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Plan
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how to continue unstable branches of equilibria
and periodic orbits in experiments
Lecture 1

» motivating examples
» short intro to concepts for feedback control

Lecture 2 detailed examples (simple mechanical
experiments)

Lecture 3 Continuation for delay-differential
equations (mostly done by Tony): looking under the
hood

Afternoons & hands-on workshop help with
DDE-Biftool (for delay equations), AUTO, coco

(for myself) learn more coco



Material

DDE-Biftool (for delay) = sourceforge
slides = pdf's
exercises (for pen&paper, computer) = pdf's
papers & references = pdf's
computer (matlab/octave) demos etc = source files



Motivating example |

Lab experiment on cyanobacteria Veraart et al
collapse of population Nature 2012
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Motivating example Il

Mechanism:
» bacteria susceptible to light stress
» bacteria shade each other

» if light stress too high
=reproduction goes down (death rate up)
=shading reduced
=light stress increases
(positive feedback loop)
=fold/saddle-node bifurcation
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Motivating example IlI

Lab experiment Veraart et al

light attenuation
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Usual parameter study:
p constant

fluctuations around
stable equilibrium

output ¥

not observed
(usually cannot set
internal state)

\

parameter=input p=u



Motivating example IlI

How to find unstable branch?

\

feedback:
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How to find unstable branch? Assume y(t) = f(y(t), p) + “noise”
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feedback:
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Motivating example IlI

How to find unstable branch? Assume y(t) = f(y(t), p) + “noise”

output ¥

A

feedback:

p(t) =po + k[y(t)—yol,
(k > 0)

(P2,Y2)o

>

parameter=input p=u



Motivating example IV

Check for saddle-node normal form:
y=—p—y?
=Equilibrium ys = ,/—p stable, y, = —,/—p unstable.
p(t) = po + k[y(t)—yol]
Equilibria satisfy
0 =—Peq—¥¢,
=—{po +k[Yeq—Yol} —yZ,

Stability: —k—2yeq = stable for yeq > —k/2.



Other examples

Computer simulations as experiments

Simulation of Atlantic Overturning Chimeras in networks of coupled
(Boulton et al Nature 2014) oscillators (Sieber et al PRL 2014)
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General terms and conditions

To do (in experiments)

» Continue equilibria & periodic orbits that are either

» dynamically unstable or
» depend sensitively on system parameters

Constraints

» no setting of internal state possible

v

accuracy independent of model

v

good estimate for error

v

avoid system identification

v

no real-time computations



Feedback control

» Assume that experiment is dynamical system with
input and output governed by

x(t) = f(x(t), p, u(t))
y(t) = 9(x(t))

» x(t) eR" < internal state
y(t) e Rk (often k=1) <« output
u(t)eR! (oftenf=1) « input

» feedback control:
u(t) is permitted to depend on y(t) (and its past)

» Assume that system has, for
u=0,
equilibrium x «,
or periodic orbit x . (t).



Feedback control

» Assume that experiment is dynamical system with
input and output governed by

x(t) = f(x(t), p, u(t))
y(t) = 9(x(t))

» x(t) eR" < internal state
y(t) e Rk (often k=1) <« output
u(t)eR! (oftenf=1) « input

» feedback control:
u(t) is permitted to depend on y(t) (and its past)

» Assume that system has, for
u=0,
equilibrium x «, = look at this first, linearize
or periodic orbit x . (t).



Linear feedback control — state feedback
» Single-input system:
X=Ax—bu, AeR™", peR", xe€R", ueR

» state feedback means u is linear combination of x
=u=k’x (k €R", called gains)

Eigenvalues of r.h.s. matrix in x = Ax — bk"x can be
freely assigned by choosing gains k:

Theorem
1. Let p(A) arbitrary polynomial of degree n.

2. Let Mc=[b,Ab,...,A""1b] regular (det M. # 0).

= There exist gains kK € R" such that p is
characteristic polynomial of A— bk’ .

Condition 2: controllability



Linear feedback control — output feedback
» Single-input single-output (SISO) system:

X=Ax—bu, AeR™", peR", xeR", ueR

y=c'x, ceR", yekR.

» output feedback: u depends on y and its past.
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= X satisfies x=[A—bkT]x + bkTe.



Linear feedback control — output feedback
» Single-input single-output (SISO) system:

X=Ax—bu, AeR™", peR", xeR", ueR

y=c'x, ceR", yekR.

» output feedback: u depends on y and its past.
> Let k, kK € R" be some gains.

» Construct observer: X =[A—bkT |X—k[cTx—y].
» Set u=k'x.

Error e = x — X satisfies é=[A—kc"]e

X satisfies x=[A—bkT]x + bkTe.

» If Mo =[c,ATc,...,(AT)"1c] regular (detM, # 0)
(observability)

i U

apply Eigenvalue Assignment Theorem to A” — ckT.

y



Back to equilibrium of nonlinear system
» equilibrium x4 of x = f(x, p, 0),

» assuming state feedback controllability, there exist
gains k € R" such that in

x(t) =f(x(t), p, u(t)),  u(t) =k"[xx—x(t)]

X« iS a stable equilibrium
(visible in experiment with feedback control).
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(to find gains k)
2. location of x« (appears in u)



Back to equilibrium of nonlinear system
» equilibrium x4 of x = f(x, p, 0),

» assuming state feedback controllability, there exist
gains k € R" such that in

x(t) =f(x(t), p, u(t)),  u(t) =k"[xx—x(t)]

X« iS a stable equilibrium
(visible in experiment with feedback control).

» This assumes that we know two things:

1. partial derivatives a1f, da3f in (x«, p, 0)
(to find gains k)
2. location of x« (appears in u)

» Small errors in 91f, 93f =>gains k still stabilizing

> errorin X«: Xref #Xx = X=f(X,p, kKT (Xref — X))
has stable equilibrium lim¢_co X(t) =: Xeq # X .



Controlled experiment = fixed point map

» assume experiment with controllable equilibrium
X« (location unknown), and stabilising feedback

u(t) = k™[ Xrer — x(t)]
=this defines nonlinear fixed point problem
> F (pl Xref) = ||mt_,ooX(t)

» One evaluation of F:
1. set system parameters to p,
2. set input to feedback law to
u(t) = k[ xref — x(t)] (x is state/output)
3. Wait until transients have settled:
F(p, Xref) := lim¢_co X(t)

> Xref IS equilibrium of uncontrolled experiment if and
only if
F(p, Xref) = Xref  (Which implies tlim u(t) =0)



Same for periodic orbit
» Assume we have experiment and feedback control
u(t) = k[ Xrer(t) — x(t)]

that stabilises periodic orbit x, (t) (autonomous or
forced) locally.

» if Xrer has period T, Xref & X« and x(0) =~ x«(0)

= Xx(t) converges to T-periodic output X« (t):
X(t) — Xo(t) — 0

» X« depends locally uniquely & smoothly on Xef
=(for autonomous periodic orbits) map

F:(p, Xref(:T), T) = Xoo(-T)
in space of periodic functions on [0, 1].

» X is fixed point of F: F(p, X«, T«) = Xx.
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