Continuation and bifurcation analysis in experiments

Jan Sieber University of Exeter (UK)

Plan

- how to continue unstable branches of equilibria and periodic orbits in experiments
 Lecture 1
 - motivating examples
 - short intro to concepts for feedback control
- Lecture 2 detailed examples (simple mechanical experiments)

Plan

- how to continue unstable branches of equilibria and periodic orbits in experiments
 Lecture 1
 - motivating examples
 - short intro to concepts for feedback control
- Lecture 2 detailed examples (simple mechanical experiments)
- Lecture 3 Continuation for delay-differential equations (mostly done by Tony): looking under the hood

Plan

- how to continue unstable branches of equilibria and periodic orbits in experiments
 Lecture 1
 - motivating examples
 - short intro to concepts for feedback control
- Lecture 2 detailed examples (simple mechanical experiments)
- Lecture 3 Continuation for delay-differential equations (mostly done by Tony): looking under the hood
- Afternoons & hands-on workshop help with DDE-Biftool (for delay equations), AUTO, coco
- (for myself) learn more coco

Material

DDE-Biftool (for delay)	\Rightarrow	sourceforge
slides	\Rightarrow	pdf's
exercises (for pen&paper, computer)	\Rightarrow	pdf's
papers & references	\Rightarrow	pdf's
computer (matlab/octave) demos etc	\Rightarrow	source files

Lab experiment on cyanobacteria collapse of population

400 light attenuation 380 Microcosm Microcosm 2 10 15 20 25 30 Veraart *et al* Nature 2012

time (days) (gradual increase in light stress)

Mechanism:

- bacteria susceptible to light stress
- bacteria shade each other
- if light stress too high
 - ⇒reproduction goes down (death rate up)
 - ⇒shading reduced
 - ⇒light stress increases
 - (positive feedback loop)
 - ⇒fold/saddle-node bifurcation

Veraart et al Nature 2012

Veraart et al Nature 2012

Check for saddle-node normal form:

$$\dot{y} = -p - y^2$$

 \Rightarrow Equilibrium $y_s = \sqrt{-p}$ stable, $y_u = -\sqrt{-p}$ unstable.

$$p(t) = p_0 + k[y(t) - y_0]$$

Equilibria satisfy

$$0 = -p_{eq} - y_{eq}^{2}$$

= -{p₀ + k[y_{eq} - y₀]} - y_{eq}²

Stability: $-k - 2y_{eq} \implies \text{ stable for } y_{eq} \ge -k/2.$

Other examples

Computer simulations as experiments

General terms and conditions

To do (in experiments)

- Continue equilibria & periodic orbits that are either
 - dynamically unstable or
 - depend sensitively on system parameters

Constraints

- no setting of internal state possible
- accuracy independent of model
- good estimate for error
- avoid system identification
- no real-time computations

Feedback control

 Assume that experiment is dynamical system with input and output governed by

$$\dot{x}(t) = f(x(t), p, u(t))$$
$$y(t) = g(x(t))$$

- $\begin{array}{lll} & \times x(t) \in \mathbb{R}^n & \Leftarrow & \text{internal state} \\ & y(t) \in \mathbb{R}^k & (\text{often } k = 1) & \Leftarrow & \text{output} \\ & u(t) \in \mathbb{R}^\ell & (\text{often } \ell = 1) & \Leftarrow & \text{input} \end{array}$
- feedback control: u(t) is permitted to depend on y(t) (and its past)
- Assume that system has, for u = 0, equilibrium x*, or periodic orbit x*(t).

Feedback control

 Assume that experiment is dynamical system with input and output governed by

$$\dot{x}(t) = f(x(t), p, u(t))$$
$$y(t) = g(x(t))$$

- ► feedback control: u(t) is permitted to depend on y(t) (and its past)
- Assume that system has, for
 u = 0,
 equilibrium x*, ⇒ look at this first, linearize
 or periodic orbit x*(t).

Single-input system:

$$\dot{x} = Ax - bu$$
, $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, $u \in \mathbb{R}$

▶ **state feedback** means u is linear combination of x⇒ $u = k^T x$ ($k \in \mathbb{R}^n$, called **gains**)

Eigenvalues of r.h.s. matrix in $\dot{x} = Ax - bk^Tx$ can be freely assigned by choosing gains k:

Theorem

- **1.** Let $p(\lambda)$ arbitrary polynomial of degree n.
- **2.** Let $M_c = [b, Ab, ..., A^{n-1}b]$ regular $(\det M_c \neq 0)$.
- ⇒ There exist gains $k \in \mathbb{R}^n$ such that p is characteristic polynomial of $A bk^T$.

Condition 2: controllability

Single-input single-output (SISO) system:

$$\dot{x} = Ax - bu, \quad A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^n, \quad x \in \mathbb{R}^n, \quad u \in \mathbb{R}$$

$$y = c^T x, \qquad c \in \mathbb{R}^n, \quad y \in \mathbb{R}.$$

▶ **output feedback**: *u* depends on *y* and its past.

Single-input single-output (SISO) system:

$$\dot{x} = Ax - bu, \quad A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^n, \quad x \in \mathbb{R}^n, \quad u \in \mathbb{R}$$

$$y = c^T x, \qquad c \in \mathbb{R}^n, \quad y \in \mathbb{R}.$$

- ▶ **output feedback**: *u* depends on *y* and its past.
- ▶ Let k, $\tilde{k} \in \mathbb{R}^n$ be some gains.
- ► Construct observer: $\dot{\tilde{x}} = [A bk^T]\tilde{x} \tilde{k}[c^T\tilde{x} y].$
- ► Set $u = k^T \tilde{x}$.

