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A Delay Differential Equation (DDE) is a differential equation where
the state variable appears with delayed argument.

This can manifest itself in many ways. Simplest scenario is

Constant Delay DDE

w(t) = f(t,u(t),u(t— 7)),  u(t) €R?

where delay 7 > 0 is constant.

Example: Mackey-Glass Equation

u(t) = —yu(t) + 51_3(;(:)7_)”

very early model of circulating white blood cell numbers
A scalar equation with chaotic dynamics

, u(t) eR
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Lecture 1: Delay Differential Equations

Variable Delays

DDEs with Time-Dependent Delay
i(r) = f(t,u(t),ur — (7)), u(r) € R

where delay 7(¢) > 0 is a given function.

Example: Pantograph Equation

u(t) = au(t) + bu(kt), u(t) eR

where a, b and k are parameters with k € (0, 1).
Here kt = t — 7(t) with 7(¢t) = (1 — k)z.
Originates from modelling pantographs!

Relatively complete theory/numerics developed for constant and
time-dependent delays. R
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State-Dependent Delays

DDEs with State-Dependent Delay
i(r) = ft,u(®), u(t = v(1,u(r)),  u(r) € R?

where delay 7 (¢, u(t)) > 0 depends on solution.

Example: Sawtooth Equation
ci(t) = —yu(t) — ku(t —a — cu(t)),  u(t) €R

withe > 0,a > 0,c>0and v+ x > 0.

Model problem introduced by Mallet-Paret and Nussbaum, gets its
name from stable period solutions seen in € — 0 limit.

7(t,u(t)) = a + cu(t) is a delay provided u(t) > —a/c.
Fortunately if u(r) = —a/c then iu(t) = —(v + r)u(r) > 0.

State-Dependent Delays subject of much current research Oyl
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Delay Equations we won’t solve

3 many other types of delay equations

Neutral Equations

Equation is neutral if derivatives of delay terms appear
w(t) = f(t,u(t),u(t — ), i(t — 1)),  u(r) eR?

These are nasty: ongoing research area

The 7 and 7; above are called discrete delays.

Distributed Delay Examples

|

Finite distributed delay: () = (s,u(s))ds
=

Infinite delay:
t
/ n n _ 1 n.n—1 —ax
i) =f( [ttt =) ). gl = et e

—00




Lecture 1: De

Nastier Stuff

Threshold Conditions

t
Delays can be defined implicity: / V(u(s))ds = a
t—T1

a is given constant, V(-) a given function; 7 must be determined.
[Leibniz can help or hinder here]

Implicit delays also appear in electrodynamics:

Wheeler-Feynman Electrodynamics

proton p(¢) and electron e(¢) interact through light cones in
space-time.

1
7 = —lp()) — e(t £ ),

Neutral equation, with advanced and retarded terms, and implicit
delays that stumped Feynman.
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DDE Initial Value Problems (IVPs)

Constant Delay DDE IVP

w(t) = f(tu(t),u(t — 7)),  u(t) eRYt>1
For unique IVP solution for # > 1y
e it is not sufficient to specify u(z)
e To evaluate RHS at 7y require u(ty) — 7)

o Vs € [tg — 7, 1p] require a value of u(s) to evaluate RHS of DDE
att =s+ 7 € [ty, 1o + 7).
For uniqueness of IVP solution need an initial function
u(t) = (1), Vtelto— 1,1

Provided ¢ is Lipschitz and f = f(z, u, v) is Lipschitz in its arguments
this is sufficient for local existence and uniqueness even in
state-dependent case. ‘f}‘
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Breaking Points and Smoothing

Breaking Point at #,

Usually  ©(to) # f(to, p(10), ¢(to — 7))
so i(ty) # u(tg ). This is a breaking point.

Breaking Points at t) + k7

() = fi(t, u(t), u(t — 7)) + a(t) fu(t, u(t), u(t — 7))
+a(t — 1) fo(t,u(t),u(t — 7)).

So it generically discontinuous at fy + 7 and similarly,
u 1) (1) discontinuous at t = 1 + k7 for k > 0.

e Smoothing: u(t) € C**! fort > to + kr
e No such smoothing for neutral problems

3
3
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DDEs as Dynamical Systems

Phase space of DS is set of (initial) states of system:
{u, cu(0) =u(t+6), 0 € [—, 0]}

Butfort € (19,20 +7) 360 € (—7,0) s.t. t + 0 = 1.
u;(0) is not differentiable at this 6.

