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Introduction

The study of Hurwitz numbers appears in many areas of mathematics, from moduli
spaces to representation theory. In this dissertation we aim to give an overview of some
of these areas. Hurwitz numbers were first introduced by A.Hurwitz in [11, 12] as counts
of ramified coverings of Riemann surfaces. We will focus largely on this classical inter-
pretation of Hurwitz numbers and their relations to the symmetric group, but it is worth
bringing to attention the role they have played in the study of other areas of mathemat-
ics. Hurwitz numbers did not garner too much attention since their introduction until
the latter part of the 20th century, where much interest was taken in simple and dou-
ble Hurwitz numbers – which count ramified coverings over the Riemann sphere – due
to their strong connections between integrable systems and moduli spaces. A broader
overview of more recent developments in our understanding of Hurwitz numbers can be
found in [18].

Chapter 1 will be dedicated to giving an account of the classical interpretations
of Hurwitz numbers. We will define a Hurwitz number as a count of locally complex
differentiable maps between Riemann surfaces. As is the case with ordinary complex
differentiable functions these maps exhibit extremely strong structure, one of the con-
sequences of this is given by the Riemann-Hurwitz formula. As a result of Riemann’s
Existence Theorem these maps can be classified by ramified coverings over a fixed genus
g surface. With this topological classification of locally complex differentiable maps, we
can alternately view a Hurwitz number associated to a genus g surface as an enumeration
of ramified coverings satisfy some prescribed data. The remainder of this chapter will
then be aimed towards demonstrating the relationship between Hurwitz numbers and
the symmetric group, the key to which is given by the monodromy representation of a
ramified covering. In short, ramified coverings can be classified algebraically as group
homomorphisms from the fundamental group of a fixed base curve into the symmetric
group by studying some group action inherent to the class of coverings. In Section 1.2.4
we will demonstrate how powerful this shift in perspective is by computing all Hurwitz
numbers of degree 2 and 3 with relative ease. To conclude this chapter, the algebraic
interpretation of Hurwitz numbers is expanded upon and encapsulated in Burnside’s
character formula of Theorem 1.3.10, which gives Hurwitz numbers as products of irre-
ducible characters of the symmetric group.
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6 INTRODUCTION

In Chapter 2 we will give an interpretation of Hurwitz numbers as expectation values
of operators on a dense subspace of the fermionic Fock space. This result is simply a
reformulation of the character formula mentioned above, but the value of this work comes
in the interpretation of this space and its further applications to integrable systems. In
particular A.Okounkov in [21], building on the works of [25], shows that the generating
function of the double Hurwitz numbers is a solution to the Toda lattice integrable
hierarchy of [29] – a family of partial differential equations related to physical models
of crystal lattices. This relation extends to the Kadomtsev-Petviashvili (KP) hierarchy
[16, p.7], so called as its simplest member is the KP equation which describes nonlinear
wave motion. A proof of Witten’s conjecture can also be given utilising the fact that
the generating function of the simple Hurwitz numbers is a solution to the KP hierarchy
[18, p.18]. We will not discuss these topics in detail but instead try to provide a number
of references for further reading.



Chapter 1

Hurwitz Theory

1.1 Hurwitz Numbers

The origin of Hurwitz numbers is rooted in the theory of complex analysis on surfaces,
so that is where we will start our discussion. We will begin by revealing the local
structure of holomorphic maps and show how this eventually leads to the classification
of holomorphic maps in terms of ramified coverings – the key to which is given by
Theorem 1.1.12. With this topological understanding of holomorphic maps we define a
Hurwitz number associated to a connected Riemann surface.

