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Lecture 3: Continuation of DDEs with State-Dependent Delays

A Scalar State-Dependent DDE (with two delays)

A Model DDE with two State-Dependent Delays

ein(t) = —yu(t)—kiu(t—ay—cru(t)) —kou(t—ar—cou(r)), u(t) € R,
Positive Parameters ¢, 7, k;, a;, ¢; > 0.

* Scalar State-Dependent DDE with negative feedback.
* ’Delays’ are linearly state-dependent o; = 1 —7; = t — a; — c;ju(t)
* ¢c; = ¢y =0 = linear constant delay DDE — boring.

* NO nonlinearity in model except for the state-dependency;
interesting dynamics driven by the state-dependency of delays.
* Will (usually) fix ¢; = ¢c; = ¢ > 0 & wlog a; > a; then
)] — ap = ap — ayp = const > 0.
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Delayed or advanced-retarded??

Modified Problem
u(t) = —yu(t) — ku(ty) — kou(ty), t; = min{t, 1 — a; — cju(r)}
K1,ai,c;i > 0and ky > v > 0.

/ u(t) > —a;/c;

il
+ Stable periodic orbit enters

/‘ region where
t<t—a;—cu(t)

/ﬁ s a;=t—a; —cu(t) < tfor

i

* Solution of Original Problem

y M Terminates

4 / W / V ﬁ  ddesd modifies all state-dep

U ‘ ‘ ‘ ‘ DDE:s this way
0 10 20 ' 30 40 50 60 @
l=a=v<rkry=r=ap=2,¢c; =05,¢c0 =04. *

4/35



ation of DDEs te-Dependent Delays

State-Dependency Bounds Solutions!

u(t) = —yu(t) — ku(t — ay — cru(t)) — kou(t — ax — cou(t)) |

Wlog order delays: 0 > —a;/c; > —az/ca
= t—a; —cu(t) < tifu(t) > —ai/c

Theorem (Existence/Boundedness: generalises to N delays)

Ify > ko &u(t) €[4, %) vr € [-T,0] where K = k1 + ky &

¢’ e

T = max;{a; + Kcia; /(yc1)} then u(r) € [-4 K]y > 0,

¢’ e

Notice u = 0 is only steady-state

Linearization

[Gyori & Hartung 07] showed linearization about steady state is

u(t) = —yu(t) — ku(t — ay) — rou(t — ay)
(ie freeze delay to its value at steady-state). ¥
This determines stability for state-dependent DDE




ntinuation of DDEs with State-Dependent Delays

Bifurcations

eir(t) = —yu(t) — ku(t—ay — cu(t)) — kou(t—ay — cu(r)), u(t) € R,
e>0,v>kKy >0,k >0,ap >a; >0,c>0.

* u = 01is only steady state
» Stable if k1 + Kk < 7,
* Require xy < v to ensure well-posed, so

e Use k1 > 0 as bifurcation parameter;
use x, € [0, ] as secondary bifurcation parameter

* Varying other parameters (esp. A = ap/a; > 1) interesting

State-Dependent Hopf Bifurcations

Hopf bifurcations [Eichmann 06, Sieber 12, Hu&Wu 10] lead to
periodic orbits




ntinuation of DDEs with State-Dependent Delays

Two Delays: Bistability for a; > a;

Amplitude

a-
6 25
5¢ 2r
1
150
— 1
N
S 05

u(t) = —yu(t) — ku(t —ay — u(t)) — u(t —az — u(r))

y=415,kp =e=ci=cp=1landay =6 >a; =1.3 > O:
[t —a; —cu(t)] — [t — ay — cu(t)] = ap — a; = 4.7 > T* constant.

K1

* Lots of Hopf bifurcations
* Bistability explained by singular limit




Lecture 3: Continuation of DDEs with State-Dependent Delays

Stable Torus!

 Parameter intervals with no stable periodic orbits
* Torus stable....compute using ddesd as IVP
« Plot projection of torus in R3: (u(z),u(t — ay), u(t — a2))

* Can’t compute unstable torus from 2nd branch.

y=475c=ci=c;=1,kp=23anda; =6>a; =13 > 0:

Amplitude




ntinuation of DDEs with State-Dependent Delays

Poincaré Sections

eir(t) = —yu(t) — ku(t—ay — cu(t)) — rou(t—ay — cu(r)), u(r) € ]R,J

—

* Used to study persistent dynamics; reduces dimension by 1
* Phase Space is C = C([—r, 0], R) where r is largest delay:
r = a1(1 + %(Kl + Iiz))
 (C is infinite dimensional function space
* Solutions oscillate about # = 0 so natural Poincare section is aRn
{pecipo=0} ¥
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Lecture 3:

ontinuation of DDEs State-Dependent Delays

Poincaré Sections

ein(t) = —yu(t) — kiu(t —ar — cu(r)) — kou(r—a — cu(r)), u(t) € ]R,J

Poincaré Section reduces dimension by one from oo to oo.

