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Abstract

This summer project will be the breakdown of the Horn problem and a probabilistic
re-interpretation of the Horn problem. We will be developing theory from an
undergraduate perspective to tackle the results developed during the solving of the
Horn problem and its probabilistic interpretation. The first part involves proving
matrix theory results, and a basic Horn problem inequality; Weyl’s inequalities by
Hermann Weyl, to specific examples for 𝑛 = 2, 3 case of the Horn problem. The
second part involves the development of Radon and Haar measures where we prove
the Riesz-Markov-Kakutani representation theorem, and Haar’s theorem, to giving a
construction of the unitary Haar measure, to a brief explanation of J. Faraut’s work
on the probabilistic Horn problem.
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1 | Introduction
 It is common stance that eigenvalues are one of the most important attribute regarding matrices.

Thus a natural question to ask is how eigenvalues are preserved through matrix operations?

The Horn problem, conjectured by Alfred Horn, answers a part of this question, where it asks how
eigenvalues are preserved through addition of Hermitian matrices. To put it briefly, the Horn problems
answers the following: given Hermitian matrices 𝐴 and 𝐵, one can be said about the eigenvalues of
𝐴 + 𝐵?

Furthermore, we will be discussing the probability analog of the Horn problem, deemed as the
probabilistic Horn problem. Where we further investigate the probability distribution of the eigen-
values of 𝐴 + 𝐵 if 𝐴 and 𝐵 came from a family of Hermitian matrices with fixed eigenvalues.

In Chapter 3, we will be developing matrix theory results for the development of further chapters.
While Chapter 3.3, the development of matrix roots, will be specifically be used to give an explicit
construction of the unitary Haar measure in Chapter 7.3. Which is one of the foundational tools to
answer the probabilistic Horn problem.

In Chapter 4 , we will give a thorough introduction to the Horn problem and simple results
regarding the restriction for the eigenvalues of 𝐴 + 𝐵. With those results, we can answer the Horn
problem for the 2-dimensional case as presented in Chapter 4.2. Finally in Chapter 4.4, we will give
the full statement of the Horn problem, but will not prove it, with the main goal of understanding the
solution by providing an example for 3-dimensional matrices.

The theory involved to discuss the probability distribution of the eigenvalues will require a heavy
machinery from measure theory. Haar measures, which are Radon measures on locally compact
groups that are left (or right) translational invariant, are of interest, especially unitary Haar measures.
Thus in Chapter 5, we will be developing the theory revolving Radon measures, starting with a brief
introduction of Radon measures in Chapter 5.1, and a proof of the Riesz-Markov-Kakutani Represen-
tation Theorem –inspired by Gerald B. Folland–encapsulating the essence of Radon measures. Further
relevant properties will be provided in Chapter 5.2. Additional relevant measure theoretic concepts:
pushforwards and supports, will also be introduced and discussed in Chapter 5.3 and 5.4 respectively.

In Chapter 6, we will give a short introduction of topological groups and provide simple results
which will be used in later chapters.

In Chapter 7, we will give an introduction of Haar measures and their relevant properties. Finally,
providing a proof of the Haar’s theorem in Chapter 7.2, which allows us to obtain unique (up to a
multiplicative constant) left Haar measures on locally compact groups, hence finalizing the setup to
attack the probabilistic Horn problem. As the existence of such Haar measures in the proof of Haar’s
theorem uses axiom of choice, we will also give an explicit construction of the unitary Haar measure
that does not utilise axiom of choice, which provides a gateway to give explicit computations of the
unitary Haar measure.

As a matter of fact that the results central to the probabilistic Horn problem is too technical for
the Summer project, we will be only be giving brief explanations of such results, and the process of
the solution towards the probabilistic Horn problem. The solutions we will be examining are from
J. Faraut, which is what essentially Chapters 8 and 9 are; a breakdown of Faraut’s approach to be
digestible for undergraduates.

1



2 | Notations
 This section will list down the common notations that will be used throughout the paper. The

notations should be conventional, but will still be defined here to avoid confusion. New notations that
are relevant to the topic of the paper will be introduced in further sections.

1 – Algebra
The symbols 𝑚 and 𝑛 will mean some element in ℕ ≔ {1, 2, …}, this definition would persist in the
Matrix Theory Chapter 3. Otherwise, their meaning should remain the same.

Let 𝐹  be a field. Given a vector 𝑣 ∈ 𝐹𝑛 and 𝑖 ≤ 𝑛 (i.e. 𝑖 ∈ {1, …, 𝑛}), we denote 𝑣𝑖 to be the 𝑖th
component of 𝑣, i.e. 𝑣 = (𝑣1, …, 𝑣𝑛).

Symbol Meaning

𝐹𝑚×𝑛 The set of 𝑚 × 𝑛 matrices over field 𝐹 .

𝕂 Either ℝ or ℂ.

ℝ𝑛
≥0 {𝑥 ∈ ℝ𝑛 : 𝑥𝑖 ≥ 0, for all 𝑖 ≤ 𝑛}

ℝ𝑛
>0 {𝑥 ∈ ℝ𝑛 : 𝑥𝑖 > 0, for all 𝑖 ≤ 𝑛}

ℋ(𝑛) The set of 𝑛 × 𝑛 Hermitian matrices (over ℂ).

𝒰(𝑛) The set of 𝑛 × 𝑛 unitary matrices (over ℂ).

 For finite indexing, we will refer ∑𝑛
𝑖=1 as ∑𝑖≤𝑛, and similarly for other operations that uses

indexing. Given 𝐴 ∈ 𝕂𝑚×𝑛, we denote ‖𝐴‖ to be the usual operator norm, i.e.

‖𝐴‖ = sup
𝑥∈𝕂𝑚

‖𝑥‖≤1

‖𝐴𝑥‖.

We shall denote ℝ𝑛
≥0 (respectively ℝ𝑛

>0) to be the set of real vectors of nonnegative (respectively
positive) entries. We also apply the ↓ subscript to denote that vectors are in (weakly) decreasing order,
e.g.

(ℝ𝑛)↓ ≔ {(𝑥1, …, 𝑥𝑛) ∈ ℝ𝑛 : 𝑥1 ≥ … ≥ 𝑥𝑛}.

We shall denote ⟨⋅, ⋅⟩ to be the usual inner product in ℂ that is linear in the first entry.

Given a matrix 𝐴 over 𝐹 .

Symbol Meaning

𝐴∗ If 𝐹 = ℂ: the conjugate-transpose of some ma-
trix 𝐴.

𝜎(𝐴) The set of eigenvalues of 𝐴.

𝜎↓(𝐴) The vector of (need not to be unique) eigenvalues
of 𝐴 in decreasing order.

𝜒𝐴(𝜆) The characteristic polynomial of 𝐴 with variable
𝜆 ∈ 𝐹 .
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𝐼𝑛 The 𝑛 × 𝑛 identity matrix.

Given a 𝑣 ∈ 𝐹𝑛, we shall denote diag(𝑣) to be the 𝑛 × 𝑛 diagonal matrix over 𝐹  with the diagonal
entries corresponding to the coordinate entries in 𝑣.

Given a 𝜆 ∈ 𝜎(𝐴), denote alg𝐴(𝜆) and geo𝐴(𝜆) to the algebraic and geometric multiplicities of 𝜆
respectively. The subscript may be omitted if the context is clear.

2 – Analysis
The notations used here will be relevant in Chapter 5 and beyond.

Given a topological spaces 𝑋, 𝑌 , 𝑥 ∈ 𝑋, 𝐴 ⊆ 𝑋 and 𝐼 ⊆ ℂ (be nonempty!).

Symbol Meaning
𝐴 Closure of 𝐴
𝐴° Interior of 𝐴

𝒩𝑋[𝑥] The set of all neighbourhoods containing 𝑥. The
subscript 𝑋 may be omitted if the context is clear.

ℬ(𝑋) Borel 𝜎-algebra of 𝑋.

𝐶(𝑋, 𝑌 ) The set of continuous functions from 𝑋 to an-
other topological space 𝑌

𝐶(𝑋) 𝐶(𝑋, ℂ)
𝐶𝑐(𝑋, 𝐼) {𝑓 ∈ 𝐶(𝑋, 𝐼) : supp(𝑓) is compact}.
𝐶𝑐(𝑋) 𝐶𝑐(𝑋, ℂ)

It follows that 𝐶𝑐(𝑋) is a normed space with the uniform norm:

‖𝑓‖∞ ≔ sup
𝑥∈𝑋

|𝑓(𝑥)| = max
𝑥∈𝑋

|𝑓(𝑥)| for all 𝑓 ∈ 𝐶𝑐(𝑋).

We adapt the convention(s):
• sup(∅) = −∞ and inf(∅) = ∞.

Given a (nonempty) set 𝑋, a 𝜎-algebra Σ on 𝑋, a measure 𝜇 on (𝑋, Σ), and 𝑝 ∈ [1, ∞], we will
abbreviate the usual 𝐿𝑝 space equipped with the 𝐿𝑝-norm ‖⋅‖𝑝, 𝐿𝑝(𝑋, Σ, 𝜇), to just 𝐿𝑝(𝜇) or even 𝐿𝑝

if the context is clear.

Given a subset 𝐴 of a set 𝑋, we shall denote 1𝐴 : 𝑋 → {0, 1} to be the indicator function. So 1∅ =
0 and 1𝑋 = 1.

Given a group 𝐺, whenever 𝑒 is noted in the same context, it will always refer to the identity of
𝐺.
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3 | Matrix Theory
 In this section, we will briefly develop the linear algebra theory required for the Horn problem, and

its probabilistic interpretation.

1 – Unitarily Similarity
We aim to prove that a commuting family of normal matrices are simultaneously unitarily diagonal-
izable, i.e. unitarily similar to diagonal matrices. This is essentially the generalization of the spectral
theorem and it provides all of the diagonalization results we need in this paper.

Note that a matrix 𝐴 ∈ 𝕂𝑛×𝑛 is normal if 𝐴∗𝐴 = 𝐴𝐴∗.

Given a matrices 𝐴, 𝐵 ∈ ℂ𝑛×𝑛, we say 𝐴 is unitarily similar to 𝐵 if there is a 𝑈 ∈ 𝒰(𝑛) such
that 𝑈∗𝐴𝑈 = 𝐵. One has a nice result that every matrix is unitarily similar to an upper triangular
matrix with matching eigenvalues.

Schur's Decomposition 1. Any matrix 𝐴 ∈ ℂ𝑛×𝑛 is unitarily similar to an upper triangular matrix. In
particular, given 𝜆1, …, 𝜆𝑛 ∈ 𝜎(𝐴), then there is a 𝑈 ∈ 𝒰(𝑛) such that 𝑈∗𝐴𝑈  is upper triangular with
the diagonal being 𝜆1, …, 𝜆𝑛.

 Proof. Clearly the result holds for 𝑛 = 1, so consider induction on 𝑛 > 1. By the fundamental
theorem of algebra, 𝐴 has an eigenvalue 𝜆 ∈ ℂ. Let 𝑥 ∈ ℂ𝑛 be the unit eigenvector corresponding to
𝜆, and by the Gram-Schmidt algorithm, one has a unitary matrix 𝑈1 = (𝑥, 𝑢2, ⋯, 𝑢𝑛) (where 𝑢𝑖 ∈ ℂ𝑛).
Now one has

𝑈∗
1 𝐴𝑈1 =

(
((
((
((

𝑥∗

𝑢∗
2
⋮

𝑢∗
𝑛)
))
))
))

(𝐴𝑥 𝐴𝑢2 … 𝐴𝑢𝑛) =

(
((
((
((

𝜆
𝜆𝑢∗

2𝑥
⋮

𝜆𝑢∗
𝑛𝑥

𝑥∗𝐴𝑢2 …

𝐴1

𝑥∗𝐴𝑢𝑛

)
))
))
))

= (𝜆
0

𝑎
𝐴1

).

Now 𝐴1 ∈ ℂ(𝑛−1)×(𝑛−1), 𝑎 ∈ ℂ1×(𝑛−1), then by inductive hypothesis, there is a 𝑈2 ∈ 𝒰(𝑛 − 1) such
that 𝑈∗

2 𝐴𝑈2 is upper triangular with the main diagonal being eigenvalues of 𝐴1. Define a unitary
matrix:

𝑈 = 𝑈1(
1
0

0
𝑈2

).

So one has

𝑈∗𝐴𝑈 = (1
0

0
𝑈∗

2
)(𝜆

0
𝑎

𝐴1
)(1

0
0
𝑈2

) = (𝜆
0

𝑎
𝑈∗

2 𝐴1𝑈2
)

and the rest follows by noting that 𝜎(𝐴) = 𝜎(𝐴1) ∪ {𝜆}. ∎

Schur’s decomposition theorem gives a nice correlation between the trace and determinant of
matrices in relation to its eigenvalues.
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Corollary 2. Let 𝐴 ∈ ℂ𝑛×𝑛. Then

tr(𝐴) = ∑
𝜆∈𝜎(𝐴)

𝜆,

and

det(𝐴) = ∏
𝜆∈𝜎(𝐴)

𝜆.

 Proof. By Schur's Decomposition 3.1.1, there is a 𝑈 ∈ 𝒰(𝑛) such that 𝑈𝐴𝑈∗ is upper triangular
with eigenvalues of 𝐴 on its diagonal. As tr and det are invariant under matrix similarity, then the
result follows. ∎

Given ℱ ⊆ 𝕂𝑛×𝑛, we say ℱ is a commuting family if 𝐴𝐵 = 𝐵𝐴 for all 𝐴, 𝐵 ∈ ℱ.

We shall extend the result of Schur’s decomposition theorem to a commuting family of matrices.

Lemma 3. Let 𝐹  be an algebraically closed field, and ℱ ⊆ 𝐹𝑛×𝑛 be a commuting family. Then there is
an nonzero vector in 𝐹𝑛 that is an eigenvector for all 𝐴 ∈ ℱ.

 Proof. Let 𝑀 = {dim(𝑉 ) : 𝑉 ≤ 𝐹𝑛, 𝑉 is ℱ-invariant} (by ℱ-invariant, we mean 𝐴𝑥 ∈ 𝑉  for
all 𝑥 ∈ 𝑉  and 𝐴 ∈ ℱ). Note that 𝑀 ≠ ∅ as 𝐹𝑛 is ℱ-invariant. Let 𝑘 = min(𝑀) and 𝑉 ≤ 𝐹𝑛 (≤
means linear subspace here) be ℱ-invariant such that dim(𝑉 ) = 𝑘. Fix a 𝐴 ∈ ℱ, and so there is an
eigenvalue 𝜆 ∈ 𝐹  with an associated eigenvector in 𝑉 . Consider 𝑊𝐴,𝜆 = {𝑥 ∈ 𝑉 : 𝐴𝑥 = 𝜆𝑥} ≤ 𝑉
(which is nontrivial), and let 𝑥 ∈ 𝑊  and observe that

𝐴(𝐵𝑥) = (𝐴𝐵)𝑥 = 𝐵(𝐴𝑥) = 𝜆(𝐵𝑥),

hence 𝐵𝑥 ∈ 𝑊 , which holds for all 𝐵 ∈ ℱ. Thus 𝑊  is ℱ-invariant, and so 𝑘 ≤ dim(𝑊) ≤ dim(𝑉 ) =
𝑘 shows that dim(𝑊) = 𝑘, hence 𝑊𝐴,𝜆 = 𝑉 . Thus it follows that 𝑉  gives a nontrivial space of
eigenvectors for all 𝐴 ∈ ℱ ∎

Theorem 4. Let ℱ ⊆ ℂ𝑛×𝑛 be a commuting family. Then there is a 𝑈 ∈ 𝒰(𝑛) such that 𝑈∗𝐴𝑈  is upper
triangular for all 𝐴 ∈ ℱ.

 Proof. Clearly it is true for 𝑛 = 1, so consider induction on 𝑛 > 1.
By preceding lemma, let 𝑣 ∈ ℂ𝑛 \ {0} be an eigenvector for all 𝐴 ∈ ℱ, then following from the proof
in Schur's Decomposition 3.1.1, one has a 𝑈 ∈ 𝒰(𝑛) with the first column being 𝑣 such that 𝑈𝐴𝑈∗ is
of the form

(𝜆𝐴
0

𝑎𝐴
𝐶𝐴

) where 𝜆𝐴 ∈ ℂ, 𝑎𝐴 ∈ ℂ1×(𝑛−1) and 𝐶𝐴 ∈ ℂ(𝑛−1)×(𝑛−1)

for all 𝐴 ∈ ℱ. Now given 𝐴, 𝐵 ∈ ℱ, one has
0 = 𝑈𝐴𝐵𝑈∗ − 𝑈𝐵𝐴𝑈∗ = (𝑈𝐴𝑈∗)(𝑈𝐵𝑈∗) − (𝑈𝐵𝑈 ∗)(𝑈𝐴𝑈∗)

= (𝜆𝐴
0

𝑎𝐴
𝐶𝐴

)(𝜆𝐵
0

𝑎𝐵
𝐶𝐵

) − (𝜆𝐵
0

𝑎𝐵
𝐶𝐵

)(𝜆𝐴
0

𝑎𝐴
𝐶𝐴

)

= (𝜆𝐴𝜆𝐵
0

𝜆𝐴𝑎𝐵 + 𝑎𝐴𝐶𝐵
𝐶𝐴𝐶𝐵

) − (𝜆𝐵𝜆𝐴
0

𝜆𝐵𝑎𝐴 + 𝑎𝐵𝐶𝐴
𝐶𝐵𝐶𝐴

),
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so 𝐶𝐴𝐶𝐵 = 𝐶𝐵𝐶𝐴, hence the family {𝐶𝐴 : 𝐴 ∈ ℱ} is a commuting family of (𝑛 − 1) × (𝑛 − 1)
matrices over ℂ. Hence the rest follows from induction in the same manner as the proof in Schur's
Decomposition 3.1.1. ∎

Finally, we show that triangular normal matrices are diagonal, which immediately follows that a
commuting family of normal matrices is simultaneously unitarily diagonalizable.

Lemma 5. Let 𝐴 ∈ ℂ𝑛×𝑛 be a normal matrix. If 𝐴 is upper triangular, then 𝐴 is diagonal.

 Proof. Clearly it is true for 𝑛 = 1. So consider induction on 𝑛 > 1. Now

𝐴 = (𝑎
0

𝐵
𝐶) where 𝑎 ∈ ℂ, 𝐵 ∈ ℂ1×(𝑛−1), and upper triangular 𝐶 ∈ ℂ(𝑛−1)×(𝑛−1).

So one has

0 = 𝐴∗𝐴 − 𝐴𝐴∗ = ( 𝑎
𝐵∗

0
𝐶∗)(𝑎

0
𝐵
𝐶) − (𝑎

0
𝐵
𝐶)( 𝑎

𝐵∗
0

𝐶∗)

= (|𝑎|2
𝑎𝐵∗

𝑎𝐵
𝐵∗𝐵 + 𝐶∗𝐶) − (|𝑎|2 + 𝐵𝐵∗

𝐶𝐵∗
𝐵𝐶∗

𝐶𝐶∗)

hence it follows that 0 = 𝐵𝐵∗, i.e. 𝐵 = 0, so one has 0 = 𝐶∗𝐶 − 𝐶𝐶∗, so 𝐶 is normal. Then by
induction on 𝐶 , it follows that 𝐴 is diagonal. ∎

Corollary 6. Let ℱ ⊆ ℂ𝑛×𝑛 be a commuting family of normal matrices. Then ℱ is simultaneously
unitarily diagonalizable, that is there is a 𝑈 ∈ 𝒰(𝑛), such that 𝑈∗𝐴𝑈  is diagonal for all 𝐴 ∈ ℱ.

Note that unitary and Hermitian matrices are normal matrices, and ℱ = {𝐴} for any 𝐴 ∈ ℂ𝑛×𝑛 is
a commuting family, it follows that we have the spectral theorem for both unitary and Hermitian
matrices.

2 – Matrix Spaces
Here we aim to make clear on the types of matrix spaces relevant to our discussion. We will also
be providing brief inequalities revolving around eigenvalues in relation to the analytical structure of
those matrix spaces.

Recall that the space of matrices 𝕂𝑛×𝑛 can be made into a normed space, hence a Banach space as
it is finite-dimensional, endowed with the operator norm.

It is clear that 𝕂𝑛×𝑛 can be identified with 𝕂𝑛2 , where the identification is any coodinate projection
map from 𝕂𝑛×𝑛 to 𝕂𝑛2 , which gives a linear homeomorphism.

One of the key properties of the operator norm we will be using frequently is that it bounds
eigenvalues, and attains them for unitarily diagonalizable matrices.

Lemma 1. Let 𝑋 ∈ 𝕂𝑛×𝑛, then

max
𝜆∈𝜎(𝑋)

|𝜆| ≤ ‖𝑋‖.

In particular, if 𝑋 is unitarily diagonalizable, then ‖𝑋‖ = max𝜆∈𝜎(𝑋)|𝜆|.

 Proof. Let 𝜆 ∈ 𝜎(𝑋) and 𝑥 ∈ 𝕂𝑛 be a unit eigenvector of 𝜆. Then one has
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|𝜆| = ‖𝜆𝑥‖ = ‖𝑋𝑥‖ ≤ ‖𝑋‖.

If 𝑋 is unitarily diagonalizable, then there is an orthonormal basis of eigenvectors 𝑥1, …, 𝑥𝑛 ∈
𝕂𝑛 corresponding to eigenvalues 𝜆1, …, 𝜆𝑛 ∈ 𝕂. Thus for each unit vector 𝑥 ∈ 𝕂𝑛, one has 𝑥 =
∑𝑖≤𝑛 𝑐𝑖𝑥𝑖 for some 𝑐1, …, 𝑐𝑛 ∈ 𝕂, and so

‖𝑋𝑥‖2 = ‖∑
𝑖≤𝑛

𝑐𝑖𝜆𝑖𝑥𝑖‖
2

= ∑
𝑖≤𝑛

|𝑐𝑖𝜆𝑖|
2 ≤ max

𝑖≤𝑛
|𝜆𝑖|

2‖𝑥‖2 = max
𝑖≤𝑛

|𝜆𝑖|
2,

hence
‖𝑋𝑥‖ ≤ max

𝑖≤𝑛
|𝜆𝑖|.

Thus ‖𝑋‖ ≤ max𝜆∈𝜎(𝑋)|𝜆|, as required. ∎

One of the most common and important bilinear forms on 𝕂𝑛 are the maps 𝑥 ↦ ⟨𝐴𝑥, 𝑥⟩ for a
fixed matrix 𝐴 ∈ 𝕂𝑛×𝑛. Here is another result to see how eigenvalues bounds such bilinear forms if
the matrix is Hermitian.

Rayleigh Quotient Bound 2. Let 𝑋 ∈ ℋ(𝑛), and 𝜆 = 𝜎↓(𝑋). One has

⟨𝑋𝑥, 𝑥⟩ ∈ ℝ for all 𝑥 ∈ ℂ𝑛,

and moreover,

⟨𝑋𝑥, 𝑥⟩ ∈ [𝜆𝑛, 𝜆1] for all unit vector 𝑥 ∈ ℂ𝑛,

where the maxmimum/minimum is attained.

 Proof. As 𝑋 is Hermitian, one has ⟨𝑋𝑥, 𝑥⟩ = ⟨𝑥, 𝑋𝑥⟩ = ⟨𝑋𝑥, 𝑥⟩, hence ⟨𝑋𝑥, 𝑥⟩ ∈ ℝ for all 𝑥 ∈
ℂ𝑛. Clearly maximum and minimum is attained via its unit eigenvectors. Let 𝑥 ∈ ℂ𝑛 be a unit vector,
then 𝑥 = ∑𝑖≤𝑛 𝑎𝑖𝑣𝑖 for 𝑎𝑖 ∈ ℂ and some set of orthonormal eigenvectors, {𝑣𝑖}𝑖≤𝑛, of 𝐴. Now one has

𝜆𝑛 = 𝜆𝑛‖𝑥‖2 = 𝜆𝑛 ∑
𝑖≤𝑛

|𝑎𝑖|
2 ≤ ⟨𝑋𝑥, 𝑥⟩ = ∑

𝑖≤𝑛
𝜆𝑖|𝑎𝑖|2 ≤ 𝜆1 ∑

𝑖≤𝑛
|𝑎𝑖|2 = 𝜆1‖𝑥‖2 = 𝜆1

as required. ∎

The space of Hermitian matrices ℋ(𝑛) and unitary matrices 𝒰(𝑛) will be the most common spaces
of matrices we will be working with. As stated before, these spaces can be identified as subspaces of
ℂ𝑛2 . It is immediate that ℋ(𝑛) is a closed subspace as it is a preimage of the continuous map

ℂ𝑛×𝑛 → ℂ𝑛×𝑛 : 𝑋 ↦ 𝑋 − 𝑋∗

under the set {0}. Similarly, 𝒰(𝑛) is closed as it is a preimage of the continuous map

ℂ𝑛×𝑛 → ℂ𝑛×𝑛 : 𝑋 ↦ 𝑋𝑋∗

under the set {𝐼𝑛}.

It is clear that ℋ(𝑛) is unbounded as the matrix

(
((
((
((

𝑘
0
⋮
0

0
0

…

⋱
…

0

⋮
0)
))
))
))
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has an arbitrarily large norm as 𝑘 → ∞.

We will show that 𝒰(𝑛) is bounded. First, we need to consider a different norm.

Lemma 3. The map

‖⋅‖𝐹 : ℂ𝑛×𝑛 → ℝ : 𝑋 ↦ √tr(𝑋∗𝑋)

is a norm on ℂ𝑛×𝑛.

 Proof. Let 𝑋 = (𝑐1, …, 𝑐𝑛) = (𝑥𝑖,𝑗)𝑖,𝑗≤𝑛
∈ ℂ𝑛×𝑛 (where 𝑐𝑖 ∈ ℂ𝑛, 𝑥𝑖𝑗 ∈ ℂ), then by direct compu-

tation:

‖𝑋‖𝐹 =

√

√√
√√
√

tr

(
((
((

‖𝑐1‖
2

⋱
‖𝑐𝑛‖2

)
))
)) = √ ∑

𝑖,𝑗≤𝑛
|𝑥𝑖𝑗|

2.

Then it is clear that ‖⋅‖𝐹  defines a norm on ℂ𝑛×𝑛 as this norm is the ℂ𝑛2  norm. ∎

The norm ‖⋅‖𝐹  defined in the lemma is called the Frobenius norm, with this we can show that
𝒰(𝑛) is also bounded in (ℂ𝑛×𝑛, ‖⋅‖). Note that all norms are equivalent in finite-dimensional spaces,
so it suffices to show that 𝒰(𝑛) is bounded under the Frobenius norm. Indeed,

‖𝑈‖𝐹 = √tr(𝐼𝑛) =
√

𝑛 for all 𝑈 ∈ 𝒰(𝑛).

From here, we have the immediate result.

Proposition 4. The space 𝒰(𝑛) is compact.

 Proof. Since 𝒰(𝑛) resides in a finite-dimensional normed space, and is closed and bounded. Then
the result is immediate by Heine-Borel theorem. ∎

The space 𝒰(𝑛) has another nice topological property.

Proposition 5. The space 𝒰(𝑛) is path-connected.

 Proof. Let 𝑈 ∈ 𝒰(𝑛), then 𝑈  is unitarily diagonalizable. So there is a 𝑉 ∈ 𝒰(𝑛) and a 𝛼 ∈ ℂ𝑛 such
that 𝑈 = 𝑉 diag(𝛼)𝑉 ∗. Note that det(𝑈) = 1, so it follows that

𝛼1𝛼2…𝛼𝑛 = 1. (3.1)
Now using polar representation of complex numbers, there are 𝜃1, …, 𝜃2 ∈ ℝ such that 𝛼𝑗 = 𝑒𝑖𝜃𝑗  for
all 𝑗 ≤ 𝑛 with ∑𝑗≤𝑛 𝜃𝑗 = 1, and this sum is due to (3.1). Now consider the map

𝛾 : [0, 1] → 𝒰(𝑛) : 𝑡 ↦ 𝑉 diag(𝑒𝑖𝑡𝜃1 , …, 𝑒𝑖𝑡𝜃𝑛)𝑉 ∗,

which is well-defined and continuous with 𝛾(0) = 𝐼𝑛 and 𝛾(1) = 𝑈 . So this shows that every 𝑈 ∈
𝒰(𝑛) has a path to 𝐼𝑛, so it follows that 𝒰(𝑛) is path-connected. ∎
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3 – Roots of Positive Semi-definite Matrices
This section is exclusively for the concrete construction of the unitary Haar measure introduced in
Chapter 7.3. To do that, we introduce the concept of matrix roots for positive semi-definite matrices.
Given a matrix 𝐴 ∈ 𝕂𝑛×𝑛, we say 𝐵 ∈ 𝕂𝑛×𝑛 is a square root of 𝐴 if 𝐵2 = 𝐴.

