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Lecture 1: Delay Differential Equations

DDEs

Definition
A Delay Differential Equation (DDE) is a differential equation where
the state variable appears with delayed argument.

This can manifest itself in many ways. Simplest scenario is

Constant Delay DDE

u̇(t) = f (t, u(t), u(t − τ)), u(t) ∈ Rd

where delay τ > 0 is constant.

Example: Mackey-Glass Equation

u̇(t) = −γu(t) + β
u(t − τ)

1 + u(t − τ)n , u(t) ∈ R

very early model of circulating white blood cell numbers
A scalar equation with chaotic dynamics
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Variable Delays

DDEs with Time-Dependent Delay

u̇(t) = f (t, u(t), u(t − τ(t))), u(t) ∈ Rd

where delay τ(t) > 0 is a given function.

Example: Pantograph Equation

u̇(t) = au(t) + bu(kt), u(t) ∈ R

where a, b and k are parameters with k ∈ (0, 1).
Here kt = t − τ(t) with τ(t) = (1− k)t.
Originates from modelling pantographs!

Relatively complete theory/numerics developed for constant and
time-dependent delays.
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State-Dependent Delays

DDEs with State-Dependent Delay

u̇(t) = f (t, u(t), u(t − τ(t, u(t)))), u(t) ∈ Rd

where delay τ(t, u(t)) > 0 depends on solution.

Example: Sawtooth Equation

εu̇(t) = −γu(t)− κu(t − a− cu(t)), u(t) ∈ R

with ε > 0, a > 0, c > 0 and γ + κ > 0.
Model problem introduced by Mallet-Paret and Nussbaum, gets its
name from stable period solutions seen in ε→ 0 limit.
τ(t, u(t)) = a + cu(t) is a delay provided u(t) > −a/c.
Fortunately if u(t) = −a/c then u̇(t) = −(γ + κ)u(t) > 0.

State-Dependent Delays subject of much current research
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Delay Equations we won’t solve

∃ many other types of delay equations

Neutral Equations
Equation is neutral if derivatives of delay terms appear

u̇(t) = f (t, u(t), u(t − τ1), u̇(t − τ2)), u(t) ∈ Rd

These are nasty: ongoing research area

The τ and τi above are called discrete delays.

Distributed Delay Examples

Finite distributed delay: u̇(t) =

∫ t

t−τ
f (s, u(s)) ds

Infinite delay:

u̇(t) = f
(∫ t

−∞
u(s)gn

a(t − s) ds
)
, gn

a(x) =
1

Γ(n)
anxn−1e−ax
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Nastier Stuff

Threshold Conditions

Delays can be defined implicity:
∫ t

t−τ
V(u(s))ds = a

a is given constant, V(·) a given function; τ must be determined.
[Leibniz can help or hinder here]

Implicit delays also appear in electrodynamics:

Wheeler-Feynman Electrodynamics
proton p(t) and electron e(t) interact through light cones in
space-time.

τ±p =
1
c
‖p(t)− e(t ± τ±p )‖,

Neutral equation, with advanced and retarded terms, and implicit
delays that stumped Feynman.
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DDE Initial Value Problems (IVPs)

Constant Delay DDE IVP

u̇(t) = f (t, u(t), u(t − τ)), u(t) ∈ Rd, t > t0
For unique IVP solution for t > t0
• it is not sufficient to specify u(t0)

• To evaluate RHS at t0 require u(t0 − τ)

• ∀s ∈ [t0 − τ, t0] require a value of u(s) to evaluate RHS of DDE
at t = s + τ ∈ [t0, t0 + τ ].

For uniqueness of IVP solution need an initial function
u(t) = ϕ(t), ∀t ∈ [t0 − τ, t0]

Provided ϕ is Lipschitz and f = f (t, u, v) is Lipschitz in its arguments
this is sufficient for local existence and uniqueness even in
state-dependent case.
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Breaking Points and Smoothing

u̇(t) = f (t, u(t), u(t − τ)), t > t0
u(t) = ϕ(t), t ∈ [t0 − τ, t0]

Breaking Point at t0

Usually ϕ̇(t0) 6= f (t0, ϕ(t0), ϕ(t0 − τ))
so u̇(t−0 ) 6= u̇(t+0 ). This is a breaking point.

Breaking Points at t0 + kτ

ü(t) = ft(t, u(t), u(t − τ)) + u̇(t) fu(t, u(t), u(t − τ))

+ u̇(t − τ) fv(t, u(t), u(t − τ)).
So ü generically discontinuous at t0 + τ and similarly,
u(k+1)(t) discontinuous at t = t0 + kτ for k > 0.

• Smoothing: u(t) ∈ Ck+1 for t > t0 + kτ
• No such smoothing for neutral problems
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DDEs as Dynamical Systems

Phase space of DS is set of (initial) states of system:{
ut : ut(θ) = u(t + θ), θ ∈ [−τ, 0]

}
But for t ∈ (t0, t0 + τ) ∃ θ ∈ (−τ, 0) s.t. t + θ = t0.
ut(θ) is not differentiable at this θ.