-6 4 2 0
t

Since solutions oscillate about trivial solution u = 0
take u = 0 as Poincaré Section and project into R? by plotting 604
u(t — ay) against u(t — a;) when u(t) = 0 (with u(¢) < 0)



Lecture 3: Continuation of DDEs with State-Dependent Delays

2 Parameter Bifurcation Diagram

i(t) = —4.75u(t) — kiu(t—1.3—cu(t)) — rou(r—6—cu(t)), u(t) € ]R,J

K2
* Hopf bifns (blue)
ar 1 * 3 Double Hopf Bifns
* Torus Bifns (Red)
3l { * 2 branches of torus
bifns originate in
each double Hopf
2r 1 Folds and Arnold
tongues (brown)
s { * Period-doubling
(green)
06
0 >

0 2 4 6 8 10 12 Ky 14
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ation of DDEs State-Dependent Delays

Arnold tongues

DDEBiftool can continue torus and fold bifurcations in (1, k2) for
state-dependent DDEs. Use to find Arnold tongues.

3.5F

2.5F

olu

2 . s 5 10 oo
Shown: p/q =1/2,4/9,3/7,2/5,3/8,1/3,2/7,1/4 = p/(p + q).




ation of DDEs w ate-Dependent Delays

Period Doubling and Torus with Phase Locking

u(t) = —yu(t) — ku(t —ay — u(t)) — Kou(t — ay — u(t))

* 3 =Ky <vy=475
* New Hopf branch, Period Doubling, Torus with Phase Locking

451 ~

*  Hopf - //jf:: -
o S-N 23 N
41 O Torus Z_Z,FFE
O P-Doubling
A1
35 ol T=e
~
===
1.9] \
3r _— Y
18 LS
) — P - “ '
\
'% 25 - /7.5 8 8.5
=
= 1.45 g/m
a,
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- 14 N
E2
135 M -
151 - e
1.3 e
| ~ -7
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Period Doubled Orbits

PD Orbit x,=3 Branch 56 from ,=9.0862

» >

= » N I

© X 0N
solution u(t)

Amplitude
> »
1

414 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ L S
9 905 91 915 92 925 93 935 94 -5t P PR

7 04 05 06
K1 YT Scaled Location in Periodic Orbit

* Small parameter interval where periodic orbit loses stability to a
period doubled solution

* With D. Barton extended ddebiftool to compute branch
switching to period doubled orbit

¢ Further period doublings observed for larger values of x5.
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Lecture 3: Continuation of DDEs State-Dependent Delays

Phase Locked “Torus’ for x; € [6.8252,6.9763]

1.861
* ddesd solution —
1.84F stable phase
locked orbit
1.82f
o * use ddebiftool to
:% 1.8 compute isola of
=) g periodic orbits
5 ' * unstable orbit of
1.76F saddle type with
one positive
1.74¢ Floquet
‘ multiplier

17 ‘ ‘ ‘ ‘ ‘ ‘ ‘
e%sz 6.84 6.86 6.88 6.9 692 694 696 698
K1

3
3
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Lecture 3: Continuation of DDEs w te-Dependent Delays

Phase Locked “Torus’ for x; € [6.8252,6.9763]

* Perturb unstable
ol | periodic orbit
° with

° Eigenfunction

° * Hence compute
orbit in unstable

-0z * manifold with
ddesd
°  Stable orbit has
¥ ° complex
0.4} ° ] dominant Floquet
‘ ‘ ‘ multiplier: not a
0.4 0.5 0.6 torus!

3
3
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s with State-Dependent Delays

Phase Locked “Torus’ for K1 € [6.8252,6.9763]

* Returning to 3D
projection to
(ua(1), u(r —
a),u(t —az)),

* plot stable (blue),
unstable (red)
orbit on attractor,
along with orbits
(blue-grey) in
unstable
manifold of the
red orbit

° kK =693

e More spaghetti
than torus...... R
‘*k“ b

u(t—ar) 5 ou()



Lecture 3: Continuation of DDEs with State-Dependent Delays

Phase Locked “Torus’ for x; € [6.8252,6.9763]

* ... it is better to
render unstable
manifold of
unstable orbit on
not-a-torus as a
surface

° K =693

]
63
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Double Hopf Bifurcation Normal Form

* Centre Manifold reduction to 4-dim ODE
(two pairs imaginary characteristic values at double Hopf).
* Let C = P & Q where P is centre eigenspace.

