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Principles of Continuation

The extended continuation problem(
Φ(u)

Ψ(u)− µ

)
= 0

is defined in terms of a collection of zero functions Φ : Rn 7→ Rm,
monitor functions Ψ : Rn 7→ Rr , continuation variables u ∈ Rn,
and continuation parameters µ ∈ Rr .

A restricted continuation problem(
Φ(u)

Ψ(u)− µ

) ∣∣∣∣
µI=µ∗I

= 0

is obtained by selecting a subset I of {1, . . . , r}.



Principles of Continuation

We construct a restricted continuation problem by defining the
functions Φ and Ψ, and by choosing the index set I corresponding
to inactive continuation parameters.

We initialize a restricted continuation problem by choosing an
initial solution guess u0 for u, and letting

µ∗I = ΨI(u0)

and ΨJ(u0) be an initial solution guess for µJ.

The dimensional deficit of the restricted continuation problem
equals n −m − |I|. Continuation along a d-dimensional solution
manifold requires that d = n −m − |I|.



A Forced Linear Oscillator

Consider the non-autonomous dynamical system(
ẋ1
ẋ2

)
=

(
x2

−x2 − px1 + cos t

)
For every p,

x1(t) =
sin t + (p − 1) cos t

p2 − 2p + 2
, x2(t) =

cos t − (p − 1) sin t

p2 − 2p + 2

is a unique, asymptotically stable periodic orbit with L2 norm√
2π

p2 − 2p + 2
.



A Forced Linear Oscillator

In coco, the commands

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> coll_args = { @linode , t0, x0, ’p’, p0 };
>> prob = ode_isol2po(prob, ’’, coll_args{:});

• construct a single-segment collocation zero problem in terms
of the vector field @linode on a default mesh with 10 intervals
and 5 base points and 4 collocation nodes in each interval,

• initialize the continuation problem using t0, x0, and p0,

• associate p with an inactive continuation parameter ’p’,

• append the boundary conditions υf − υi = 0,

• and associate T0 and T with inactive continuation parameters
’po.tinit’ and ’po.period ’.



A Forced Linear Oscillator

The dimensional deficit of the restricted continuation problem is 0.
Continuation along a one-dimensional solution manifold requires
that one index be reassigned from I to J = {1, . . . , r} \ I.

The command

>> coco(prob, ’run’, [], 1, ’p’, [0.2 2]);

identifies the desired manifold dimension as 1, reassigns the index
of the continuation parameter ’p’ to J, and restricts continuation
to the domain ’p’∈ [0.2, 2].

As an alternative, releasing the continuation parameter
’po.tinit ’ results in continuation along a family of phase-shifted
versions of the periodic orbit.



Nonlinear Vibrations

Consider the non-autonomous dynamical system(
ẋ1
ẋ2

)
=

(
x2

−dx2 − x1 − x31 + A cos (2πt/τ)

)
in terms of the vector of state variables x = (x1, x2) ∈ R2 and the
vector of problem parameters p = (A, τ, d) ∈ R3.

This represents the response of a hardening nonlinear oscillator to
harmonic excitation with period τ .

Larger excitation amplitudes are associated with the onset of
bistability, i.e., intervals in excitation frequency with coexisting
stable steady-state responses.



Nonlinear Vibrations
The commands

>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> pnames = { ’A’ ’tau’ ’d’ };
>> coll_args = { @bistable , t0, x0, pnames, p0 };
>> prob = ode_isol2po(prob, ’’, coll_args{:});

• construct a single-segment collocation zero problem in terms
of the vector field @bistable on a default mesh with 10
intervals and 5 base points and 4 collocation nodes in each
interval,

• initialize the continuation problem using t0, x0, and p0,

• associate A, τ , and d with inactive continuation parameters
’A’, ’tau’, and ’d’,

• append the boundary conditions υf − υi = 0,

• and associate T0 and T with inactive continuation parameters
’po.tinit’ and ’po.period ’.



Nonlinear Vibrations

The dimensional deficit of the restricted continuation problem
equals 0.

A frequency-response diagram is obtained by continuation along a
family of periodic orbits under variations in the excitation
frequency (= 2π/τ). Such a family is obtained by appending the
zero function

u 7→ T − τ
and releasing the continuation parameters ’tau’ and
’po.period ’, as shown in the commands below.

>> [data uidx] = coco_get_func_data(prob, ...
’po.orb.coll’, ’data’, ’uidx’);

>> maps = data.coll_seg.maps;
>> prob = coco_add_glue(prob, ’glue’, ...

uidx(maps.T_idx), uidx(maps.p_idx(2)));
>> coco(prob, ’freq_resp’, [], 1, {’po.period’ ’tau’});



Nonlinear Vibrations

Saddle-node bifurcations found along the frequency-response curve
may be used as starting points for continuation along a family of
such points, as shown in the commands below.

>> bd = coco_bd_read(’freq_resp’);
>> labs = coco_bd_labs(bd, ’SN’);
>> prob = coco_prob();
>> prob = ode_SN2SN(prob, ’’, ’freq_resp’, labs(1));
>> [data uidx] = coco_get_func_data(prob, ...

