Continuation and bifurcation analysis in experiments II

Jan Sieber University of Exeter (UK)

Plan

- how to continue unstable branches of equilibria and periodic orbits in experiments
 Lecture 1
 - motivating examples
 - short intro to concepts for feedback control
- ➤ ⇒Lecture 2 detailed examples (simple mechanical experiments)
 - + periodic orbits close to Hopf bifurcation
- Lecture 3 Continuation for delay-differential equations (mostly done by Tony): looking under the hood
- ► Afternoons & hands-on workshop help with DDE-Biftool (for delay equations), AUTO, coco
- (for myself) learn more coco

pendulum

Computational side

```
Unknowns: \theta_d (Fourier modes), p (parameter)

"Equation": \theta_d - \theta[\theta_d, p] = 0

\Rightarrow use Newton iteration
```

Newton iteration requires function eqs (θ_d, p) :

- \triangleright set control demand to θ_d , excitation amplitude p
- wait until output θ is periodic again
- ▶ return Fourier modes of $\theta \theta_d$
- + pseudo-arclength condition

Experimental results

Experimental results

video

Comments

- model accurate except for damping, but damping has large influence on bifurcation diagram
- true dimension of nonlinear system for Newton iteration: 1 (phase shift φ)
 - other harmonics found with "time-delayed feedback"/Picard iteration

Nonlinear Energy Harvester

Error estimate

Computational example for Hopf bifurcation

Haken-Kelso-Bunz (HKB) oscillator:

$$\ddot{x} + \dot{x}(\alpha x^2 + \beta \dot{x}^2 - \gamma) + \omega^2 x = u + \text{"noise"}$$

- ► nonlinearity: mixture of nonlinear damping terms: $\dot{x}(\alpha x^2 + \beta \dot{x}^2)$
- Equilibrium at x = 0, bifurcation parameter γ
 - ▶ stable for γ < 0,
 - unstable for $\gamma > 0$,
 - ▶ Hopf bifurcation at $\gamma = 0$
- fix $\alpha = 1$, $\omega = 2$,
- β = -0.1 (small periodic orbits unstable), or β = 0.2 (small periodic orbits stable)

General problems for parameter scan

- Do transient oscillations decay or grow (slowly)?
- Non-normality: below are two linear systems

Effect of noise/disturbance in parameter scan

- stable Hopf bifurcation:
 noise-induced fluctuations gradually grow in amplitude and become more coherent
- unstable Hopf bifurcation:
 same, but at some point before Hopf bifurcation escape occurs.

Matlab demo

 $x_{\rm ref}(t) = \delta \sin(2\pi t/T)$

- \triangleright assume that we have entire state as output (x, \dot{x})
- \triangleright set (PD control, stabilising for k_1, k_2 large) $u = -k_1(x - x_{ref}(t)) - k_2(\dot{x} - \dot{x}_{ref}(t))$ where (δ small).
- Check for x(t) after transients have settled:

$$f_1(T, \gamma) = \int_0^T \sin(2\pi t/T)[x(t) - x_{\text{ref}}(t)] dt$$
$$f_2(T, \gamma) = \int_0^T \cos(2\pi t/T)[x(t) - x_{\text{ref}}(t)] dt$$

▶ If $f_{1,2}(T, \gamma)$ has regular root \Rightarrow uncontrolled system has periodic orbit of amplitude δ , period T at parameter γ .

⇒small-amplitude periodic orbit present

⇒small-amplitude periodic orbit present

matlab picture

Comments:

- transients always finite
- result depends on gains becomes independent of gains as noise level → 0.
- ► Hopf bifurcation defined in limit noise level → 0.

Further remarks about contination in experiments Compared to numerical contination

- **1.** evaluation of $F: (x_{ref}, p) \rightarrow x$ is slow
- ⇒ restriced to low dimension of control inputs and small number of (eg) Fourier modes
- 2. low accuracy of F (relative error $\approx 10^{-2}$ in very clean experiments)
- ⇒ restricted to well-conditioned problems
- ⇒ F. Schilder's coco toolbox continex
- **3.** limiting factor: ability to provide stabilising (!) real-time feedback
- ⇒ hardest part is problem specific
- ⇒new algorithms needed