Then centre manifold My given as a graph in C over space P
Q

P My

¢ Follow [Belair & Campbell 94, Guo & Wu 2013] approach for
constant delay DDEs.

* But our delays are not constant. Also how do we expand the

nonlinearity?? o
e
3y
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Lecture 3:

ontinuation of DDEs with State-Dependent Delays

Double Hopf Bifurcation Normal Form

iw(t) = —yu(t) — ku(t — ap — cru(t)) — rou(t — ay — cou(t)),
DDE is state-dependent without nonlinearity

Expand delays about their steady state u = 0 values

1
u(t—ai—cu(t)) = u(t—a;)+u(r — a,-)(—cu(t))—i—iii(t — a;)(—cu(t))*+...
Use original DDE to remove i, it terms etc

i(t) = —yu(t) — ku(t — ay — cu(t)) — rou(t — ap — cu(r))
= —yu(t) — ku(t — ay) — kou(t — az) + h.o.t.

Hence

u(t —a;) = —yu(t — a;) — ku(t —ay — a;) — kou(t — ay — a;)+h.o.t. oo

e
w /!

‘We obtain....
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Lecture ation of DDEs te-Dependent Delays

Double Hopf Bifurcation Normal Form

DDE is state-dependent without nonlinearity

Expansion:

u(t) = —~yu(t Z kiu(t — a;) (linear)

iw(t) = —yu(t) — ku(t — ap — cru(t)) — rou(t — ay — cou(t)), \

— 3% | wicu(r) [vu(t —a;) + ijl kiu(t — a; — aj)} (quadratic)
= 220 miriu(t)u(t—a;) |:’Yu(l_af_aj)+272n:l ’@mu(t—ai—a./—am)}

)P Sy |2 S 543 iy

+0(4)

3
3

Benefit: Expansion of nonlinearity with constant delays
Cost: Have n(n + 3)/2 delays at nth order(= 2, 5,9, 14,20, .. .)



Lecture 3: Continuation of DDEs with State-Dependent Delays

Double Hopf Bifurcation Normal Form

) II]

3.8

36
HH,

H u Tl

3.4fF

3.2F

M1

(a)

s 22 26 TR 1
(a) Bifurcations from full state-dependent DDE
(b) Double Hopf Normal Form for 9 constant delays expansion

Normal form analysis yields two branches of torus bifurcations
emerging from first double Hopf point, as did numerical

investigation [ra
* Look different because normal form uses real parts of Y

eigenvalues as parameters



ntinuation of DDEs with State-Dependent Delays

Double Hopf Bifurcation Normal Form

K2

3.8

3.6

3.4fF

3.2F

(a)

18 2.2 2.6 3 K1
(a) Bifurcations from full state-dependent DDE
(b) Double Hopf Normal Form for 9 constant delays expansion
* Normal form analysis yields two branches of torus bifurcations
emerging from first double Hopf point
* Remap normal form unfolding to (k, x7): Eureka! R
* Note: Right figure determined only from single point HH, =4
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Normal Form Coefficients

Computed DDE-BIFTOOL
Normal Form H, High ‘ H; Low H, High H, Low
K1 | 2.080920227069893 2.080905301795540 2.080662320398254
Ky | 3.786800923405767 3.786811738802836 3.786929718494380
wy | 2.487102830659818 2.487103286770640 1.582142631415513
wy | 1.582152129599611 1.582151566193548 2.487110459273053
6 | 5.291049995477214 || 5.2909997813 | 5.2909980111 | -0.0222756426 | -0.0222756534
6 | -0.022289571330146 | -0.0222816360 | -0.0222817195 | 5.2909133110 | 5.2909132195

We implemented double-Hopf normal form computations using
characteristic equation and symbolic differentiation.