Now it is clear that we do not have a natural square root map for general matrices, but it turns out
we do for positive semi-definite Hermitian matrices as presented in the next theorem.

Theorem 1. Let 𝐴 be a 𝑛 × 𝑛 Hermitian positive semi-definite matrix over ℂ. Then for each 𝑘 ∈ ℕ, there
is a unique Hermitian positive semi-definite 𝐵 ∈ ℂ𝑛×𝑛 such that 𝐴 = 𝐵𝑘 such that:
1. rank(𝐴) = rank(𝐵);
2. There is a 𝑝 ∈ ℝ[𝑥] such that 𝑝(𝐴) = 𝐵.

Moreover, if 𝐴 is invertible, then (𝐴−1)
1
𝑘 = (𝐴1

𝑘 )
−1

. If 𝐴 is a matrix over ℝ, then everything can be
replaced with ℝ here.

 Proof. One has 𝐴 = 𝑃𝐷𝑃 ∗ where 𝑃 ∈ 𝒰(𝑛) and 𝐷 is a diagonal matrix of nonnegative entries.
Let 𝑘 ∈ ℕ, and let 𝐵 = 𝑃𝐷1

𝑘 𝑃 ∗ where 𝐷1
𝑘  means component-wise 𝑘th root, so it is clear that 𝐵𝑘 =

𝐴, rank(𝐴) = rank(𝐵), and 𝐵 is Hermitian positive semi-definite.
Let 𝜆1, …, 𝜆𝑛 ≥ 0 be the eigenvalues of 𝐴 (the eigenvalues are nonnegative as 𝐴 is positive semi-
definite), and there is a (by Lagrange interpolation) polynomial 𝑝 ∈ ℝ[𝑥] such that 𝑝(𝜆𝑖) = 𝜆

1
𝑘
𝑖  for all

𝑖 ≤ 𝑛. Then

𝑝(𝐴) = 𝑝(𝑃𝐷𝑃 ∗) = 𝑃𝑝(𝐷)𝑃 ∗ = 𝑃𝐷1
𝑘 𝑃 ∗ = 𝐵.

Finally, if 𝐶 ∈ ℂ𝑛×𝑛 is another Hermitian positive semi-definite matrix such that 𝐴 = 𝐶𝑘, then 𝐵 =
𝑝(𝐴) = 𝑝(𝐶𝑘) shows that 𝐵 commutes with 𝐶 . So there is a unitary 𝑈 ∈ 𝒰(𝑛) such that 𝑈𝐵𝑈∗ =
𝐷1 and 𝑈𝐶𝑈 ∗ = 𝐷2 are diagonal of nonnegative entries by Corollary 3.1.6. Hence one has

𝐷𝑘
1 = 𝑈𝐴𝑈∗ = 𝐷𝑘

2

which gives 𝐷1 = 𝐷2, hence 𝐵 = 𝐶 .
Note that 𝐴−1 = 𝑃𝐷−1𝑃 ∗ (if it exists), so

𝐴1
𝑘 (𝐴−1)

1
𝑘 = (𝑃𝐷1

𝑘 𝑃 ∗)(𝑃𝐷−1
𝑘 𝑃 ∗) = 𝐼𝑛

and it follows that (𝐴1
𝑘 )

−1
= (𝐴−1)

1
𝑘 . ∎

Finally, we can define a root map on 𝑆𝑃𝐻(𝑛), which denotes the set of 𝑛 × 𝑛 positive semi-definite
Hermitian matrices as a subspace of ℂ𝑛×𝑛.

Firstly, note that given a 𝑋 ∈ ℂ𝑛×𝑛, then one has 𝑋∗𝑋 ∈ 𝑆𝑃𝐻(𝑛). As root preserves matrix rank,
it follows that if 𝑋 ∈ GL(𝑛, ℂ), then (𝑋𝑋∗)

1
2  is invertible. Thus we can consider the map:

𝐹 : GL(𝑛, ℂ) → 𝒰(𝑛) : 𝑋 ↦ 𝑋(𝑋∗𝑋)−1
2 ,

which will be used to construct our unitary Haar measure. First of all, note that

𝐹(𝑋)𝐹(𝑋)∗ = 𝑋(𝑋∗𝑋)−1
2 (𝑋∗𝑋)−1

2 𝑋∗ = 𝑋(𝑋∗𝑋)−1𝑋∗ = 𝐼𝑛,

so 𝐹(𝑋) ∈ 𝒰(𝑛), and hence 𝐹  is well-defined.

Now to show that 𝐹  is Borel, it suffices to show that 𝐹  is continuous, which boils down to showing
that the matrix root map is continuous. Hence we just need the following proposition.
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Proposition 2. The map

𝑆𝑃𝐻(𝑛) → 𝑆𝑃𝐻(𝑛) : 𝑋 ↦ 𝑋 1
2

is uniformly continuous.

 Proof. Let 𝑋, 𝑌 ∈ 𝑆𝑃𝐻(𝑛). and 𝜀 > 0. Let 𝑥 ∈ ℂ𝑛 be a unit vector. Then following from the
Cauchy-Schwarz inequality, one has

⟨(𝑋 − 𝑌 )𝑥, 𝑥⟩ ≤ ‖𝑋 − 𝑌 ‖.

Now suppose 𝑥 is an eigenvector of 𝑋 1
2 − 𝑌 1

2  with eigenvalue 𝜇 ∈ ℝ, one has that

⟨(𝑋 − 𝑌 )𝑥, 𝑥⟩ = 𝑥∗(𝑋 − 𝑌 )𝑥 = 𝑥∗((𝑋 1
2 − 𝑌 1

2 )𝑋 1
2 + 𝑌 1

2 (𝑋 1
2 − 𝑌 1

2 ))𝑥

= ((𝑋 1
2 − 𝑌 1

2 )𝑥)
∗
𝑋 1

2 𝑥 + 𝜇𝑥∗𝑌 1
2 𝑥

= 𝜇𝑥∗(𝑋 1
2 + 𝑌 1

2 )𝑥

= 𝜇⟨(𝑋 1
2 + 𝑌 1

2 )𝑥, 𝑥⟩.

By Lemma 3.2.1, choose 𝜇 such that |𝜇| = ‖𝑋 1
2 − 𝑌 1

2 ‖ (as 𝑋 1
2 − 𝑌 1

2  is Hermitian), one has

‖𝑋 1
2 − 𝑌 1

2 ‖
2

= |𝜇|2 = |⟨(𝑋 1
2 − 𝑌 1

2 )𝑥, 𝑥⟩|
2

≤ |⟨(𝑋 1
2 − 𝑌 1

2 )𝑥, 𝑥⟩|⟨(𝑋 1
2 + 𝑌 1

2 )𝑥, 𝑥⟩

= |𝜇|⟨(𝑋 1
2 + 𝑌 1

2 )𝑥, 𝑥⟩

= |⟨(𝑋 − 𝑌 )𝑥, 𝑥⟩|
≤ ‖𝑋 − 𝑌 ‖

Thus choose 𝛿 = 𝜀2, then whenever ‖𝑋 − 𝑌 ‖ < 𝛿, one has ‖𝑋 1
2 − 𝑌 1

2 ‖ < 𝜀, as required. ∎
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4 | The Horn Problem
 Let 𝛼, 𝛽, 𝛾 ∈ (ℝ𝑛)↓. The meaning of these symbols will remain the same or play the same role

throughout this section. Given 𝐴, 𝐵, 𝐶 ∈ ℋ(𝑛), we say they have compatible eigenvalues 𝛼, 𝛽, 𝛾
if 𝜎↓(𝐴) = 𝛼, 𝜎↓(𝐵) = 𝛽, and 𝜎↓(𝐶) = 𝛾.

The Horn problem tackles the question:

Given Hermitian matrices 𝐴, 𝐵 ∈ ℋ(𝑛) with compatible eigenvalues 𝛼, 𝛽. What are the possible
eigenvalues of 𝐴 + 𝐵?

Now A. Horn conjectured a list of inequalities, dictated by something called the admissible triples
alongside with a simple trace condition which answers the Horn question. The result is proven in a
paper by Alexander Klyachko in 1998 [1], and the other by Allen Knutson and Terence Tao in 1999 [2].

In this section, we will briefly discuss what the “series of inequalities” and “admissible triples” are,
therefore discussing the geometry of the Horn sets. Along the way, we will also be proving the easier
necessary conditions of the Horn problem using basic linear algebra techniques.

1 – Basic Necessary Conditions of the Horn Problem
We say the triple (𝛼, 𝛽, 𝛾) is Horn solvable if there are Hermitian matrices 𝐴, 𝐵, and 𝐶 with
compatible eigenvalues 𝛼, 𝛽, 𝛾, such that 𝐴 + 𝐵 = 𝐶 . We also say that (𝐴, 𝐵, 𝐶) solves the Horn
problem for (𝛼, 𝛽, 𝛾). The solutions to the Horn problem can also be interpreted as finding the Horn
set:

Horn(𝛼, 𝛽) ≔ {𝜆 ∈ (ℝ𝑛)↓ : (𝛼, 𝛽, 𝜆) is Horn solvable}.

An immediate observation is that the Horn set is never empty as given 𝛼 and 𝛽, we can choose 𝛾 =
𝛼 + 𝛽 ∈ (ℝ𝑛)↓, then the Hermitian matrices diag(𝛼), diag(𝛽), and diag(𝛾) solves the Horn problem
for (𝛼, 𝛽, 𝛾).

Another topic of interest is to consider the set, called the orbit (with respect to 𝛼)

𝒪𝛼 ≔ {𝑋 ∈ ℋ(𝑛) : 𝜎↓(𝑋) = 𝛼},

then by the spectral theorem, one has

𝒪𝛼 = {𝑈diag(𝛼)𝑈∗ : 𝑈 ∈ 𝒰(𝑛)}.

This gives another interpretation of the Horn set:

Horn(𝛼, 𝛽) = 𝜎↓(𝒪𝛼 + 𝒪𝛽) where 𝒪𝛼 + 𝒪𝛽 = {𝐴 + 𝐵 : 𝐴 ∈ 𝒪𝛼, 𝐵 ∈ 𝒪𝛽}.

These intepretations will be useful for further analyses on the Horn set, especially regarding its
geometry and topological structure.

As the trace of a matrix over ℂ is the sum of its eigenvalues (up to multiplicity) and is a linear
functional on ℂ𝑛×𝑛, we immediately have the following lemma, called the trace condition, by applying
the trace map onto the equation 𝐴 + 𝐵 = 𝐶 .
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Trace Condition 1. If 𝐴, 𝐵, 𝐶 ∈ ℋ(𝑛) with compatible eigevalues 𝛼, 𝛽, 𝛾 and 𝐴 + 𝐵 = 𝐶 , then

∑
𝑖≤𝑛

𝛼𝑖 + ∑
𝑖≤𝑛

𝛽𝑖 = ∑
𝑖≤𝑛

𝛾𝑖.

Hence one of the Horn problem’s necessity condition is already proven. Then from here, it is already
immediate that (𝛼, 𝛽, 𝛾) is not in general Horn solvable, for example: 𝛼 = 𝛽 = 0, and 𝛾 = (1, …, 1).

Though it is clear that if 𝑛 = 1, the triple (𝛼, 𝛽, 𝛾) is Horn solvable if, and only if, the trace condition
is satisfied.

It is well-known that a 𝑛 × 𝑛 matrix (over some field) is diagonalizable if, and only if, the sum of
the geometric multiplicities of its eigenvalues is 𝑛. And the algebraic multiplicity of an eigenvalue is
at least its geometric multiplicity. Combining these two results, we have the following lemma:

Lemma 2. Given a diagonalizable 𝑛 × 𝑛 matrix 𝑋 over some field 𝐹 . Then geo(𝜆) = alg(𝜆) for all
𝜆 ∈ 𝜎(𝑋).

 Proof. Suppose there is a 𝜇 ∈ 𝜎(𝑋) such that geo(𝜇) < alg(𝜇). As geo(𝜆) ≤ alg(𝜆) for all 𝜆 ∈
𝜎(𝑋), we obtain a contradiction:

𝑛 = ∑
𝜆∈𝜎(𝑋)

geo(𝜆) < ∑
𝜆∈𝜎(𝑋)

alg(𝜆) = 𝑛.

So it follows that geo(𝜇) = alg(𝜇), as required. ∎

Corollary 3. Given a diagonalizable 𝑛 × 𝑛 matrix 𝑋 over some field 𝐹 , if 𝜎(𝑋) = {𝜆} for some 𝜆 ∈
𝐹 , then 𝑋 = 𝜆𝐼𝑛.

 Proof. Note that det(𝑋 − 𝑡𝐼𝑛) = (𝜆 − 𝑡)𝑛 for all 𝑡 ∈ 𝐹  as 𝜆 is the only eigenvalue. Using the
preceding lemma, one has

dim(ker(𝑋 − 𝜆𝐼𝑛)) ≕ geo(𝜆) = alg(𝜆) = 𝑛,

so 𝑋 − 𝜆𝐼𝑛 = 0, as required. ∎

Using this, we can show that the Horn problem is not necessarily solvable for 𝑛 > 1, despite
(𝛼, 𝛽, 𝛾) satisfying the Trace Condition 4.1.1.

Choosing 𝛼 = (1, …, 1), 𝛽 = (0, …, 0, −𝑛), and 𝛾 = 0, so 𝛼, 𝛽, 𝛾 ∈ (ℝ𝑛)↓. Hence Trace Condi-
tion 4.1.1 is satisfied. Given 𝐴, 𝐵, 𝐶 ∈ ℋ(𝑛) with compatible eigenvalues 𝛼, 𝛽, 𝛾.

Then by the preceding corollary, that means 𝐴 = 𝐼𝑛 and 𝐶 = 0. Hence one has

𝐴 + 𝐵 = 𝐶 imples 𝐵 = 𝐶 − 𝐴 = −𝐼𝑛.

Thus 𝜎↓(𝐵) = (−1, …, −1) ≠ 𝛽.

So (𝛼, 𝛽, 𝛾) is not Horn solvable. From here, it is clear that

Horn(𝛼, 𝛽) = {𝛼 + 𝛽} if 𝑛 = 1 and {𝛼 + 𝛽} ⊆ Horn(𝛼, 𝛽) ⊊ ℝ𝑛 for all 𝑛 > 1.

Thus trace condition is not sufficient. Now due to Hermann Weyl, there are more inequalities that the
triple (𝛼, 𝛽, 𝛾) must satisfy for them to be Horn solvable [3, p. 291]. For now, we need a lemma.
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Lemma 4. Let 𝑋 be a 𝑛-dimensional vector space and 𝑈, 𝑉 , 𝑊 ⊂ 𝑋 be subspaces. If

dim(𝑈) + dim(𝑉 ) + dim(𝑊) ≥ 2𝑛 + 1,

then 𝑈 ∩ 𝑉 ∩ 𝑊 ≠ {0}.

 Proof. By the dimension formula, note that
dim(𝑈 ∩ 𝑉 ) + dim(𝑊) − dim(𝑈 ∩ 𝑉 ∩ 𝑊) = 𝑛,

and
dim(𝑈) + dim(𝑉 ) − dim(𝑈 ∩ 𝑉 ) = 𝑛.

So one has
2𝑛 + 1 ≤ dim(𝑈) + dim(𝑉 ) + dim(𝑊) = 2𝑛 + dim(𝑈 ∩ 𝑉 ∩ 𝑊),

i.e. dim(𝑈 ∩ 𝑉 ∩ 𝑊) ≥ 1. So 𝑈 ∩ 𝑉 ∩ 𝑊 ≠ 0, as required. ∎

Then we have the Weyl’s inequalities.

Weyl's Inequalities 5. If 𝐴 + 𝐵 = 𝐶 , then for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, one has

𝛾𝑖+𝑗−1 ≤ 𝛼𝑖 + 𝛽𝑗 if 𝑖 + 𝑗 ≤ 𝑛 + 1,

𝛾𝑖+𝑗−𝑛 ≥ 𝛼𝑖 + 𝛽𝑗 if 𝑖 + 𝑗 ≥ 𝑛 + 1.

 Proof. Let 𝑢1, …, 𝑢𝑛, 𝑣1, …, 𝑣𝑛, and 𝑤1, …, 𝑤𝑛 be a basis of eigenvectors of 𝐴, 𝐵, and 𝐶 respectively.
For 𝑖 + 𝑗 ≤ 𝑛 + 1, define

𝑈 = span(𝑢𝑖, …, 𝑢𝑛) so dim(𝑈) = 𝑛 − 𝑖 + 1

𝑉 = span(𝑣𝑗, …, 𝑣𝑛) so dim(𝑉 ) = 𝑛 − 𝑗 + 1

𝑊 = span(𝑤1, …, 𝑤𝑖+𝑗−1) so dim(𝑊) = 𝑖 + 𝑗 − 1.

Now dim(𝑈) + dim(𝑉 ) + dim(𝑊) = 2𝑛 + 1, so there is a unit vector 𝑥 ∈ 𝑈 ∩ 𝑉 ∩ 𝑊  by preceding
lemma. By Rayleigh Quotient Bound 3.2.2, one has

⟨𝐴𝑥, 𝑥⟩ ≤ 𝛼𝑖, ⟨𝐵𝑥, 𝑥⟩ ≤ 𝛽𝑖, and ⟨𝐶𝑥, 𝑥⟩ ≥ 𝛾𝑖+𝑗−1,

hence,
𝛾𝑖+𝑗−1 ≤ ⟨𝐶𝑥, 𝑥⟩ = ⟨𝐴𝑥, 𝑥⟩ + ⟨𝐵𝑥, 𝑥⟩ ≤ 𝛼𝑖 + 𝛽𝑖.

For 𝑖 + 𝑗 ≥ 𝑛 + 1. Consider
𝑈 = span(𝑢1, …, 𝑢𝑖) so dim(𝑈) = 𝑖

𝑉 = span(𝑣1, …, 𝑣𝑗) so dim(𝑉 ) = 𝑗

𝑊 = span(𝑤𝑖+𝑗−𝑛, …, 𝑤𝑛) so dim(𝑊) = 2𝑛 − 𝑖 − 𝑗 + 1.

Then it follows similarly as above. ∎

We shall see that in Chapter 4.3 that the Trace Condition  4.1.1 together with Weyl's Inequali-
ties 4.1.5 is sufficient for the triple (𝛼, 𝛽, 𝛾) to be Horn solvable for 𝑛 = 2.
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2 – Unitary Group and the Horn Problem
In this chapter, we will look at how the Horn problem can be simplified and reformulated using the
properties of unitary and Hermitian matrices.

Observe that 𝒰(𝑛) is a subgroup of GL(𝑛, ℂ) under matrix multiplication, hence one can define
an equivalence relation ∼ on ℋ(𝑛) such that 𝑋 ∼ 𝑌  if, and only if, there is some 𝑈 ∈ 𝒰(𝑛) such that
𝑋 = 𝑈𝑌 𝑈∗ = 𝑈𝑌 𝑈−1, and we shall say that 𝑋 and 𝑌  are unitarily similar. As this relation is a
conjugation relation under unitary matrices, it is indeed an equivalence relation.

Similarly we define ∼ on the set {(𝑋, 𝑌 , 𝑍) ∈ ℋ(𝑛)3 : 𝑋 + 𝑌 = 𝑍} where (𝑋1, 𝑋2, 𝑋3) ∼
(𝑌1, 𝑌2, 𝑌3) if, and only if, there is a 𝑈 ∈ 𝒰(𝑛) such that 𝑋𝑖 = 𝑈𝑌𝑖𝑈∗ for all 𝑖 ≤ 3, and we shall say
the triple (𝑋1, 𝑋2, 𝑋3) is unitarily similar to (𝑌1, 𝑌2, 𝑌3). As matrix multiplication is distributive
over matrix addition, and again this is a conjugation relation, it immediately follows that this relation
is well-defined and is an equivalence relation. We shall denote [(𝑋1, 𝑋2, 𝑋3)] to be the equivalence
class under ∼, which is called a unitary class of (𝑋1, 𝑋2, 𝑋3).

Since the relation ∼ preserves matrix similarity, it follows that the eigenvalues are also preserved.
Hence we have the following proposition.

Proposition 1. The Hermitian matrices (𝐴, 𝐵, 𝐶) solves the Horn problem for (𝛼, 𝛽, 𝛾) if, and only if,
each (𝑋, 𝑌 , 𝑍) ∈ [(𝐴, 𝐵, 𝐶)] solves the Horn problem for (𝛼, 𝛽, 𝛾).

 Proof. As discussed above, note that 𝐴 + 𝐵 = 𝐶 if, and only if, 𝑈𝐴𝑈∗ + 𝑈𝐵𝑈∗ = 𝑈𝐶𝑈∗, and
𝜎↓(𝐴) = 𝜎↓(𝑈𝐴𝑈∗) etc. for 𝐵 and 𝐶 , for all 𝑈 ∈ 𝒰(𝑛). Then the proposition follows. ∎

This proposition is great because if one triple of Hermitian matrices (𝐴, 𝐵, 𝐶) solves a Horn
problem, then we will have a family of matrices, which are unitarily similar to (𝐴, 𝐵, 𝐶) which also
solves the Horn problem. Define 𝒪 ≔ {[(𝑋, 𝑌 , 𝑍)] : 𝑋, 𝑌 , 𝑍 ∈ ℋ(𝑛)} and the map

Eigen : 𝒪→ (ℝ𝑛)3
↓ : [(𝑋, 𝑌 , 𝑍)] → (𝜎↓(𝑋), 𝜎↓(𝑌 ), 𝜎↓(𝑍)).

Thus the solution to Horn problem is the same as the solutions to the preimages of this map. It is
already shown in Part 4.1 that this map is not surjective for 𝑛 > 1.

Therefore the natural question that arises is if the Eigen map is injective, that is if (𝛼, 𝛽, 𝛾) is
necessarily Horn solvable from only one unitary class of Hermitian matrices. Now as 𝑈(1) = {𝑧 ∈
ℂ : |𝑧| = 1}, it is clear that the question is true for 𝑛 = 1, but it is not that case for 𝑛 > 1.

Let 𝛼 = (1, …, 1, 0), 𝛽 = (1, 0, …, 0), and 𝛾 = (1, …, 1), so 𝛼, 𝛽, 𝛾 ∈ (ℝ𝑛)↓. Clearly diag(𝛼) +
diag(0, …, 0, 1) = diag(𝛾) = 𝐼𝑛 gives a solution to the Horn Problem for (𝛼, 𝛽, 𝛾).

Now given 𝑃 ∈ 𝒰(𝑛), observe that 𝑃 ∗diag(0, …, 0, 1)𝑃 , and 𝑃 ∗ diag(𝛼)𝑃  must have nonnegative
entries on the main diagonal. Now consider

𝐴 = (𝐴′

0
0

𝐼𝑛−2
) and 𝐵 = (𝐵′

0
0
0)

where

𝐴′ = ( 2
−1

2
−1) and 𝐵′ = (−1

1
−2
2 ).

Note if 𝑛 = 2, then take 𝐴 = 𝐴′ and 𝐵 = 𝐵′. So
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𝐴 + 𝐵 = (𝐴′ + 𝐵′

0
0

𝐼𝑛−2
) = 𝐼𝑛

and 𝜒𝐴(𝜆) = (1 − 𝜆)𝑛−2𝜒𝐴′(𝜆) = −𝜆(1 − 𝜆)𝑛−1, 𝜒𝐵(𝜆) = 𝜒𝐵′(𝜆) = 𝜆𝑛−1(𝜆 − 1).

It follows that 𝜎↓(𝐴) = 𝛼 and 𝜎↓(𝐵) = 𝛽. Now 𝐴 and 𝐵 has negative entries on the diagonal, so
(𝐴, 𝐵, 𝐼𝑛) ∉ [(diag(𝛼), diag(0, …, 0, 1), diag(𝛾))], but Eigen([(𝐴, 𝐵, 1𝑛)]) = (𝛼, 𝛽, 𝛾). So the nonin-
jectivity of Eigen for 𝑛 > 1 is shown.

Another benefit of identifying the solutions of the Horn problem through unitary classes is of the
next proposition where it gives another depiction of the Horn set which can be useful for computing
the Horn set.

Proposition 2. The Horn set satisifes

Horn(𝛼, 𝛽) = {𝜎↓(diag(𝛼) + 𝑈diag(𝛽)𝑈∗) : 𝑈 ∈ 𝒰(𝑛)}.

 Proof. Given 𝜆 ∈ Horn(𝛼, 𝛽), as (𝛼, 𝛽, 𝜆) is Horn solvable, there is a triple of Hermitian matrices
(𝐴, 𝐵, 𝐶) with compatible eigenvalues 𝛼, 𝛽, 𝜆 such that 𝐴 + 𝐵 = 𝐶 . As 𝐴 ∼ diag(𝛼) and 𝐵 ∼
diag(𝛽), there are 𝑈1, 𝑈2 ∈ 𝒰(𝑛) such that 𝑈1𝐴𝑈∗

1 = diag(𝛼) and 𝐵 = 𝑈2diag(𝛽)𝑈 ∗
2 . Define 𝑈 =

𝑈−1
1 𝑈2 and conjugate the equation 𝐴 + 𝐵 = 𝐶 under 𝑈−1

1  to get diag(𝛼) + 𝑈diag(𝛽)𝑈∗ = 𝑈∗
1 𝐶𝑈1.

Thus 𝜆 = 𝜎↓(diag(𝛼) + 𝑈diag(𝛽)𝑈∗).
Given 𝜆 = 𝜎↓(diag(𝛼) + 𝑈diag(𝛽)𝑈∗) for some 𝑈 ∈ 𝒰(𝑛), then it is clear that the Hermitian matri-
ces (diag(𝛼), 𝑈diag(𝛽)𝑈∗, diag(𝛼) + 𝑈diag(𝛽)𝑈∗) solves the Horn problem for (𝛼, 𝛽, 𝜆), i.e. 𝜆 ∈
Horn(𝛼, 𝛽). Hence the proposition is proven. ∎

With this, the Horn set can be computed stochastically by taking uniformly distributed samples of
𝒰(𝑛).

By the preceding proposition, one has that Horn(𝛼, 𝛽) is the image of the map

𝐹 : 𝒰(𝑛) → ℝ𝑛 : 𝑈 ↦ 𝜎↓(diag(𝛼) + 𝑈diag(𝛽)𝑈∗).

We shall see that this map is continuous, so in particular, Horn(𝛼, 𝛽) is a continuous image of 𝒰(𝑛).

To show that 𝐹  is continuous, it suffices to prove that the map 𝑋 ↦ 𝜎↓(𝑋) on the set of Hermitian
matrices is continuous as it is clear that the map 𝑈 ↦ diag(𝛼) + 𝑈diag(𝛽)𝑈∗ is continuous.

Lemma 3. The ‘eigenvalue’ map 𝜎↓ : ℋ(𝑛) → ℝ𝑛 is Lipschitz.

 Proof. Let 𝐴, 𝐵 ∈ ℂ𝑛×𝑛 with compatible eigenvalues 𝛼, 𝛽 ∈ ℝ𝑛. For each 𝑖 ≤ 𝑛, define the
component map 𝜎𝑖 : ℋ(𝑛) → ℝ of 𝜎↓, i.e. 𝜎↓ = (𝜎1, …, 𝜎𝑛). So it suffices to prove 𝜎𝑖 is continuous.
Now note that 𝛽𝑖 = 𝜎𝑖(𝐵) = 𝜎𝑖(−−𝐵) = −𝜎𝑛−𝑖+1(−𝐵), so −𝛽𝑖 = −𝜎𝑖(𝐵) = 𝜎𝑛−𝑖+1(−𝐵). Note
that by Weyl's Inequalities 4.1.5, one has

𝜎𝑛(𝐴 − 𝐵) ≤ 𝜎𝑖(𝐴) + 𝜎𝑛−𝑖+1(−𝐵) and 𝜎1(𝐴 − 𝐵) ≥ 𝜎𝑖(𝐴) + 𝜎𝑛−𝑖+1(−𝐵).

So

|𝜎𝑖(𝐴) − 𝜎𝑖(𝐵)| ≤ |𝜎𝑖(𝐴) + 𝜎𝑛−𝑖+1(−𝐵)| ≤ max{|𝜎𝑛(𝐴 − 𝐵)|, |𝜎1(𝐴 − 𝐵)|} ≤ ‖𝐴 − 𝐵‖

shows that 𝜎𝑖 is Lipschitz. Thus it follows that 𝜎↓ is also Lipschitz, as required. ∎
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Thus by the preceding lemma, 𝐹  is continuous. As 𝒰(𝑛) is compact and path-connected, we
immediately see that Horn(𝛼, 𝛽) is also compact and path-connected. Note that we can also achieve
the same result with the Horn(𝛼, 𝛽) = 𝜎↓(𝒪𝛼 + 𝒪𝛽) identification.

