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 [CORHRUEORPackages I

Numerical methods in dynamical systems and bifurcation theory
are based on continuation

@ AUTO by Eusebius Doedel
W (Concordia University)

u
Continuation

Methods @ CoCo by Harry Dankowicz (UIUC,

for Dynamical
S)

stems

Champaign) and Frank Schilder
(DTU, Copenhagen)

@ MatCont by Willy Govaerts (Ghent
University) and Yuri Kuznetsov
(Utrecht University)

@ XPPAUT by Bard Ermentrout
(University of Pittsburgh)

THE UNIVERSITY OF
%3 AUCKLAND
;s

NNNNNNNNNN

Hinke Osinga and Bernd Krauskopf Basic Tutorial — NZMRI Summer School 3


http://cmvl.cs.concordia.ca/auto
http://sourceforge.net/p/cocotools/wiki/Home/
http://sourceforge.net/projects/matcont/
http://www.math.pitt.edu/~bard/bardware/xpp/xpp.html

 [CORHRUHORS! cuilioria I

Consider a predator-prey model

up = 3u(1 —uw) —2uug,
Uy = —Ux+3uils.

We can think of vy as ‘fish’ and u» as ‘sharks’

The equilibria are

3U1(1 —U1)—2U1U2 =
0

T = o} @)= 0,0) (1.0) (5. 1)
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_ [CORHRUEHONIS! cquilibria I

Consider a predator-prey model with fishing

U (1 1) — 2uqus — (1S ERstl
Uy = —Ux+3uilp.

We can think of uy as ‘fish’ and u» as ‘sharks’

The equilibria are

3U1(1 —U1)—2U1U2 —a()

— i
—U2+3U1U2 SNG) }: (U1,U2) = (070)7 (1a0)7 (371)-

What happens to the equilibria if we introduce a ‘fishing-quota’ A > 07?
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_ I 02

Theorem (Implicit Function Theorem (IFT))

Considerf : R" x R — R" with f(up, \g) = 0 forug € R” and Ao € R.
Suppose the following holds:

@ The Jacobian matrix fy(ug, Ao) is nonsingular;
o f andf, are Lipschitz continuous (in both u and \)

Then there exists § > 0 and interval N5 = (\g — 0, Ao + ), with
a unique function u(\) continuous on A, such that

u(Ao) = Uo
f(u(\), \) = 0, forall | X —Ao|< 5.

We call ug an isolated solution of f(u, A\g) =0
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The Jacobian matrix is

i & a —du t
J(U1, Us: )\) il < 3 —6u; — 2up, — 5le™>U 2U4 )

Uo —1 + 34

ey = S M (e

1 -1 -z

All three Jacobians at A = 0 are nonsingular.
Thus, by the IFT, all three equilibria persist for (small) A # 0.
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I > o

= 3 A=0.5 Note

moderate

U Uo fishing quotas
do not seem to
have an effect on
the number of

0O Uy 1 00 Uy 1 fish, but greatly
1.3 A=0.68 1.3 A=075 reduce the shark
population!
7]
ob=,=
0 uy 1
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 [PSEmEIeREGRtinuation TN

"u" @ Set A = \g+ A\

@ Use Newton’s method with initial guess
u® — u(rg) + ax U
dA u=u(r)  Yg .
LAt )
: L et
e e
| : 7\‘
A A
s x
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_[REGUERSNons TN

Definition (Regular solutions)
A solution (ug, \g) € R” x R of f(u, \) = 0 is called regular if

(i) 19 is nonsingular,

0 0 or
Rank (fu f)\) =n< 0 { diné/\/(fﬂ) =1,
1l an
R & R(8).

Here, N (f}) denotes the null space of £, and R(f}) denotes the range
of 19, i.e., the linear space spanned by the n columns of 9.

o

Regular solutions include fold points with respect to A
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nun ° f(U1,>\1) -0

@ (uy —ug)*ug + (M —)\0)/-\0—AS=0

|
|
|
‘
| |
P | U 0
| |
|
|
|
|
|
|
|
|
|
|
‘ !
1 | 7\’
0 1 Pk THE UNIVERSITY OF
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* INEWHBHSHREHFod in this coRteXl

Newton’s method for pseudo-arclength continuation becomes

@ @ ([ su? Y _
(Uo)* Ao A
f( (V) )\(V))

) — ug)* g + (M — Ag) Ao — As > ’

with the new direction vector defined as

11 O AT
uy Ao i A e f g

@ The orientation of the branch is preserved for As small.
@ Rescale direction vector: |y [2 +2 = 1.