1.1.1 Holomorphic Maps

Holomorphic maps are simply the complex analogue of differentiable functions between
real surfaces – real two dimensional compact manifolds without boundary. Throughout
this dissertation we will take a Riemann surface to be a complex one dimensional
compact manifold without boundary. We can consequently be view a Riemann surface as
a real surface whose transition functions obey the Cauchy-Riemann equations. Functions
that obey the Cauchy-Riemann equations are necessarily orientation preserving, and as a
consequence the topological structure of Riemann surfaces are classified by the orientable
genus g real surfaces – connected sums of g tori and spheres. In general we take the
genus of a compact Riemann surface X with connected components X1, . . . , Xn, with
respective genera g1, . . . , gn, to be g1 + . . . gn + 1− n.

Definition 1.1.1. Let X and Y be Riemann surfaces. A continuous map f : X → Y is
said to be holomorphic if f is locally complex differentiable everywhere on X.

A continuous function f : X → Y is locally complex differentiable everywhere on X
if for any x ∈ X and for any charts φ and ψ about x and f(x) respectively, ψ ◦ f ◦ φ−1
is complex differentiable (on any suitable domain). Complex differentiable functions
from C into C must adhere to very strong properties unlike their real differentiable
counterparts. Immediately from the above definition we can see that some of these
properties can be extended to holomorphic maps between Riemann surfaces.

7
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Lemma 1.1.2 (Open Mapping Theorem). Let f : X → Y be a non-constant holomor-
phic map of Riemann surfaces. Then f is an open map.

Proof. Let U be an open subset of X, and let V be an open set of Y containing f(U).
Take φ and ψ to be local coordinates on U and V respectively, then ψ◦f ◦φ−1 is holomor-
phic and non-constant on φ(U), where φ(U) is open (coordinate charts are homeomor-
phisms). Then by the open mapping theorem of complex analysis ψ ◦ f ◦ φ−1(φ(U)) =
ψ ◦ f(U) is open. Thus f(U) is an open set in X.

Theorem 1.1.3 (Liouville’s Theorem). Let f : X → Y be a holomorphic map of Rie-
mann surfaces, with Y connected. Then either f is a constant function or f is onto.

Proof. If f is non-constant then from Lemma 1.1.2, f(X) is open in Y . As X is compact
and f continuous by definition, f(X) is compact and thus closed in Y . f(X) is clearly
non-empty, and so as Y is connected we must have f(X) = Y .

Thanks to the flexibility available to us in the choice of charts when exhibiting a
holomorphic map about a point, we can re-phrase the local expression of such a map
about any point in as nice a way as one can think of – that being as a power function.
The following theorem is a fundamental observation of holomorphic maps, it classifies
the local action of holomorphic maps whilst giving us some global information about f .

Theorem 1.1.4. Let f : X → Y be a non-constant holomorphic map of Riemann
surfaces with Y connected. Then for all x ∈ X, there is a unique integer kx ≥ 1 such
that f locally appears as the power function z 7→ zkx. Moreover, all but finitely many
x ∈ X have kx = 1.

Proof. We will tackle each claim separately.

Existence: Choose charts φ and ψ centred about x and f(x) respectively i.e. such
that φ(x) = 0 = ψ(f(x)). Define F := ψ ◦ f ◦ φ−1 to be the local expression of f
with respect to these charts, then F is holomorphic on an open neighbourhood U
of φ(x) = 0. Then for z ∈ U with |z| sufficiently small, F (z) is equal to its Taylor
expansion about 0

F (z) = a0 + a1z + · · ·+ akz
k + . . .

Let k be the order of the zero of F at 0 then there is a function G holomorphic on
W ⊆ U , with G(0) 6= 0 and F (z) = zkG(z) for all z ∈ W . Moreover, as G(0) 6= 0,
for sufficiently small neighbourhood W̃ ⊆ W about 0, G has a well defined k-th
root H – i.e. H holomorphic on W̃ with G(z) = H(z)k for all z ∈ W̃ . Then we
can write F (z) = (zH(z))k for all z ∈ W̃ .