Since Horn(𝛼, 𝛽) is compact, then it is bounded. By Weyl's Inequalities 4.1.5 for 𝑖 = 𝑗 = 1, 𝑖 =
𝑛 + 1, 𝑗 =, and 𝑖 = 1, 𝑗 = 𝑛 in the statement, it is immediate that

max(𝛼1 + 𝛽𝑛, 𝛼𝑛 + 𝛽1) ≤ 𝛾1 ≤ 𝛼1 + 𝛽1, (4.1)
i.e. ‖𝛾‖ ≤ 𝑛|𝛾1| ≤ 𝑛𝑟 for all 𝛾 ∈ Horn(𝛼, 𝛽) where 𝑟 is the maximum of the absolute value of the
bounding values in (4.1). Hence the (metric) diameter of Horn(𝛼, 𝛽) is contained in the closed ball of
radius 𝑛𝑟 centered at the origin. Albeit this is not a precise approximation, but it is a simple bound.

3 – The 𝑛 = 2 Horn Problem
For 𝑛 = 2, the Trace Condition 4.1.1 states

𝛾1 + 𝛾2 = 𝛼1 + 𝛼2 + 𝛽1 + 𝛽2 (4.2)
and Weyl's Inequalities 4.1.5 gives

𝛼2 + 𝛽2 ≤ 𝛾2 ≤ min(𝛼1 + 𝛽2, 𝛼2 + 𝛽1)
≤ max(𝛼1 + 𝛽2, 𝛼2 + 𝛽1) ≤ 𝛾1 ≤ 𝛼1 + 𝛽1.

(4.3)

Thus given 𝐴, 𝐵, 𝐶 ∈ ℋ(2) with compatible eigenvalues 𝛼, 𝛽, 𝛾. For 𝐴 + 𝐵 = 𝐶 to hold, the
conditions (4.2) and (4.3) must be satisfied. Observe that (4.2) tells us that 𝛾 lies on the line

𝑥 + 𝑦 = 𝛼1 + 𝛼2 + 𝛽1 + 𝛽2 (𝑥, 𝑦 ∈ ℝ)

and (4.3) furthermore tells us that 𝛾 lies on the line segment between the points
(max(𝛼1 + 𝛽2, 𝛼2 + 𝛽1), min(𝛼1 + 𝛽2, 𝛼2 + 𝛽1)) and (𝛼1 + 𝛽1, 𝛼2 + 𝛽2). (4.4)

Now we claim that if 𝛼, 𝛽, 𝛾 satisfies (4.2) and (4.3), then (𝛼, 𝛽, 𝛾) is Horn solvable.

Let 𝐴 = diag(𝛼), and 𝐵 = diag(𝛽). Define

𝑈𝜃 = (cos(𝜃)
sin(𝜃)

− sin(𝜃)
cos(𝜃) ) for all 𝜃 ∈ ℝ

so 𝑈𝜃 ∈ 𝑈(2). Let

𝐶𝜃 ≔ 𝐴 + 𝑈𝜃𝐵𝑈∗
𝜃 ∈ ℋ(2).

Look into Appendix 11.1 to see all of following the computations. We see that 𝐶𝜃 has eigenvalues

𝜆1(𝜃) = 𝛼 + 𝛽 + √Δ(𝜃)
4

and 𝜆2(𝜃) = 𝛼 + 𝛽 − √Δ(𝜃)
4

where

𝛼 = 𝛼1 + 𝛼2
2

, 𝛽 = 𝛽1 + 𝛽2
2

and 𝜃 ↦ Δ(𝜃) is a continuous function with maximmum Δ(0) = (𝛼 + 𝛽)
2
, and minimum Δ(𝜋

2 ) =
(𝛼 − 𝛽)

2
 where

𝛼 = 𝛼1 − 𝛼2
2

, 𝛽 = 𝛽1 − 𝛽2
2

.
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Now taking 𝜆(𝜃) ≔ (𝜆1(𝜃), 𝜆2(𝜃)) ∈ (ℝ2)
↓
, 𝜆(𝜃) exactly traces out the line segment (4.4) for 𝜃 ∈

[0, 𝜋
2 ]. That means there is a 𝜑 ∈ [0, 𝜋

2 ], one has 𝜎↓(𝐶𝜑) = 𝛾. Hence (𝐴, 𝑈𝜑𝐵𝑈∗
𝜑, 𝐶𝜑) solves the Horn

problem for (𝛼, 𝛽, 𝛾).

That means we have the following result:

Theorem 1. Given 𝛼, 𝛽, 𝛾 ∈ (ℝ2)
↓
. Then (𝛼, 𝛽, 𝛾) is Horn solvable if, and only if 𝛼, 𝛽, 𝛾 satisfies Trace

Condition 4.1.1 and Weyl's Inequalities 4.1.5.

Or equivalently, we have a nice depiction of the Horn set:

Corollary 2. Given 𝛼, 𝛽 ∈ (ℝ2)
↓
. The set Horn(𝛼, 𝛽) is a line segment between the points

(max(𝛼1 + 𝛽2, 𝛼2 + 𝛽1), min(𝛼1 + 𝛽2, 𝛼2 + 𝛽1)) and (𝛼1 + 𝛽1, 𝛼2 + 𝛽2).

To given an example, take 𝛼 = (1, 0), and 𝛽 = (3, −1). One has

𝛼1 + 𝛽1 = 4, 𝛼1 + 𝛽2 = 0, 𝛼2 + 𝛽1 = 3, 𝛼2 + 𝛽2 = −1.

So Horn(𝛼, 𝛽) is the line segment between (3, 0) and (4, −1) shown in Figure 1.

Figure 1: The set Horn((1, 0), (3, −1)) as illustrated by the red line. The 𝑥-axis represents 𝛾1 and the
𝑦-axis represents 𝛾2.

To really drive the point home, we can have two main interpretations:
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• For any 𝛾 that lies on that line segment, one can find Hermitian matrices 𝐴, 𝐵, 𝐶 ∈ ℋ(2) with
compatible eigenvalues 𝛼, 𝛽, 𝛾 such that 𝐴 + 𝐵 = 𝐶 .

• The set of eigenvalues as an ordered pair of 𝐴 + 𝐵 where 𝐴, 𝐵 ∈ ℋ(2) with compatible eigenvalues
𝛼, 𝛽 is that line segment; that line segment is the image of the map:

𝒪𝛼 × 𝒪𝛽 → ℝ2 : (𝐴, 𝐵) ↦ 𝜎↓(𝐴 + 𝐵).

Here is a Desmos model that is able to plot the Horn set for arbitrary 𝛼 and 𝛽 in 2 dimension.

4 – The General Case
Alas, we shall discuss the Horn problem for an arbitrary 𝑛. First we need some notation:

Fix a 𝑟 ∈ {1, …, 𝑛 − 1} (if 𝑛 = 1, then the sets defined below can be treated as empty). Given 𝐼 ⊆
{1, …, 𝑛} with cardinality 𝑟. Then we write 𝐼 = {𝐼(1), …, 𝐼(𝑟)} where 𝐼(1) < 𝐼(2) < … < 𝐼(𝑟). Now
define

𝑆𝑛
𝑟 ≔ {(𝐼, 𝐽, 𝐾) ⊆ {1, …, 𝑛} : |𝐼| = |𝐽| = |𝐾| = 𝑟, ∑

𝑟

𝑖=1
𝐼(𝑖) + 𝐽(𝑖) − 𝐾(𝑖) = 𝑟(𝑟 + 1)

2
},

and

𝑇 𝑛
1 ≔ 𝑆𝑛

1

𝑇 𝑛
𝑟 ≔ { (𝐼, 𝐽, 𝐾) ∈ 𝑆𝑛

𝑟 : ∑
𝑝

𝑖=1
𝐼(𝑈(𝑖)) + 𝐽(𝑉 (𝑖)) − 𝐾(𝑊(𝑖)) ≤ (𝑝 + 1

2 )

for all (𝑈, 𝑉 , 𝑊) ∈ 𝑇 𝑟
𝑝 , 𝑝 ∈ {1, …, 𝑟 − 1}}.

We call the elements of 𝑇 𝑛
𝑟  admissible triples.

Finally, A. Horn conjectured the following in regards to the Horn problem, which was proven by
A. Klyachko [1].

Horn's Conjecture 1. The triple (𝛼, 𝛽, 𝛾) (elements of (ℝ𝑛)↓) is Horn solvable if, and only if, (𝛼, 𝛽, 𝛾)
satisfies the Trace Condition 4.1.1 and

∑
𝑘∈𝐾

𝛾𝑘 ≤ ∑
𝑖∈𝐼

𝛼𝑖 + ∑
𝑗∈𝐽

𝛽𝑗 (4.5)

for all admissible triples (𝐼, 𝐽, 𝐾) ∈ 𝑇 𝑛
𝑟  for all 𝑟 ∈ {1, …, 𝑛 − 1}.

By the Trace Condition 4.1.1, it shows that the set of such 𝛾 ∈ Horn(𝛼, 𝛽) lies on the hyperplane with
a normal vector of (1, …, 1) ∈ ℝ𝑛 shifted by 𝛼1 + … + 𝛼𝑛 + 𝛽1 + … + 𝛽𝑛. Now the inequalities (4.5)
further shows that those 𝛾’s are contained in some hypercube, hence Horn(𝛼, 𝛽) is a convex polytope
in ℝ𝑛.

This result generalises the 𝑛 = 2 case in Part 4.3. Indeed, for 𝑛 = 2, observe that

𝑆2
1 = {({1}, {1}, {1}), ({1}, {2}, {2}), ({2}, {1}, {2})} = 𝑇 2

1 ,

then (4.5) gives, which is the first half of Weyl's Inequalities 4.1.5:

𝛾1 ≤ 𝛼1 + 𝛼2, 𝛾2 ≤ 𝛼1 + 𝛽2, 𝛾2 ≤ 𝛼2 + 𝛽1,
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and when combined with the Trace Condition  4.1.1, one immediately gets the entirety of Weyl's
Inequalities 4.1.5.

To understand this conjecture, we shall provide an example for 𝑛 = 3 case.

For 𝑛 = 3, through direct computation, one has

𝑆3
1 = {({1}, {1}, {1}), ({1}, {2}, {2}),

({1}, {3}, {3}), ({2}, {1}, {2}),

({2}, {2}, {3}), ({3}, {1}, {3})} = 𝑇 3
1

𝑆3
2 = {({1, 2}, {1, 2}, {1, 2}), ({1, 2}, {1, 3}, {1, 3}),

({1, 2}, {2, 3}, {2, 3}), ({1, 3}, {1, 2}, {1, 3}),
({1, 3}, {1, 3}, {2, 3}), ({2, 3}, {1, 2}, {2, 3})}

𝑇 3
2 = {({1, 2}, {1, 2}, {1, 2}), ({1, 2}, {1, 3}, {1, 3}),

({1, 2}, {2, 3}, {2, 3}), ({1, 3}, {1, 2}, {1, 3}),
({1, 3}, {1, 3}, {2, 3}), ({2, 3}, {1, 2}, {2, 3})}.

Suppose 𝛼 = (2, 1, 0), and 𝛽 = (3, 0, −1). Then by Trace Condition 4.1.1, one has
𝛾1 + 𝛾2 + 𝛾3 = 2 + 1 + 0 + 3 + 0 − 1 = 5. (4.6)

Now 𝑇 3
1  with (4.5) gives:

𝛾1 ≤ 𝛼1 + 𝛽1 = 5 𝛾2 ≤ 𝛼1 + 𝛽2 = 2 𝛾3 ≤ 𝛼1 + 𝛽3 = 1
𝛾2 ≤ 𝛼2 + 𝛽1 = 4 𝛾3 ≤ 𝛼2 + 𝛽2 = 1 𝛾3 ≤ 𝛼3 + 𝛽1 = 3

(4.7)

and 𝑇 3
2  with (4.5) gives:

𝛾1 + 𝛾2 ≤ 𝛼1 + 𝛼2 + 𝛽1 + 𝛽2 = 6 𝛾1 + 𝛾3 ≤ 𝛼1 + 𝛼2 + 𝛽1 + 𝛽3 = 5
𝛾2 + 𝛾3 ≤ 𝛼1 + 𝛼2 + 𝛽2 + 𝛽3 = 2 𝛾1 + 𝛾3 ≤ 𝛼1 + 𝛼3 + 𝛽1 + 𝛽2 = 5
𝛾2 + 𝛾3 ≤ 𝛼1 + 𝛼3 + 𝛽1 + 𝛽3 = 4 𝛾2 + 𝛾3 ≤ 𝛼2 + 𝛼3 + 𝛽1 + 𝛽2 = 3

(4.8)

Upon simplifying (4.7), one has
𝛾1 ≤ 5 𝛾2 ≤ 2 𝛾3 ≤ 1, (4.9)

and upon simplifying (4.8), one has
𝛾1 + 𝛾2 ≤ 6 𝛾1 + 𝛾3 ≤ 5 𝛾2 + 𝛾3 ≤ 2. (4.10)

Combining (4.6) with (4.10), and including (4.7), one gets a rectangle:

3 ≤ 𝛾1 ≤ 5 0 ≤ 𝛾2 ≤ 2 −1 ≤ 𝛾3 ≤ 1.

where (4.6) is bounded by, which is illustrated as a hexagon in Figure 2.

To recall, what this means is that:
• For any 𝛾 that lies on that hexagon, one can find Hermitian matrices 𝐴, 𝐵 ∈ ℋ(3) such that

𝐴, 𝐵, 𝐴 + 𝐵 have compatible eigenvalues 𝛼, 𝛽, 𝛾.
• The set of eigenvalues as an ordered pair of 𝐴 + 𝐵 where 𝐴, 𝐵 ∈ ℋ(3) with compatible eigenvalues

𝛼, 𝛽 is that line segment; that hexagon is the image of the map:

𝒪𝛼 × 𝒪𝛽 → ℝ2 : (𝐴, 𝐵) ↦ 𝜎↓(𝐴 + 𝐵).
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Figure 2: The set Horn((2, 1, 0), (3, 0, −1)) as illustrated by the red hexagon where the blue points are
its vertices.
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5 | Measure Theory
 In this section, we shall briefly study the prerequisite knowledge required for the analysis done on

the probabilistic Horn problem.

Starting from Radon measures, which will serve as the building block of Haar measures, we shall
investigate the relevant properties of Radon measures, and methods of constructing Radon measures.
With one of the main goal proving the famous Riesz-Markov-Kakutani representation theorem.

We will then be looking at some basic properties of measures such as supports and pushforwards,
which will aid in our construction of Haar measures and developing the theory required for the
probabilistic Horn problem.

1 – Radon Measures
Given a topological space 𝑋, we denote by ℬ(𝑋) the Borel 𝜎-algebra of 𝑋. This makes (𝑋, ℬ(𝑋))
a measurable space, and any measure on that space is called a Borel measure. Now Borel measures
can satisfy certain properties which can make them more ‘compatible’ with the topology on 𝑋. We
say 𝜇 is

(i) Outer regular on 𝐵 for some Borel 𝐵 ⊆ 𝑋 if we have the following equality:

𝜇(𝐵) = inf{𝜇(𝑈) : 𝑈 ⊇ 𝐵, 𝑈 ⊆ 𝑋 open}.
(ii) Outer regular if the above condition holds for all Borel 𝐵 ⊆ 𝑋.

(iii) Locally finite if for each 𝑥 ∈ 𝑋, there is a 𝑁 ∈ 𝒩𝑋[𝑥] such that 𝜇(𝑁) < ∞.

Now assuming 𝑋 is Hausdorff, hence comapct sets of 𝑋 are Borel as they are closed.
(iv) Inner regular on 𝐵 for some Borel 𝐵 ⊆ 𝑋 if we have the following equality:

𝜇(𝐵) = sup{𝜇(𝐾) : 𝐾 ⊆ 𝐵, 𝐾 ⊆ 𝑋 compact}.
(v) Inner regular if the above condition holds for all Borel 𝐵 ⊆ 𝑋. In particular, we say 𝜇 is weakly

inner regular if the equality above only holds for open sets.

Finally a Borel measure on a Hausdorff space is called regular if it is outer regular and inner regular,
and Radon if it is outer regular, weakly inner regular, and locally finite.

We shall begin with a simple result to warm-up to these notions.

Lemma 1. Let 𝜇 be a Borel measure on a space 𝑋. If 𝜇 is locally finite, then 𝜇 is finite on all compact
subsets of 𝑋. The converse holds if 𝑋 is locally compact.

 Proof. Suppose 𝜇 is locally finite. Then given a compact 𝐾 ⊆ 𝑋, and for each 𝑥 ∈ 𝐾 , there is a
𝑁𝑥 ∈ 𝒩[𝑥] such that 𝜇(𝑁𝑥) < ∞. Now {𝑁𝑥}𝑥∈𝐾  (openly) covers 𝐾 , hence by compactness, there is
a 𝑛 ∈ ℕ with {𝑁𝑖}𝑖≤𝑛 ⊆ {𝑁𝑥}𝑥∈𝐾  such that 𝐾 ⊆ ⋃𝑖≤𝑛 𝑁𝑖. Finally,

𝜇(𝐾) ≤ 𝜇(⋃
𝑖≤𝑛

𝑁𝑖) ≤ ∑
𝑖≤𝑛

𝜇(𝑁𝑖) < ∞,

as required.
Suppose 𝜇 is finite on all compact sets and 𝑋 is locally compact. Then the result follows as each 𝑥 ∈
𝑋 has a compact neighbourhood. ∎

From here on, we will see how continuous functions on locally compact Hausdorff (LCH) spaces
can induce and approximate Radon measures. Here we start with some two important lemmas.
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The first lemma shows how we can find nontrivial continuous functions with an arbitrarily small
compact support.

Lemma 2. Given an open 𝑈 , compact 𝐾 ⊆ 𝑈 , on a LCH space 𝑋. There is a 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) such that
𝑓|𝐾 = 1 and supp(𝑓) ⊆ 𝑈 , and hence 1𝐾 ≤ 𝑓 ≤ 1𝑈 . In particular, 𝐶𝑐(𝑋, [0, 1]) separates the points of
𝑋.

 Proof. For each 𝑥 ∈ 𝐾 , by property of LCH, there is an open 𝑁𝑥 ∈ 𝒩[𝑥] such that 𝑁𝑥 ⊆ 𝑈  is
compact. Now {𝑁𝑥}𝑥∈𝐾  covers 𝐾 , so there is a 𝑛 ∈ ℕ with {𝑁𝑖}𝑖≤𝑛 ⊆ {𝑁𝑥}𝑥∈𝐾  such that

𝐾 ⊆ ⋃
𝑖≤𝑛

𝑁𝑖 ⊆ ⋃
𝑖≤𝑛

𝑁𝑖 ⊆ 𝑈.

Note that 𝑀 ≔ ⋃𝑖≤𝑛 𝑁𝑖 is open and 𝑀  is compact. Furthermore 𝑀  is normal as it is also Hausdorff,
so by Urysohn’s lemma, there is a 𝑔 ∈ 𝐶(𝑀, [0, 1]) such that 𝑔|𝐾 = 1 and 𝑔|𝑀\𝑀 = 0. Now we define

𝑓 : 𝑋 → [0, 1] : 𝑥 ↦ {𝑔(𝑥) if 𝑥 ∈ 𝑀
0 otherwise,

which is continuous as both 𝑓|𝑀 (= 𝑔|𝑀) and 𝑓|𝑋\𝑀 (= 0) are continuous. It follows that supp(𝑓) ⊆
𝑀 ⊆ 𝑈 , as required.
To prove that 𝐶𝑐(𝑋, [0, 1]) separates the points of 𝑋, given 𝑥, 𝑦 ∈ 𝑋 be distinct. Then by Hausdorff-
ness, there is an open 𝑈 ∈ 𝒩[𝑥] such that 𝑦 ∉ 𝑈 . Then by locally compactness, there is compact 𝐾
such that 𝑥 ∈ 𝐾 ⊆ 𝑈 , so there is a 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) such that 1𝐾 ≤ 𝑓 ≤ 1𝑈 . Hence 𝑓(𝑥) = 1 ≠ 0 =
𝑓(𝑦), as required. ∎

The next lemma states that Radon measures on LCH spaces are uniquely determined by integration
through compactly supported continuous functions.

Lemma 3. Let 𝜇 and 𝜈 be Radon measures on a LCH space 𝑋. If

∫
𝑋

𝑓 d𝜇 = ∫
𝑋

𝑓 d𝜈 for all 𝑓 ∈ 𝐶𝑐(𝑋)

then 𝜇 = 𝜈.

 Proof. Let 𝑈 ⊆ 𝑋 be open. Then for any compact 𝐾 ⊆ 𝑈 , there is a 𝑓 ∈ 𝐶𝑐(𝑋) such that 1𝐾 ≤
𝑓 ≤ 1𝑈  by Lemma 5.1.2. Thus

𝜇(𝐾) = ∫
𝑋

1𝐾 d𝜇 ≤ ∫
𝑋

𝑓 d𝜇 = ∫
𝑋

𝑓 d𝜈 ≤ ∫
𝑋

1𝑈 d𝜈 = 𝜈(𝑈).

This holds for all compact 𝐾 ⊆ 𝑈 , then by weakly inner regularity of 𝜇, one has 𝜇(𝑈) ≤ 𝜈(𝑈).
Similarly, 𝜈(𝑈) ≤ 𝜇(𝑈), hence 𝜇(𝑈) = 𝜈(𝑈). Then as Radon measures are uniquely determined by
open sets due to outer regularity, one has that 𝜇 = 𝜈, as required. ∎

Given a linear functional 𝐼  on 𝐶𝑐(𝑋), we say 𝐼  is positive if 𝐼(𝑓) ≥ 0 for all 𝑓 ∈ 𝐶𝑐(𝑋, ℝ≥0).
From here, we shall see how Radon measures can be constructed from linear functionals by proving the
celebrated Riesz-Markov-Kakutani Representation Theorem. The proof is inspired by Folland [4, 7.2].
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Riesz-Markov-Kakutani Representation Theorem 4. Given a LCH space 𝑋 and a positive linear
functional 𝐼  on 𝐶𝑐(𝑋). There is a unique Radon measure 𝜇 on 𝑋 such that

𝐼(𝑓) = ∫
𝑋

𝑓 d𝜇 for all 𝑓 ∈ 𝐶𝑐(𝑋). (5.1)

Furthermore, 𝜇 satisfies:
𝜇(𝑈) = sup{𝐼(𝑓) : 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]),  supp(𝑓) ⊆ 𝑈} for all open 𝑈 ⊆ 𝑋, (5.2)

and
𝜇(𝐾) = inf{𝐼(𝑓) : 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]), 1𝐾 ≤ 𝑓} for all compact 𝐾 ⊆ 𝑋. (5.3)

 Proof. Uniqueness follows from Lemma 5.1.3, so it suffices to prove existence.
For any open 𝑈 ⊆ 𝑋, define

𝜇(𝑈) ≔ sup{𝐼(𝑓) : 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]),  supp(𝑓) ⊆ 𝑈}

We also define our potential outer measure 𝜇∗ : 𝒫(𝑋) → [0, ∞] as
𝜇∗(𝐸) ≔ inf{𝜇(𝑈) : 𝑈 ⊇ 𝐸, 𝑈 ⊆ 𝑋 open}.

for any 𝐸 ⊆ 𝑋. Note that 𝜇(𝑈) = 𝜇∗(𝑈) for any open 𝑈 ⊆ 𝑋.
We shall show that:
(i) 𝜇∗ is an outer measure.

(ii) Every open set is 𝜇∗-measurable,
So following from Cathéodory’s theorem, one has that 𝜇 = 𝜇∗|ℬ(𝑋) is an outer regular measure (which
makes sense as 𝜇(𝑈) = 𝜇∗(𝑈) for all open 𝑈 ⊆ 𝑋). Clearly (5.2) is satisfied, then we prove that:
(iii) 𝜇 also satisfies (5.3).
Once (5.3) is proven, then 𝜇 is clearly finite on compact sets, and one has 𝜇 is also weakly inner regular.
Indeed, given an open 𝑈 ⊆ 𝑋 and 𝑎 ∈ ℝ such that 𝜇(𝑈) > 𝑎, by (5.2), there is a 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) with
supp(𝑓) ⊆ 𝑈  such that 𝐼(𝑓) > 𝑎. Take 𝐾 = supp(𝑓), then for any 𝑔 ∈ 𝐶𝑐(𝑋) such that 𝑔 ≥ 1𝐾 , one
has that 𝑔 − 𝑓 ≥ 0, hence 𝐼(𝑔) ≥ 𝐼(𝑓) > 𝑎, thus by (5.3), one has 𝜇(𝐾) > 𝑎. Hence 𝜇 is weakly inner
regular.
Finally, we prove that
(iv) ∫

𝑋
𝑓 d𝜇 = 𝐼(𝑓) for all 𝑓 ∈ 𝐶𝑐(𝑋).

With (i) to (iv), our proof will be completed.
 Proof of (i). Let 𝐸 ⊆ 𝑋, 𝑈 ⊆ 𝑋 be open, and {𝑈𝑖}𝑖∈ℕ be a collection of open sets such that

𝑈 = ⋃𝑖∈ℕ 𝑈𝑖. Let 𝑓 ∈ 𝐶𝑐(𝑋) such that 𝐾 ≔ supp(𝑓) ⊆ 𝑈 , then by compactness of 𝐾 , one has that
𝐾 ⊆ ⋃𝑖≤𝑛 𝑈𝑖 for some 𝑛 ∈ ℕ. Then there are 𝑔1, …, 𝑔𝑛 ∈ 𝐶𝑐(𝑋, [0, 1]) such that supp(𝑔𝑖) ⊆ 𝑈𝑖 and
∑𝑖≤𝑛 𝑔𝑖 = 1 on 𝐾 following from Lemma 5.1.2. So 𝑓 = ∑𝑖≤𝑛 𝑓𝑔𝑖, but supp(𝑓𝑔𝑖) ⊆ 𝑈𝑖, so by (5.2),
one has

𝐼(𝑓) = ∑
𝑖≤𝑛

𝐼(𝑓𝑔𝑖) ≤ ∑
𝑖≤𝑛

𝜇(𝑈𝑖) ≤ ∑
𝑖∈ℕ

𝜇(𝑈𝑖).

This holds for all such 𝑓 ’s, so 𝜇(𝑈) ≤ ∑𝑖∈ℕ 𝜇(𝑈𝑖). Thus it is clear that

𝜇∗(𝐸) ≤ inf{∑
𝑖∈ℕ

𝜇(𝑈𝑖) : (𝑈𝑖)𝑖∈ℕ is open in 𝑋 and 𝐸 ⊆ ⋃
𝑖∈ℕ

𝑈𝑖} ≕ 𝑎,

and if 𝜇∗(𝐸) < ∞ then given a 𝜀 > 0, there is an open 𝑈 ⊇ 𝐸 such that
𝜇∗(𝐸) + 𝜀 > 𝜇(𝑈) ≥ 𝑎.

Taking 𝜀 ↓ 0, one has 𝜇∗(𝐸) = 𝑎. So by [4, 1.10], 𝜇∗ defines an outer measure.
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 Proof of (ii). As (i) holds, it suffices to show that given an open 𝑈 ⊆ 𝑋 and any 𝐸 ⊆ 𝑋 with 𝜇∗(𝐸) <
∞, one has

𝜇∗(𝐸) ≥ 𝜇∗(𝐸 ∩ 𝑈) + 𝜇∗(𝐸 \ 𝑈). (5.4)
If 𝐸 is open, then so is 𝐸 ∩ 𝑈 . Given a 𝜀 > 0, by (5.2), there is a 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) with supp(𝑓) ⊆
𝐸 ∩ 𝑈  such that 𝐼(𝑓) + 𝜀 > 𝜇∗(𝐸 ∩ 𝑈). Now 𝐸 \ supp(𝑓) is also open, so again, there is a 𝑔 ∈
𝐶𝑐(𝑋, [0, 1]) with supp(𝑔) ⊆ 𝐸 \ supp(𝑓) such that 𝐼(𝑔) + 𝜀 > 𝜇∗(𝐸 \ supp(𝑓)). As supp(𝑓 + 𝑔) ⊆
𝐸, one has that

𝜇∗(𝐸) ≥ 𝐼(𝑓 + 𝑔) = 𝐼(𝑓) + 𝐼(𝑔)
> 𝜇∗(𝐸 ∩ 𝑈) + 𝜇∗(𝐸 \ supp(𝑓)) − 2𝜀
≥ 𝜇∗(𝐸 ∩ 𝑈) + 𝜇∗(𝐸 \ 𝑈) − 2𝜀.

