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A Resonance Manifold

When ¢ = 0, the Langford dynamical system

%1 (y3—0.7)y1 —wy2
o | = wyr + (y3 — 0.7)y2
Vs 0.6+ y3— 33 — (V2 +y3)(1 + pys) + eyiys

corresponds to a parallel flow on an invariant torus, corresponding
to either torus-covering quasi-periodic trajectories or a continuous
family of periodic orbits.

A periodic orbit continuation problem with a fixed Poincaré phase
condition results from the commands

>> prob = coco_prob();

>> pnames = { ’om’, ’ro’, ’eps’ };

>> coll_args = { @lang, tO, x0, pnames, pO };

>> prob = ode_isol2bvp(prob, ’’, coll_args{:}, @po_bc);



Covering Manifolds
Every continuation problem is of the form
®(u)=0

in terms of a function ® : R” — R™ for n > m > 0.

If u* is regular, then there exists a locally unique solution manifold
through u* of dimension n — m, such that

T = N[0, (u™)].
For v € Ty, colspan{ T+} = N[9,®(u*)]*, and some function
s — t(s) with t(0) = 0, there exists a unique function s — A(s)
with A(0) = X'(0) = 0, such that the curve segment
yis Ut t(s)v+ TH-X(s),s € [—¢,¢l,e <1

lies on the solution manifold.



Covering Manifolds

Suppose that VT - V = [,_,, for some matrix V € R™("=m) 3nd
let VL € R™™ denote a full-rank matrix, such that V7 . v+ =0.
Then,

det < 3“%“*) ) £0 < det (&,d)(u*) . vi) £0.

Either condition implies that the columns of

0u0(u”) \ T (0
vT In—m
span 7T«.

If colspan{V'} = N[0,®(u*)], then this product equals V.



Covering Manifolds

There exists a unique function A : R” — R”, such that A(v*) =0,
® (a+ vi. A(ﬁ)) —0,

and y N y
det( au¢(u+v\/T “\(D)) ) 40

for 0 ~ u*.

The tangent space to solution manifold at & + V+ - \(@) is
spanned by the columns of

() ()



Covering Manifolds

The point & + V* - \(ii) is the unique solution to the equation

(vl ) =0

It follows that the solution manifold may be locally described by
the image of the function

pr i+ V-p+VEAi+V-)p)

for some fixed i =~ u* and p =~ 0.

In particular,
VT (u* = i) — u*



Covering Manifolds
Let s € R"™™, such that ||s|| = 1. It follows that
FhesTp=d4+hV-s+ Vi Nid+hV-s)

is a 1-dimensional curve segment through u* on the solution

manifold, and
0,®(I 0
< V<Th) ) T < S >

implies that Ty - s is a tangent vector to [ at ['p.

Iy is the unique solution to the equation

(vT-(f(—ué)—hJ:O'



Covering Manifolds
The equation
VT (u—id)—hs=0

is a projection condition in terms of a base point i, tangent matrix
V, direction vector s, and step size h.

<l_ 4 @ span{V}

(©SIAM, 2013, Reproduced from Recipes for Continuation.



Covering Manifolds

Let {u, T, %X, R} denote a chart based at u, such that
e the columns of T are an orthonormal basis of 7,

e the elements of X are unit tangent vectors at u along curve
segments on the solution manifold,

e the scalar R describes the size of the local cover of the
solution manifold.

A family of charts is an atlas. An atlas algorithm generates an
atlas from an initial solution guess i and tangent matrix V/,
through stages of expansion and consolidation.

During expansion, an atlas algorithm constructs a sequence of
charts along a curve segment I'. During the consolidation, these
charts are merged into the atlas by modifying each of the sets X.



Covering Manifolds

flush \ """"""""
a0 W > predict
A
corvect oo . tefine

(©SIAM, 2013, Reproduced from Recipes for Continuation.



Pseudo-Arclength Continuation

Recall the one-dimensional projection condition
vl (u—id)—hs=0
in terms of a base point {i, tangent matrix v, direction vector s,

and step size h.

Suppose that t* is a unit tangent vector to T,+. Let i = u*,
s =41, v=1t* and h = R, and choose the predictor i + hsv.
Then, the tangent space at 'y, is spanned by

() (2)

Continuation tracks only the most recently located point on the
solution manifold. The atlas algorithm produces an advancing local
cover.



Accelerated Convergence
Recall the one-dimensional projection condition
VT (u—id)—hs=0

in terms of a base point ii, tangent matrix V, direction vector s,
and step size h.

Suppose that t* is a unit tangent vector to 7,«. Let i = u*,
pp g

s =41,
< 9,®(u* + ORst*) >‘1 < 0 >
v = t*T : 1 ;

and h= RvT - t*, and choose again the predictor i + hsv.

The choice § = 0 yields the pseudo-arclength algorithm, with
O(R?) predictor residuals. The choice § = 1/2 yields O(R3)
predictor residuals.



An Expanding Boundary

In the advancing local cover algorithms, the atlas is always
represented by a single base chart. During expansion, a single
additional chart is constructed in the “forward” direction. During
consolidation, this chart replaces the base chart in the atlas.