Let h be the holomorphic function on W̃ with h(z) := zH(z). Then h has derivative
h′, with h′(z) = H(z) + zH ′(z), and so h′(0) 6= 0 and h is locally invertible about
0. So there is an open neighbourhood Ũ about zero such that h restricts to a
biholomorphic map from Ũ to h(Ũ). Note then that h ◦ φ gives a chart about x
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with h ◦ φ(x) = 0. Letting φ∗ = h ◦ φ, the corresponding local expression of f is
given by F ∗ = ψ ◦ f ◦φ∗−1, and for any x̃ (sufficiently close to x), letting z = φ(x̃)
and z∗ = φ∗(x̃) then F (z) = (z∗)k. Moreover

F ∗(z∗) = ψ ◦ f ◦ φ∗−1(φ∗(x̃)) = ψ ◦ f ◦ φ−1(φ(x̃)) = F (z) = (z∗)k. (1.1)

It is then clear we can choose a chart φ∗ centred about x, such that F ∗(z∗) = (z∗)k,
for some k ∈ N.

•• Uniqueness: To show k is unique it suffices to show the order of the zero of F at
φ(x) = 0 is independent of the choice of charts centred about x and f(x). Given
the transition functions between charts must be holomorphic, if F̃ is another local
expression of f arising from charts centred about x and f(x), then F̃ is related to
F by F̃ = g ◦F ◦h for some biholomorphic functions g and h with g(0) = h(0) = 0.
Considering the n-th derivatives of F̃ we have

F̃ (n)(0) = F (n)(0)g′(0)h′(0) + other terms . . .

where the ‘other terms’ involve products of lower derivatives of F at 0. So if
n < k then F̃ (n)(0) = 0 given F (m)(0) = 0 for each m < k. Moreover F̃ (k)(0) =
F (k)(0)g′(0)h′(0) and as g and h are invertible about 0, they must have non-zero
derivatives about zero, and given F (k)(0) 6= 0 we have F̃ (k)(0) 6= 0 and F̃ has a
zero of order k at zero. So k is unique to x and we denote it by kx.

• Finiteness: Let R = {x ∈ X : 2 ≤ kx}. To show that R is finite we want to show
the following property. For any x ∈ R there is an open neighbourhood Ux about x
such that kx̃ = 1 for all x̃ ∈ Ux \ {x}. Let φ and ψ be charts centred about x ∈ X
and y = f(x) respectively that admits a local expression F with F (z) = zkx for all
z ∈ C sufficiently close to 0. φ is a homomorphism between an open neighbourhood
Ux of x and an open neighbourhood of 0 ∈ C, so pick some x̃ ∈ Ux \ {x} and let
ỹ = f(x̃) – note that φ(x̃) 6= 0. Let φ̃ = φ − φ(x̃) and ψ̃ = ψ − ψ(ỹ), then these
are valid charts centred about x̃ and ỹ respectively admitting a local expression

F̃ (z) = ψ̃ ◦ f ◦ φ̃−1(z) = F (z + φ(x̃))− ψ(ỹ)

with F̃ ′(z) = F ′(z + φ(x̃)). In particular F̃ ′(0) = F ′(φ(x̃)) = kxφ(x̃)kx−1 6= 0. So
F has a zero of order 1 at 0. Thus by uniqueness we have that kx̃ = 1.

Now {Ux}x∈X is an open cover of X with X compact and so there is a subcover
{Ux}x∈K with K ⊆ X and |K| finite. If x ∈ R and x 6∈ K then x ∈ Ux′ for some
x 6= x′ and thus kx = 1 – a contradiction. So R ⊆ K and R is finite.

We now have another important structure theorem of holomorphic maps. This starts
to hint at the global structure of these maps, saying that non-constant holomorphic maps
‘evenly cover’ a target space except at those points which have some non-trivial local
action of f above them. A proof of Theorem 1.1.5 can be found in [7, p.12] or in most
introductory books on the theory of Riemann surfaces and holomorphic maps.
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Theorem 1.1.5. Let f : X → Y be a non-constant holomorphic map of Riemann
surfaces with Y connected. Then |f−1(y)| < ∞ for any y ∈ Y . Moreover, there is a
positive integer d ≥ 1 such that for all y ∈ Y∑

x∈f−1(y)

kx = d.