Take 𝜀 ↓ 0 and we get the (5.4) holds for open sets.
If 𝐸 is not necessarily open, then by definition of 𝜇∗, given an 𝜀 > 0, there is an open 𝑉 ⊇ 𝐸 such
that 𝜇∗(𝐸) + 𝜀 > 𝜇(𝑉 ), i.e.

𝜇∗(𝐸) + 𝜀 > 𝜇(𝑉 ) = 𝜇∗(𝑉 )
≥ 𝜇∗(𝑉 ∩ 𝑈) + 𝜇∗(𝑉 \ 𝑈)
≥ 𝜇∗(𝐸 ∩ 𝑈) + 𝜇∗(𝐸 \ 𝑈).

Take 𝜀 ↓ 0, then (5.4), hence (ii), is proven.
Thus from Cathéodory, we have a outer regular Borel measure 𝜇 which satisfies (5.2) and agrees with
𝜇∗|ℬ(𝑋).

 Proof of (iii). Let 𝐾 ⊆ 𝑋 be compact, and 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) with 𝑓 ≥ 1𝐾 . Given 𝜀 ∈ (0, 1), define
𝑈 ≔ {𝑥 ∈ 𝑋 : 𝑓(𝑥) > 1 − 𝜀} ⊇ 𝐾

which is open, and if given a 𝑔 ∈ 𝐶𝑐(𝑋, [0, 1]) with supp(𝑔) ⊆ 𝑈 , one has (1 − 𝜀)−1𝑓 − 𝑔 ≥ 0, hence
𝐼(𝑔)≤ (1 − 𝜀)−1𝐼(𝑓). That means 𝜇(𝑈)≤ (1 − 𝜀)−1𝐼(𝑓) by (5.2), hence

𝜇(𝐾) ≤ 𝜇(𝑈)≤ (1 − 𝜀)−1𝐼(𝑓).

Take 𝜀 ↓ 0, we get that 𝜇(𝐾) ≤ 𝐼(𝑓).
Given a 𝜀 > 0, by outer regularity of 𝜇, there is an open 𝑈 ⊇ 𝐾 such that 𝜇(𝑈) − 𝜀 < 𝜇(𝐾), and by
Lemma 5.1.2, there is a 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) such that 1𝐾 ≤ 𝑓 ≤ 1𝑈 , so one has 𝐼(𝑓) ≤ 𝜇(𝑈). Hence

𝐼(𝑓) ≤ 𝜇(𝑈) < 𝜇(𝐾) + 𝜀,

and take 𝜀 ↓ 0. Thus it follows (5.3) is also satisfied.
So 𝜇 is now also weakly inner regular, hence a Radon measure.

 Proof of (iv). Note that 𝐶𝑐(𝑋) is a linear span of 𝐶𝑐(𝑋, [0, 1]), so it suffices to show that (5.1) holds
for 𝐶𝑐(𝑋, [0, 1]). Now given 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) and 𝑁 ∈ ℕ. Let

𝐾0 ≔ supp(𝑓) and 𝐾𝑖 ≔ {𝑥 ∈ 𝑋 : 𝑓(𝑥) ≥ 𝑖
𝑁

},

and

𝑓𝑖 ≔ min{max{𝑓 − 𝑖 − 1
𝑁

, 0}, 1
𝑁

} ∈ 𝐶𝑐(𝑋)

for all 𝑖 ∈ {1, …, 𝑁}. Note that 𝐾𝑛 ⊆ … ⊆ 𝐾0. Let 𝑖 ∈ {1, …, 𝑁}, then

𝑓𝑖|𝑋\𝐾𝑖−1
= 0, 𝑓𝑖|𝐾𝑖−1\𝐾𝑖

= 𝑓 − 𝑖 − 1
𝑁

, and 𝑓𝑖|𝐾𝑖
= 1

𝑁
.

Thus
1
𝑁

1𝐾𝑖
≤ 𝑓𝑖 ≤ 1

𝑁
1𝐾𝑖−1

,
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hence
1
𝑁

𝜇(𝐾𝑖) ≤ ∫
𝑋

𝑓𝑖 d𝜇 ≤ 1
𝑁

𝜇(𝐾𝑖−1).

Also, as 1𝐾𝑖
≤ 𝑁𝑓𝑖, then by (5.3), one has 𝜇(𝐾𝑖) ≤ 𝑁𝐼(𝑓𝑖). For any open 𝑈 ⊇ 𝐾𝑖−1, one has

supp(𝑁𝑓𝑖) ⊆ 𝑈 , so by (5.2), one has 𝑁𝐼(𝑓𝑖) ≤ 𝜇(𝑈). Using outer regularity, we get that 𝑁𝐼(𝑓𝑖) ≤
𝜇(𝐾𝑖−1), hence

1
𝑁

𝜇(𝐾𝑖) ≤ 𝐼(𝑓𝑖) ≤ 1
𝑁

𝜇(𝐾𝑖−1).

Let 𝑥 ∈ 𝐾𝑖−1 \ 𝐾𝑖, then
𝑓1(𝑥) + … + 𝑓𝑖−1(𝑥) + 𝑓𝑖(𝑥) + 𝑓𝑖+1(𝑥) + … + 𝑓𝑛(𝑥)

= (𝑖 − 1) 1
𝑁

+ (𝑓 − 𝑖 − 1
𝑁

) + 0 = 𝑓

and if 𝑥 ∈ 𝑋 \ 𝐾0, then one has
𝑓1(𝑥) + … + 𝑓𝑛(𝑥) = 0 = 𝑓(𝑥).

As 𝑋 = 𝑋 \ 𝐾0 ∪ ⋃𝑖≤𝑁(𝐾𝑖−1 \ 𝐾𝑖), it follows that ∑𝑖≤𝑁 𝑓𝑖 = 𝑓 . So one has

1
𝑁

∑
𝑁

𝑖=1
𝜇(𝐾𝑖) ≤ ∫

𝑋
𝑓 d𝜇 ≤ 1

𝑁
∑
𝑁−1

𝑖=0
𝜇(𝐾𝑖),

and

1
𝑁

∑
𝑁

𝑖=1
𝜇(𝐾𝑖) ≤ 𝐼(𝑓) ≤ 1

𝑁
∑
𝑁−1

𝑖=0
𝜇(𝐾𝑖),

hence

|∫
𝑋

𝑓 d𝜇 − 𝐼(𝑓)| ≤ 𝜇(𝐾0) − 𝜇(𝐾𝑛)
𝑁

≤ 𝜇(𝐾0)
𝑁

.

As 𝜇(𝐾0) < ∞, then (iv) is proven by taking 𝑁 → ∞.
The proof is thus completed. ∎

Alongside with the representation theorem, we get a free result, which tells us that Radon measures
on LCH spaces can also be approximated by integrals of compactly supported continuous functions.

Corollary 5. Given a Radon measure 𝜇 on a LCH space 𝑋. Then

𝜇(𝑈) = sup{∫
𝑋

𝑓 d𝜇 : 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]),  supp(𝑓) ⊆ 𝑈} for all open 𝑈 ⊆ 𝑋,

and

𝜇(𝐾) = inf{∫
𝑋

𝑓 d𝜇 : 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]), 1𝐾 ≤ 𝑓} for all compact 𝐾 ⊆ 𝑋.

 Proof. As 𝜇 is finite on compact sets, one has 𝐶𝑐(𝑋) ⊆ 𝐿1(𝜇), hence one has a positive linear
functional 𝐼 : 𝐶𝑐(𝑋) → ℝ : 𝑓 ↦ ∫

𝑋
𝑓 d𝜇. Then the rest follows from Riesz-Markov-Kakutani Repre-

sentation Theorem 5.1.4 by using existence and uniqueness. ∎
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2 – Regularity and Approximations
We shall further develop the theory of Radon measures here. First we present some relevant regularity
results.

Lemma 1. Let 𝜇 be a Borel measure on a Hausdorff space 𝑋. If 𝜇 is inner regular, then 𝜇 is outer regular.

 Proof. Let 𝐵 ∈ 𝒳 and 𝜀 > 0. Then there is a compact 𝐾 ⊆ 𝑋 \ 𝐵 ≕ 𝐵𝑐 such that
𝜇((𝑋 \ 𝐵) \ 𝐾) = 𝜇(𝐵𝑐 ∩ 𝐾𝑐) < 𝜀.

Now 𝑈 = 𝐾𝑐 ≔ 𝑋 \ 𝐾 ⊇ 𝐵 is open, and one has
𝜇(𝑈 \ 𝐵) = 𝜇(𝐾𝑐 ∩ 𝐵𝑐) < 𝜀,

thus 𝜇 is outer regular. ∎

Lemma 2. Let 𝜇 be a Radon measure on a LCH space 𝑋. Then 𝜇 is inner regular on all 𝜎-finite Borel
subsets of 𝑋.

 Proof. Let 𝐵 ∈ ℬ(𝑋) be 𝜎-finite. Suppose 𝜇(𝐵) < ∞.
Let 𝜀 > 0, so there is an open 𝑈 ⊇ 𝐵 such that 𝜇(𝑈) − 𝜀 < 𝜇(𝐵). Now there is a compact 𝐾 ⊆ 𝑈
such that 𝜇(𝐾) + 𝜀 > 𝜇(𝑈). As 𝜇(𝑈 \ 𝐵) < 𝜀, there is an open 𝑉 ⊇ 𝑈 \ 𝐵 such that 𝜇(𝑉 ) < 𝜀. Take
𝐹 = 𝐾 \ 𝑉 , which is compact and 𝐹 ⊆ 𝐾 \ (𝑈 \ 𝐵) ⊆ 𝐵, and one has

𝜇(𝐵 \ 𝐹) = 𝜇(𝐵 \ (𝐾 \ 𝑉 )) ≤ 𝜇(𝐵 \ 𝐾) + 𝜇(𝐵 ∩ 𝑉 ) ≤ 𝜇(𝑈 \ 𝐾) + 𝜇(𝑉 ) < 2𝜀.

So it follows that 𝜇 is inner regular on 𝐵.
Suppose 𝜇(𝐵) = ∞, so there is an increasing sequence (𝐵𝑛)𝑛∈ℕ ∈ ℬ(𝑋)ℕ of finite measure such that
𝐵 = ⋃𝑛∈ℕ 𝐵𝑛. Note that by monotone convergence theorem, one has

𝜇(𝐵) = lim
𝑛→∞

∫
𝑋

1𝐵𝑛
d𝜇 = lim

𝑛→∞
𝜇(𝐵𝑛)

as 1𝐵𝑛
→ 1𝐵 pointwise. So for each 𝑁 ∈ ℕ, there is a 𝑛 ∈ ℕ such that 𝜇(𝐵𝑛) > 2𝑁 , and by inner

regularity on 𝐵𝑛, there is a compact 𝐾 ⊆ 𝐵𝑛 ⊆ 𝐵 such that 𝜇(𝐾) > 𝑁 . So it follows that 𝜇 is inner
regular on 𝐵, as required. ∎

Corollary 3. A 𝜎-finite Radon measure on a LCH space is a regular measure or a Radon measure on a 𝜎
-compact LCH space is regular.

 Proof. Immediate from the preceding lemma. ∎

Proposition 4. Let 𝜇 be a outer regular 𝜎-finite Borel measure on a topological space 𝑋. Let 𝐵 ∈ ℬ(𝑋)
and 𝜀 > 0. Then there is an open 𝑈 ⊇ 𝐵 and closed 𝐹 ⊆ 𝐵 such that 𝜇(𝑈 \ 𝐹) < 𝜀.

 Proof. Let 𝐵 = ⋃𝑛∈ℕ 𝐵𝑛 be written as a disjoint union of 𝜇 finite sets. For each 𝑛 ∈ ℕ, there is an
open 𝑈𝑛 ⊇ 𝐵𝑛 such that 𝜇(𝑈𝑛 \ 𝐵𝑛) < 𝜀2−𝑛−1. Now 𝑈 = ⋃𝑛∈ℕ 𝑈𝑛 ⊇ 𝐵 is open and one has

𝜇(𝑈 \ 𝐵) = 𝜇( ⋂
𝑛∈ℕ

𝑈 \ 𝐵𝑛) = 𝜇( ⋂
𝑛∈ℕ

⋃
𝑚∈ℕ

𝑈𝑚 \ 𝐵𝑛) ≤ 𝜇( ⋃
𝑛∈ℕ

𝑈𝑛 \ 𝐵𝑛) ≤ 𝜀
2
.
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Now apply the same steps as above on 𝑋 \ 𝐵, one has an open 𝑉 ⊇ 𝑋 \ 𝐵 such that 𝜇(𝑉 \ (𝑋 \
𝐵)) ≤ 𝜀/2. Now 𝐹 = 𝑋 \ 𝑉 ⊆ 𝐵 is closed, and noting that

𝐵 \ 𝐹 = 𝐵 ∩ 𝑉 ⊆ 𝑉 \ (𝑋 \ 𝐵),

one has
𝜇(𝑈 \ 𝐹) = 𝜇(𝑈 \ 𝐵) + 𝜇(𝐵 \ 𝐹) ≤ 𝜀,

as required. ∎

The following results also gives us a sufficient condition for Borel measures to be Radon. They will
be the main result we will use to show Radon-ness of Borel measures.

Theorem 5. Let 𝑋 be a LCH space such that every open set is 𝜎-compact. Then any Borel measure on 𝑋
that is locally finite sets is regular, hence Radon.

 Proof. As 𝜇 is also finite on compact sets, one has 𝐶𝑐(𝑋) ⊆ 𝐿1(𝜇). Then the map 𝑓 ↦ ∫
𝑋

𝑓 d𝜇
is a positive linear functional on 𝐶𝑐(𝑋), and so by the Riesz-Markov-Kakutani Representation
Theorem 5.1.4, there is a unique Radon measure 𝜈 such that ∫

𝑋
𝑓 d𝜇 = ∫

𝑋
𝑓 d𝜈 for all 𝑓 ∈ 𝐶𝑐(𝑋).

Let 𝑈 ⊆ 𝑋 be open, then 𝑈 = ⋃𝑛∈ℕ 𝐾𝑛 for some increasing sequence of compact sets (𝐾𝑛)𝑛∈ℕ. Now
by Lemma 5.1.2, there is a 𝑓1 ∈ 𝐶𝑐(𝑋, [0, 1]) such that 𝑓1|𝐾1

= 1 and supp(𝑓1) ⊆ 𝑈 , and for each 𝑛 ∈
ℕ, there is a 𝑓𝑛 ∈ 𝐶𝑐(𝑋, [0, 1]) such that

𝑓𝑛|𝐾𝑛∪ ⋃𝑖<𝑛 supp(𝑓𝑖) = 1 and supp(𝑓𝑛) ⊆ 𝑈.

Now one has an increasing sequence (𝑓𝑛)𝑛∈ℕ that converges to 1𝑈  pointwise, so by monotone
convergence theorem, one has

𝜇(𝑈) = lim
𝑛→∞

∫
𝑋

𝑓𝑛 d𝜇 = lim
𝑛→∞

∫
𝑋

𝑓𝑛 d𝜈 = 𝜈(𝑈).

Thus 𝜇 = 𝜈 on open sets.
Let 𝐵 ∈ ℬ(𝑋), and 𝜀 > 0. Now there is an open 𝑈 ⊇ 𝐵 and closed 𝐹 ⊆ 𝐵 such that 𝜈(𝑈 \ 𝐹) < 𝜀.
Now 𝑈 \ 𝐹  is open, so 𝜈(𝑈 \ 𝐹) = 𝜇(𝑈 \ 𝐹), so one has 𝜇(𝑈 \ 𝐵) ≤ 𝜇(𝑈 \ 𝐹) < 𝜀, so 𝜇 is outer
regular.
Now 𝐹  is 𝜎-compact, so there is an increasing sequence of compact sets (𝐾𝑛)𝑛∈ℕ as subsets of 𝐹
such that 𝜇(𝐾𝑛) → 𝜇(𝐹). Thus there is a compact 𝐾 ⊆ 𝐹 ⊆ 𝐵 such that 𝜇(𝐹 \ 𝐾) < 𝜀, hence 𝜇(𝐵 \
𝐾) ≤ 𝜇(𝐵 \ 𝐹) + 𝜇(𝐹 \ 𝐾) < 2𝜀. Hence 𝜇 is inner regular. Thus 𝜇 is a regular measure, as required.∎

Corollary 6. A locally finite Borel measure on a second-countable LCH space is Radon and regular.

 Proof. It suffices to show that given a second-countable LCH space 𝑋, every open 𝑈 ⊆ 𝑋 is 𝜎-
compact.
Fix an open 𝑈 ⊆ 𝑋, and let ℬ = {𝐵𝑛}𝑛∈ℕ be a countable basis for 𝑋. Now by LCH, for each 𝑥 ∈ 𝑈 ,
there is an open 𝑉𝑥 ∈ 𝒩[𝑥] such that 𝑉𝑥 ⊆ 𝑈  is compact. As 𝑉𝑥 is open, there is a 𝐵𝑥 ∈ ℬ such that
𝑥 ∈ 𝐵𝑥 ⊆ 𝑉𝑥. As 𝑉𝑥 is compact, then so is 𝐵𝑥 ⊆ 𝑉𝑥 ⊆ 𝑈 . So one has

𝑈 = ⋃
𝑥∈𝑈

𝐵𝑥,

which is a countable union of compact sets as ℬ is countable, as required. ∎
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Given a Radon measure 𝜇 on a LCH space 𝑋. The following result shows that 𝐿𝑝(𝜇) functions can
be approximated by functions in 𝐶𝑐(𝑋).

Proposition 7. Given a Radon measure 𝜇 on a LCH space 𝑋, then 𝐶𝑐(𝑋) is dense in 𝐿𝑝(𝜇) for all
𝑝 ∈ [1, ∞).

 Proof. As the space of simple 𝐿𝑝-functions is dense in 𝐿𝑝(𝜇), then it follows that it suffices to show
that 1𝐵 can be approximated by functions in 𝐶𝑐(𝑋) for all 𝜇-finite Borel 𝐵 ⊆ 𝑋. So given a 𝜇-finite
Borel 𝐵 ⊆ 𝑋 and 𝜀 > 0, there is an open 𝑈 ⊇ 𝐵 and compact 𝐾 ⊆ 𝐵 such that 𝜇(𝑈 \ 𝐾) < 𝜀𝑝. Now
there is a 𝑓 ∈ 𝐶𝑐(𝑋) such that 1𝐾 ≤ 𝑓 ≤ 1𝑈 . So one has

‖𝑓 − 1𝐵‖𝑝 ≤ 𝜇(𝑈 \ 𝐾)
1
𝑝 < 𝜀

which shows it. ∎

Finally we present one more method of constructing Radon measures from preexisting ones
through density functions.

Lemma 8. Let 𝜇 be a Radon measure on a LCH space 𝑋 and 𝑓 ∈ 𝐿1. Let 𝜀 > 0, then there is a 𝛿 > 0
such that 𝜇(𝐵) < 𝛿 implies ∫

𝐵
|𝑓| d𝜇 < 𝜀 for all Borel 𝐵 ⊆ 𝑋.

 Proof. As 𝐶𝑐(𝑋) is dense in 𝐿1, there is a 𝜑 ∈ 𝐶𝑐(𝑋) such that ‖𝑓 − 𝜑‖1 < 𝜀
2 . Now if 𝜑 = 0, then

the result is trivial, so suppose 𝜑 ≠ 0 and let 𝛿 = 𝜀
2‖𝜑‖∞

> 0. So whenever a Borel 𝐵 ⊆ 𝑋 satisfies
𝜇(𝐵) < 𝛿, one has

∫
𝐵
|𝑓| d𝜇 ≤ ∫

𝐵
|𝑓 − 𝜑| d𝜇 + ∫

𝐵
|𝜑| d𝜇 ≤ ‖𝑓 − 𝜑‖1 + ‖𝜑‖∞𝜇(𝐵) < 𝜀,

as required. ∎

Given a measure 𝜇 on some measurable space 𝑋. Given a measurable function 𝑓 : 𝑋 → [0, ∞], we
denote the measure 𝑓 d𝜇 to be the measure:

𝐸 ↦ ∫
𝐸

𝑓 d𝜇 for all measurable 𝐸 ⊆ 𝑋.

Theorem 9. Let 𝑋 be a LCH space, 𝜇 be a Radon measure on 𝑋, and 𝑓 : 𝑋 → [0, ∞] be a 𝐿1-function.
Then 𝑓 d𝜇 is a Radon regular measure on 𝑋.

 Proof. Define d𝜈 = 𝑓 d𝜇, which is a finite measure as 𝑓  is 𝐿1.
Let 𝐵 ∈ ℬ(𝑋) with finite 𝜇 measure. Let 𝜀 > 0, then there is a 𝛿 > 0 such that if 𝜇(𝐸) < 𝛿, then
𝜈(𝐸) < 𝜀 for all Borel 𝐸 ⊆ 𝑋 by Lemma 5.2.8. So as 𝜇 is inner regular on 𝜎-finite Borel sets, then
there is a compact 𝐾 ⊆ 𝐵 such that 𝜇(𝐵 \ 𝐾) < 𝛿, so one has 𝜈(𝐵 \ 𝐾) < 𝜀, hence 𝜈 is inner regular
on 𝐵.
Suppose 𝜇(𝐵) = ∞. Now 𝐸 ≔ {𝑥 ∈ 𝑋 : 𝑓(𝑥) ≠ 0} = ⋃𝑛∈ℕ 𝐸𝑛 where 𝐸𝑛 = {𝑥 ∈ 𝑋 : 𝑓(𝑥) > 1

𝑛}
for each 𝑛 ∈ ℕ. Note that (𝐸𝑛)𝑛∈ℕ is an increasing sequence and

1
𝑛

𝜇(𝐸𝑛) ≤ ∫
𝑋

𝑓 d𝜇 < ∞

shows that 𝜇(𝐸𝑛) < ∞ for all 𝑛 ∈ ℕ.
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So 𝜇(𝐵 ∩ 𝐸𝑛) < ∞ and hence there is a compact 𝐾𝑛 ⊆ 𝐵 ∩ 𝐸𝑛 such that 𝜈(𝐵 ∩ 𝐸𝑛) − 𝜈(𝐾𝑛) < 1/𝑛
for all 𝑛 ∈ ℕ. Thus taking 𝑛 → ∞, we get that lim𝑛→∞ 𝜈(𝐾𝑛) = lim𝑛→∞ 𝜈(𝐵 ∩ 𝐸𝑛) = 𝜈(𝐵). Hence
𝜈 is inner regular.
Outer regularity follows from Lemma 5.2.1 and the rest follows. ∎

3 – Pushforward Measures
A natural question is if one can make more measures out of existing measures on new measurable
spaces. The answer to that question is yes and we have a nice solution too. Given measurable spaces
(𝑋, Σ𝑋) and (𝑌 , Σ𝑌 ), where 𝜇 is a measure on (𝑋, Σ𝑋). Then if one has a meaurable map 𝑓 : 𝑋 →
𝑌 , then the map

𝑓∗𝜇 : Σ𝑌 → [0, ∞] : 𝐵 ↦ 𝜇(𝑓−1(𝐵))

defines a measure on (𝑌 , Σ𝑌 ). This is trivially verified by the properties of preimages, especially with
the fact that preimages commutes with unions. We say that 𝑓∗𝜇 is the pushforward measure of 𝜇
under 𝑓 .

This immediately provides a broad construction of measures through measurable maps. Alongside
with that, we also have a nice integral identity:

Change of Variables Formula for Pushfoward Measure 1. Let 𝑓  be a measurable map between
measurable spaces (𝑋, Σ𝑋) and (𝑌 , Σ𝑌 ), and 𝜇 be a measure on 𝑋. A measurable function 𝑔 : 𝑌 → ℂ
is 𝐿1(𝑓∗𝜇) if, and only if, 𝑔 ∘ 𝑓  is 𝐿1(𝜇). Furthermore,

∫
𝑌

𝑔 d𝑓∗𝜇 = ∫
𝑋

𝑔 ∘ 𝑓 d𝜇.

 Proof. Let 𝐵 ∈ Σ𝑌 , claim that 1𝐵 ∘ 𝑓 = 1𝑓−1(𝐵).
Indeed, given 𝑥 ∈ 𝑋, we have the following equivalences

1𝑓−1(𝐵)(𝑥) = 1 ⟺ 𝑥 ∈ 𝑓−1(𝐵)

⟺ 𝑓(𝑥) ∈ 𝐵
⟺ (1𝐵 ∘ 𝑓)(𝑥) = 1.

Now one has

∫
𝑌

1𝐵 d𝑓∗𝜇 = 𝜇(𝑓−1(𝐵)) = ∫
𝑋

1𝑓−1(𝐵) d𝜇 = ∫
𝑋

1𝐵 ∘ 𝑓 d𝜇.

Thus it follows that ∫
𝑌

𝜑 d𝑓∗𝜇 = ∫
𝑋

𝜑 ∘ 𝑓 d𝜇 for all simple functions 𝜑 : 𝑌 → ℂ using linearity of
integrals.
Now there is a sequence of simple functions (𝜑𝑛)𝑛∈ℕ with 𝜑𝑛 → 𝑔 𝜇-a.e. such that |𝜑𝑛| ≤ |𝑔| for all
𝑛 ∈ ℕ, then the result follows by dominated convergence theorem. ∎

The next question is how different regularity properties are preserved through pushforward of
measures. Fortunately, inner regularity properties are preserved nicely.

Proposition 2. Let 𝑓  be a continuous map between topological spaces 𝑋 and 𝑌 , and 𝜇 be a measure on
𝑋. If 𝜇 is weakly inner regular, then so is 𝑓∗𝜇. Furthermore, if 𝜇 is inner regular, then so is 𝑓∗𝜇.
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 Proof. Let 𝑈 ⊆ 𝑌  be open, then 𝑓−1(𝑈) is open. Define:
𝐴 = {𝜇(𝐾) : 𝐾 ⊆ 𝑓−1(𝑈), 𝐾 compact} and 𝐵 = {𝑓∗𝜇(𝐾) : 𝐾 ⊆ 𝑈, 𝐾 compact}.

Let 𝐾 ⊆ 𝑓−1(𝑈) be compact, then 𝑓(𝐾) ⊆ 𝑈  is also compact with 𝐾 ⊆ 𝑓−1(𝑓(𝐾))), so one has
𝜇(𝐾) ≤ 𝜇(𝑓−1(𝑓(𝐾))) = 𝑓∗𝜇(𝑓(𝐾)). Thus it follows that 𝑓∗𝜇(𝑈) = sup(𝐴) ≤ sup(𝐵). Also given
a compact 𝐾 ⊆ 𝑈 , one has 𝑓∗𝜇(𝐾) ≤ 𝑓∗𝜇(𝑈), so sup(𝐵) ≤ 𝑓∗𝜇(𝑈), thus one has 𝑓∗𝜇(𝑈) = sup(𝐵),
as required.
If 𝜇 were to be inner regular, then we can replace 𝑈  with a Borel set and the rest follows the same
as above. ∎

However, to also preserve outer regularity and local finiteness, one needs to impose an extra
condition on 𝑓 . Given a map 𝑓  between topological spaces 𝑋 and 𝑌 , we say 𝑓  is proper if 𝑓−1(𝐾) is
compact whenever 𝐾 ⊆ 𝑌  is compact.

It is clear that if a measure 𝜇 on a topological space is locally finite, then so is 𝑓∗𝜇 given that 𝑓
is proper.

To prove outer regularity of 𝑓∗𝜇, we need the following lemma.

Lemma 3. A continuous proper map 𝑓  from a topological space 𝑋 to a locally compact Hausdorff space
𝑌  is a closed map.

 Proof. Let 𝐶 ⊆ 𝑋 be closed and let 𝑦 ∈ 𝑌 \ 𝑓(𝐶). Then there is an open 𝑈 ∈ 𝒩𝑌 [𝑦] such that
𝑈  is compact. So 𝑓−1(𝑈) is compact and define 𝐷 = 𝐶 ∩ 𝑓−1(𝑈) which is compact. Thus 𝑓(𝐷) is
compact and hence closed, and define 𝑉 = 𝑈 \ 𝑓(𝐷) ∈ 𝒩𝑌 [𝑦].
Let 𝑧 ∈ 𝑉 ∩ 𝑓(𝐶), then there is a 𝑐 ∈ 𝐶 such that 𝑓(𝑐) = 𝑧 ∈ 𝑈 , so 𝑐 ∈ 𝑓−1(𝑈), and hence 𝑐 ∈ 𝐷.
Which is a contradiction as 𝑓(𝑐) = 𝑧 ∉ 𝑓(𝐷). Thus 𝑉  is disjoint from 𝑓(𝐶) and so 𝑓(𝐶) is closed as
required. ∎

Then with this, we have that Radon and regular measures are preserved through proper continuous
maps.