In an expanding boundary algorithm, the atlas is represented by
charts on its boundary that enclose an expanding 1-dimensional
volume along the solution manifold. During expansion, charts are
constructed in the “outward” direction. During consolidation, the
atlas boundary is appropriately reconstructed.

An advancing local cover algorithm never stops and may result in
redundant coverage of closed solution manifolds. An expanding
boundary algorithm must stop when the unchartered parts of the
solution manifold have been exhausted.



An Expanding Boundary

Suppose that the columns of T* are an orthonormal basis of 7T«
and that t = T* - ¢ is a unit vector. Let i = u*,

v o (MR ) (0 )

VT .t
§= e
VT

and h=R|VT .t

|, and choose the predictor i+ hV - s.

Initialize ¥ in terms of a given collection of points on S"~™~1.
Define boundary charts as those whose ¥ are nonempty. Remove
elements from X during consolidation to account for chart overlap.



An Expanding Boundary

Basic algorithm suffers from premature termination and redundant
coverage. The resolution to both ailments lies in Henderson's
algorithm.

(a) Two overlapping charts. (b) Subtracting a half-space from P.

(©SIAM, 2013, Reproduced from Recipes for Continuation.



An Expanding Boundary

Basic algorithm suffers from premature termination and redundant
coverage. The resolution to both ailments lies in Henderson's

algorithm.
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(a) After 4 steps.

(@©SIAM, 2013, Reproduced from Recipes for Continuation.

(b) After 21 steps.



The ATLAS-KD toolbox

The current release of coco includes a multi-dimensional atlas
algorithm for arbitrary manifold dimension, modeled on Mike
Henderson’s MULTIFARIO package and developed jointly with
Mike and Erika Fotsch.

The algorithm handles step-size adaptivity along the solution
manifold, continuation from computational domain boundaries,
and large variations in curvature.

The algorithm does not handle adaptive zero problems. Problems
with adaptive discretization (e.g., moving temporal meshes,
adaptive finite-element discretizations, or updated phase
conditions) break the logic and likely lead to redundant coverage
and/or gaps in coverage.



Toolbox Projects

Write a cOCO-compatible toolbox for continuation of periodic
solutions of delay-differential equations of the form discussed in

Engelborghs, K., Luzyanna, T., and Roose, D.,
“Numerical bifurcation analysis of delay differential
equations using DDE-BIFTOOL,” ACM Transactions on
Mathematical Software, 28(1), pp. 1-21, 2002



Toolbox Projects

Write a cOCO-compatible toolbox for continuation of solutions to
differential-algebraic boundary value problems of the form
discussed in

Ascher, U.M. and Spiteri, R.J., “Collocation software for
boundary-value differential-algebraic equations,” SIAM
Journal on Scientific Computing, 15(4), pp. 938-952,
1994



Toolbox Projects

Use COCO to implement the method for the computation of
isochrones discussed in

Osinga, H.M. and Moehlis, J., “Continuation-based
computation of global isochrones,” SIAM Journal of
Applied Dynamical Systems 9(4), pp. 1201-1228, 2010



Toolbox Projects

Use COCO to perform continuation of a two-dimensional stable
manifold in the Lorenz system using any of the formulations
discussed in

Krauskopf, B. Osinga, H.M., Doedel, E.J., Henderson,
M.E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M.,
Junge, O., “A survey of methods for computing
(un)stable manifolds of vector fields,” International
Journal of Bifurcation and Chaos in Applied Sciences and
Engineering, 15(3), pp. 763-791, 2005



Toolbox Projects

Use cOCO to implement algorithms for the continuation of
symmetric periodic orbits as discussed in

Wulff, C. and Schebesch, A., “Numerical continuation of

symmetric periodic orbits,” SIAM Journal on Applied
Dynamical Systems, 5(3), pp. 435-475, 2006



Toolbox Projects

Use COCO to implement the adaptive mesh strategies described in

Budd, C.J., Koomullil, G.P., and Stuart, A.M., “On the

solution of convection-diffusion boundary value problems
using equidistributed grids,” SIAM Journal on Scientific

Computing, 20(2), pp. 591-618, 1998

Russell, R.D. and Christiansen, J., “Adaptive mesh
selection strategies for solving boundary value problems,”
SIAM Journal on Numerical Analysis, 15, pp. 59-80, 1978



Toolbox Projects

Use cOCO to implement the embedded Runge-Kutta scheme with
error control discussed in

Dormand, J.R. and Prince, P.J., "A family of embedded
Runge-Kutta formulae,” Journal of Computational and
Applied Mathematics, 6(1), pp. 19-26, 1980



Additional resources

Recipes for Continuation, SIAM, 2013: principles of
continuation, vectorization, and collocation.

The ’atias-kd’ toolbox, SourceForge, 2015: demos for
alpha-tested coco toolbox.

COCO tech support, danko@illinois.edu.

No more lectures, NZMRI, 2016: Thank you for the
invitation, wonderful company, and your kind attention!