This integer will be called the degree of f and denoted deg f .

It is worth noting that finiteness of the fibre can be attributed to the compactness of
X, whilst the invariance of the sum can be attributed to the connectedness of Y . Also
observe that as the set of x ∈ X with kx ≥ 2 is finite, all but finitely many y ∈ Y have
|f−1(y)| = d, and the points in X with kx ≥ 2 can be thought of as singularities with
respect to the action of f – as we will see this intuition is not entirely wrong. Before
proceeding, we will give one more important observation of non-constant holomorphic
maps that emphasises the ‘even covering’ nature of these functions.

Lemma 1.1.6. Let f : X → Y be a non-constant holomorphic map with Y connected
and of degree d. Recall we take R := {x ∈ X : kx ≥ 2}. Then for each y ∈ Y \ f(R)
there is a neighbourhood V of y and disjoint open sets Ui ⊂ X such that

f−1(V ) =

d⊔
i=1

Ui

where f |Ui : Ui → V is a homeomorphism.

Proof. We can write f−1(y) = {x1, x2, . . . xd} ⊂ X where all xi’s are distinct. Given
kxi = 1 for each xi, f admits a homeomorphism from an open neighbourhood Ui of
xi to an open neighbourhood Vi of y. As X is Hausdorff, these Wi’s can be taken
to be disjoint by appropriately restricting Vi and Wi. Taking V =

⋂d
i=1 Vi 6= ∅ and

Ui = Wi ∩ f−1(V ) ⊆ Wi, we see that f(Ui) = V , and it then remains to check that
f−1(V ) =

⋃d
i=1 Ui.

This structure is very reminiscent of covering spaces which we will discuss in the
next section. As we will see before the end of this chapter, holomorphic maps can be
classified by ramified covering spaces up to some symmetry.

1.1.2 Ramified Coverings

In this section we will introduce covering spaces in an arbitrary topological setting,
and of particular interest to us are ramified coverings. The main point of this section
is to translate the language and ideas used to talk about general covering spaces into
holomorphic maps.

Definition 1.1.7. A continuous surjective function f : X → Y of topological spaces is a
covering space of Y if for any y ∈ Y there is an open neighbourhood V of y such that
f−1(V ) is a disjoint union of open sets in X, where each component is homeomorphic
to V under f .
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From Lemma 1.1.6 we observe that given a non-constant holomorphic map f : X →
Y , with R = {x ∈ X : kx ≥ 2}, the restriction of f to X \ f−1(f(R)) is a covering space
of X \ f(R). We will develop this correspondence further with Riemann’s Existence
Theorem in the following sections.

A classic way of visualising a covering space is by describing f−1(U) as a ‘stack of
pancakes’ mapped to U by f . Covering spaces exhibit similar properties to those which
were discussed in the previous section concerning non-constant holomorphic maps. In
particular, if f : X → Y is a covering space of Y , with X compact and Y connected,
then there is an integer d with |f−1(y)| = d for all y ∈ Y – which we will also call the
degree of f . Again, it is exactly the compactness of X that gives us finiteness and the
connectedness of Y the invariance of cardinality. However a more accurate description
of holomorphic maps comes by introducing the notion of ramification.

Definition 1.1.8. A continuous surjective function f : X → Y is said to be a ramified
covering of Y if there is a finite set B ⊆ Y such that f−1(B) is finite and f restricted
to X \ f−1(B) is a covering space of Y \B.

Again from Lemma 1.1.6, given a non-constant holomorphic map f : X → Y with
Y connected we see that f is a ramified covering of Y . It is desirable to give the points
that do not obey the nice covering structure of a holomorphic map special names, as
they characterise a large part of the structure of such a function.