Proposition 4. Let 𝑓  be a continuous proper map between LCH spaces 𝑋 and 𝑌 . Then for any outer
regular measure 𝜇 on 𝑋, 𝑓∗𝜇 is also a outer regular measure on 𝑌 .

 Proof.
Let 𝐸 ∈ ℬ(𝑌 ), and note that 𝑓  is a closed map by preceding lemma. Define

𝐴 = {𝜇(𝑈) : 𝑈 ⊇ 𝑓−1(𝐸), 𝑈 open}, 𝐵 = {𝑓∗𝜇(𝑈) : 𝑈 ⊇ 𝐸, 𝑈 open},

and
𝐶 = {𝜇(𝑓−1(𝑈)) : 𝑓−1(𝑈) ⊇ 𝑓−1(𝐸), 𝑈 open}.

We know 𝑓∗𝜇(𝐸) = inf(𝐴), and 𝑓∗𝜇(𝐸) ≤ inf(𝐵). Now let 𝑈 ⊇ 𝑓−1(𝐸) be open, then 𝑉 = 𝑌 \
𝑓(𝑋 \ 𝑈) is open with

𝑓−1(𝑉 ) = 𝑋 \ 𝑓−1(𝑓(𝑋 \ 𝑈)) ⊇ 𝑋 \ 𝑓−1(𝑓(𝑋 \ 𝑓−1(𝐸)))

= 𝑓−1(𝑌 \ 𝑓(𝑓−1(𝑌 \ 𝐸))) ⊇ 𝑓−1(𝑌 \ (𝑌 \ 𝐸))

= 𝑓−1(𝐸),
and
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𝑓−1(𝑉 ) = 𝑋 \ 𝑓−1(𝑓(𝑋 \ 𝑈)) ⊆ 𝑈

so 𝑓∗𝜇(𝑉 ) ≤ 𝜇(𝑈). Hence inf(𝐶) ≤ inf(𝐴).
Given an open 𝑈 ⊆ 𝑌  such that 𝑓−1(𝑈) ⊇ 𝑓−1(𝐸), then define 𝑉 = 𝑌 \ 𝑓(𝑋 \ 𝑓−1(𝑈)), which is
open and one has

𝑓−1(𝑉 ) = 𝑋 \ 𝑓−1(𝑓(𝑓−1(𝑌 \ 𝑈))) ⊆ 𝑓−1(𝑈) and 𝑉 ⊇ 𝑌 \ 𝑓(𝑓−1(𝑌 \ 𝐸)) ⊇ 𝐸

so 𝑓∗𝜇(𝑉 ) ≤ 𝜇(𝑓−1(𝑈)), and hence inf(𝐵) ≤ inf(𝐶). Finally, one has
inf(𝐵) ≤ inf(𝐶) ≤ inf(𝐴) = 𝑓∗𝜇(𝐸) ≤ inf(𝐵)

hence 𝑓∗𝜇(𝐸) = inf(𝐵) shows that 𝑓∗𝜇 is also outer regular. ∎

Corollary 5. Let 𝑓  be a continuous proper map between LCH spaces 𝑋 and 𝑌 , and 𝜇 be a measure on
𝑋. One has
(i) If 𝜇 is Radon, then so is 𝑓∗𝜇.

(ii) If 𝜇 is regular, then so is 𝑓∗𝜇.

4 – Measure Supports
In probability theory, it is natural to ask where a measure attains a nonzero value (probability), which
is usually given by–what is called–the support of the measure.

Given a Borel measure 𝜇 on a topological space 𝑋, then the support of a measure 𝜇 is defined as

supp(𝜇) ≔ {𝑥 ∈ 𝑋 : 𝜇(𝑁) > 0 for all open 𝑁 ∈ 𝒩𝑋[𝑥]}.

It follows that the support of measures are closed, hence Borel, as

𝑋 \ supp(𝜇) = ⋃
𝑁 open
𝜇(𝑁)=0

𝑁

is open. We say 𝜇 has full support if supp(𝜇) = 𝑋.

To give some examples, the Lebesgue measure 𝜆 on ℝ has full support. While a Dirac measure 𝛿𝑝
on some topological space 𝑋 with 𝑝 ∈ 𝑋 has a support of {𝑝}.

There are nice properties of the support if the measure is Radon in particular. This is not an
important result in this paper, but it is here for the sake of familiarising ourselves with this notion of
measure support.

Proposition 1. Let 𝜇 be a Radon measure on a LCH space 𝑋.
(i) If 𝐸 ⊆ 𝑋 \ supp(𝜇) for some 𝐸 ∈ ℬ(𝑋), then 𝜇(𝐸) = 0. The converse holds if 𝐸 is open.

(ii) One has 𝑥 ∈ supp(𝜇) if, and only if, ∫
𝑋

𝑓 d𝜇 > 0 for each 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) with 𝑓(𝑥) > 0.
(iii) For any measurable 𝑓 : 𝑋 → ℂ, one has

∫
𝑋

𝑓 d𝜇 = ∫
supp(𝜇)

𝑓 d𝜇.

 Proof.
(i) Let 𝐾 ⊆ ⋃𝑁 open

𝜇(𝑁)=0
𝑁  be compact, then there are 𝑁1, …, 𝑁𝑛 ⊆ 𝑋 open with zero measure for

some 𝑛 ∈ ℕ such that 𝐾 ⊆ ⋃𝑖≤𝑛 𝑁𝑖. Thus 𝜇(𝐾) ≤ ∑𝑖≤𝑛 𝜇(𝑁𝑖) = 0. Hence by weakly inner
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regularity, one has that 𝜇(⋃𝑁 open
𝜇(𝑁)=0

) = 0, as required. Hence 𝜇(𝐸) = 0. Clearly if 𝐸 open and

𝜇(𝐸), then 𝐸 ⊆ 𝑋 \ supp(𝜇).
(ii) Let 𝑥 ∈ supp(𝜇) and let 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) such that 𝑓(𝑥) > 0. Now by continuity of 𝑓 , there is a

𝑁 ∈ 𝒩[𝑥] such that 𝑓(𝑦) > 𝑓(𝑥)
2  for all 𝑦 ∈ 𝑁 . Thus one has

∫
𝑋

𝑓 d𝜇 ≥ 1
2
𝜇(𝑁)𝑓(𝑥) > 0,

as required.
If ∫

𝑋
𝑓 d𝜇 > 0 for all 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) with 𝑓(𝑥) > 0. Let 𝑁 ∈ 𝒩[𝑥], then there is a compact

𝐾 ∈ 𝒩[𝑥] such that 𝐾 ⊆ 𝑁 . Thus there is a 𝑓 ∈ 𝐶𝑐(𝑋, [0, 1]) such that 𝑓|𝐾 = 1 and supp(𝑓) ⊆
𝑁 , so in particular 𝑓(𝑥) = 1 > 0. Now one has

𝜇(𝑁) ≥ ∫
𝑋

𝑓 d𝜇 > 0,

as required. So 𝑥 ∈ supp(𝜇).
(iii) This is clear from (i) as 𝜇(𝑋 \ supp(𝜇)) = 0. ∎

There is also a nice separation regarding Borel measures with full support on LCH spaces, on its
space of continuous functions.

Lemma 2. Given a Borel measure 𝜇 with full support on a LCH space 𝑋, and let 𝑓, 𝑔 ∈ 𝐶(𝑋) such that

∫
𝑋

𝑓𝜑 d𝜇 = ∫
𝑋

𝑔𝜑 d𝜇

for all 𝜑 ∈ 𝐶𝑐(𝑋, [0, 1]). Then 𝑓 = 𝑔.

 Proof. It suffices to show that if ∫
𝑋

𝑓𝜑 d𝜇 = 0 for all 𝜑 ∈ 𝐶𝑐(𝑋) implies 𝑓 = 0.
It suffices to show that it holds for all real-valued 𝑓 ∈ 𝐶(𝑋) as if it does, then for 𝑓 = ℜ(𝑓) + 𝑖ℑ(𝑓) ∈
𝐶(𝑋), one has

∫
𝑋

𝑓𝜑 d𝜇 = ∫
𝑋

ℜ(𝑓)𝜑 d𝜇 + 𝑖 ∫
𝑋

ℑ(𝑓)𝜑 d𝜇 = 0

implies ℜ(𝑓) = ℑ(𝑓) = 0.
So let 𝑓 ∈ 𝐶(𝑋, ℝ) and suppose 𝑓 ≠ 0. Then there is a 𝜉 ∈ 𝑋 such that, without loss of generality,
𝑓(𝜉) > 0, and by continuity, there is an open 𝑈 ⊆ 𝒩[𝜉] such that 𝑓(𝑥) > 𝑓(𝜉)

2  for all 𝑥 ∈ 𝑈 . By LCH,
there is a compact 𝐾 ∈ 𝒩[𝜉] such that 𝐾 ⊆ 𝑈 , so there is a 𝜑 ∈ 𝐶𝑐(𝑋, [0, 1]) such that 1𝐾 ≤ 𝜑 ≤
1𝑈 . So one has

∫
𝑋

𝑓𝜑 d𝜇 = ∫
𝑈

𝑓𝜑 d𝜇 > 𝑓(𝜉)
2

∫
𝑈

𝜑 d𝜇 ≥ 𝑓(𝜉)
2

𝜇(𝐾) > 0

which is a contradiction. So 𝑓 = 0, as required. ∎

Now consider the probability measures

d𝜇1 = 1[0,1) d𝜆 and d𝜇2 = 1
2
1(0,2] d𝜆
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which immediately tells us that supp(𝜇1) = [0, 1] and supp(𝜇2) = [0, 2]. One can ask what will be the
probability distribution of the sum of 𝑥 + 𝑦 where 𝑥 and 𝑦 is uniformly picked from [0, 1) and (0, 2].
To calculate this distribution, we take the convolution of 1[0,1) and 121(0,2]:

𝑓(𝑥) ≔ (1[0,1) ∗ 1
2
1(0,2])(𝑥) = 1

2
∫

ℝ
1[0,1)(𝑥 − 𝑦)1(0,2](𝑦) d𝜆(𝑦)

= 1
2

∫
ℝ

1[𝑥−1,𝑥)∩(0,2] d𝜆 = 1
2

{{
{{
{
{{
{{0  if 𝑥 < 0

𝑥  if 0 ≤ 𝑥 < 1
1  if 1 ≤ 𝑥 < 2
3 − 𝑥  if 2 ≤ 𝑥 < 3
0  if 𝑥 ≥ 3

.

Hence the resulting probability distribution is given by d𝜇3 = 𝑓 d𝜆, and one has supp(𝜇3) = [0, 3],
or equivalently

supp(𝜇3) = supp(𝜇1) + supp(𝜇2).

Another observation is that supp(𝜇1) = supp(1[0,1)) etc., i.e. the support of those measures is equiv-
alent to the support of their density functions. Which is in fact not a coincidence.

First, we need a definition. Given 𝐴 a subset of a topological space 𝑋, we say 𝑎 ∈ 𝐴 is a neigh-
bouring point if for all 𝑁 ∈ 𝒩[𝑥], one has 𝐴° ∩ 𝑁 ≠ ∅. Then we say 𝐴 is neighbourful if every
point of 𝐴 is a neighbouring point.

Proposition 3. Let 𝜇, 𝜆 be Borel measures on a topological space 𝑋 and 𝑓 : 𝑋 → [0, ∞) be a Borel
function. If d𝜇 = 𝑓 d𝜆, then

supp(𝜇) ⊆ supp(𝑓) ∩ supp(𝜆).

Furthermore, if:
• 𝑓  is continuous 𝜆-almost everywhere (𝜆-a.e.);
• supp(𝑓) is neighbourful;
• supp(𝑓) ⊆ supp(𝜆),

then

supp(𝜇) = supp(𝑓).

 Proof. If 𝑥 ∉ supp(𝑓), then there is an open 𝑈 ∈ 𝒩[𝑥] such that 𝑓|𝑈 = 0, hence 𝜇(𝑈) = ∫
𝑈

d𝜆 =
0, so 𝑥 ∉ supp(𝜇).
If 𝑥 ∉ supp(𝜆), there is an open 𝑈 ∈ 𝒩[𝑥] such that 𝑈 ⊆ 𝑋 \ supp(𝜆), and by Proposition 5.4.1, one
has 𝜇(𝑈) = 0, and thus 𝑥 ∉ supp(𝜇).
So one has supp(𝜇) ⊆ supp(𝑓) ∩ supp(𝜆). Now suppose 𝑓  is continuous 𝜆-a.e., supp(𝑓) is neigh-
bourful, and supp(𝑓) ⊆ supp(𝜆).
Suppose 𝑥 ∈ supp(𝑓), and let 𝑈 ∈ 𝒩[𝑥] be open. Then there is a 𝜉 ∈ 𝐴° ∩ 𝑈 , so there is an open 𝑉 ∈
𝒩[𝜉] such that 𝑉 ⊆ supp(𝑓) ∩ 𝑈 . Now as 𝑓  is continuous 𝜆-a.e. and 𝜆(𝑉 ) > 0 as supp(𝑓) ⊆ supp(𝜆),
there must exist a 𝜁 ∈ 𝑉  such that 𝑓  is continuous at 𝜁. As 𝑓(𝜁) > 0, then by continuity, there is an
open 𝑊 ∈ 𝒩[𝜁] with 𝑊 ⊆ 𝑉  such that 𝑓(𝑦) > 𝑓(𝜁)

2  for all 𝑦 ∈ 𝑊 . Finally, one has

𝜇(𝑈) = ∫
𝑈

𝑓 d𝜆 ≥ ∫
𝑊

𝑓 d𝜆 > 1
2
𝜆(𝑊)𝑓(𝜁) > 0.

Hence 𝑥 ∈ supp(𝜇). Thus supp(𝜇) = supp(𝑓), as required. ∎
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We see that 𝑓  being continuous 𝜆-a.e. with a neighbourful support is really quite important here.
Consider 𝜆 being the usual Lebesgue measure on ℝ, and take 𝑓 = 1ℚ. Then 𝜇 = 0, but supp(𝑓) =
supp(𝜆) = ℝ. Which fails because 𝑓  is not continuous 𝜆-a.e.

Similarly, if we take 𝑓 = 1{0}, then 𝜇 = 0 but supp(𝑓) = {0} here. Which fails because 𝑓  does
not have a neighbourful support. In fact, even if the support has no isolated points or have positive 𝜆
measure, the condition will still fail with the counterexample:

𝑓 = 0 except 𝑓 = 1 on either {1
𝑛

: 𝑛 ∈ ℕ} or [2, 3].

This will give supp(𝑓) = {0} ∪ {1/𝑛 : 𝑛 ∈ ℕ} ∪ [2, 3], which has no isolated points with positive 𝜆
measure, but supp(𝜇) = [2, 3] here.

This result shows that maps with neighbourful supports are not hard to find.

Lemma 4. If 𝑓 : 𝑋 → ℂ is continuous where 𝑋 is some topological space. Then supp(𝑓) is neighbourful.

 Proof. Let 𝑥 ∈ supp(𝑓), and 𝑁 ∈ 𝒩[𝑥]. So there is a 𝑦 ∈ 𝑁  such that 𝑓(𝑦) ≠ 0. Then by continuity,
there is an open 𝑈 ∈ 𝒩[𝑦] with 𝑈 ⊆ 𝑁  such that 𝑓(𝑧) ≠ 0 for all 𝑧 ∈ 𝑈 . Hence 𝑦 ∈ supp(𝑓)° ∩ 𝑁 ,
as required. ∎

Corollary 5. Let 𝜇, 𝜆 be Borel measures on a topological space and 𝑓 : 𝑋 → [0, ∞) be a measurable
function such that d𝜇 = 𝑓 d𝜆. If 𝑓  is continuous and supp(𝑓) ⊆ supp(𝜆), then

supp(𝜇) = supp(𝑓).

 Proof. By the preceding lemma and Proposition 5.4.3. ∎
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6 | Topological Groups
 In this section, we shall briefly discuss relevant properties of topological groups that will serve as

a prerequisite for the next chapter.

Given a group (𝐺, ⋅) and a topology 𝜏  on 𝐺. We say 𝜏  is a group topology if the following group
operations:

𝐺 × 𝐺 → 𝐺 : (𝑥, 𝑦) ↦ 𝑥 ⋅ 𝑦 and 𝐺 → 𝐺 : 𝑥 ↦ 𝑥−1

are continuous. Thus we call the triple (𝐺, ⋅, 𝜏), usually just 𝐺 if the context is clear, a topological
group.

Some common topological groups include:
(i) The real numbers (ℝ, +).

(ii) The positive numbers with multiplication ((0, ∞), ⋅).
(iii) The group of matrices under addition (ℂ𝑛×𝑛, +).
(iv) The general linear matrix group under multiplication (GL(𝑛, ℂ), ⋅).
(v) The unitary group 𝒰(𝑛).

When it comes to groups, we can define group operation to sets. Given 𝐴, 𝐵 ⊆ 𝐺, and 𝑔 ∈ 𝐺, define:

𝐴𝐵 ≔ {𝑎𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}
𝑔𝐴 := {𝑔}𝐴 and 𝐴𝑔 ≔ 𝐴{𝑔}

𝐴−1 ≔ {𝑎−1 : 𝑎 ∈ 𝐴}.

Note that the group operation is associative, so we can chain these operations to yield something like
𝑔𝐴𝐵 or 𝐴𝑔𝐵, which makes sense in a natural way.

A crucial note to keep in mind is that if 𝑒 ∈ 𝐴, then 𝐵 ⊆ 𝐴𝐵.

Since that the map 𝑥 ↦ 𝑔𝑥, i.e. left translation, and similarly right translations, are homeomor-
phisms of 𝐺 onto 𝐺, and in particular, the sets 𝑔𝐴 and 𝐴𝑔 will preserve the topological structure of 𝐴.
Similarly, the map 𝑥 ↦ 𝑥−1 is a homeomorphism, so 𝐴−1 will also inherit its topological properties
from 𝐴.

We say that 𝐴 is symmetric if 𝐴 = 𝐴−1.

As the group product is a continuous map, and since 𝐴𝐵 is an image of the group product
under 𝐴 × 𝐵, then it follows that 𝐴𝐵 is compact, respectively connected, if 𝐴 and 𝐵 are compact,
respectively connected.

We shall see that group topologies has a nice structure which will be exploited throughout this
paper.

Proposition 1. Let 𝐺 be a topological group. Then the collection

{𝑥𝑈 : 𝑥 ∈ 𝐺, 𝑈 ∈ 𝒩[𝑒] open and symmetric}

forms a basis for the topology of 𝐺. Also for all 𝑈 ∈ 𝒩[𝑒] and 𝑛 ∈ ℕ, there is an open symmetric 𝑉 ∈
𝒩[𝑒] such that 𝑉 𝑉 ⊆ 𝑈 .

 Proof. Let ℬ denote the collection in the statement. Then clearly ℬ is a collection of open sets, so it
suffices to prove that for any open 𝑈 ⊆ 𝐺 and 𝑥 ∈ 𝑈 , there is a 𝑉 ∈ ℬ such that 𝑥 ∈ 𝑉 ⊆ 𝑈 . Indeed,
fix an open 𝑈 ⊆ 𝐺 and 𝑥 ∈ 𝑈 . Then 𝑥−1𝑈 ∈ 𝒩[𝑒], and take
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𝑉 = 𝑥−1𝑈 ∩ (𝑥−1𝑈)−1 ∈ 𝒩[𝑒]

which is symmetric. And clearly 𝑥𝑉 ∈ ℬ with 𝑥 ∈ 𝑥𝑉 ⊆ 𝑈 , as required. So ℬ is basis.
By continuity of the group product at 𝑒 ∈ 𝑈 , then there are open 𝑉1, 𝑉2 ∈ 𝒩[𝑒] such that 𝑉1𝑉2 ⊆
𝑈 . Take 𝑉 = (𝑉1 ∩ 𝑉2) ∩ (𝑉1 ∩ 𝑉2)

−1, which gives an open symmetric neighbourhood of 𝑒 such that
𝑉 𝑉 ⊆ 𝑈 . ∎

Just like in metric spaces we have notions of totally boundedness, in topological groups it is useful
to consider an analogous result of precompactness¹. Given a subset 𝐴 of a topological group 𝐺, we say
that 𝐴 is left precompact if for all 𝑈 ∈ 𝒩[𝑒], there are finite 𝑥1, …, 𝑥𝑛 ∈ 𝑋 such that

𝐴 ⊆ ⋃
𝑖≤𝑛

𝑥𝑖𝑈

and similarly right precompact. A precompact set will be both left and right precompact.

Proposition 2. Let 𝐴 be a compact subset of a topological group 𝐺. Then 𝐴 is precompact.

 Proof. Let 𝑈 ∈ 𝒩[𝑒]. Then {𝑥𝑈 : 𝑥 ∈ 𝐴} covers 𝐴 as 𝑥 ∈ 𝑥𝑈  for each 𝑥 ∈ 𝐴. Hence the rest
follows from compactness. We obtain that 𝐴 is left precompact and right precompactness follows
similarly. ∎

¹Some authors will use the term totally bounded in place of precompact.
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7 | Haar Measures
 This section will introduce measure theoretic notions to topological groups, hence allowing us to

imbed notions of probability theory to the study of the Horn problem.

Given a topological group 𝐺, a Radon measure 𝜇 on 𝐺 is a left Haar measure if 𝜇 ≠ 0 and
𝜇(𝑔𝐵) = 𝜇(𝐵) for all 𝑔 ∈ 𝐺 and Borel 𝐵 ⊆ 𝐺, we also say that 𝜇 is left invariant (for the latter
property). Similarly for right Haar measure and right invariant. An example of a both left and right
invariant Haar measure is the usual Lebesgue measure on (ℝ𝑛, +).

When it comes to desired topological properties for topological groups for Haar measures, it turns
out locally compactness and Hausdorff is what one should desire. With those properties, one can
invoke the Haar’s theorem:

Every LCH group has a left-invariant Haar measure that is unique up to some multiplicative constant.

We will develop the basic properties of Haar measures and prove Haar’s theorem.

We shall consider the sets

𝐶+
𝑐 (𝐺) ≔ {𝑓 ∈ 𝐶𝑐(𝐺, ℝ) : 𝑓 ≥ 0, ‖𝑓‖∞ > 0}

𝐶≥0
𝑐 (𝐺) ≔ {𝑓 ∈ 𝐶𝑐(𝐺, ℝ) : 𝑓 ≥ 0} = 𝐶+

𝑐 (𝐺) ∪ {0}

as they are relevant to this section and introduce some relevant notations. Given a 𝑓 ∈ 𝐶𝑐(𝐺) and 𝑔 ∈
𝐺, define (𝑔𝑓)(𝑥) = 𝑓(𝑔𝑥) and (𝑓𝑔)(𝑥) = 𝑓(𝑥𝑔) for all 𝑥 ∈ 𝐺. Clearly 𝑔𝑓, 𝑓𝑔 is continuous and one
has a compact set

supp(𝑔𝑓) = 𝑔−1supp(𝑓),

so 𝑔𝑓 ∈ 𝐶𝑐(𝐺).

1 – Basic Properties
A natural question that arises is if a LCH group possesses a left Haar measure, then does it also possess
a right Haar measure and vice-versa? The answer is yes, given a left Haar measure 𝜇, we can define 𝜇̃
as its coresponding Haar measure given by 𝜇̃(𝐸) = 𝜇(𝐸−1) for all Borel sets 𝐸. Hence ̃̃𝜇 = 𝜇 and in
fact, this gives us a correspondence between left and right Haar measures.

Proposition 1. Let 𝜇 be a Radon measure on a LCH group 𝐺. Then 𝜇 is a left Haar measure if, and only
if, 𝜇̃ is a right Haar measure.

 Proof. Suppose 𝜇 is a left Haar measure, then given 𝐸 ∈ ℬ(𝐺) and 𝑔 ∈ 𝐺, one has
𝜈(𝐸𝑔) = 𝜇(𝑔−1𝐸−1) = 𝜈(𝐸)

as required. Then the rest follows similarly. ∎

For a nonzero Radon measure to be a left Haar measure, it suffices to have the measure to be left
invariant on open sets.

Lemma 2. Let 𝜇 be a nonzero Radon measure on a LCH group 𝐺. If 𝜇(𝑔𝑈) = 𝜇(𝑈) for all 𝑔 ∈ 𝐺 and
open 𝑈 ⊆ 𝐺, then 𝜇 is a left Haar measure.
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 Proof. Let 𝐸 ∈ ℬ(𝐺) and 𝑔 ∈ 𝐺, by outer regularity, it suffices to show that 𝐴 = 𝐵 where
𝐴 ≔ {𝜇(𝑈) : 𝑈 ⊇ 𝐸, 𝑈 open} and
𝐵 ≔ {𝜇(𝑈) : 𝑈 ⊇ 𝑔𝐸, 𝑈 open}.

Let 𝑈 ⊇ 𝐸 be open, then 𝑔𝑈 ⊇ 𝑔𝐸 is open, and
𝜇(𝑈) = 𝜇(𝑔𝑈) ∈ 𝐵,

hence 𝐴 ⊆ 𝐵. Let 𝑈 ⊇ 𝑔𝐸 be open, then 𝑔−1𝑈 ⊇ 𝐸 is open, and
𝜇(𝑈) = 𝜇(𝑔−1𝑈) ∈ 𝐴,

hence 𝐴 = 𝐵, as required. ∎

We now provide fundamental properties of Haar measures with respect to integrals.

Proposition 3. Let 𝜇 be a nonzero Radon measure on a locally compact group 𝐺. Then for any complex-
valued 𝑓 ∈ 𝐿1(𝐺, 𝜇), one has

∫
𝐺

𝑔𝑓 d𝜇 = ∫
𝐺

𝑓 d𝜇

for all 𝑔 ∈ 𝐺 if, and only if, 𝜇 is a left Haar measure.

 Proof. Suppose the former statement holds. By Corollary 5.1.5, it suffices to show that 𝐴 = 𝐵 where

𝐴 ≔ {∫
𝐺

𝑓 d𝜇 : 𝑓 ∈ 𝐶𝑐(𝐺, [0, 1]), supp(𝑓) ⊆ 𝑈} and

𝐵 ≔ {∫
𝐺

𝑓 d𝜇 : 𝑓 ∈ 𝐶𝑐(𝐺, [0, 1]), supp(𝑓) ⊆ 𝑔𝑈}.

Let 𝑓 ∈ 𝐶𝑐(𝐺, [0, 1]). If supp(𝑓) ⊆ 𝑈 , then supp(𝑔−1𝑓) = 𝑔supp(𝑓) ⊆ 𝑔𝑈 . So one has

∫
𝐺

𝑓 d𝜇 = ∫
𝐺

𝑔−1𝑓 d𝜇 ∈ 𝐵,

hence 𝐴 ⊆ 𝐵.
If supp(𝑓) ⊆ 𝑔𝑈 , then supp(𝑔𝑓) = 𝑔−1supp(𝑓) ⊆ 𝑈 , and one has

∫
𝐺

𝑓 d𝜇 = ∫
𝐺

𝑔𝑓 d𝜇 ∈ 𝐴,

hence 𝐴 = 𝐵, as required. The rest follows by preceding lemma.
Suppose 𝜇 is a left Haar measure. Using linearity of integrals, approximation by simple functions, and
the dominated convergence theorem, it suffices to show that the result holds for indicator functions.
Indeed, given a Borel 𝐵 ⊆ 𝐺 and 𝑔 ∈ 𝐺, one has

∫
𝐺

1𝐵(𝑔𝑥) d𝜇(𝑥) = 𝜇(𝑔−1𝐵) = ∫
𝐺

1𝐵 d𝜇

as required. ∎

Lemma 4. Let 𝜇 be a left Haar measure on a LCH group 𝐺. If 𝑈 ⊆ 𝐺 is nonempty open, then 𝜇(𝑈) > 0,
and if 𝑓 ∈ 𝐶+

𝑐 (𝐺), then ∫
𝐺

𝑓 d𝜇 > 0.
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 Proof. As 𝜇 ≠ 0 and weakly inner regular, then there is a compact 𝐾 ⊆ 𝐺 such that 𝜇(𝐾) > 0.
Then as 𝐾 is precompact, there are 𝑥1, …, 𝑥𝑛 ∈ 𝐺 such that 𝐾 ⊆ ⋃𝑖≤𝑛 𝑥𝑖𝑈  for some 𝑛 ∈ ℕ. Thus

0 < 𝜇(𝐾) ≤ ∑
𝑖≤𝑛

𝜇(𝑥𝑖𝑈) = 𝑛𝜇(𝑈)

which shows that 𝜇(𝑈) > 0.
If 𝑓 ∈ 𝐶+

𝑐 (𝐺), then 𝑈 = {𝑥 ∈ 𝐺 : 𝑓(𝑥) > 1
2‖𝑓‖∞} is nonempty open, and hence

∫
𝐺

𝑓 d𝜇 ≥ 1
2
‖𝑓‖∞𝜇(𝑈) > 0

as ‖𝑓‖∞ > 0. ∎

The preceding lemma shows that Haar measures on topological groups has a full support.