’po.orb.coll’, ’data’, ’uidx’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_glue(prob, ’glue’, ...

uidx(maps.T_idx), uidx(maps.p_idx(1)));
>> cont_args = { 1, { ’po.period’ ’T’ ’A’ } };
>> coco(prob, ’saddle -node’, [], cont_args{:});

The fold observed along this family corresponds to a cusp
bifurcation and the onset of bistability in the nonlinear frequency
response of the hardening oscillator.



Nonlinear Vibrations

The backbone curve for the nonlinear oscillator is the
one-dimensional family of periodic orbits obtained for A = d = 0
and emanating from the limit of zero response amplitude with
period equal to 2π.

The following sequence of commands construct a corresponding
periodic orbit zero problem.

>> t0 = (0:0.01:2*pi)’;
>> x0 = 2e-2*[sin(t0) cos(t0)];
>> p0 = [0; 2*pi; 0];
>> prob = coco_prob();
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> pnames = { ’A’ ’tau’ ’d’ };
>> coll_args = { @bistable , t0, x0, pnames, p0 };
>> prob = ode_isol2po(prob, ’’, coll_args{:});



Nonlinear Vibrations

Although the dimensional deficit of the continuation problem
encoded thus far equals 0, this problem is degenerate, since
arbitrary shifts in time are still solutions.

We restrict attention to a particular phase by holding fixed the
value of x1 on the initial point on the periodic orbit.

>> [data uidx] = coco_get_func_data(prob, ...
’po.orb.coll’, ’data’, ’uidx’);

>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’section’, ...

uidx(maps.x0_idx(1)), ’y0’);
>> cont_args = { 1, { ’po.period’ ’d’ } };
>> coco(prob, ’backbone’, [], cont_args{:});

Note that the value of ’d’ remains approximately 0 throughout
continuation, since periodic orbits with nonzero amplitude exist for
A = 0 only if d = 0.



A Piecewise Smooth System

The equations
ṙ = r(1− r), θ̇ = 1

and
ṙ = αr(β − r), θ̇ = γ + β − r

describe two planar dynamical systems expressed in polar
coordinates.

For sufficiently large γ, closed curves may be constructed inside the
annulus bounded by r = 1 and r = β by stitching together
trajectory segments for each of the two vector fields. These
correspond to periodic orbits of a suitably defined
piecewise-smooth dynamical system.



A Piecewise Smooth System

The zero problem for continuation of multi-segment periodic orbits
appends the zero functions

(
{υj ,i}Mj=1, {υj ,f }Mj=1, p

)
7→



h(υ1,f , p; e1)
υ2,i − g(υ1,f , p; r1)

h(υ2,f , p; e2)
υ3,i − g(υ2,f , p; r2)

...
h(υM,f , p; eM)

υ1,i − g(υM,f , p; rM)


to the collection of collocation zero problems characterized by the
vector fields f (x , p;mj), j = 1, . . . ,M.

The sequences {mj}Mj=1, {ej}Mj=1, and {rj}Mj=1 of mode labels, event
labels, and reset labels are referred to as the orbit signature.



A Piecewise Smooth System
The dimensional deficit of the multi-segment periodic orbit zero
problem is q. The commands below

>> prob = coco_prob();
>> prob = ode_isol2hspo(prob, ’’, ...

{@piecewise , stop, jump}, modes, events , resets , ...
t0, x0, {’al’ ’be’ ’ga’}, p0);

>> coco(prob, ’pw1’, [], 1, ’be’, [0 5]);

• construct the multi-segment periodic orbit zero problem in
terms of the vector field @piecewise, event function stop,
and reset function jump and the associated mode, event, and
reset labels modes, events, and resets, respectively.

• associate α, β, and γ with the inactive continuation
parameters ’al’, ’be’, and ’ga’,

• perform continuation along a one-dimensional solution
manifold under variations in the continuation parameter ’be’

on the computational domain ’be’∈ [0, 5].



An Impact Oscillator

Consider the hybrid dynamical system governed by the vector field

F (x , p) =

 x2
−gx1 − cx2 + A cos x3

ω


the reset maps

g(x , p; bounce) =

 x1
−ex2
x3

 , g(x , p; phase) =

 x1
x2

x3 − 2π


and the event functions

h(x , p; impact) = d − x1, h(x , p; impact) = π − x3.



An Impact Oscillator

The following commands construct a two-segment impacting
periodic-orbit continuation problem, with initial solution guess
obtained by forward simulation.

>> p0 = [1; 0.1; 1; 1; 1; 0.8];
>> modes = {’free’ ’free’};
>> events = {’impact’ ’phase’};
>> resets = {’bounce’ ’phase’};
>> f = @(t, x) impact(x, p0, ’free’);
>> [t1, x1] = ode45(f, [0 3.2], [-0.98; -0.29; -pi]);
>> [t2, x2] = ode45(f, [0 3.1], [1; -1.36; 0.076]);
>> t0 = {t1 t2};
>> x0 = {x1 x2};
>> funcs = {@impact , @impact_events , @impact_resets};
>> hspo_args = {funcs, modes, events , resets , ...

t0, x0, {’k’ ’c’ ’A’ ’w’ ’d’ ’e’}, p0};
>> prob = coco_prob();
>> prob = coco_set(prob, ’hspo’, ’bifus’, false);
>> prob = ode_isol2hspo(prob, ’’, hspo_args{:});



An Impact Oscillator

In order to support detection of grazing contact, we extract the
second component of the initial end point of the second trajectory
segment and monitor changes in its sign, as shown below.