The nmfm DDEBiftool extension also computes normal forms

It finds bifurcations by searching along computed branch

Methods agree to several digits of accuracy

3
3
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Torus Break Up for k| €

7.5796, 7.6818]

Amplitude K2=3

n
N}

Amplitude

21F *

* Study locking region
K1 € [7.5796,7.6818]

* Very different than
previous case

* Torus is destroyed in a
complex sequence of
bifurcations

2.05 ! LT !
7.54 7.56 7.58 76 7.62

I I I
7.64 7.66 7.68

3
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Torus Break Up for x; € [7.5796,7.6818]

k1 = 7.567 * At k; = 7.5363 two

' ' unstable periodic orbits
01t ] created in SN bifn on
principal branch of

B periodic orbits

Lol | * Atrk; = 7.5664 one of
= * these orbits gains stability
in a close to 1:4 resonant
torus bifn. Stable QP
torus coexists with stable
periodic orbit

* Shown is quasi-periodic
torus and stable and
u(t — ar) unstable periodic orbitb

-0.2 0.7 0.8 0.9 1
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ation of DDEs te-Dependent Delays

Torus Break Up for x; € [7.5796,7.6818]

K1 =7.58

01l | * Aty =7.5796 two

x Period-““4” orbits created
ol in SN bifn.
ok | * One orbit has 1d unstable
% manifold connecting on
both sides to stable
QP-torus

e Other orbit has 2d
unstable manifold

u(t —az)
%

-0.1F

~0.2 ; ; ; e Shownis k1 = 7.58
' 0.7 08 0.9 1

I/t([ — al)

3
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Torus Break Up for x; € [7.5796,7.6818]

* for 7.58 < k1 < 7.581
0.1} {1 thereisa

* ’square’-bifurcation
° characteristic of 1-4
ot | resonance

= * The period-“4” orbit with
1d unstable manifold now
_04l ] connects to stable
QP-torus on one side and
to stable period-“1" orbit
, , , on principal branch on the
0.7 08 0.9 T other side

I/t([ — al)

u(t —az)
*

TR
e
O
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Torus Break Up for x; € [7.5796,7.6818]

0.1f

u(t — az)

-0.1F

K1 = 7.5618
*
L
[
.* ('

x* *

¥
e *y
R

»
0j7 0j8 0j9

u(t—ay)

At k1 = 7.617 two
period-"4" orbits created
on torus in SN bifn.
Phase Locked Dynamics
on torus for k1 > 7.617
Unstable manifold of
unstable period-"4" orbit
fills stable torus.

Stable orbit has complex
dominant Floquet
multiplier: not a torus!
One Period-*“4” orbit is
approaching unstable
orbit on ‘torus’ R
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Torus Break Up for x; € [7.5796,7.6818]

* At k1 = 7.6295 ‘torus’ is

K1 = 7.629
- destroyed
o1k + | ° Unstable period-“4” orbit
. disappears in SN bifn
B o with approaching
| & 74 period-“4” orbit.
Y . ]
=
* NG x x L,
* [
oK
-0.1 *
0257 0.8 0.9 1
u(t —ay)

3
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Torus Break Up for x; € [7.5796,7.6818]

-0.2

K1 = 7.666
* [ ]
0.7 0.8 0.9
u(t —ay)

At k1 = 7.6295 ‘torus’ is
destroyed

Unstable period-“4" orbit
disappears in SN bifn
with approaching
period-“4” orbit.

Stable periodic orbit from
torus persists & coexists
with stable period-“1"
orbit.

Stable orbits are
connected by unstable
manifold of remaining
unstable period-“4” orbits



Lecture 3: Continuation of DDEs with State-Dependent Delays

Torus Break Up for x; € [7.5796,7.6818]

0.1F
’§ " . * Atk = 7.6818 last
\;} o | vestige of torus
S / ’ disappears.
o * Stable and unstable
~01+ | period-“4” orbits
destroyed in SN bifn
02747 0.8 0.9 1
u(t — Cll)

3
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Lecture 3: Continuation of DDEs with State-Dependent Delays

Torus Break Up for x; € [7.5796,7.6818]

K1 = 7.682
0.1+
§ - At = 7.6818 last
\;} o | vestige of torus
3 disappears.
* + Stable and unstable
~01+ | period-“4” orbits
destroyed in SN bifn
02747 0.8 0.9 1
u(t — Cll)

3
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ontinuation of DDEs with State-Dependent Delays

12

AU

u(t)

Amplitude

* DDEB:iftool branches ’converge’ as e — 0
* Have a singular solution theory (red curves) for limiting
solutions and branches: finds folds and cusps 34/35
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State-Dependent Delays

Summary & Conclusions

References
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Conclusions

* In absence of any other nonlinearity, State-Dependency of delays
is enough to drive very interesting dynamics including full gamut
of bifurcations associated with tori.

* Approximating state-dependent delays by constant delays could
suppress interesting/important dynamics.

* Dynamics can be investigated using a combination of techniques,
including continuation, that give consistent results. LY
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