One nice property of Haar measures is that one has a characterization for a topological group to
be compact.

Proposition 5. Let 𝐺 be a LCH group and 𝜇 be a left Haar measure on 𝐺. Then 𝐺 is compact if, and only
if, 𝜇(𝐺) < ∞.

 Proof. If 𝐺 is compact, then since 𝜇 is Radon, then 𝜇(𝐺) < ∞. Suppose 𝐺 is not compact, and
let 𝑉 ∈ 𝒩[𝑒] be compact. If 𝐺 can covered by finite left translations of 𝑉 , then any open cover of 𝐺
admits a finite subcover for each left translation of 𝑉 , which implies 𝐺 is compact, so 𝐺 cannot be
covered by finite left translations of 𝑉 . Take 𝑥1 ∈ 𝑉  and define 𝑥𝑛+1 ∈ 𝐺 \ ⋃𝑖≤𝑛 𝑥𝑖𝑉  for each 𝑛 > 1.
Now there is a symmetric 𝑈 ∈ 𝒩[𝑒] such that 𝑈𝑈 ⊆ 𝑉 , and claim that 𝑥𝑛𝑈  and 𝑥𝑚𝑈  are disjoint for
𝑛 > 𝑚 (𝑛, 𝑚 ∈ ℕ). Indeed, if 𝑥𝑛𝑈 ∩ 𝑥𝑚𝑈 ≠ ∅, then there are 𝑦1, 𝑦2 ∈ 𝑈  such that 𝑥𝑛𝑦1 = 𝑥𝑚𝑦2, thus

𝑥𝑛 = 𝑥𝑚𝑦2𝑦−1
1 ∈ 𝑥𝑚𝑈𝑈 ⊆ 𝑥𝑚𝑉

a contradiction. So one has a disjoint sequence {𝑥𝑛𝑈}𝑛∈ℕ in 𝐺, so by preceding lemma (𝜇(𝑈) > 0),
one has

𝜇(𝐺) ≥ ∑
𝑛∈ℕ

𝜇(𝑥𝑛𝑈) = ∞𝜇(𝑈) = ∞.

Hence 𝜇(𝐺) = ∞, as required. ∎

2 – Haar’s Theorem
Let ℝ(𝐺) be the free ℝ-module generated by 𝐺, i.e. if 𝛼 ∈ ℝ, then 𝛼 = ∑𝑖≤𝑛 𝑐𝑖𝑔𝑖 for some 𝑐1, …, 𝑐𝑛 ∈
ℝ, 𝑔1, …, 𝑔𝑛 ∈ 𝐺, and 𝑛 ∈ ℕ, so it is clear that 𝛼𝑓 ∈ 𝐶𝑐(𝐺). Given 𝑥 ∈ 𝐺, we define

𝑥𝛼 = ∑
𝑖≤𝑛

𝑐𝑖𝑥𝑔𝑖,

hence given 𝛽 = ∑𝑗≤𝑚 𝑑𝑗ℎ𝑗 for 𝑑1, …, 𝑑𝑚 ∈ ℝ, ℎ1, …, ℎ𝑚 ∈ 𝐺, and 𝑚 ∈ ℕ, one can define

𝛼𝛽 = ∑
𝑖≤𝑛

𝑐𝑖𝑔𝑖𝛽 = ∑
𝑖≤𝑛
𝑗≤𝑚

𝑐𝑖𝑑𝑗𝑔𝑖ℎ𝑗.

We also define the ‘valuation of 𝛼’ to be:
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[𝛼] = ∑
𝑖≤𝑛

𝑐𝑖

hence one has [𝛼 + 𝛽] = [𝛼] + [𝛽] and [𝛼𝛽] = [𝛼][𝛽].

Our aim to prove the Haar’s theorem is to use the Riesz-Markov-Kakutani Representation
Theorem 5.1.4, where we want a positive linear functional on 𝐶𝑐(𝐺). Hence we should shall build our
measures from the lens of integrals, hence given 𝑓 ∈ 𝐶≥0

𝑐 (𝐺) and 𝜑 ∈ 𝐶+
𝑐 (𝐺), we can ‘estimate’ 𝑓  by

𝜑 through how much 𝜑 ‘covers’ 𝑓  by left translations:

(𝑓 : 𝜑) ≔ inf{[𝛼] : 𝑓 ≤ 𝛼𝜑, 𝛼 ∈ ℝ(𝐺)}

which will be deemed the Haar covering number of 𝑓  by 𝜑.

We will permanently fix a 𝑓0 ∈ 𝐶+
𝑐 (𝐺) in this subchapter, and we can ‘normalize’ the Haar

covering number with respect to 𝑓0, and we shall obtain a linear functional of the form

𝑓 ↦ (𝑓 : 𝜑)
(𝑓0 : 𝜑)

.

First, we shall discuss the well-definedness and relevant properties of the Haar covering number.

Lemma 1. Given a LCH group 𝐺, 𝑓 ∈ 𝐶≥0
𝑐 (𝐺), and 𝜑 ∈ 𝐶+

𝑐 (𝐺). The set

{[𝛼] : 𝑓 ≤ 𝛼𝜑, 𝛼 ∈ ℝ(𝐺)}

is nonempty. In fact, for each 𝜀 ∈ (0, ‖𝜑‖∞), there is a 𝑛 ∈ ℕ such that

0 ≤ (𝑓 : 𝜑) ≤ 𝑛‖𝑓‖∞
‖𝜑‖∞ − 𝜀

.

Furthermore, if 𝑓 ∈ 𝐶+
𝑐 (𝐺), then (𝑓 : 𝜑) > 0.

 Proof. Given 𝛼 ∈ ℝ(𝐺), if 𝑓 ≤ 𝛼𝜑, then 𝑓 ≤ [𝛼]‖𝜑‖∞. So
0 ≤ ‖𝑓‖∞ ≤ [𝛼]‖𝜑‖∞.

As ‖𝜑‖∞ > 0, then [𝛼] ≥ 0, hence (𝑓 : 𝜑) ≥ 0. If 𝑓 ∈ 𝐶+
𝑐 (𝐺), i.e. ‖𝑓‖∞ > 0, then [𝛼] ≥ ‖𝑓‖∞

‖𝜑‖∞
, hence

(𝑓 : 𝜑) ≥ ‖𝑓‖∞
‖𝜑‖∞

> 0.

Let 𝜀 ∈ (0, ‖𝜑‖∞), and the set
𝑈𝜀 ≔ {𝑥 ∈ 𝑋 : 𝜑(𝑥) > ‖𝜑‖∞ − 𝜀}

is open. As supp(𝑓) is compact, then there is a 𝑛 ∈ ℕ, and 𝑥1, …, 𝑥𝑛 ∈ 𝐺 such that

supp(𝑓) ⊆ ⋃
𝑖≤𝑛

𝑥𝑖𝑈𝜀.

Let 𝑐 = ‖𝑓‖∞
‖𝜑‖∞−𝜀 ≥ 0 and claim that

𝑓 ≤ 𝑐 ∑
𝑖≤𝑛

𝑥−1
𝑖 𝜑.

Let 𝑥 ∉ supp(𝑓), then 𝑓(𝑥) = 0 ≤ 𝑐 ∑𝑖≤𝑛 𝜑(𝑥−1
𝑖 𝑥) holds. If 𝑥 ∈ supp(𝑓), then there is a 𝑗 ≤ 𝑛 such

that 𝑥−1
𝑗 𝑥 ∈ 𝑈𝜀. Now one has

𝑐 ∑
𝑖≤𝑛

𝜑(𝑥−1
𝑖 𝑥) ≥ 𝑐𝜑(𝑥−1

𝑗 𝑥) > 𝑐(‖𝜑‖∞ − 𝜀) = ‖𝑓‖∞ ≥ 𝑓(𝑥)

as required.
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So 𝑛𝑐 ∈ {[𝛼] : 𝑓 ≤ 𝛼𝜑, 𝛼 ∈ ℝ(𝐺)} implies (𝑓 : 𝜑) ≤ 𝑛‖𝑓‖∞
‖𝜑‖∞−𝜀 . ∎

In the next lemma, we shall see that the Haar covering number posseses some linearity properties,
and in fact left invariant.

Lemma 2. Given a LCH group 𝐺, 𝑓, 𝑔 ∈ 𝐶≥0
𝑐 (𝐺), and 𝜑 ∈ 𝐶+

𝑐 (𝐺). The following holds:
(i) (𝑓 : 𝜑) = (𝑥𝑓 : 𝜑) for all 𝑥 ∈ 𝐺;

(ii) (𝑐𝑓 : 𝜑) = 𝑐(𝑓 : 𝜑) for all 𝑐 ≥ 0;
(iii) (𝑓 + 𝑔, 𝜑) ≤ (𝑓 : 𝜑) + (𝑔 : 𝜑);
(iv) (𝑓 : 𝜑) ≤ (𝑓 : 𝑔)(𝑔 : 𝜑) if 𝑔 ≠ 0 (so 𝑔 ∈ 𝐶+

𝑐 (𝐺)).

 Proof. Let 𝛼, 𝛽 ∈ ℝ(𝐺). In general, define {𝑓 : 𝜑} = {[𝛼] : 𝑓 ≤ 𝛼𝜑, 𝛼 ∈ ℝ(𝐺)} here.
(i) Let 𝑥 ∈ 𝐺 and suppose [𝛼] ∈ {𝑓 : 𝜑}, then 𝑓 ≤ 𝛼𝜑. Let 𝑦 ∈ 𝐺, then

(𝑥𝑓)(𝑦) = 𝑓(𝑥𝑦) ≤ (𝛼𝜑)(𝑥𝑦) = (𝑥𝛼𝜑)(𝑦)

so 𝑥𝑓 ≤ 𝑥𝛼𝜑 with [𝛼] = [𝑥𝛼] ∈ {𝑥𝑓 : 𝜑}.
If [𝛼] ∈ {𝑥𝑓 : 𝜑}, then 𝑥𝑓 ≤ 𝛼𝜑. But that means 𝑓 ≤ 𝑥−1𝛼𝜑, so [𝛼] = [𝑥−1𝛼] ∈ {𝑓 : 𝜑}. Hence
{𝑓 : 𝜑} = {𝑥𝑓 : 𝜑}, and one has (𝑓 : 𝜑) = (𝑥𝑓 : 𝜑), as required.

(ii) If 𝑐 = 0, then ‖𝑐𝑓‖∞ = 0, and hence by Lemma 7.2.1, one has (𝑐𝑓 : 𝜑) = 0 = 𝑐(𝑓 : 𝜑).
If 𝑐 > 0, then one has the following equivalences:

[𝛼] ∈ {𝑐𝑓 : 𝜑} ⟺ 𝑐𝑓 ≤ 𝛼𝜑

⟺ 𝑓 ≤ 𝑐−1𝛼𝜑
⟺ 𝑐−1[𝛼] = [𝑐−1𝛼] ∈ {𝑓 : 𝜑}
⟺ [𝛼] ∈ 𝑐{𝑓 : 𝜑}.

Thus {𝑐𝑓 : 𝜑} = 𝑐{𝑓 : 𝜑}, hence 𝑐(𝑓 : 𝜑) = (𝑐𝑓 : 𝜑), as required.
(iii) Suppose [𝛼] ∈ {𝑓 : 𝜑}, and [𝛽] ∈ {𝑔 : 𝜑}. Thus 𝑓 ≤ 𝛼𝜑 and 𝑔 ≤ 𝛽𝜑, so one has 𝑓 + 𝑔 ≤ (𝛼 +

𝛽)𝜑, i.e. [𝛼] + [𝛽] = [𝛼 + 𝛽] ∈ {𝑓 + 𝑔 : 𝜑}. Thus {𝑓 : 𝜑} + {𝑔 : 𝜑} ⊆ {𝑓 + 𝑔 : 𝜑}, thus (𝑓 + 𝑔 :
𝜑) ≤ (𝑓 : 𝜑) + (𝑔 : 𝜑).

(iv) If 𝑔 ≠ 0. Suppose 𝛼 ∈ {𝑓 : 𝑔}, and 𝛽 ∈ {𝑔 : 𝜑}, so 𝑓 ≤ 𝛼𝑔 and 𝑔 ≤ 𝛽𝜑. Now one has
𝑓 ≤ 𝛼𝑔 ≤ 𝛼(𝛽𝜑) = (𝛼𝛽)𝜑

hence [𝛼][𝛽] = [𝛼𝛽] ∈ {𝑓 : 𝜑}. Thus {𝑓 : 𝑔}{𝑔 : 𝜑} ⊆ {𝑓 : 𝜑}. Thus (𝑓 : 𝜑) ≤ (𝑓 : 𝑔)(𝑔 : 𝜑) (note
that the sets have nonnegative values, so the infimum commutes across the set product). ∎

With this, for each 𝜑 ∈ 𝐶+
𝑐 (𝐺), we can define a ‘almost linear’ functional on 𝐶≥0

𝑐 (𝐺) as

𝐼𝜑 : 𝐶≥0
𝑐 (𝐺) → ℝ : 𝑓 ↦ (𝑓 : 𝜑)

(𝑓0 : 𝜑)
.

Then due to Lemma 7.2.2, we immediately obtain the following properties.

Lemma 3. Given a LCH 𝐺, and 𝜑 ∈ 𝐶+
𝑐 (𝐺). Given 𝑓, 𝑔 ∈ 𝐶≥0

𝑐 (𝐺), the following holds:
(i) 𝐼𝜑(𝑥𝑓) = 𝐼𝜑(𝑓) for all 𝑥 ∈ 𝐺;

(ii) 𝐼𝜑(𝑐𝑓) = 𝑐𝐼𝜑(𝑓) for all 𝑐 ≥ 0;
(iii) 𝐼𝜑(𝑓 + 𝑔) ≤ 𝐼𝜑(𝑓) + 𝐼𝜑(𝑔);
(iv) If 𝑓 ≠ 0, then (𝑓0 : 𝑓)−1 ≤ 𝐼𝜑(𝑓) ≤ (𝑓 : 𝑓0).
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In metric spaces, we have notions of uniform continuity. We can extend a similar result to topological
groups. Albeit, we shall only use the definition that is relevant to this paper. Given a function 𝑓  between
a topological group 𝐺 into ℝ, we say 𝑓  is left uniformly continuous if for all 𝜀 > 0, there is a 𝑈 ∈
𝒩𝐺[𝑒] such that ‖𝑦𝑓 − 𝑓‖∞ < 𝜀 for all 𝑦 ∈ 𝑈 . Similarly for right uniformly continuity we have
‖𝑓𝑦 − 𝑓‖∞ < 𝜀 instead.

Lemma 4. Let 𝑓 ∈ 𝐶𝑐(𝐺) for some topological group 𝐺. Then 𝑓  is both left and right uniformly
continuous

 Proof. We shall prove left uniform continuity as right uniformly continuity is similar.
Note that 𝐾 ≔ supp(𝑓) is compact. Let 𝜀 > 0, then as 𝑓  is continuous, for each 𝑥 ∈ 𝑋, the map

𝑦 ↦ 𝑓(𝑦𝑥)

is continuous, so by continuity at 𝑒, there is a 𝑈𝑥 ∈ 𝒩[𝑒] such that
|𝑓(𝑦𝑥) − 𝑓(𝑥)| < 𝜀

for each 𝑦 ∈ 𝑈𝑥. Now there is a symmetric 𝑉𝑥 ∈ 𝒩[𝑒] such that 𝑉𝑥𝑉𝑥 ⊆ 𝑈𝑥. Now {𝑉𝑥𝑥 : 𝑥 ∈ 𝐾} covers
𝐾 , so there are 𝑥1, …, 𝑥𝑛 ∈ 𝐾 such that 𝐾 ⊆ ⋃𝑖≤𝑛 𝑉𝑥𝑖

𝑥𝑖 for some 𝑛 ∈ ℕ. Take 𝑉 = ⋂𝑖≤𝑛 𝑉𝑥𝑖
∈ 𝒩[𝑒],

which is also symmetric.
Let 𝑦 ∈ 𝑉  and 𝑥 ∈ 𝑋. If 𝑥 ∈ 𝐾 , then 𝑥𝑥−1

𝑖 ∈ 𝑉𝑥𝑖
 for some 𝑖 ≤ 𝑛. Now 𝑦𝑥𝑥−1

𝑖 ∈ 𝑉 𝑉𝑥𝑖
⊆ 𝑈𝑥𝑖

. So 𝑦𝑥 =
𝑦′𝑥𝑖 for some 𝑦′ ∈ 𝑈𝑥𝑖

. Note that 𝑥𝑥−1
𝑖 ∈ 𝑈𝑥𝑖

. So one has
|𝑓(𝑦𝑥) − 𝑓(𝑥)| ≤ |𝑓(𝑦𝑥) − 𝑓(𝑥𝑖)| + |𝑓(𝑥𝑖) − 𝑓(𝑥)|

= |𝑓(𝑦′𝑥𝑖) − 𝑓(𝑥𝑖)| + |𝑓(𝑥𝑖) − 𝑓(𝑥𝑥−1
𝑖 𝑥𝑖)| ≤ 2𝜀.

If 𝑥 ∉ 𝐾 , then 𝑓(𝑥) = 0. If 𝑦𝑥 ∉ 𝐾 , then |𝑓(𝑦𝑥) − 𝑓(𝑥)| = 0 < 𝜀, otherwise, 𝑦𝑥𝑥−1
𝑖 ∈ 𝑉𝑥𝑖

⊆ 𝑈𝑥𝑖
 for

some 𝑖 ≤ 𝑛 (𝑦𝑥 ∈ 𝐾). That means 𝑥𝑥−1
𝑖 = 𝑦−1𝑦𝑥𝑥−1

𝑖 ∈ 𝑉 𝑉𝑥𝑖
⊆ 𝑈𝑥𝑖

. So 𝑥 = 𝑦′𝑥𝑖 for some 𝑦′ ∈ 𝑈𝑥𝑖
,

hence–just like above–one has
|𝑓(𝑦𝑥) − 𝑓(𝑥)| ≤ |𝑓(𝑦𝑥) − 𝑓(𝑥𝑖)| + |𝑓(𝑥𝑖) − 𝑓(𝑦′𝑥𝑖)| ≤ 2𝜀.

This shows that 𝑓  is left uniformly continuous, as required. ∎

The result that follows is one might expect of the usual uniform continuity in topological groups
as inspired from metric spaces.

Corollary 5. Let 𝑓 ∈ 𝐶𝑐(𝐺) for some topological group 𝐺. Then for each 𝜀 > 0, there is a 𝑈 ∈ 𝒩[𝑒]
such that

|𝑓(𝑥) − 𝑓(𝑦)| < 𝜀

for all 𝑥𝑦−1 ∈ 𝑈  or 𝑦𝑥−1 ∈ 𝑈  where 𝑥, 𝑦 ∈ 𝐺.

 Proof. By left uniform continuity, there is a 𝑈 ∈ 𝒩[𝑒], which can be chosen to be symmetric, such
that ‖𝑦𝑓 − 𝑓‖∞ < 𝜀 for all 𝑦 ∈ 𝑈 . Let 𝑥, 𝑦 ∈ 𝐺, if 𝑦𝑥−1 ∈ 𝑈 , then 𝑦 = 𝑦′𝑥 for some 𝑦′ ∈ 𝑈 , thus
one has

|𝑓(𝑥) − 𝑓(𝑦)| = |𝑓(𝑥) − 𝑓(𝑦′𝑥)| < 𝜀.

The case for 𝑥𝑦−1 ∈ 𝑈  is similar as 𝑈  is symmetric. ∎

Using our uniform continuity results, we can prove that our 𝐼𝜑 is approximately additive when
supp(𝜑) is small enough.
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Lemma 6. Let 𝐺 be a LCH group. Given 𝑓1, 𝑓2 ∈ 𝐶+
𝑐 (𝐺) and 𝜀 > 0, there is a 𝑈 ∈ 𝒩[𝑒] such that

𝐼𝜑(𝑓1 + 𝑓2) ≤ 𝐼𝜑(𝑓1) + 𝐼𝜑(𝑓2) ≤ 𝐼𝜑(𝑓1 + 𝑓2) + 𝜀

for all 𝜑 ∈ 𝐶+
𝑐 (𝐺) such that supp(𝜑) < 𝜀.

 Proof. Note that supp(𝑓1 + 𝑓2) = supp(𝑓1) ∪ supp(𝑓2) is compact, so we can choose a 𝑔 ∈ 𝐶+
𝑐 (𝐺)

such that 𝑔|supp(𝑓1+𝑓2) = 1. Let 𝛿 > 0, consider the map ℎ = 𝑓1 + 𝑓2 + 𝛿𝑔 and ℎ𝑖 = 𝑓𝑖/ℎ (for 𝑖 ∈
{1, 2}) where ℎ𝑖|𝐺\supp(𝑓𝑖) = 0. Now ℎ𝑖 ∈ 𝐶+

𝑐 (𝐺), and by uniform continuity, there is a symmetric
𝑈 ∈ 𝒩[𝑒] such that

|ℎ𝑖(𝑥) − ℎ𝑖(𝑦)| < 𝛿 for all 𝑖 ∈ {1, 2}

whenever 𝑥𝑦−1 ∈ 𝑈  for 𝑥, 𝑦 ∈ 𝐺.
Let 𝜑 ∈ 𝐶+

𝑐 (𝐺) where supp(𝜑) ⊆ 𝑈 . Given 𝛼 = ∑𝑗≤𝑛 𝑐𝑗𝑥−1
𝑗 ∈ ℝ(𝐺) (where 𝑐1, …, 𝑐𝑛 ∈ ℝ,

𝑥1, …, 𝑥𝑛 ∈ 𝐺, and 𝑛 ∈ ℕ) such that ℎ ≤ 𝛼𝜑. Fix a 𝑖 ∈ {1, 2}. Then for each 𝑥 ∈ 𝐺 one has

𝑓𝑖(𝑥) = ℎ𝑖(𝑥)ℎ(𝑥) ≤ ∑
𝑗≤𝑛

𝑐𝑗𝜑(𝑥−1
𝑗 𝑥)ℎ𝑖(𝑥) ≤ ∑

𝑗≤𝑛
𝑐𝑗𝜑(𝑥−1

𝑗 𝑥)(ℎ𝑖(𝑥𝑗) + 𝛿)

as |ℎ𝑖(𝑥) − ℎ𝑖(𝑥𝑗)| < 𝛿 if 𝑥−1
𝑗 𝑥 ∈ supp(𝜑), or 𝜑(𝑥−1

𝑗 𝑥) = 0 if 𝑥−1
𝑗 𝑥 ∉ supp(𝜑). Thus

(𝑓𝑖 : 𝜑) ≤ ∑
𝑗≤𝑛

𝑐𝑗(ℎ𝑖(𝑥𝑗) + 𝛿),

and as ℎ1 + ℎ2 ≤ 1, one has
(𝑓1 : 𝜑) + (𝑓2 : 𝜑) ≤ [𝛼](1 + 2𝛿).

Choose 𝛼 such that [𝛼] = (ℎ : 𝜑) (like 𝛼 = (ℎ : 𝜑)𝑒), then by Lemma 7.2.3(ii-iii), one has

𝐼𝜑(𝑓1 + 𝑓2) ≤ 𝐼𝜑(𝑓1) + 𝐼𝜑(𝑓2) ≤ 𝐼𝜑(ℎ)(1 + 2𝛿) ≤ (1 + 2𝛿)(𝐼𝜑(𝑓1 + 𝑓2) + 𝛿𝐼𝜑(𝑔)).

Thus, it suffices to choose 𝛿 > 0 such that
2𝛿𝐼𝜑(𝑓1 + 𝑓2) + (1 + 2𝛿)𝛿𝐼𝜑(𝑔) < 𝜀

as required. ∎

Finally, we present the Haar’s Theorem which requires axiom of choice in the form of Tychonoff’s
theorem. The theorem proof is found in Folland’s analysis textbook [4].

Haar's Theorem 7. Let 𝐺 be a locally compact group, then there is a left Haar measure 𝜇 on 𝐺 that is
unique up to some multiplicative constant.

 Proof. Existence
Let 𝑓 ∈ 𝐶+

𝑐 (𝐺) and define the interval 𝑋𝑓 = [(𝑓0 : 𝑓)−1, (𝑓 : 𝑓0)], which is nonempty and compact.
Let 𝑋 = ∏𝑓∈𝐶+

𝑐 (𝐺) 𝑋𝑓 , which is compact by Tychonoff.

It follows that for each 𝜑 ∈ 𝐶+
𝑐 (𝐺), one has 𝐼𝜑 ∈ 𝑋.

For each 𝑈 ∈ 𝒩[𝑒], let

𝐾(𝑈) ≔ {𝐼𝜑 : supp(𝜑) ⊆ 𝑈, 𝜑 ∈ 𝐶+
𝑐 (𝐺)}.

Claim: 𝐾(⋂𝑖≤𝑛 𝑈𝑖) ⊆ ⋂𝑖≤𝑛 𝐾(𝑈𝑖) for each 𝑈1, …, 𝑈𝑛 ∈ 𝒩𝐺[𝑒].
Indeed, if given 𝜑 ∈ 𝐶+

𝑐 (𝐺) with supp(𝜑) ⊆ ⋂𝑖≤𝑛 𝑈𝑖, then that is equivalent to supp(𝜑) ⊆ 𝑈𝑖 for
each 𝑖 ≤ 𝑛. Hence one has
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{𝐼𝜑 : supp(𝜑) ⊆ ⋂
𝑖≤𝑛

𝑈𝑖, 𝜑 ∈ 𝐶+
𝑐 (𝐺)} = ⋂

𝑖≤𝑛
{𝐼𝜑 : supp(𝜑) ⊆ 𝑈𝑖 : 𝜑 ∈ 𝐶+

𝑐 (𝐺)},

i.e.

𝐾(⋂
𝑖≤𝑛

𝑈𝑖) ⊆ ⋂
𝑖≤𝑛

𝐾(𝑈𝑖),

as ⋂𝑖 𝐴𝑖 ⊆ ⋂𝑖 𝐴𝑖 in general.
Hence claim proven.

Now given 𝑈1, …, 𝑈𝑛 ∈ 𝒩𝐺[𝑒], and as 𝐾(⋂𝑖≤𝑛 𝑈𝑖) is nonempty, then so is ⋂𝑖≤𝑛 𝐾(𝑈𝑖). Then as 𝑋
is compact, one has 𝐾 ≔ ⋂𝑈∈𝒩[𝑒] 𝐾(𝑈) is nonempty (finite intersection property), and hence take a
𝐼0 to be in that intersection.
Given 𝜀 > 0, any 𝑈 ∈ 𝒩𝐺[𝑒] and 𝑓1, …, 𝑓𝑛 ∈ 𝐶+

𝑐 (𝐺).

Claim ⋆: there is a 𝜑 ∈ 𝐶+
𝑐 (𝐺) with supp(𝜑) ⊆ 𝑈  such that |𝐼0(𝑓𝑖) − 𝐼𝜑(𝑓𝑖)| < 𝜀 for each 𝑖 ≤ 𝑛.

Consider an open 𝑁 ≔ ∏𝑓∈𝐶+
𝑐 (𝐺) 𝑁𝑓 ∈ 𝒩𝑋[𝐼0] where

𝑁𝑓 = {
(𝐼0(𝑓) − 𝜀, 𝐼0(𝑓) + 𝜀) ∩ 𝑋𝑓 if 𝑓 ∈ {𝑓1, …, 𝑓𝑛}
𝑋𝑓 otherwise .

Now 𝑁 ∩ 𝐾 ≠ ∅, so for each 𝑉 ∈ 𝒩[𝑒], one has 𝑁 ∩ {𝐼𝜑 : supp(𝜑) ⊆ 𝑉 } ≠ ∅.
Hence there is a 𝜑 ∈ 𝐶+

𝑐 (𝐺) with supp(𝜑) ⊆ 𝑈 , such that 𝐼𝜑 ∈ 𝑁 . By definition of 𝑁 , one has

|𝐼0(𝑓𝑖) − 𝐼𝜑(𝑓𝑖)| < 𝜀 for all 𝑖 ≤ 𝑛.

Thus claim is proven.

Given 𝑓 ∈ 𝐶𝑐(𝐺), let 𝑓+ ≔ |𝑓|+𝑓
2  and 𝑓− ≔ |𝑓|−𝑓

2 , so 𝑓+, 𝑓− ∈ 𝐶≥0
𝑐 (𝐺), and define

𝐼 : 𝐶𝑐(𝐺) → ℝ : 𝑓 ↦ 𝐼0(𝑓+) − 𝐼0(𝑓−).