Definition 1.1.9. Let f : X → Y be a non-constant holomorphic map of Riemann
surfaces. For x ∈ X:

• we call kx the ramification index of x;

• if kx ≥ 2 we say x is a ramification point of f , and denote the set of all
ramification points of f by R, and call it the ramification locus of f ;

• let B = f(R). Call B the branch locus of f , and the elements of B branch
points of f .

Let y ∈ Y , and let f−1(y) = {x1, x2, . . . , xn}, such that kx1 ≥ kx2 ≥ · · · ≥ kxn. The
ramification profile of f at y the list of integers λ = (kx1 , kx2 , . . . , kxn). If Y is
connected, then from Theorem 1.1.5 λ is an integer partition of d = deg f .

Example 1.1.10. To see how the notions of ramified covering is inherent to complex
differentiable functions, consider the function f : C→ C : z 7→ zk for some fixed k ≥ 1.
f ′(z) = kzk−1 = 0 if and only if z = 0, so by the inverse function theorem, at all points
z 6= 0, f is locally invertible. Now let w ∈ C \ {0}, then

f−1(w) = { k
√
|w|ζ : ζ is a k-th root of unity} ⊆ C \ {0}

and so f is locally invertible around each element of f−1(w). Let V1, V2, . . . , Vk be open
sets about each distinct root of w (taken to be disjoint without loss of generality), which



12 CHAPTER 1. HURWITZ THEORY

are mapped bijectively by f to open sets U1, U2, . . . , Uk about w, respectively (given by
the IVT). Taking U =

⋂k
i=1 Ui 3 w (which is non-empty and open in C \ {0})

f−1(U) =
k⋃
i=1

Vi ∩ f−1(U),

where Vi ∩ f−1(U) is in bijective correspondence with f(Vi)∩U = Ui ∩U = U , under f .
So f restricted to C \ {0}, gives a cover of C \ {0}. Take B = {0} as in Definition 1.1.8,
where f−1(B) = {0}, and note that f |C\{0} is continuous, and surjective on C \ {0}. So
indeed f |C\{0} is a covering of C \ {0}. Moreover f is a ramified covering of C.

1.1.3 Riemann’s Existence Theorem

From the previous discussions we have observed that a non-constant holomorphic map
of Riemann surfaces with a connected image is a ramified covering. Riemann’s Existence
Theorem gives a partial converse to this observation by providing a topological classifi-
cation of holomorphic maps in terms of ramified coverings.

To give this classification we want to establish some notion of when two holomorphic
maps are equivalent by identifying and removing some symmetry. For our purposes we
do not care about the symmetry of a holomorphic map in its domain.

Definition 1.1.11. Let f : X → Y and f̃ : X̃ → Y be holomorphic maps of Riemann
surfaces. We say f and f̃ are isomorphic if there exists a bijective holomorphic map
π : X → X̃, with holomorphic inverse, such that the following diagram commutes

X X̃

Y

π

f f̃

We consequently call π an isomorphism of Riemann surfaces.

Theorem 1.1.12 (Riemann’s Existence Theorem). Let Y be a connected Riemann sur-
face, and B ⊆ Y a finite set. Let f̃ : X̃ → Y \B be a topological covering of finite degree.
Then there exists a Riemann surface X and holomorphic map f : X → Y where

• X̃ is dense in X;

• f |X̃ = f̃ .

Moreover, f is unique up to isomorphism.

This theorem tells us that up to isomorphism, a holomorphic map of Riemann sur-
faces is determined by its corresponding ramified covering. Then the position of a set
of branch points on a Riemann surface tells you nothing about the covering structure
of a holomorphic map with said branch points. This is a very important property of
holomorphic maps when it comes to defining a Hurwitz number.
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1.1.4 Riemann-Hurwitz Formula

Now that we are well aware of the local geometry of holomorphic maps, a fairly straight-
forward application of this understanding is given by the Riemann-Hurwitz formula,
which essentially shows us how the Euler characteristic of a surface is altered by a holo-
morphic function. This is surprising as we only really have sound understanding of the
local description of holomorphic maps yet we can extend this understanding to infer
global properties.

