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how to continue unstable branches of equilibria
and periodic orbits in experiments
Lecture 1

» motivating examples
» short intro to concepts for feedback control

=Lecture 2 detailed examples (simple mechanical
experiments)
+ periodic orbits close to Hopf bifurcation

Lecture 3 Continuation for delay-differential
equations (mostly done by Tony): looking under the
hood

Afternoons & hands-on workshop help with
DDE-Biftool (for delay equations), AUTO, coco

(for myself) learn more coco



Example: rotation in pendulum
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Example: rotation in pendulum
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Example: rotation in pendulum
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Example: rotation in pendulum

Schema Control

excitation p sin(wt) o feed back 6 — 64
demand 64(t)

= always stable

@
= output not natural
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Computational side

Unknowns: 064 (Fourier modes),
p (parameter)

“Equation”: 64— 06[64,p]1=0
= use Newton iteration

Newton iteration requires function eqs (64, p):
» set control demand to 64, excitation amplitude p
» wait until output 6 is periodic again
» return Fourier modes of 6 — 04

+ pseudo-arclength condition



Experimental results

Experiment time profile of continuation
bifurcation diagram
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Experimental results

video



Comments

» model accurate except for damping, but damping
has large influence on bifurcation diagram

» true dimension of nonlinear system for Newton
iteration: 1 (phase shift ¢)

other harmonics found with “time-delayed
feedback”/Picard iteration



David Barton’s results (Bristol)

Nonlinear Energy Harvester




David Barton’s results (Bristol)

excitation force asin(wt)+u(t) =

Iron stator Magnets _}A

Rl
CC)iI %A Y_ Iron tip Beam

mass
N\ NN N NN NN NN NN

—displacement x(t)



David Barton’s results (Bristol)
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David Barton’s results (Bristol)

Error estimate
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Computational example for Hopf bifurcation
» Haken-Kelso-Bunz (HKB) oscillator:

X 4+ x(ax? + Bx? — ¥) + w?Xx = u + “noise”

» nonlinearity:
mixture of nonlinear damping terms: x(ax? + Bx?)

» Equilibrium at x = 0, bifurcation parameter y

» stable for y <O,
» unstable for y > 0,
» Hopf bifurcation at y =0

» fixa=1, w=2,

» B =—0.1 (small periodic orbits unstable), or
B = 0.2 (small periodic orbits stable)



General problems for parameter scan

» Do transient oscillations decay or grow (slowly)?

» Non-normality: below are two linear systems

Amplitude




Effect of noise/disturbance in parameter scan

» stable Hopf bifurcation:

noise-induced fluctuations gradually grow in
amplitude and become more coherent

» unstable Hopf bifurcation:

same, but at some point before Hopf bifurcation
escape occurs.

Matlab demo



Hopf bifurcation as regular root

>

>

assume that we have entire state as output (x, x)

set (PD control, stabilising for k1, k> large)
U =—Ka1(x — Xref(t)) — k2(X — Xref(t)) where

Xref(t) = 6 sin(2mt/T) (6 small).

Check for x(t) after transients have settled:

-

f(T, 7)=f sin(2mt/T)[x(t) — Xref(t)]dt
0
:

(T, v)= J cos(2mt/T)[x(t) — Xrer(t)1dt
0

If f1.2(T, v) has regular root =uncontrolled system
has periodic orbit of amplitude 6, period T at
parameter v.



Hopf bifurcation as regular root

Fourier coefficients 1 and 2 of xref-x
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Hopf bifurcation as regular root

error bar for coefficients 1 and 2 of xref-x
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Hopf bifurcation as regular root

matlab picture
Comments:
» transients always finite

» result depends on gains
becomes independent of gains as noise level — 0.

» Hopf bifurcation defined in limit noise level — 0.



Further remarks about contination in experiments
Compared to numerical contination

1. evaluation of F: (Xref, p) — X is slow

= restriced to low dimension of control inputs and
small number of (eg) Fourier modes

2. low accuracy of F (relative error ~ 1072 in very
clean experiments)

J

restricted to well-conditioned problems

= F. Schilder’s coco toolbox continex

W

. limiting factor: ability to provide stabilising (!)
real-time feedback

= hardest part is problem specific

=new algorithms needed
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