Claim: 𝐼0 is a left-invariant “linear” functional.
Let 𝑓, 𝑔 ∈ 𝐶≥0

𝑐 (𝐺), 𝜆 ≥ 0, and 𝑥 ∈ 𝐺. By ⋆, there is a (𝜑𝑛)𝑛∈ℕ ∈ 𝐶+
𝑐 (𝐺)ℕ such that 𝐼𝜑𝑛

(𝐹) → 𝐼0(𝐹)
for 𝐹 ∈ 𝐴 ≔ {𝑓, 𝑔, 𝜆𝑓, 𝑓 + 𝑔, 𝑥𝑓}. Now one has

𝐼0(𝑥𝑓) = lim
𝑛→∞

𝐼𝜑𝑛
(𝑥𝑓) = lim

𝑛→∞
𝐼𝜑𝑛

(𝑓) = 𝐼0(𝑓).

So 𝐼0 is left-invariant.
Similarly,

𝐼0(𝜆𝑓) = lim
𝑛→∞

𝐼𝜑𝑛
(𝜆𝑓) = 𝜆 lim

𝑛→∞
𝐼𝜑𝑛

(𝑓) = 𝜆𝐼0(𝑓).

Finally, given 𝜀 > 0, there is a 𝑈 ∈ 𝒩[𝑒] such that |𝐼𝜑(𝑓) + 𝐼𝜑(𝑔) − 𝐼𝜑(𝑓 + 𝑔)| < 𝜀 for 𝜑 ∈ 𝐶+
𝑐 (𝐺)

whenever supp(𝜑) ⊆ 𝑈 . Now there is such a 𝜑 with supp(𝜑) ⊆ 𝑈  such that |𝐼0(𝐹) − 𝐼𝜑(𝐹)| < 𝜀 for
all 𝐹 ∈ 𝐴 by ⋆. Thus one has

|𝐼0(𝑓) + 𝐼0(𝑔) − 𝐼0(𝑓 + 𝑔)| ≤ |𝐼0(𝑓) − 𝐼𝜑(𝑓)| + |𝐼0(𝑔) − 𝐼𝜑(𝑔)|

+|𝐼𝜑(𝑓 + 𝑔) − 𝐼0(𝑓 + 𝑔)| + |𝐼𝜑(𝑔) + 𝐼𝜑(𝑓) − 𝐼𝜑(𝑓 + 𝑔)|

≤ 4𝜀,
so one has 𝐼0(𝑓 + 𝑔) = 𝐼0(𝑓) + 𝐼0(𝑔).

Claim: 𝐼  is left-invariant positive linear functional.
Let 𝑓, 𝑔 ∈ 𝐶𝑐(𝐺), 𝜆 ∈ ℝ, and 𝑥 ∈ 𝐺. Now one has
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𝐼(𝑥𝑓) = 𝐼0(𝑥𝑓+) − 𝐼0(𝑥𝑓−) = 𝐼0(𝑓+) − 𝐼0(𝑓−) = 𝐼(𝑓)

shows that 𝐼  is left-invariant.
If 𝜆 ≥ 0, then

𝐼(𝜆𝑓) = 𝐼0(𝜆𝑓+) − 𝐼0(𝜆𝑓−) = 𝜆(𝐼0(𝑓+) − 𝐼0(𝑓−)) = 𝜆𝐼(𝑓)

and if 𝜆 ≤ 0, then
𝐼(𝜆𝑓) = 𝐼0(−𝜆𝑓−) − 𝐼0(−𝜆𝑓+) = 𝜆(𝐼0(𝑓+) − 𝐼0(𝑓−)) = 𝜆𝐼(𝑓)

shows that 𝐼  is homogeneous.
For additivity, note that

𝑓+ − 𝑓− + 𝑔+ − 𝑔− = 𝑓 + 𝑔 = (𝑓 + 𝑔)+ − (𝑓 + 𝑔)−,
i.e.

(𝑓 + 𝑔)− + 𝑓+ + 𝑔+ = (𝑓 + 𝑔)+ + 𝑓− + 𝑔−.
So one has:

𝐼(𝑓 + 𝑔) − 𝐼(𝑓) − 𝐼(𝑔) = 𝐼0((𝑓 + 𝑔)+) − 𝐼0((𝑓 + 𝑔)−) − 𝐼0(𝑓+) + 𝐼0(𝑓−) − 𝐼0(𝑔+) + 𝐼0(𝑔−)
= 𝐼0((𝑓 + 𝑔)+ + 𝑓− + 𝑔−) − 𝐼0((𝑓 + 𝑔)− + 𝑓+ + 𝑔+) = 0.

Hence 𝐼  is a linear functional.

Now for 𝑓 ∈ 𝐶≥0
𝑐 (𝐺), it is clear that 𝐼(𝑓) = 𝐼0(𝑓) ≥ 0. So 𝐼  is a positive linear functional.

Now by Riesz-Markov-Kakutani Representation Theorem 5.1.4, there is a unique Radon measure 𝜇 :
ℬ(𝐺) → [0, ∞] such that

𝐼(𝑓) = ∫
𝐺

𝑓 d𝜇 for all 𝑓 ∈ 𝐶𝑐(𝐺).

By Proposition 7.1.3, 𝜇 is a left Haar measure, as required.
Uniqueness
Let 𝜇 and 𝜈 be two left Haar measures on 𝐺, and define

𝑟𝑓 =
∫

𝐺
𝑓 d𝜇

∫
𝐺

𝑓 d𝜈

for all 𝑓 ∈ 𝐶+
𝑐 (𝐺), which is well-defined in (0, ∞) by Lemma 7.1.4. Now if 𝑟𝑓  is not dependent on 𝑓 ,

then one has 𝜇 = 𝑟𝑓𝜈 by Lemma 5.1.3. So it remains to show that 𝑓 ↦ 𝑟𝑓  is a constant map.
Let 𝑓, 𝑔 ∈ 𝐶+

𝑐 (𝐺), and pick a compact symmetric 𝑉0 ∈ 𝒩𝐺[𝑒], thus the sets
𝐴 = 𝑉0supp(𝑓) ∪ supp(𝑓)𝑉0 and 𝐵 = 𝑉0supp(𝑔) ∪ supp(𝑔)𝑉0

are compact. Now the maps
𝑥 ↦ 𝑓(𝑥𝑦) − 𝑓(𝑦𝑥) and 𝑥 ↦ 𝑔(𝑥𝑦) − 𝑔(𝑦𝑥)

are supported on 𝐴 and 𝐵 respectively for all 𝑦 ∈ 𝑉0.
Let 𝜀 > 0, and by Lemma 7.2.4, it follows that there is a symmetric 𝑉 ∈ 𝒩𝐺[𝑒] with compact 𝑉 ⊆ 𝑉0
such that

sup
𝑥∈𝐺

|𝑓(𝑥𝑦) − 𝑓(𝑦𝑥)|,  sup
𝑥∈𝐺

|𝑔(𝑥𝑦) − 𝑔(𝑦𝑥)| < 𝜀

for all 𝑦 ∈ 𝑉 .
Choose ℎ ∈ 𝐶+

𝑐 (𝐺) such that supp(ℎ) ⊆ 𝑉  and ℎ(𝑥) = ℎ(𝑥−1) for all 𝑥 ∈ 𝐺 (e.g. take ℎ(𝑥) =
ℎ1(𝑥) + ℎ1(𝑥−1) for some ℎ1 ∈ 𝐶+

𝑐 (𝐺) with supp(ℎ1) ⊆ 𝑉 ). Now finally using Fubini’s theorem
(which can be obtained as 𝑓  and ℎ are compact supported, hence the restriction of the measures 𝜇 and
𝜈 on the those compact supports forms a finite measure), one has
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∫ ℎ d𝜈 ∫ 𝑓 d𝜇 = ∬ ℎ(𝑦)𝑓(𝑥) d𝜇(𝑥) d𝜈(𝑦)

= ∬ ℎ(𝑦)𝑓(𝑦𝑥) d𝜇(𝑥) d𝜈(𝑦),

and using the fact that ℎ(𝑥) = ℎ(𝑥−1), one also has

∫ ℎ d𝜇 ∫ 𝑓 d𝜈 = ∬ ℎ(𝑥)𝑓(𝑦) d𝜇(𝑥) d𝜈(𝑦)

= ∬ ℎ(𝑦−1𝑥)𝑓(𝑦) d𝜇(𝑥) d𝜈(𝑦) = ∬ ℎ(𝑥−1𝑦)𝑓(𝑦) d𝜈(𝑦) d𝜇(𝑥)

= ∬ ℎ(𝑦)𝑓(𝑥𝑦) d𝜈(𝑦) d𝜇(𝑥) = ∬ ℎ(𝑦)𝑓(𝑥𝑦) d𝜇(𝑥) d𝜈(𝑦).

Finally,

|∫ ℎ d𝜈 ∫ 𝑓 d𝜇 − ∫ ℎ d𝜇 ∫ 𝑓 d𝜈| = |∬ ℎ(𝑦)(𝑓(𝑥𝑦) − 𝑓(𝑦𝑥)) d𝜇(𝑥) d𝜈(𝑦)|

≤ ∫
𝑉

∫
𝐴

ℎ(𝑦)|(𝑓(𝑥𝑦) − 𝑓(𝑦𝑥))| d𝜇(𝑥) d𝜈(𝑦)

≤ 𝜀𝜇(𝐴) ∫
𝐺

ℎ d𝜈

and similarly,

|∫ ℎ d𝜈 ∫ 𝑓 d𝜇 − ∫ ℎ d𝜇 ∫ 𝑓 d𝜈| ≤ 𝜀𝜇(𝐵) ∫
𝐺

ℎ d𝜈.

Dividing these inequalities by ∫ ℎ d𝜈 ∫ 𝑓 d𝜈 and ∫ ℎ d𝜈 ∫ 𝑔 d𝜈 respectively, and adding them together
to obtain

|
∫ 𝑓 d𝜇
∫ 𝑓 d𝜈

−
∫ 𝑔 d𝜇
∫ 𝑔 d𝜈

| ≤ 𝜀( 𝜇(𝐴)
∫ 𝑓 d𝜈

+ 𝜇(𝐵)
∫ 𝑔 d𝜈

).

By taking 𝜀 ↓ 0, we get 𝑟𝑓 = 𝑟𝑔, as required. ∎

3 – Unimodular Groups
A natural question to ask is when Haar measures are both left and right invariant? We shall answer
it here.

Given a left Haar measure 𝜇 on a LCH group 𝐺, then 𝜇𝑥 : ℬ(𝐺) → [0, ∞] : 𝐸 ↦ 𝜇(𝐸𝑥) is again
a left Haar measure on 𝐺. Then by uniqueness, there is a Δ(𝑥) ∈ (0, ∞) such that 𝜇𝑥 = Δ(𝑥)𝜇. If 𝜈
is another left Haar measure, then by uniqueness, there is a 𝑐 > 0 such that 𝜈 = 𝑐𝜇, hence

Δ(𝑥)𝜈 = Δ(𝑥)𝑐𝜇 = 𝑐𝜇𝑥 = 𝜈𝑥.

So Δ(𝑥) is not dependent on 𝜇, hence we have the modular function, Δ : 𝐺 → (0, ∞), on 𝐺. The
modular function will provide us an insight between the relationship of left and right Haar measures.
Clearly Δ(1) = 1, but if Δ = 1 (a constant function), then we say that 𝐺 is unimodular.
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Lemma 1. Given a left Haar measure 𝜇 on a LCH group 𝐺. Then for any complex-valued 𝑓 ∈ 𝐿1(𝐺, 𝜇)
and 𝑔 ∈ 𝐺, one has

∫
𝐺

𝑓𝑔 d𝜇 = Δ(𝑔−1) ∫
𝐺

𝑓 d𝜇.

 Proof. It suffices to show that the result holds for indicator functions and the rest will follow from
linearity, approximation by simple functions, and the dominated convergence theorem. So given a 𝐸 ∈
ℬ(𝐺), one has

∫
𝐺

1𝐸(𝑥𝑔) d𝜇(𝑥) = 𝜇(𝐸𝑔−1) = Δ(𝑔−1) ∫
𝐺

1𝐸 d𝜇,

as required. ∎

This result shows us that how the modular function dictates how left and right Haar measures are
related each other.

Corollary 2. Given a LCH group 𝐺. A Haar measure is left and right invariant if, and only if, 𝐺 is
unimodular. In particular, Abelian LCH groups are unimodular.

 Proof. Let 𝜇 be a left-right Haar measure on 𝐺. Choose any 𝑓 ∈ 𝐶+
𝑐 (𝐺) and by previous lemma,

one has

∫
𝐺

𝑓 d𝜇 = ∫
𝐺

𝑓𝑔 d𝜇 = Δ(𝑔−1) ∫
𝐺

𝑓 d𝜇,

then Δ(𝑔−1) = 1 for all 𝑔 ∈ 𝐺. So Δ = 1.
If Δ = 1 and, without loss of generality, let 𝜇 be a left Haar measure, then by previous lemma, one has

∫
𝐺

𝑓𝑔 d𝜇 = Δ(𝑔−1) ∫
𝐺

𝑓 d𝜇 = ∫
𝐺

𝑓 d𝜇 for all 𝑓 ∈ 𝐶𝑐(𝐺) and 𝑔 ∈ 𝐺

then following from Proposition 7.1.3, one has that 𝜇 is a right Haar measure.
If 𝐺 is Abelian, then given a left Haar measure 𝜇 on 𝐺. Choose any 𝑓 ∈ 𝐶+

𝑐 (𝐺) then one has

∫
𝐺

𝑓𝑔 d𝜇 = Δ(𝑔−1) ∫
𝐺

𝑓 d𝜇 = Δ(𝑔−1) ∫
𝐺

𝑔𝑓 d𝜇 = Δ(𝑔−1) ∫
𝐺

𝑓𝑔 d𝜇,

then Δ(𝑔−1) = 1 as 𝑓𝑔 ∈ 𝐶+
𝑐 (𝐺) for all 𝑔 ∈ 𝐺. So Δ = 1,as required. ∎

We shall show that Δ is also a continuous (group) homomorphism. First we need another lemma.

Lemma 3. If 𝜇 is a Radon measure on a LCH group 𝐺 and 𝑓 ∈ 𝐶𝑐(𝐺). Then the maps 𝑥 ↦ ∫
𝐺

𝑥𝑓 d𝜇
and 𝑥 ↦ ∫

𝐺
𝑓𝑥 d𝜇 on 𝐺 are continuous.

 Proof. We shall prove 𝑥 ↦ ∫
𝐺

𝑥𝑓 d𝜇 is continuous and the other follows similarly. Let 𝑔 ∈ 𝐺 and
𝜀 > 0. As 𝑓  is uniformly continuous, there is a symmetric relatively compact 𝑈 ∈ 𝒩[𝑒] such that
|𝑓(𝑎) − 𝑓(𝑏)| < 𝜀 whenever 𝑎𝑏−1 ∈ 𝑈 . For each 𝑥 ∈ 𝑔𝑈 , one has |𝑓(𝑥𝑦) − 𝑓(𝑔𝑦)| < 𝜀 for all 𝑦 ∈ 𝐺
as 𝑥𝑦(𝑔𝑦)−1 = 𝑥𝑔−1 ∈ 𝑈 . Let 𝐾 = supp(𝑥𝑓) ∪ supp(𝑔𝑓 , which is compact and thus one has
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|∫
𝐺

𝑥𝑓 d𝜇 − ∫
𝐺

𝑔𝑓 d𝜇| ≤ ∫
𝐺

|𝑥𝑓 − 𝑔𝑓| d𝜇

= ∫
𝑀

|𝑥𝑓 − 𝑔𝑓| d𝜇

< 𝜀𝜇(𝑀),

where 𝜇(𝑀) < ∞ as 𝜇 is Radon. Thus our maps are continuous. ∎

Lemma 4. The modular function Δ on a LCH group 𝐺 is a continuous homorphism.

 Proof. Let 𝜇 be any left Haar measure on 𝐺, and by Lemma-7-2-8, choose any 𝑓 ∈ 𝐶𝑐(𝐺) such that
∫

𝐺
𝑓 d𝜇 = 1, then one has that

Δ(𝑔) = ∫
𝑋

𝑓𝑔−1 d𝜇 for all 𝑔 ∈ 𝐺.

Then by preceding lemma, Δ is continuous. Now choose any Borel 𝐸 ⊆ 𝐺 such that 𝜇(𝐸) ∈ (0, ∞)
(which exists as 𝜇 ≠ 0 and 𝜇 is Radon) and let 𝑥, 𝑦 ∈ 𝐺, then one has

Δ(𝑥𝑦)𝜇(𝐸) = 𝜇(𝐸𝑥𝑦) = Δ(𝑦)𝜇(𝐸𝑥) = Δ(𝑦)Δ(𝑥)𝜇(𝐸),

so Δ(𝑥𝑦) = Δ(𝑥)Δ(𝑦). Hence Δ is a homorphism, as required. ∎

Finally, we have the tools to show that the corresponding pairs of left and right Haar measures
really just depend on Δ. That is given a left Haar measure 𝜇, then 𝜇̃(𝐸) = 𝜇(𝐸−1) for all Borel 𝐸 are
mutually continuous with a density function depending on Δ.

Theorem 5. Let 𝜇 be a left Haar measure on a LCH group 𝐺. Then

d𝜇̃ = 1
Δ

d𝜇.

 Proof. By Lemma-7-2-8 and preceding lemma, one has that

∫
𝐺

1
Δ

𝑓 d𝜇 = Δ(𝑔) ∫
𝐺

1
Δ(𝑥𝑔)

𝑓(𝑥𝑔) d𝜇 = ∫
𝐺

1
Δ

(𝑓𝑔) d𝜇

for all 𝑓 ∈ 𝐶𝑐(𝐺). Thus the positive linear functional 𝑓 ↦ ∫
𝐺

1
Δ𝑓 d𝜇 is right invariant, then by

Riesz-Markov-Kakutani Representation Theorem 5.1.4, the linear functional has an associated Radon
measure, 1

Δ d𝜇, and following from Proposition 7.1.3, 1
Δ d𝜇 is a right Haar measure. Hence by unique-

ness, one has 1
Δ d𝜇 = 𝑐 d𝜇̃ for some 𝑐 > 0.

If 𝑐 ≠ 1, then using continuity of 1
Δ  at 1, there is a symmetric 𝑈 ∈ 𝒩[𝑒] such that

| 1
Δ(𝑥)

− 1| < 1
2
|𝑐 − 1| for all 𝑥 ∈ 𝑈.

By symmetry 𝜇(𝑈) = 𝜇̃(𝑈), hence one has

|𝑐 − 1|𝜇(𝑈) = |𝑐𝜇̃(𝑈) − 𝜇(𝑈)| = |∫
𝑈
( 1

Δ
− 1) d𝜇| < 1

2
|𝑐 − 1|𝜇(𝑈),

a contradiction. So 𝑐 = 1, as required. ∎
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This result also shows that integrals in unimodular group satisfy another nice identity; they are
invariant under group inversion.

Corollary 6. Let 𝐺 be a unimodular group and 𝜇 be a Haar measure on 𝐺. Then for any 𝑓 ∈ 𝐿1, one has

∫
𝐺

𝑓(𝑥) d𝜇(𝑥) = ∫
𝐺

𝑓(𝑥−1) d𝜇(𝑥).

 Proof. By the preceding theorem, 𝜇 = 𝜇̃, and note that 1𝐵(𝑥−1) = 1𝐵−1(𝑥) for all 𝐵 ∈ ℬ(𝐺) and
𝑥 ∈ 𝐺. Hence given 𝐵 ∈ ℬ(𝐺), one has,

∫
𝐺

1𝐵(𝑥) d𝜇(𝑥) = 𝜇̃(𝐵) = 𝜇(𝐵−1) = ∫
𝐺

1𝐵−1(𝑥) = ∫
𝐺

1𝐵(𝑥−1) d𝜇(𝑥).

Thus the statement holds for all simple functions. Then by approximation by simple functions and
dominated convergence theorem, the result follows. ∎

Hence the main takeaway here for unimodular groups is that Haar measures on such groups
are both left and right invariant, and integrals are invariant under group inversion as stated in the
preceding corollary.

Conveniently, it turns out all compact (Hausdorff) groups are unimodular.

Proposition 7. Let 𝐺 be a LCH group. If 𝐺 is compact, then 𝐺 is unimodular.

 Proof. Let 𝜇 be a left Haar measure on 𝐺. Then for any 𝑥 ∈ 𝐺, one has 𝐺 = 𝐺𝑥, so
𝜇(𝐺) = 𝜇(𝐺𝑥) = Δ(𝑥)𝜇(𝐺) implies Δ(𝑥) = 1

as 0 < 𝜇(𝐺) < ∞. Thus Δ = 1, as required. ∎

Thus by Haar's Theorem 7.2.7, as 𝒰(𝑛) is compact, there is a unique probability Haar measure 𝜇
on 𝒰(𝑛). By Corollary 7.3.2, it turns out 𝜇 is both left and right invariant. However, the existence of 𝜇
does rely on axiom of choice.

4 – Explicit Construction: Unitary Haar Measure
This part will be primarily focusing on the explicit construction of the unitary Haar measure without
requiring the axiom of choice. The construction can also gives us an idea on how to compute using
the unitary Haar measure.First we denote 𝜆𝑛 to be the Lebesgue measure on ℂ𝑛 (identified as ℝ2𝑛).
Note that the Lebesgue measure is regular and Radon.

Let 𝐺 be the Gaussian function on ℂ𝑛 defined as

𝐺(𝑧) = 1
𝜋𝑛 𝑒−|𝑧|2 .

This function is continuous and its integral, the Gaussian integral is well-known, with

∫
ℂ𝑛

𝐺 d𝜆𝑛 = 1.

hence 𝐺 ∈ 𝐿1(𝜆𝑛). Thus the Gaussian measure 𝛾𝑛 defined as

d𝛾𝑛 = 𝐺𝜆𝑛.
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is a regular Radon probability measure by Theorem 5.2.9.

Since ℂ𝑛×𝑛 is identified as ℂ𝑛2 , one has that 𝛾𝑛2  gives a regular Radon probability measure on
ℂ𝑛×𝑛 through that natural identification. Now we have a nice probability measure on ℂ𝑛×𝑛, we shall
construct the unitary Haar measure by considering the continuous map 𝐹 : GL(𝑛, ℂ) → 𝒰(𝑛):

𝑋 ↦ 𝑋(𝑋∗𝑋)−1
2 . (7.1)

The proof of the properties of this map is found in Chapter 3.3.

Then taking the pushforward of 𝛾𝑛2  under that map should give us our desired measure.

First, we shall show that almost all matrices in ℂ𝑛×𝑛 are invertible.

Lemma 1. Let 𝑝 ∈ ℂ[𝑥1, …, 𝑥𝑛], then the set 𝐴 = {𝑥 ∈ ℂ𝑛 : 𝑝(𝑥) = 0} is Borel and either 𝜆𝑛(𝐴) = 0
or 𝐴 = ℂ𝑛.

 Proof. Clearly 𝐴 is Borel as 𝑝 is continuous. If 𝑝 = 0, then 𝐴 = ℂ𝑛 holds, so suppose 𝑝 ≠ 0. If
𝑛 = 1, then by fundamental theorem of algebra, one has |𝐴| ≤ 𝑛, so 𝜆(𝐴) = 0 holds. Consider strong
induction 𝑛 > 1, and let 𝑝 ∈ ℂ[𝑥1, …, 𝑥𝑛], so there is a 𝑘 ∈ ℕ and 𝑝1, …, 𝑝𝑘 ∈ ℂ[𝑥1, …, 𝑥𝑛−1] such that

𝑝(𝑥, 𝑥𝑛) = ∑
𝑖≤𝑘

𝑝𝑖(𝑥)𝑥𝑖
𝑛 for all (𝑥, 𝑥𝑛) ∈ ℂ𝑛.

Define
𝐵 = {(𝑥, 𝑥𝑛) ∈ ℂ𝑛 : 𝑝𝑖(𝑥) = 0 for all 𝑖 ≤ 𝑘},

and
𝐶 = {(𝑥, 𝑥𝑛) ∈ ℂ𝑛 : 𝑝(𝑥, 𝑥𝑛) = 0 but 𝑝𝑖(𝑥) ≠ 0 for some 𝑖 ≤ 𝑘},

so 𝐴 = 𝐵 ∪ 𝐶 . Now by inductive hypothesis,
𝜆(𝐵) ≤ 𝜆({𝑥 ∈ ℂ𝑛−1 : 𝑝𝑘(𝑥) = 0}) = 0.

For a fixed 𝑥 ∈ ℂ𝑛−1 with 𝑝𝑖(𝑥) ≠ 0 for some 𝑖, there are finite 𝑥𝑛 ∈ ℂ such that 𝑝(𝑥, 𝑥𝑛) = 0 (by
fundamental theorem of algebra). Now one has

𝜆𝑛(𝐶) = ∫
ℂ𝑛

1𝐶 d𝜆𝑛

= ∫
ℂ𝑛−1

∫
ℂ

1{(𝑥,𝑥𝑛)∈ℂ𝑛:𝑝(𝑥𝑛,𝑥)=0} d𝜆1(𝑥𝑛) d𝜆𝑛−1(𝑥)

= ∫
ℂ𝑛−1

𝜆1({(𝑥, 𝑥𝑛) ∈ ℂ𝑛 : 𝑝(𝑥, 𝑥𝑛) = 0}) d𝜆𝑛−1(𝑥)

= ∫
ℂ𝑛−1

0 d𝜆𝑛−1 = 0,

as required. ∎

Corollary 2. Almost all matrices in ℂ𝑛×𝑛 are invertible. Furthermore, 𝛾𝑛2(GL(𝑛, ℂ)) = 1.

 Proof. The map 𝐴 ↦ det(𝐴) is a polynomial map (hence continuous), then by preceding lemma,
there set of zeroes of that map has measure zero. Note that the set of zeroes corresponds to the set
of singular matrices, hence almost all matrices in ℂ𝑛×𝑛 are invertible. Now as 𝛾𝑛2  has a density with
respect to 𝜆𝑛2 , thus 𝛾𝑛2(GL(𝑛, ℂ)) = 𝛾𝑛2(ℂ𝑛×𝑛) = 1, as required. ∎
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Now it turns out, 𝛾𝑛 is left and right invariant with respect to the unitary matrices.

Lemma 3. For any 𝐵 ∈ ℬ(ℂ𝑛×𝑛) and 𝑈 ∈ 𝒰(𝑛), one has

𝛾𝑛2(𝑈𝐵) = 𝛾𝑛2(𝐵𝑈) = 𝛾𝑛2(𝐵).

 Proof. Note that the maps 𝑋 ↦ 𝑈𝑋 and 𝑋 ↦ 𝑋𝑈  are 𝐶1-diffeomorphisms on ℂ𝑛×𝑛(≅ ℂ𝑛2)
with derivative 𝑈 . Thus for 𝑈 ∈ 𝒰(𝑛), note that |det(𝑈)| = 1, and one has

𝛾𝑛2(𝑈𝐵) = 1
𝜋𝑛2 ∫

𝑈𝐵
𝑒− tr(𝑋∗𝑋) d𝜆𝑛2(𝑋) = 1

𝜋𝑛2 ∫
𝐵
| det(𝑈)|𝑒− tr((𝑈∗𝑋)∗(𝑈∗𝑋)) d𝜆𝑛2(𝑋) = 𝛾𝑛2(𝐵),

and similarly 𝛾𝑛2(𝐵𝑈) = 𝛾𝑛2(𝐵), as required. ∎

Finally, let us define the our candidate unitary Haar measure

𝜔 : ℬ(𝒰(𝑛)) → [0, 1] as 𝜔 = 𝐹∗𝛾𝑛2 ,

where 𝐹  is described in (7.1). Now 𝜔 is indeed a Borel measure as 𝐹  is continuous, and it is indeed a
probability measure as 𝛾𝑛2  is also one.

Note that 𝒰(𝑛) is a second-countable compact space and 𝜔 is finite, then by Corollary 5.2.6, one
has that 𝜔 is a Radon and regular measure. Thus it suffices to prove invariance on unitary matrices.

Theorem 4. The 𝜔 defined above is the probability Haar measure on 𝒰(𝑛).