Theorem 1.1.13 (Riemann-Hurwitz Formula). Let f : X → Y be a non-constant
holomorphic map of Riemann surfaces of degree d with Y connected. Let gX be the
genus of X and gY the genus of Y . Then

2gX − 2 = d(2gY − 2) +
∑
x∈X

(kx − 1) (1.2)

Proof. There are many different ways to prove this theorem. A rather common approach,
which can be found in [5, p.56], is as follows. Note the Euler characteristic χ of a genus g
connected surface is given by 2− 2g. So when X is connected, we can rephrase equation
(1.2) to

χ(X) = dχ(Y )−
∑
x∈X

(kx − 1).

To show this consider a graph on Y , whose vertices are taken to be the branch points of f
and whose edges never cross, and consider the pre-image of such a graph, computing the
Euler characteristic in X in terms of the Euler characteristic in Y . Using our knowledge
of the local description of f , we know how the edges and faces about a vertex multiply.

If X is disconnected, consider the restriction of f to each connected component of X.
The above equation must hold for each restriction and note that the genus of X is g1 +
g2 + · · ·+gn−n+1 where g1, . . . , gn are the genera of its connected components. Simply
summing the equations obtained from each restriction yields the desired expression.

Then, if the genus of the base space and the ramification profiles are given, the genus
of the covering surface is determined from this equation.

1.1.5 Defining Hurwitz numbers

We have now laid all the ground work necessary for establishing the definition of a
Hurwitz number associated to a connected Riemann surface.

Definition 1.1.14. Let g ∈ Z, d ∈ N and λ1, λ2 . . . , λn partitions of d. A Hurwitz
cover of type (g, d, λ1, λ2, . . . , λn) is a non-constant holomorphic map of Riemann sur-
faces f : X → Y such that

• Y is of genus g,

• f is of degree d,
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• f has n branch points, with ramification profiles λ1, λ2 . . . , λn.

Remark 1.1.15. We do not need to specify the integer d as this is made implicit from
the size of the partitions. However we will include it for ease of reading.
The Riemann-Hurwitz formula tells us that the genus h of a covering surface of a Hurwitz
cover of type (g, d, λ1, . . . , λn) is uniquely determined. Namely, by equation (1.2),

h = d(g − 1) + 1 +
1

2

∑
p∈C

(kp − 1)

 . (1.3)

Two isomorphic non-constant holomorphic maps of compact Riemann surfaces are clearly
Hurwitz covers of the same type. But, the data (g, d, λ1, . . . , λn) does not determine the
isomorphism class of holomorphic maps uniquely, and so not all Hurwitz covers are
isomorphic.

A Hurwitz number is a weighted count of isomorphism classes of Hurwitz covers. All
this means is that the symmetry of an isomorphism class of covering space is taken into
consideration.

Definition 1.1.16. An automorphism of a non-constant holomorphic map of Rie-
mann surfaces is an isomorphism from f to itself. The collection of automorphisms of
f form a group under composition, which we will denote by Aut(f).

Remark 1.1.17. If f and f∗ are isomorphic homomorphic maps, with isomorphism π
from f to f∗, then the mapping φ : Aut(f)→ Aut(f∗) given by g 7→ πgπ−1 is an isomor-
phism of groups. In particular |Aut(f)| = |Aut(f∗)| is invariant amongst isomorphism
classes of holomorphic maps.

With this notion of symmetry, we can now define a Hurwitz number.

Definition 1.1.18 (The Hurwitz Number). We define the Hurwitz number of type
(g, d, λ1, . . . , λn) to be the sum

Hd,g(λ1, λ2, . . . , λn) =
∑
[f ]

1

|Aut(f)|
, (1.4)

summing over all isomorphism classes [f ] of Hurwitz covers of type (g, d, λ1, . . . , λn).