Single-input single-output (SISO) system:

$$\dot{x} = Ax - bu, \quad A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^n, \quad x \in \mathbb{R}^n, \quad u \in \mathbb{R}$$

$$y = c^T x, \qquad c \in \mathbb{R}^n, \quad y \in \mathbb{R}.$$

- ▶ **output feedback**: *u* depends on *y* and its past.
- ▶ Let k, $\tilde{k} \in \mathbb{R}^n$ be some gains.
- ► Construct observer: $\dot{\tilde{x}} = [A bk^T]\tilde{x} \tilde{k}[c^T\tilde{x} y].$
- ▶ Set $u = k^T \tilde{x}$.
- ⇒ Error $e = x \tilde{x}$ satisfies $\dot{e} = [A \tilde{k}c^T]e$
- $\Rightarrow x \text{ satisfies}$ $\dot{x} = [A bk^T]x + bk^Te.$

Single-input single-output (SISO) system:

$$\dot{x} = Ax - bu, \quad A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^n, \quad x \in \mathbb{R}^n, \quad u \in \mathbb{R}$$

$$y = c^T x, \qquad c \in \mathbb{R}^n, \quad y \in \mathbb{R}.$$

- **output feedback**: *u* depends on *y* and its past.
- ▶ Let k, $\tilde{k} \in \mathbb{R}^n$ be some gains.
- ► Construct observer: $\dot{\tilde{x}} = [A bk^T]\tilde{x} \tilde{k}[c^T\tilde{x} y].$
- ► Set $u = k^T \tilde{x}$.
- \Rightarrow Error $e = x \tilde{x}$ satisfies $\dot{e} = [A \tilde{k}c^T]e$
- $\Rightarrow x$ satisfies $\dot{x} = [A bk^T]x + bk^Te$.
 - ► If $M_o = [c, A^T c, ..., (A^T)^{n-1} c]$ regular $(\det M_o \neq 0)$ (observability)
- \Rightarrow apply Eigenvalue Assignment Theorem to $A^T c\tilde{k}^T$.

Back to equilibrium of nonlinear system

- equilibrium x_* of $\dot{x} = f(x, p, 0)$,
- ▶ assuming state feedback controllability, there exist gains $k \in \mathbb{R}^n$ such that in

$$\dot{x}(t) = f(x(t), p, u(t)), \quad u(t) = k^{T}[x_* - x(t)]$$

x* is a stable equilibrium(visible in experiment with feedback control).

Back to equilibrium of nonlinear system

- equilibrium x_* of $\dot{x} = f(x, p, 0)$,
- ▶ assuming state feedback controllability, there exist gains $k \in \mathbb{R}^n$ such that in

$$\dot{x}(t) = f(x(t), p, u(t)), \quad u(t) = k^{T}[x_* - x(t)]$$

- x* is a stable equilibrium(visible in experiment with feedback control).
- ▶ This assumes that we know two things:
 - **1.** partial derivatives $\partial_1 f$, $\partial_3 f$ in $(x_*, p, 0)$ (to find gains k)
 - 2. location of x_* (appears in u)

Back to equilibrium of nonlinear system

- equilibrium x_* of $\dot{x} = f(x, p, 0)$,
- ▶ assuming state feedback controllability, there exist gains $k \in \mathbb{R}^n$ such that in

$$\dot{x}(t) = f(x(t), \rho, u(t)), \quad u(t) = k^{T}[x_{*} - x(t)]$$

- x* is a stable equilibrium(visible in experiment with feedback control).
- ▶ This assumes that we know two things:
 - **1.** partial derivatives $\partial_1 f$, $\partial_3 f$ in $(x_*, p, 0)$ (to find gains k)
 - 2. location of x_* (appears in u)
- ▶ Small errors in $\partial_1 f$, $\partial_3 f$ ⇒gains k still stabilizing
- ► error in x_* : $x_{\text{ref}} \neq x_*$ \Rightarrow $\dot{x} = f(x, p, k^T(x_{\text{ref}} x))$ has stable equilibrium $\lim_{t\to\infty} x(t) =: x_{\text{eq}} \neq x_*$.

Controlled experiment = fixed point map

assume experiment with controllable equilibrium
 x* (location unknown), and stabilising feedback

$$u(t) = k^{T}[x_{ref} - x(t)]$$

⇒this defines nonlinear fixed point problem

- $ightharpoonup F: (p, x_{ref}) \mapsto \lim_{t\to\infty} x(t)$
- One evaluation of F:
 - 1. set system parameters to p,
 - 2. set input to feedback law to $u(t) = k^T [x_{ref} x(t)]$ (x is state/output)
 - **3.** Wait until transients have settled: $F(p, x_{ref}) := \lim_{t \to \infty} x(t)$
- x_{ref} is equilibrium of uncontrolled experiment if and only if

$$F(p, x_{ref}) = x_{ref}$$
 (which implies $\lim_{t \to \infty} u(t) = 0$)

Same for periodic orbit

Assume we have experiment and feedback control

$$u(t) = k^{T}[x_{ref}(t) - x(t)]$$

that stabilises periodic orbit $x_*(t)$ (autonomous or forced) locally.

- if x_{ref} has period T, $x_{\text{ref}} \approx x_*$ and $x(0) \approx x_*(0)$
- \Rightarrow x(t) converges to T-periodic output $x_{\infty}(t)$: $x(t) - x_{\infty}(t) \to 0$
 - x_∞ depends locally uniquely & smoothly on x_{ref}
 ⇒(for autonomous periodic orbits) map

$$F:(p,x_{\mathsf{ref}}(\cdot T),T)\mapsto x_{\infty}(\cdot T)$$

in space of periodic functions on [0, 1].

 $\triangleright x_*$ is fixed point of $F: F(p, x_*, T_*) = x_*$.