Looking under the hood of DDE-Biftool

Jan Sieber University of Exeter (UK)

Plan

- how to continue unstable branches of equilibria and periodic orbits in experiments
 Lecture 1
 - motivating examples
 - short intro to concepts for feedback control
- Lecture 2 detailed examples (simple mechanical experiments)
 - + periodic orbits close to Hopf bifurcation
- ► ⇒Lecture 3 Continuation for delay-differential equations (mostly by Tony): looking under the hood
- Afternoons & hands-on workshop help with DDE-Biftool (for delay equations), AUTO, coco
- (for myself) learn more coco

Purpose

- point out where methods are different from ODE methods
- often less reliable than ODE methods
- ⇒ good to know why things fail

Alternative

knut (developed and maintained by Robert Szalai (Univ. Bristol)

- stand-alone C++ program with graphical user interface
- can also perform analysis of neutral delay-differential equations

⇒review article Dirk Roose & Robert Szalai in red book

History

- developed by K. Engelborghs (KU Leuven, Belgium), as a PhD project under supervision of Dirk Roose
- later additions from Leuven (version 2.x):
 - connecting orbits between saddle equilibria (Giovanni Samaey)
 - alternative heuristics for linear stability (Koen Verheyden)

was octave compatible

- version 3.x interface and internal changes (JS),
- extensions:
 - local bifurcations of periodic orbits (JS)
 - systems with rotation symmetry (JS)
 - normal form computations for equilibria (B. Wage, Y. Kuznetsov from Utrecht, Netherlands)

Type of DDEs

DDE has form

$$\dot{x}(t) = f(x(t), x(t-\tau_1), \dots, x(t-\tau_k), p)$$

• Either τ_j are parameters, or functions

$$\dot{x}(t) = f(x_0, ..., x_k, p)
x_0 = x(t)
x_j = x(t - \tau_j(x_0, ..., x_{j-1}), p)) (j = 1...k)$$

depending on previously defined delayed states.

Example

$$\dot{x}(t) = \mu - x(t - x(t - x(t - x(t))))$$

- equilibrium $x = \mu$ has Hopf bifurcation at $\mu = \pi/2$
- periodic orbits have fold
- arbitrary levels of nesting needed for bifurcations of periodic orbits

Linear stability of equilibria

$$0 = f(x, \ldots, x, p)$$

- ► Consider $\tilde{x} \in C([-\tau_{\text{max}}, 0]; \mathbb{R}^n)$, $h = \tau_{\text{max}}/N$.
- discretise: single time step size h of integration method $x^{(k)} = \tilde{x}(-kh), k = 0...N$
- linear large eigenvalue problem

$$\mu x^{(0)} = x^{(0)} + h[A_0 x_0 + ... + A_k x_k]$$
 (Euler)
 $\mu x^{(k)} = x^{(k-1)}$ $k = 1...N$
where

$$x_j = \text{interpolation of } \tilde{x} \text{ at } -\tau_j, \qquad A_j = \partial_j f(x, \dots, x, p)$$

► Then $\mu = \exp(h\lambda)$.

Linear stability of equilibria

- use higher order multi-step method instead of Euler
- ► How to choose *h*?
 - large h ⇒poor accuracy
 - ▶ small $h \Rightarrow$ large matrix
- ▶ heuristics: h such that λ with $Re\lambda > -r_{min}$ accurate
- ▶ requires a-priori estimates where $\lambda \in \mathbb{C}$ lie
 - $\det[\lambda I A_0 A_1 e^{-\lambda \tau_1} \dots A_k e^{-\lambda \tau_k}] = 0$
 - $|A_j e^{-\lambda \tau_j}| \le |A_j e^{r_{\min} \tau_j}|$
- ⇒ Engelborghs, Roose, Luzyanina, Breda

Linear stability of equilibria

- heuristics fails often
- ► r_{\min} not specified by user $\Rightarrow r_{\min} = 1/\tau_{\max}$
- mean examples:

$$\dot{x}(t) = A_0 x(t) + A_1 x(t-\tau)$$

where τ large, A_1 small (lasers)