This definition is well defined, by the previous remark. It also offers a good visual in-
terpretation of Hurwitz numbers. Riemann’s Existence Theorem tells us an isomorphism
class of a Hurwitz cover of type (g, d, λ1, . . . , λ2) is determined uniquely by its covering
structure. So a Hurwitz number can be seen to count distinct ramified coverings of a
genus g surface with specified ramification profiles. However this visual interpretation is
not all that useful when it comes to actual computation. The automorphism group of a
covering f may become increasingly non-trivial when larger sets of data are considered.
The problem of computing Hurwitz numbers becomes much simpler by a slight change
in perspective. To emphasise the relative difficulty in calculating Hurwitz numbers from
the definition we outline the following example.
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Example 1.1.19. Let Y = CP1, b1 = 0, b2 = ∞, d ≥ 1 an integer and λ1 = λ2 = (d).
We compute

Hd,0((d), (d)) =
1

d
. (1.5)

If f : X → CP1 is a holomorphic map of degree d where gX is the genus of X, then by
the Riemann-Hurwitz formula

2gX − 2 = −2d+ 2(d− 1) = −2

and so gX = 0. The restriction of a holomorphic map to a connected component of X is
also a holomorphic map, in particular each connected component of X must be of genus
0. So we are forced to conclude that X is connected and of genus 0. Then X = CP1.

One must now show that the map f : CP1 → CP1 that takes z 7→ zd – viewing CP1 as
the one-point compactification of C – is the unique Hurwitz cover of type (0, d, (d), (d))
up to isomorphism, and that |Aut f | = d. The latter observation follows by explicitly
constructing the automorphisms of f . In particular, observe that multiplying z by a d-th
root of unity ζ yields f(ζz) = ζdzd = f(z), it follows that the automorphisms of f are
exactly the maps z 7→ ζkz with 1 ≤ k ≤ d. The former can be seen by showing that the
bijective holomorphic maps from CP1 to itself are given by Möbius transformations, and
that any holomorphic map of type (0, d, (d), (d)) must be of the form

a
(x− r1)d

(x− r2)d
=

(
b
(x− r1)
(x− r2)

)d
,

for some a 6= 0, r1, r2 ∈ C ⊆ CP1, where b ∈ C with bd = a. It is clear from this example,
that even the most simple Hurwitz number is difficult to calculate in this manner.

1.2 Monodromy

Monodromy representation gives a representation of the fundamental group of a con-
nected surface, via a group action on the pre-image of a fixed point. In this section
we make this notion precise in the context of holomorphic maps, although it may be
applicable to ramified coverings of topological spaces in general. Through the study of
monodromy representations we can shift the context in which Hurwitz numbers lie from
that of analysis to something combinatorial in nature. It should not be understated how
powerful this shift in perspective and its consequences are. Throughout this section,
unless stated otherwise, results that are given without proof can be found in [6], [3] or
any introductory textbook to algebraic topology treating covering spaces.

1.2.1 Path Lifting and Monodromy

In this section we build the framework from which the ideas of monodromy representation
arise, and towards the end give our main motivation for the following sections.
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Let f : C → X be a non-constant holomorphic map of Riemann surfaces with X
connected. Let B be the set of branch points of f , x0 ∈ X \ B, and γ : [0, 1] → X \ B
be a curve with γ(0) = γ(1) = x0.

Definition 1.2.1. We say a curve α : [0, 1]→ C is a lift of γ if the following diagram
commutes.

C

[0, 1] X

f

γ

α

Observe that for any lift α of γ, α(0), α(1) ∈ f−1(x0). As x0 is not a branch point
of f there exist local homeomorphisms about each p ∈ f−1(x0) onto a neighbourhood of
x0. This gives us some intuition as to why we might expect the following result to hold.

Lemma 1.2.2. For any p ∈ f−1(x0) there is a unique lift αp of γ with αp(0) = p, and
a unique lift α̃p of γ with α̃p(1) = p. Note αp and α̃p need not be distinct.