Phase Space of continuous functions{
ϕ : ϕ ∈ C([−τ, 0],Rd)

}
Phase space is infinite dimensional even for scalar d = 1 problems

Retarded Functional Differential Equations
u̇(t) = F(t, ut), F : R× C→ Rd

• Lack of differentiability is a serious hindrance to theory
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Linearization for Autonomous Constant Delay DDEs

Scalar Example
Suppose f (u, v) satisfies f (0, 0) = 0 so u = 0 is a steady state then

u̇(t) = f (u(t), u(t − τ)) = fu(0, 0)u(t) + fv(0, 0)u(t − τ) + h.o.t
and linearization is

u̇(t) = fu(0, 0)u(t) + fv(0, 0)u(t − τ) = µu(t) + σu(t − τ)

Positing u(t) = eλt gives transcendental characteristic equation

λ− µ− σe−τλ = 0.
Let λ = x + iy and take real and imaginary parts:

x− µ− σe−τx cos(yτ) = y + σe−τx sin(yτ) = 0

Infinitely many roots, all lie on curve y = ±
√
σ2e−2τx − (x− µ)2

• Laplace transforms show all solutions are exponentials
• Finitely many roots to right of any vertical line in C;
• All characteristic roots satisfy x < |µ|+ |σ|
• Stable manifolds is infinite dimensional
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Linerization for DDEs in Rd

u̇(t) = f (u(t), u(t − τ1), . . . , u(t − τm))

Let f (u, v1, . . . , vm) : Rd × Rmd → Rd satisfy f (0, 0, . . . , 0) = 0, so
u = 0 is a steady state.
Linearization is variational equation

u̇(t) = A0u(t) +
∑m

j=1 Aju(t − τj),

where A0 = fu and Aj = fvj are d × d matrices evaluated at the
steady-state (essentially a Jacobian matrix for each ’delay’).
There is nontrivial solution u(t) = eλtv ∈ Rd with ∆(λ)v = 0 if

0 = det(∆(λ)), ∆(λ) = λId − A0 −
∑m

j=1 Aje−λτj .

• Characteristic equation has infinitely many roots
• Variational equation soln: u(t) =

∑
i αieλitvi

• Finitely many λi with Re(λi) > β for any β ∈ R.
• State-dependent DDEs are linearized by freezing the delays
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Simple Numerical Methods

Method of steps
For t ∈ [t0, t0 + τ ]: u̇(t) = f (t, u(t), u(t − τ)) = f (t, u(t), ϕ(t − τ))
Solve as nonautonomous ODE for t ∈ [t0, t0 + τ ]. Repeat.
• Tedious if there is a small delay, and fails if a delay vanishes

(recall pantograph equation)

Sub-multiple step-sizes
Most methods for ODEs generate sequence un where un ≈ u(tn) and
tn = t0 + n∆t or with variable step-size tn+1 = tn + ∆tn+1.
For constant delay DDE with single delay τ could try favourite
numerical method with constant step-size ∆t = τ/m for some integer
m. Then if un ≈ u(tn) we have un−m ≈ u(tn − τ)

• Fails if delays are variable or state-dependent, if variable
step-size is desired for accuracy, if there are multiple
non-commensurate constant delays.
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Continuous Runge-Kutta Methods

RK Methods for ODEs
Let un ≈ u(tn) where u̇(t) = f (t, u(t)), u(t0) = u0,

Standard RK method defines s intermediate stages per step

Yi = un + h
∑s

j=1 aijKj, Ki = f (tn + cih,Yi), i = 1, . . . , s

un+1 = un + h
∑s

i=1 biKi,

(think of Yi ≈ u(tn + cih), typically ci ∈ [0, 1] )

Continuous RK Methods
Define functions bi(θ) & let

η(tn + θh) = un + h
∑s

i=1 bi(θ)Ki, θ ∈ [0, 1]

defines continuous extension of solution for t ∈ [tn, tn+1].
Proceed step by step.

• If aij = 0 for j > i method is explicit
• For (implicit) collocation RK methods bi(θ) defined naturally
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Continuous Runge-Kutta Methods (CRKs) for DDEs

u̇(t) = f (t, u(t), u(t − τ)), u(t) = ϕ(t), t ∈ [t0 − τ, t0].

Continuous Runge-Kutta (CRK) method is defined by

Y(n)
i = un + h

∑s
j=1 aij f (tn + cjh,Y

(n)
j , Ỹ(n)

j ), Ỹ(n)
j = η(tn + cjh− τ),

un+1 = un + h
∑s

j=1 bj(1) f (tn + cjh,Y
(n)
j , Ỹ(n)

j )

Ỹ(n)
j called spurious stages, η(t) is the continuous extension of

numerical solution:

η(tm+θh) = um+h
∑s

j=1bj(θ) f (tn+cjh,Y
(m)
j , Ỹ(m)

j ), m 6 n, θ ∈ [0, 1]

• defines numerical solution as a continuous function for
t ∈ [t0, t0 + T].

• if aij = 0 for j > i & h 6 τ method is explicit
• bi(θ) polynomial (of degree equal to order of method)
• h > τ called overlapping. Generalised methods can be explicit
• Spurious stages ruin super-convergence of quadrature methods
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