▶ sometimes also failure for $0 \le \tau \ll 1$

Local bifurcations of equilibria

Hopf bifurcation:

$$0 = f(x, ..., x, p)$$
 (equilibrium)

$$i\omega v = [A_0 + A_1 e^{-i\omega \tau_1} + ... + A_k e^{-i\omega \tau_k}] v$$
 (Hopf)

$$1 = v_{ref}^H v$$
 (fix v)

- $A_j = \partial_j f(x, \ldots, x, p)$
- ▶ variables $x \in \mathbb{R}^n, v \in \mathbb{C}^n, \omega \in \mathbb{R}$; n + 2n + 2 equations
- ⇒ $p \in \mathbb{R}$ for Newton iteration $p \in \mathbb{R}^2$ for branch continuation
 - fold identical to ODE case

Periodic orbits

periodic boundary-value problem:

$$\dot{x} = Tf(x, x(t - \tau/T)_{\text{mod}[0,1]}), \quad x(0) = x(1)$$

collocation on [0, 1]: N polynomials p_k , degree $d \Rightarrow 1d$ problem

Periodic orbits

collocation on [0, 1]: N polynomials p_k , degree d (no super-convergence)

 \implies nonlinear system for nNd variables

Stability of periodic orbits

Determined by Floquet multipliers of linearised periodic problem.

Jacobian J from Newton iteration can be re-used:

Stability of periodic orbits

Stability of periodic orbits

Local bifurcations of periodic orbits

Set up as extended periodic boundary-value problems, e.g., torus bifurcation (for single delay)

$$\dot{x} = f(x(t), x(t-\tau), p)$$

$$\dot{z} = \frac{i\pi\omega}{T} z + A_0(t)z + A_1(t)e^{-i\pi\omega\tau}z(t-\tau)$$

where

$$A_j(t) = \partial_{j+1} f(x(t), x(t-\tau), p)$$

extended by

$$1 = \int_0^T z(t)^H z(t) dt, \quad 0 = \int_0^T \operatorname{Re}z(t)^T \operatorname{Im}z(t) dt$$

variables $x \in \mathbb{R}^n$, $z \in \mathbb{C}^n$, $\omega \in \mathbb{R}$; n + 2n + 2 equations $\Rightarrow p \in \mathbb{R}$ for Newton iteration $\Rightarrow p \in \mathbb{R}^2$ for branch continuation

Normal forms for equilibrium bifurcations

(by Y. Kuznetsov & B. Wage)

- ▶ Hopf bifurcation: sign of Lyapunov coefficient l₁ determines stability
- ⇒ DDE near Hopf bifurcation on center manifold reduced to

$$\dot{z} = (p + i\omega)z + \ell_1 |z|^2 z \qquad (z \in \mathbb{C})$$

- codimension-two bifurcations come in various types, classified by their normal forms,
- require expansion of $f(x_0, x_1, ..., x_k, p)$ to order 3...5 in x_j .

Bifurcations with rotational symmetry

- one big application: lasers
- ► structure: $A = -A^T \in \mathbb{R}^{n \times n}$

$$\dot{x} = f(x(t), x(t-\tau), p),$$

$$e^{A\phi}f(x, y, p) = f(e^{A\phi}x, e^{A\phi}y, p)$$

solution types:

$$x(t) = e^{A\omega t}x_0$$
, \Rightarrow rotations (relative equilibria)
 $x(t) = e^{A\omega t}x_p(t)$,
 x_p T -periodic \Rightarrow relative periodic orbits

- $\Rightarrow \omega$ is always additional variable to be solved for
- ⇒ one more phase condition

Future & support

- more normal form support by Y. Kuznetsov & co-workers
- coco port to enable
 - multi-dimensional atlas continuation
 - coupling between DDEs and other problems
 - benefit from nonlinear solvers
 - cleanup
- support of DDE-Biftool (trouble-shooting and bug fixing) will likely continue
- possible extensions (demand and feasibility)
 - support for neutral equations, delay-differential-algebraic equations
 - basic bifurcations of symmetric systems