Phase Space of continuous functions

{90 CpE C([_T’ 0]7Rd)}

Phase space is infinite dimensional even for scalar d = 1 problems

Retarded Functional Differential Equations
u(t) = F(t,uy), F:RxC—R?

e

e Lack of differentiability is a serious hindrance to theory %
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Linearization for Autonomous Constant Delay DDEs

Scalar Example

Suppose f(u, v) satisfies £(0,0) = 0 so u = 0 is a steady state then

i(t) =f(u(t),u(t — 7)) = £u(0,0)u(t) + £,(0,0)u(t — 7) + h.o.t
and linearization is
u(t) = £,(0,0)u(t) + £,(0,0)u(t — 7) = pu(t) + ou(t — 1)
Positing u(1) = e gives transcendental characteristic equation
A—p—oe ™ =0.

Let A = x + iy and take real and imaginary parts:

. TX

x—p—oe "cos(yr) =y+oe sin(yr) =0

Infinitely many roots, all lie on curve y = ++/02e=2™ — (x — p)?

e Laplace transforms show all solutions are exponentials
e Finitely many roots to right of any vertical line in C;

e All characteristic roots satisfy x < |u| + |o|

e Stable manifolds is infinite dimensional

3
3
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Linerization for DDEs in R4

u(t) =f(u(t),u(t—m71),...,u(t — 7)) |

Let f(u, vy, ..., vm) : RY x R™ — R? satisty £(0,0,...,0) =0, so
u = 0 1is a steady state.
Linearization is variational equation

i(t) = Agulr) + 00, Ajult — 7). J
where Ag = f, and A; = f,,/. are d X d matrices evaluated at the

steady-state (essentially a Jacobian matrix for each ’delay’).
There is nontrivial solution u(r) = v € R? with A(\)v = 0 if

0= det(A()\)), A()\) =ANy;—Ap— 271:114]'67’\77. J

Characteristic equation has infinitely many roots

Variational equation soln: u(f) = Y. ceMy,
Finitely many ); with Re();) > /3 for any 5 € R.

3
3

State-dependent DDEs are linearized by freezing the delays
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Simple Numerical Methods

Method of steps
For 7 € [to, 10 + 7]: in(t) = f (1, u(t), u(t — 7)) = f (1, u(t), p(t — 7))
Solve as nonautonomous ODE for 7 € [y, fp + 7]. Repeat.

e Tedious if there is a small delay, and fails if a delay vanishes
(recall pantograph equation)

Sub-multiple step-sizes

Most methods for ODEs generate sequence u,, where u, ~ u(t,) and
t, = ty + nAt or with variable step-size t,,+1 = t,, + Aty .
For constant delay DDE with single delay 7 could try favourite
numerical method with constant step-size Ar = 7/m for some integer
m. Then if u, ~ u(t,) we have u,_,, ~ u(t, — 1)
e Fails if delays are variable or state-dependent, if variable
step-size is desired for accuracy, if there are multiple
non-commensurate constant delays.
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Continuous Runge-Kutta Methods

RK Methods for ODEs
Let u, =~ u(t,) where u(t) =f(t,u(t)), u(ty) = uo,
Standard RK method defines s intermediate stages per step
Yi:un"i_hZ;:]aijl{j; Ki:f(ln+cih,Yi), i=1,...,s
Upt+1 = Up + h Z?:l bl’K,',
(think of ¥; =~ u(t, + c;h), typically ¢; € [0,1])

Continuous RK Methods
Define functions b;(0) & let

n(ty + 6h) = u, + h> 7, bi(0)K;, 0 €[0,1]
defines continuous extension of solution for ¢ € [t,, fy41].
Proceed step by step.

e If a; = 0 for j > i method is explicit ‘f}‘
e For (implicit) collocation RK methods b;(6) defined naturally
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Continuous Runge Kutta Methods (CRKSs) for DDEs

i(t) = f(t,u(t),u(t = 7)), u(t) =), 1€ o —7,00]. |
Continuous Runge-Kutta (CRK) method is defined by

Y =y + h Y0 a fltn+ e, YO 7)Y, 7 = e, + cih — 7)

Unt1 = tn +h Y5y bi(1) f(t + cih, Yj(n)7 i]j(n))

f’j(") called spurious stages, n(t) is the continuous extension of
numerical solution:

Nt +0h) = unth Y51 bi(0) f(ta+cih, Y V™), m<n, 6 €0, 1)

e defines numerical solution as a continuous function for

t € [to, 10+ TJ.

if a; = O forj > i & h < 7 method is explicit

b;(6) polynomial (of degree equal to order of method)

h > 1 called overlapping. Generalised methods can be explicit \C¥/
e Spurious stages ruin super-convergence of quadrature methods
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