THE UNIVERSITY OF
g5 AUCKLAND
"

NNNNNNNNNN

Hinke Osinga and Bernd Krauskopf Basic Tutorial — NZMRI Summer School 11



g on equilibriaiiy
Uy \

@ Non-trivial equilibrium is stable until A = Ay ~ 0.6716
@ Fishing does not seem to affect fish population for small A

@ All other stable equilibria are non-physical or correspond to
extinction of fish (and shark)
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Theorem (Hopf bifurcation)
Suppose that along an equilibrium branch (u(\), \), of

u’ = f(u,\),

a complex conjugate pair a(\) £+ i 5(\) of eigenvalues of fy(u(\), A)
crosses the imaginary axis transversally, i.e., for some \q,

Ot()\o) =0, /8()‘0) 7& 0, and a()‘O) 7& 0.

Also assume that there are no other eigenvalues on the imaginary axis.

Then there is a Hopf bifurcation and a family of periodic solutions
bifurcates from the stationary solution at (ug, \o).

v
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* [CBRHRUAHORIS! periodic orbitaI

Hopf at A = \y

“1\1\)

13| A=0.68

0

)

0 U4

—_

Bifurcation theory and
centre manifold theory are
used to determine a first
approximation of the
periodic orbit and its period

ur = acos(S(Au)t),
{ U asin (B(A\n)t)

with 0 < t < 27, amplitude
a=+/|\— Ay|, and period

2r

B(A)
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~ A BVP approach N

Consider the first-order system
u'(t) =f(u(t),»), u(),f()eR”, XeR

Fix the interval of periodicity by the transformation t — %
Then the equation becomes

u/(t) = Tf(U(t),)\), U('), f() € Rn7 T7 AE R;
and we seek an orbit segment u subject to the boundary condition
u(0) = u(1)

Note that the intergation time T, the period, is one of the unknowns.
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 NEEREEBHG it segments ML

One-parameter family of solutions to BVP

u(t) = THu(), ),
u(0) € L(0),

with L(#) curve on linear approximation, and one additional boundary
condition, e.g.:

@ Fixed integration time: T = Ty

@ Fixed arclength:

/1 T [f(u(s))| ds—L=0
0

@ Constrained end point: g(u(1),0,T) —a =0
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 [GHBEERANGS i ocatio

0 T T T /4 F\
i G £
@ Solutions u(t) are
L Bt ; piecewise polynomials
Zj,l Zj,2 Zj,3
P = {pne C[0,1]|
m
Prly_ € P}
o gl : : 13-
tion i3 where P™ is the space of
0 G (vector-valued) polynomials of

\L Vi NV
v <
’ N
’ \
7 \
N
I A |/\
~ 1

degree < m.
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 INGHURIGUERESS o periodic GBI

Assume that we have computed
(Uk—1(-)s Tk—1, Ak—1)
and we want to compute the next solution
(U (), Ties Ak)
Then uk(t) can be translated freely in time:

Ifu(t) is a periodic solution, then so is uy(t + o), for any o.

We define (uk(+), Tk, Ax) uniquely using a phase condition
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* [PSBUEEAREIER oth ContinuatiGnill

For the continuation of periodic solutions, we solve the system

u(t) = THuk(t), M),
uc(0) = uk(1),

;
/uk(t)*u’k_1(t) .
0

1 -
/0 (U(t) — Wea (D) Wer () O + (T = Teer) Tier
+(>\k_)\k—1)).\k—1 = AG
where

u(-), f(-) e R, A TeR
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@ Attracting periodic orbits

uyl exist as \ increases
@ The period increases and

becomes infinite at A ~ 0.7

@ This final orbit is called a
R heteroclinic cycle
0 0.1 0.2 03 0.4 05 06 A 0.7 08 0.9
1.3] X =0.7081
Uz
0 m
0 Uy 1
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@ Attracting periodic orbits exist as A increases
@ The period increases and becomes infinite at A ~ 0.7
@ This final orbit is called a heteroclinic cycle
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[Glebalmanifold computations

Famous test example: the Lorenz system

X = o(y—x)
y = oX—y-—xz
Z5= 7T XY

Classical parameters:
— i

o
o = 28
g = 23
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[ERSSEREio

S~

Manifold is viewed as
family of geodesic level
sets (GLS)

@ Points on a new GLS
found by continuation
of 2PBVP

@ Curve L(0) is
boundary of manifold
computed so far
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