>> [data, uidx] = coco_get_func_data(prob, ...
’hspo.orb.bvp.seg2.coll’, ’data’, ’uidx’);

>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’grazing’, ...

uidx(maps.x0_idx(2)), ’graze’, ’active’);
>> prob = coco_add_event(prob, ’GR’, ’graze’, 0);

As the continuation problem is implemented in terms of a
constrained multi-segment boundary-value problem, the analysis
produces solutions that are contained entirely in the x1 ≤ d half
space, as well as solutions that cross the x1 = d boundary, even
though the latter violate the association of crossings of this
boundary with the application of g(x , p; bounce).



Heteroclinic connections
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10 The Variational Collocation
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Figure 10.1. Orbits of the Lorentz system given by the vector field in Eq. (10.87)
starting in the unstable eigenspace of the equilibrium at 0, tracing the unstable manifold. The
orbits in (a) approach equilibria, while the orbits in (b) seem to approach periodic orbits.
This approach is shown in more detail in Fig. 10.2.
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(c) Approach for r = 25.

Figure 10.2. A close-up of the potential approach and exit of Wu
0 to and from a

periodic orbit, as observed in Fig. 10.1. In panel (a), the manifold exits spiraling inward,
while the exit is outward in (c). This corresponds to a switch of approach from an orbit
inside a stable manifold of a periodic orbit to an approach from an orbit outside. This
suggests that, in between these parameter values, there exists an orbit approaching on the
stable manifold—a heteroclinic connection between the equilibrium at 0 and a periodic orbit
of saddle type.

Copyright © 2013 Society for Industrial and Applied Mathematics

c©SIAM, 2013, Reproduced from Recipes for Continuation. Note: “Lorentz” should be “Lorenz”.
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Heteroclinic connections
24

(a) Initial three-segment solution. (b) After growing the unstable manifold.

Figure 10.3. Construction of an initial approximation of an orbit connecting an
equilibrium and a periodic orbit in the Lorentz system given by the vector field in Eq. (10.87)
following the homotopy approach described in Sect. 10.2.2. A state-space representation of
the three-segment solution, consisting of a periodic orbit (gray) and two zero-length segments
(black dots), that is used to initialize Stage II of the homotopy is shown in panel (a), together
with the hyperplane ⌃ that separates the periodic orbit from the equilibrium. In Stage II, we
grow an orbit in Wu

0 until it terminates on ⌃, as shown in (b). In the subsequent Stage III
we grow an orbit in Ws

per in a similar way; see Fig. 10.4.

(a) Growing one orbit in the stable manifold. (b) After sweeping the stable manifold.

Figure 10.4. Panel (a) shows the three-segment solution after completing Stage III,
i.e., growing an orbit in Ws

per starting at the solution shown in Fig. 10.3(b). Here, the end
point of the orbit segment in Wu

0 and the starting point of the orbit segment in Ws
per both lie

in ⌃. Although Ws
per is 2-dimensional, the connecting orbit is unique. To obtain an initial

approximation of the connecting orbit, we first sweep Ws
per in Stage IV and compute a set of

orbit segments that cover the manifold sufficiently densely (b). From this family of orbits we
select the one that terminates closest to the end-point of the segment in Wu

0 ; see Fig. 10.5.

Copyright © 2013 Society for Industrial and Applied Mathematics

c©SIAM, 2013, Reproduced from Recipes for Continuation. Note: “Lorentz” should be “Lorenz”.
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Copyright © 2013 Society for Industrial and Applied Mathematics
c©SIAM, 2013, Reproduced from Recipes for Continuation.
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(a) A different view of the sweep. (b) After closing the gap.

Figure 10.5. Panel (a) shows a different view of Fig. 10.4(b), the result of a sweep
of Ws

per. The intersection with ⌃ is highlighted. We compute the point of the intersecting
curve that is closest to the end point of the segment in Wu

0 and initialize Stage V of the
homotopy, i.e., the closing of the Lin gap. The resulting connecting orbit after closing the
gap is shown in panel (b).

Copyright © 2013 Society for Industrial and Applied Mathematics

c©SIAM, 2013, Reproduced from Recipes for Continuation.



Additional resources

• Recipes for Continuation, SIAM, 2013: principles of
continuation, vectorization, and collocation.

• The ’ep’ and ’po’ toolboxes, SourceForge, 2015: tutorial
documentation and demos for production-ready coco
toolbox.

• Thursday’s lecture, NZMRI, 2016: Atlas algorithms for one-
and multidimensional manifolds, recent developments, open
problems.


