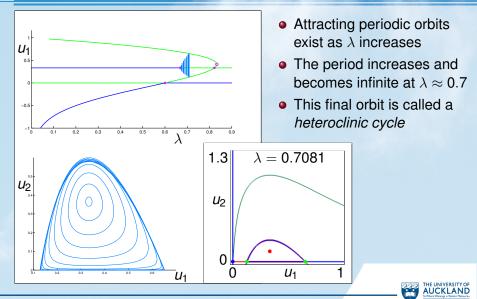
$$\begin{aligned} \mathbf{u}'_{k}(t) &= T \mathbf{f}(\mathbf{u}_{k}(t), \lambda_{k}), \\ \mathbf{u}_{k}(0) &= \mathbf{u}_{k}(1), \\ \int_{0}^{1} \mathbf{u}_{k}(t)^{*} \mathbf{u}'_{k-1}(t) dt &= 0, \\ \int_{0}^{1} (\mathbf{u}_{k}(t) - \mathbf{u}_{k-1}(t))^{*} \dot{\mathbf{u}}_{k-1}(t) dt &+ (T_{k} - T_{k-1}) \dot{T}_{k-1} \\ &+ (\lambda_{k} - \lambda_{k-1}) \dot{\lambda}_{k-1} &= \Delta s, \end{aligned}$$

where

$$\mathbf{u}(\cdot), \, \mathbf{f}(\cdot) \in \mathbb{R}^n, \qquad \lambda, \, T \in \mathbb{R}$$

Hinke Osinga and Bernd Krauskopf

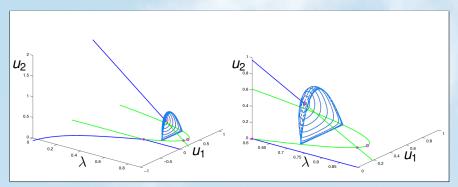
Oscillating fish



Hinke Osinga and Bernd Krauskopf

Basic Tutorial - NZMRI Summer School 20

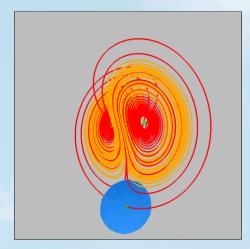
Oscillating fish in 3D



- Attracting periodic orbits exist as λ increases
- The period increases and becomes infinite at $\lambda \approx 0.7$
- This final orbit is called a heteroclinic cycle

Global manifold computations

Famous test example: the Lorenz system

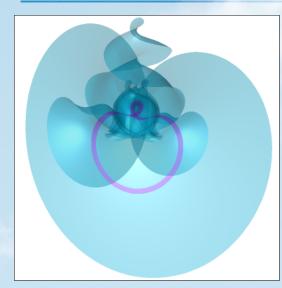


$$\begin{aligned} \dot{x} &= \sigma(y-x) \\ \dot{y} &= \varrho x - y - xz \\ \dot{z} &= -\beta z + xy \end{aligned}$$

Classical parameters:

$$\begin{cases} \sigma = 10\\ \varrho = 28\\ \beta = 2\frac{2}{3} \end{cases}$$

The Lorenz manifold



Manifold is viewed as family of geodesic level sets (GLS)

- Points on a new GLS found by continuation of 2PBVP
- Curve L(θ) is boundary of manifold computed so far

Hinke Osinga and Bernd Krauskopf

Basic Tutorial - NZMRI Summer School 23