 Proof. We have already established that 𝜔 is a Radon probability measure, so it suffices to prove left
invariance, as right invariance will follow from the fact that 𝒰(𝑛) is compact through Proposition 7.3.7,
similarly, uniqueness follows from Haar's Theorem 7.2.7 (which that part does not use axiom of choice).
Now given 𝑈 ∈ 𝒰(𝑛) and 𝐵 ∈ ℬ(𝒰(𝑛)), claim that 𝑈𝐹−1(𝐵) = 𝐹−1(𝑈𝐵).
Let 𝑋 ∈ 𝑈𝐹−1(𝐵), then there is a 𝑌 ∈ 𝐹−1(𝐵) such that 𝑋 = 𝑈𝑌 , now

𝐹(𝑋) = 𝑈𝑌 ((𝑈𝑌 )∗𝑈𝑌 )−1
2 = 𝑈𝐹(𝑌 ) ∈ 𝑈𝐵

so 𝑋 ∈ 𝐹−1(𝑈𝐵). Hence 𝑈𝐹−1(𝐵) ⊆ 𝐹−1(𝑈𝐵).
Now 𝑈−1𝐹−1(𝑈𝐵) ⊆ 𝐹−1(𝐵) by above, hence 𝐹−1(𝑈𝐵) ⊆ 𝑈𝐹−1(𝐵). Thus our claim is proven.
Finally by preceding lemma,

𝜔(𝑈𝐵) = 𝛾𝑛2(𝑈𝐹−1(𝐵)) = 𝜔(𝐵)

shows that 𝜔 is a left Haar measure, as required. ∎

Thus for any 𝐵 ∈ ℬ(𝒰(𝑛)), by Change of Variables Formula for Pushfoward Measures 5.3.1, one
has

𝜔(𝐵) = 𝛾𝑛2(𝐹−1(𝐵)) = 1
𝜋𝑛2 ∫

𝐹−1(𝐵)
𝑒−|𝑧|2 d𝜆𝑛2(𝑧).
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8 | Fourier Analysis
 In this section, we will briefly look at the Fourier transform of bounded measures on ℂ𝑛 and

its immediate properties. Since we are building towards the probabilistic interpretation of the Horn
problem, we will be taking convolution of such measures. In order to find the convolution, we will be
observing their Fourier transforms.

Given a finite Borel measure 𝜇 on ℂ𝑛, we define the Fourier transform:

𝜇̂ : ℂ𝑛 → ℂ : 𝑥 ↦ ∫
ℂ𝑛

𝑒⟨𝜔,𝑥⟩ d𝜇(𝜔).

Which converges as 𝜇 is finite. It is clear that the Fourier transform here is acts linearly.

As an example, if 𝑥 ∈ ℂ𝑛, then the Fourier transform of the Dirac delta measure 𝛿𝑥 is

𝛿𝑥(𝑡) = ∫
ℂ𝑛

𝑒⟨𝜔,𝑡⟩ d𝛿𝑥(𝜔) = 𝑒⟨𝑥,𝑡⟩ for all 𝑡 ∈ ℂ𝑛.

Given two 𝜎-finite Borel measures 𝜇 and 𝜈 on a topological group 𝐺, we define the convolution of 𝜇
and 𝜈, 𝜇 ∗ 𝜈, as the pushforward measure of 𝜇 × 𝜈 under the group action map. That is, if we define
ℎ : 𝐺 × 𝐺 → 𝐺 to be ℎ(𝑥, 𝑦) = 𝑥𝑦, then one has the measure 𝜇 ∗ 𝜈 = ℎ∗(𝜇 × 𝜈). Thus for any 𝐸 ∈
ℬ(𝐺), one has (using Tonelli-Fubini’s theorem)

(𝜇 ∗ 𝜈)(𝐸) = ∫
𝐺×𝐺

1ℎ−1(𝐸) d(𝜇 × 𝜈) = ∬
𝐺×𝐺

1𝐸(𝑥𝑦) d𝜇(𝑥) d𝜈(𝑦)

as 1ℎ−1(𝐸)(𝑥, 𝑦) = 1𝐸(𝑥𝑦) for all 𝑥, 𝑦 ∈ 𝐺. Thus using approximation by simple functions and the
dominated convergence theorem, one has that

∫
𝐺

𝑓 d(𝜇 ∗ 𝜈) = ∬
𝐺×𝐺

𝑓(𝑥𝑦) d𝜇(𝑥) d𝜈(𝑦)

for all 𝑓 ∈ 𝐿1(𝜇 ∗ 𝜈).

Note that if the group is Abelian, then 𝜇 ∗ 𝜈 = 𝜈 ∗ 𝜇.

Let 𝜆 be a 𝜎-finite left Haar measure on 𝐺 where 𝐺 is now LCH, such that 𝜇 ≪ 𝜆 and 𝜈 ≪ 𝜆, then
by Radon-Nikodyn theorem, there are measurable 𝑓, 𝑔 : 𝐺 → [0, ∞) such that d𝜇 = 𝑓 d𝜆 and d𝜈 =
𝑔 d𝜆. Now we have another interpretation of the convolution:

(𝜇 ∗ 𝜈)(𝐸) = ∫
𝐺

∫
𝐺

1𝐸(𝑥𝑦)𝑓(𝑥)𝑔(𝑦) d𝜆(𝑦) d𝜆(𝑥)

= ∫
𝐺

∫
𝐺

1𝐸(𝑦)𝑓(𝑥)𝑔(𝑥−1𝑦) d𝜆(𝑦) d𝜆(𝑥)

= ∫
𝐺

∫
𝐸

𝑓(𝑥)𝑔(𝑥−1𝑦) d𝜆(𝑦) d𝜆(𝑥)

= ∫
𝐸

∫
𝐺

𝑓(𝑥)𝑔(𝑥−1𝑦) d𝜆(𝑥) d𝜆(𝑦)

= ∫
𝐸

(𝑓 ∗ 𝑔) d𝜆

where we define the convolution of 𝑓 ∗ 𝑔 : 𝐺 → [0, ∞) to be
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(𝑓 ∗ 𝑔)(𝑦) = ∫
𝐺

𝑓(𝑥)𝑔(𝑥−1𝑦) d𝜆(𝑥) for 𝑦 ∈ 𝐺.

We can define the convolution of two functions 𝑓, 𝑔 ∈ 𝐿1(𝐺, 𝜆) as above, where 𝜆 is some measure
on a topological group 𝐺. It is clear that ‖𝑓 ∗ 𝑔‖1 ≤ ‖𝑓‖1‖𝑔‖1, so 𝑓 ∗ 𝑔 ∈ 𝐿1(𝐺, 𝜆), and those notions
convolutions generalizes the case in ℂ𝑛.

Here is a characterization of the commutativity of convolutions.

Theorem 1. Let 𝜇 be a left Haar measure on a LCH group 𝐺. Then 𝐺 is Abelian if, and only if, for all
𝑓, 𝑔 ∈ 𝐶𝑐(𝐺), such that 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 . In particular, 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓  for all 𝑓, 𝑔 ∈ 𝐿1 if 𝐺 is Abelian.

 Proof. Suppose 𝐺 is Abelian and 𝑓, 𝑔 ∈ 𝐿1. Note that 𝐺 is also unimodular. Let 𝑦 ∈ 𝐺, now one has

(𝑓 ∗ 𝑔)(𝑦) = ∫
𝐺

𝑓(𝑥)𝑔(𝑥−1𝑦) d𝜇(𝑥)

= ∫
𝐺

𝑓(𝑥𝑦)𝑔((𝑥𝑦)−1𝑦) d𝜇(𝑥)

= ∫
𝐺

𝑓(𝑥𝑦)𝑔(𝑥−1) d𝜇(𝑥)

= ∫
𝐺

𝑓(𝑥−1𝑦)𝑔(𝑥) d𝜇(𝑥)

= (𝑔 ∗ 𝑓)(𝑦)

shows that 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 .
Suppose ∗ is commutative on 𝐶𝑐(𝐺). Then for any 𝑓, 𝑔 ∈ 𝐶𝑐(𝐺) and 𝑦 ∈ 𝐺, using Theorem 7.3.5,
one has

0 = (𝑓 ∗ 𝑔)(𝑦) − (𝑔 ∗ 𝑓)(𝑦) = ∫
𝐺

𝑓(𝑥)𝑔(𝑥−1𝑦) d𝜇(𝑥) − ∫
𝐺

𝑔(𝑥)𝑓(𝑥−1𝑦) d𝜇(𝑥)

= ∫
𝐺

𝑓(𝑥)𝑔(𝑥−1𝑦) d𝜇(𝑥) − ∫
𝐺

𝑔(𝑦𝑥)𝑓((𝑦𝑥)−1𝑦) d𝜇(𝑥)

= ∫
𝐺

𝑓(𝑥)𝑔(𝑥−1𝑦) d𝜇(𝑥) − ∫
𝐺

𝑔(𝑦𝑥)𝑓(𝑥−1) d𝜇(𝑥)

= ∫
𝐺

𝑓(𝑥)𝑔(𝑥−1𝑦) d𝜇(𝑥) − ∫
𝐺

𝑔(𝑦𝑥−1)𝑓(𝑥) 1
Δ(𝑥)

d𝜇(𝑥)

= ∫
𝐺

𝑓(𝑥)(𝑔(𝑥−1𝑦) −
𝑔(𝑦𝑥−1)
Δ(𝑥)

) d𝜇(𝑥).

Fixing 𝑔, we have the above holds for all 𝑓 ∈ 𝐶𝑐(𝐺) and 𝑦 ∈ 𝐺, so by Lemma 5.4.2, one has
Δ(𝑥)𝑔(𝑥−1𝑦) = 𝑔(𝑦𝑥−1)

for all 𝑥, 𝑦 ∈ 𝐺. Choose 𝑦 = 𝑒 here, and for each 𝑥 ∈ 𝐺, choose any 𝑔 ∈ 𝐶+
𝑐 (𝐺, ℝ) such that 𝑔(𝑥−1) >

0, hence it follows that Δ(𝑥) = 1, i.e. Δ = 1. So for each 𝑥, 𝑦 ∈ 𝐺, one has
𝑔(𝑥−1𝑦) = 𝑔(𝑦𝑥−1)

for all 𝑔 ∈ 𝐶𝑐(𝐺). As 𝐶𝑐(𝐺) separates the points in 𝐺 by Lemma 5.1.2, one has 𝑥−1𝑦 = 𝑦𝑥−1. Replace
𝑥−1 with 𝑥 and we have 𝐺 is Abelian as required. ∎
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Here we have an analog of the usual convolution theorem.

Convolution Theorem 2. Let 𝜇, 𝜈 be finite Borel measures on ℂ𝑛, then

𝜇 ∗ 𝜈 = 𝜇̂𝜈.

 Proof. Through direct computation, one has

(𝜇 ∗ 𝜈)(𝑥) = ∫
𝐺

𝑒⟨𝜔,𝑥⟩ d(𝜇 ∗ 𝜈)(𝜔) = ∬
𝐺×𝐺

𝑒⟨𝜔+𝜂,𝑥⟩ d𝜇(𝜔) d𝜈(𝜂)

= ∬
𝐺×𝐺

𝑒⟨𝜔,𝑥⟩𝑒⟨𝜂,𝑥⟩ d𝜇(𝜔) d𝜈(𝜂)

= ∫
𝐺

𝑒⟨𝜔,𝑥⟩ d𝜇(𝜔) ∫
𝐺

𝑒⟨𝜂,𝑥⟩ d𝜈(𝜂) = 𝜇̂(𝑥)𝜈(𝑥)

for all 𝑥 ∈ ℂ𝑛, as required. ∎

In the case of ℋ(𝑛), which is a subspace of ℂ𝑛2 , given 𝑋, 𝑌 ∈ ℋ(𝑛) where 𝑋 = (𝑥𝑖𝑗)𝑖,𝑗≤𝑛
, 𝑌 =

(𝑦𝑖𝑗)𝑖,𝑗≤𝑛
 we take

𝑋 =
(
((
(𝜉1

⋮
𝜉𝑛)

))
) 𝑌 = (𝜁1 ⋯ 𝜁𝑛) for 𝜉1, …, 𝜉𝑛, 𝜁1, …, 𝜁𝑛 ∈ ℂ𝑛,

then one has

tr(𝑋𝑌 ) = ∑
𝑖≤𝑛

⟨𝜉𝑖, 𝜁𝑖⟩

= 𝑥11𝑦11 + 𝑥12𝑦21 + … + 𝑥1𝑛𝑦𝑛1 +
𝑥21𝑦12 + 𝑥22𝑦22 + … + 𝑥2𝑛𝑦𝑛2 +
… + 𝑥𝑛1𝑦1𝑛 + … + 𝑥𝑛𝑛𝑦𝑛𝑛

= 𝑥11𝑦11 + 𝑥12𝑦12 + … + 𝑥1𝑛𝑦1𝑛 +
𝑥21𝑦21 + 𝑥22𝑦22 + … + 𝑥2𝑛𝑦2𝑛 +
… + 𝑥𝑛1𝑦𝑛1 + … + 𝑥𝑛𝑛𝑦𝑛𝑛

= ⟨Φ(𝑋), Φ(𝑌 )⟩

where Φ : ℂ𝑛×𝑛 → ℂ𝑛2  is the natural identification map. Hence given a finite measure 𝜇 on ℋ(𝑛),
its Fourier transform is

𝜇̂(𝑋) = ∫
ℋ(𝑛)

𝑒tr(𝑌 𝑋) d𝜇(𝑌 ) = ∫
ℋ(𝑛)

𝑒tr(𝑋𝑌 ) d𝜇(𝑌 ) for 𝑋 ∈ ℋ(𝑛).
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9 | Probabilistic Horn Problem
 In this section, we shall give a brief discussion on the probabilistic interpretation of the Horn

problem. Recall that given 𝛼 ∈ (ℝ𝑛)↓, we defined

𝒪𝛼 = {𝑈diag(𝛼)𝑈∗ : 𝑈 ∈ 𝒰(𝑛)}

which is a compact and path-connected set as an image of the continuous map
𝑈 ↦ 𝑈diag(𝛼)𝑈∗ for 𝑈 ∈ 𝒰(𝑛). (9.1)

The question now asks what is the probability distribution of the eigenvalues of 𝑋 + 𝑌  as 𝑋 varies
over in 𝒪𝛼 and 𝑌  varies over 𝒪𝛽 for some given 𝛼, 𝛽 ∈ (ℝ𝑛)↓. A large part of this study was done by
Jacques Faraut, and we will be explaining on how he obtained his findings.

1 – Introduction
By Horn's Conjecture 4.4.1, we know that 𝜎↓(𝒪𝛼 + 𝒪𝛽) is a convex polytope in ℝ𝑛.

Now let us always denote 𝜔 to the probability Haar measure on 𝒰(𝑛), and one has the orbital
measure 𝜇𝛼 on ℋ(𝑛) as the pushforward of 𝜔 under the mapping from 𝒰(𝑛) to ℋ(𝑛) as in (9.1).
Note that 𝜇𝛼(ℋ(𝑛) \ 𝒪𝛼) = 0, 𝜇𝛼 is also a probability measure, and 𝜇𝛼 satisfies

∫
𝒪𝛼

𝑓 d𝜇𝛼 = ∫
𝒰(𝑛)

𝑓(𝑈diag(𝛼)𝑈 ∗) d𝜔(𝑈) for all 𝑓 ∈ 𝐿1(ℋ(𝑛), 𝜇𝛼)

by Change of Variables Formula for Pushfoward Measures 5.3.1.

Note that 𝜇𝛼 is also a Radon measure by Corollary 5.3.5 as 𝒰(𝑛) is compact and one has

∫
ℋ(𝑛)

𝑓(𝑎𝑥𝑏) d𝜇𝛼(𝑥) = ∫
𝒰(𝑛)

𝑓(𝑎𝑈diag(𝛼)𝑈∗𝑏) d𝜔(𝑢)

= ∫
𝒰(𝑛)

𝑓(𝑈diag(𝛼)𝑈∗) d𝜔(𝑢) = ∫
ℋ(𝑛)

𝑓 d𝜇𝛼

for all 𝑓 ∈ 𝐿1(ℋ(𝑛)), 𝑎, 𝑏 ∈ 𝒰(𝑛). So we say that 𝜇𝛼 is unitarily invariant, so in the sense that 𝜇𝛼 is
‘similar’ to the Haar measure 𝜔.

In general, a measure 𝜇 on ℋ(𝑛) is said to be unitarily invariant if

∫
ℋ(𝑛)

𝑓(𝑈𝑋𝑈∗) d𝜇(𝑋) = ∫
ℋ(𝑛)

𝑓 d𝜇

for all 𝑓 ∈ 𝐿1(ℋ(𝑛), 𝜇), 𝑈 ∈ 𝒰(𝑛).

Note that we have the continuous surjection:

ℝ𝑛 × 𝒰(𝑛) → ℋ(𝑛) : (𝑡, 𝑈) ↦ 𝑈diag(𝑡)𝑈∗.

And due to J. Faraut [5], following from Weyl’s integration formula, we can decompose our integrals
with respect to the mapping above. So given a measure 𝜇 on ℋ(𝑛) that is unitarity invariant, then for
each 𝑓 ∈ 𝐿1(ℋ(𝑛), 𝜇), one has

∫
ℋ(𝑛)

𝑓 d𝜇 = ∫
ℝ𝑛

∫
𝒰(𝑛)

𝑓(𝑈diag(𝑡)𝑈∗) d𝜔(𝑈) d𝜈(𝑡)
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where 𝜈 is a permutation invariant measure on ℝ𝑛. By permutation invariant, we mean that

∫
ℝ𝑛

𝑓 d𝜈 = ∫
ℝ𝑛

𝑓(𝜎(𝑥)) d𝜈(𝑥) (9.2)

for all 𝑓 ∈ 𝐿1(ℝ𝑛, 𝜈) and 𝜎 ∈ 𝑆𝑛 (the symmetry group).

Thus for each 𝜇𝛼, there is a unique permutation invariant measure 𝜈𝛼 (which is a Borel probability
measure) that satisfies (9.2), called the radial part of 𝜇𝛼, which turns out to be the eigenvalue
distribution of Hermitian matrices 𝑋 as 𝑋 varies over 𝒪𝛼.

Thus, to find the eigenvalue distribution of the sum of Hermitian matrices, we will need to consider
their convolution. Thus if we take the radial part of 𝜇𝛼 ∗ 𝜇𝛽, which we call 𝜈𝛼,𝛽, we will obtain the
probability distribution of eigenvalues of 𝑋 + 𝑌  as 𝑋 varies over 𝒪𝛼 and 𝑌  varies over 𝒪𝛽.²

Thus we have the following relation:

Horn(𝛼, 𝛽) = supp(𝜈𝛼,𝛽) ∩ (ℝ𝑛)↓.

Define

𝑍 : ℝ𝑛 × ℝ𝑛 → ℝ : (𝑥, 𝑡) ↦ ∫
𝒰(𝑛)

𝑒tr(diag(𝑥)𝑈diag(𝑡)𝑈∗) d𝜔(𝑈),

which is the Harish-Chandra-Itzykson-Zuber integral, which has a computable formula [6]:

𝑍(𝑥, 𝑡) = 𝑘𝑛! 1
𝑉𝑛(𝑥)𝑉𝑛(𝑡)

det(𝑒𝑥𝑖𝑡𝑗)
𝑖,𝑗≤𝑛

𝑥 = (𝑥𝑖)𝑖≤𝑛 and 𝑡 = (𝑡𝑖)𝑖≤𝑛,

where 𝑘𝑛 = (𝑛 − 1, 𝑛 − 2, …, 1, 0) with 𝑘𝑛! = (𝑛 − 1)!(𝑛 − 2)!⋯2!, and 𝑉𝑛(𝑥) = ∏𝑖≠𝑗(𝑥𝑖 − 𝑥𝑗) is
the Vandermonde polynomial.

Let 𝑋 = diag(𝑥) for some 𝑥 ∈ ℝ𝑛, then if a bounded measure 𝜇 on ℋ(𝑛) is unitarily invariant,
one has

𝜇̂(𝑋) = ∫
ℋ(𝑛)

𝑒tr(𝑋𝑌 ) d𝜇(𝑌 ) = ∫
ℝ𝑛

𝑍(𝑥, 𝑡) d𝜈(𝑡)

where 𝜈 is the radial part of 𝜇.

Also note that

𝜇𝛼(𝑋) = ∫
ℋ(𝑛)

𝑒tr(𝑋𝑌 ) d𝜇𝛼(𝑌 ) = 𝑍(𝑥, 𝛼).

Hence applying the Fourier transform on 𝜇 = 𝜇𝛼 ∗ 𝜇𝛽 and using the Convolution Theorem 8.2, one
obtains

𝑍(𝑥, 𝛼)𝑍(𝑥, 𝛽) = 𝜇𝛼(𝑋)𝜇𝛽(𝑋) = ∫
ℝ𝑛

𝑍(𝑥, 𝑡) d𝜈𝛼,𝛽(𝑡). (9.3)

Now by J. Faraut [5, 2.1], the measure 𝜈𝛼,𝛽 is uniquely determined by (9.3) for all 𝑥 ∈ ℂ𝑛. Hence
it suffices to find a Borel probability measure 𝜈 such that (9.3) holds for all 𝑥 ∈ ℂ𝑛, which then gives
𝜈 = 𝜈𝛼,𝛽.

²The convolution here is taken additively.
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2 – Construction of The Probability Distribution
Define 𝑞 : ℋ(𝑛) → ℝ𝑛 as a projection from Hermitian matrices to its diagonal elements, i.e. if 𝑋 =
(𝑥𝑖𝑗)𝑖,𝑗≤𝑛

∈ ℋ(𝑛), then 𝑞(𝑋) = (𝑥11, …, 𝑥𝑛𝑛). Then by the Horn convexity theorem [7], one has

𝑞(𝒪𝛼) = con{𝜎(𝛼) : 𝜎 ∈ 𝑆𝑛}

where con(𝐴) is the smallest convex set containing 𝐴 ⊆ ℝ𝑛. Now we define the Heckman measure
𝑀𝛼 : ℬ(ℝ𝑛) → [0, 1] as 𝑀𝛼 = 𝑞∗(𝜇𝛼). As 𝑀𝛼 is a Borel probability measure, one has 𝑀𝛼 is a Radon
measure.

Note that given a bounded measure 𝜇 on ℝ𝑛, by the preceding chapter, the Fourier transform is
defined as

𝜇̃(𝑥) = ∫
ℝ𝑛

𝑒⟨𝜔,𝑥⟩ d𝜇(𝜔) for 𝑥 ∈ ℝ𝑛.

Thus given 𝑥 ∈ ℝ𝑛 with 𝑋 = diag(𝑥), one has

𝑀𝛼(𝑥) = ∫
ℝ𝑛

𝑒⟨𝜔,𝑥⟩ d𝑀𝛼(𝜔) = ∫
ℋ(𝑛)

𝑒⟨𝑞(𝐻),𝑥⟩ d𝜇𝛼(𝐻)

= ∫
ℋ(𝑛)

𝑒tr(𝐻𝑋) d𝜇𝛼(𝐻) = 𝑍(𝑥, 𝛼).

Now define the skew-symmetric Borel measure on ℝ𝑛:

𝜂𝛼 = 𝑘𝑛!
𝑉𝑛(𝛼)

∑
𝜎∈𝑆𝑛

𝜀(𝜎)𝛿𝜎(𝛼)

where 𝜀(𝜎) is the signature of the permutation 𝜎. Now the Fourier transform of 𝜂𝛼 is

𝜂𝛼(𝑥) = 𝑘𝑛!
𝑉𝑛(𝛼)

∑
𝜎∈𝑆𝑛

𝜀(𝜎)𝑒⟨𝜎(𝛼),𝑥⟩ = 𝑘𝑛!
𝑉𝑛(𝛼)

∑
𝜎∈𝑆𝑛

det(𝑒𝑥𝑖𝛼𝑗)𝑖,𝑗≤𝑛

where the last equality is shown in J. Faraut [5], and by the Harish-Chandra-Itzykson-Zuber integral
formula, one has that

𝜂𝛼(𝑥) = 𝑉𝑛(𝑥)𝑀𝛼(𝑥) for 𝑥 ∈ ℝ𝑛.

Now through some more computations that is unfortunately out of the scope of this paper, J. Faraut
showed that

d𝜈 = 1
𝑛!

1
𝑘𝑛!

𝑉𝑛 d(𝜂𝛼 ∗ 𝑀𝛽)

satisfies (9.3), thereby we have obtained our desired probability distribution 𝜈𝛼,𝛽.
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11 | Appendix
This section involves long-winded calculations and codes that are done throughout the report.

1 – The 𝐶𝜃 Matrix
The section is in reference with Chapter 4.3.

Starting with 𝐴 = diag(𝛼), 𝐵 = diag(𝛽), and

𝑈𝜃 = (cos(𝜃)
sin(𝜃)

− sin(𝜃)
cos(𝜃) ) for some 𝜃 ∈ ℝ.

We defined 𝐶𝜃 ≔ 𝐴 + 𝑈𝜃𝐵𝑈∗
𝜃 . Through immediate computation, we get that

𝐶𝜃 = (𝛼1 + 𝛽1 cos2(𝜃) + 𝛽2 sin2(𝜃)
(𝛽1 − 𝛽2) sin(𝜃) cos(𝜃)

(𝛽1 − 𝛽2) sin(𝜃) cos(𝜃)
𝛼2 + 𝛽2 cos2(𝜃) + 𝛽1 sin2(𝜃)).

Given 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2, define

𝑥 = 𝑥1 + 𝑥2
2

and 𝑥 = 𝑥1 − 𝑥2
2

,

and we also have the following identities:

𝑥1 cos2(𝜃) + 𝑥2 sin2(𝜃) = 𝑥 + 𝑥 cos(2𝜃)
(𝑥1 − 𝑥2) sin(𝜃) cos(𝜃) = 𝑥 sin(2𝜃).

So one has

𝐶𝜃 = (𝛼1 + 𝑐
𝑑

𝑑
𝛼2 + 𝑐′)

where

𝑐 = 𝛽 + 𝛽 cos(2𝜃), 𝑐′ = 𝛽 − 𝛽 cos(2𝜃), and 𝑑 = 𝛽 sin(2𝜃).

Note that

tr(𝐶𝜃)
2 = (𝛼1 + 𝑐 + 𝛼2 + 𝑐′)2 = (𝛼1 + 𝑐)2 + 2(𝛼1 + 𝑐)(𝛼2 + 𝑐′) + (𝛼2 + 𝑐′)2

4 det(𝐶𝜃) = 4(𝛼1 + 𝑐)(𝛼2 + 𝑐′) − 4𝑑2

so

Δ(𝜃) ≔ tr(𝐶𝜃)
2 − 4 det(𝐶𝜃) = (𝛼1 + 𝑐 − 𝛼2 − 𝑐′)2 + 4𝑑2

= 4(𝛼 + 𝛽 cos(2𝜃))
2

+ 4𝑑2

= 4(𝛼2 + 2𝛼𝛽 cos(2𝜃) + 𝛽2).

By the trace-determinant formula, the eigenvalues of 𝐶𝜃 are

𝜆±(𝜃) ≔
tr(𝐶𝜃) ± √Δ(𝜃)

2
= 𝛼 + 𝛽 ± √Δ(𝜃)

4
.

Now Δ(𝜃) attains its minimum when 𝜃 = 𝜋
2 ,
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1
4
Δ(𝜋

2
) = (𝛼 − 𝛽)

2

and maximum when 𝜃 = 0,

1
4
Δ(0) = (𝛼 + 𝛽)

2
.

Take 𝜆1(𝜃) = 𝜆+(𝜃), and 𝜆2(𝜃) = 𝜆−(𝜃), so 𝜆(𝜃) = (𝜆1(𝜃), 𝜆2(𝜃)) ∈ (ℝ2)
↓
. Then as

𝜆1(𝜃) + 𝜆2(𝜃) = 2(𝛼 + 𝛽) = 𝛼1 + 𝛼2 + 𝛽1 + 𝛽2

we see that 𝜆(𝜃) traces out a line segment as 𝜃 varies.

Observe that

𝜆1(𝜃) ≤ 𝛼 + 𝛽 + 𝛼 + 𝛽 = 𝛼1 + 𝛽1

𝜆1(𝜃) ≥ 𝛼 + 𝛽 + |𝛼 − 𝛽| ≥ max(𝛼1 + 𝛽2, 𝛼2 + 𝛽1)

i.e.

im(𝜆1) = [max(𝛼1 + 𝛽2, 𝛼2 + 𝛽1), 𝛼1 + 𝛽1].

Similarly,

im(𝜆2) = [𝛼2 + 𝛽2, min(𝛼1 + 𝛽2, 𝛼2 + 𝛽1)]

Hence it follows that 𝜆(𝜃) for 𝜃 ∈ [0, 𝜋
2 ] is a line segment between the points

(max(𝛼1 + 𝛽2, 𝛼2 + 𝛽1), min(𝛼1 + 𝛽2, 𝛼2 + 𝛽1)) and (𝛼1 + 𝛽1, 𝛼2 + 𝛽2).
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