With the existence of a unique αp, the following function is well defined.

σγ : f−1(x0)→ f−1(x0) : p 7→ αp(1) (1.6)

Moreover, the existence and uniqueness of α̃p makes σγ surjective and injective respec-
tively. Thus σγ is a bijection and σγ ∈ Sym(f−1(x0)). Hence to any curve based a x0 we
can associate an action permuting the pre-images of x0. This is the underlying principle
of monodromy representation. We can denote this association by a function σ such that

σ : Cur(X \B, x0)→ Sym(f−1(x0)) : γ 7→ σγ , (1.7)

where Cur(X \B, x0) denotes the set of curves in X \B based at x0.

As it is now we do not know enough to extend σ to a well defined function on the
fundamental group of the punctured surface π1(X \ B, x0). π1(X \ B, x0) consists of
homotopy classes of curves in X \ B, and so we will require σ to be invariant with
respect to these homotopy classes in order to descend the information carried by σ in
any meaningful way. It just so happens that a homotopy between paths lifts in a nice
enough way to give this desired property.

Lemma 1.2.3. Let γ1 and γ2 be curves in X \ B based at x0. Let p ∈ f−1(x0), with
αp,1 and αp,2 the unique lifts of γ1 and γ2 starting at p, respectively. Suppose γ1 and γ2
are homotopically equivalent. Then αp,1(1) = αp,2(1).

Hence if γ1 and γ2 are homotopically equivalent curves based at x0, then σγ1 = σγ2 .
Thus the function

Φf,x0 : π1(X \B, x0)→ Sym(f−1(x0)) : [γ] 7→ σγ (1.8)
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is indeed well defined – where [·] denotes the corresponding equivalence class of a curve.

It also happens that Φf,x0 gives a group homomorphism. The group operation on
π1(X \ B, x0) is given by the concatenation of curves, which we will denote by ∗. This
observation follows immediately from the following lemma.

Lemma 1.2.4. Let γ1 and γ2 be curves in X \B based at x0. Then

σγ1∗γ2 = σγ1 ◦ σγ2 . (1.9)

Proof. Choose an arbitrary p ∈ f−1(x0), and let αp, α1,p, α2,p be the unique lifts of
γ1 ∗ γ2, γ1 and γ2 respectively. By uniqueness it follows that αp = α1,p ∗ α2,p in which
case σγ1∗γ2(p) = σγ1σγ2(p). So the above equality holds.

We will refer to this group homomorphism Φf,x0 as the monodromy representation
of f at x0.

Definition 1.2.5. Let f : C → X be a Hurwitz cover of type (g, d, λ1, . . . , λn), with
branch points B, and x0 ∈ X \ B. Then the monodromy representation of f at
x0 is a group homomorphism Φf,x0 : π1(X \ B, x0) → f−1(x0) determined by the above
procedure.

Monodromy representation is an important object in the theory of covering spaces,
as it neatly conveys covering structure into an algebraic framework. However the main
drawback of this definition is the dependence upon some explicit description of f . We
will eventually like to remove this dependence and so we introduce the notions associated
with labelled monodromy representation.

Observe that Sym(f−1(x0)) ∼= Sd where d = |f−1(x0)|. This isomorphism can be
achieved by labelling the elements of f−1(x0) from 1 to d, we will refer to this bijection
L : f−1(x0)→ {1, 2, . . . , d} as a labelling. Define the map

ΦLf,x0 : π1(X \B)→ Sd : [γ] 7→ L ◦ σγ ◦ L−1.

This is a group homomorphism from π1(X \ B, x0) into Sd. Moreover ΦLf,x0 obeys the

key properties of a monodromy representation i.e. ΦLf,x0 is nothing but a re-labelling

of Φf,x0 . For this reason we will refer to ΦLf,x0 as a labelled monodromy represen-
tation of f at x0. It turns out the number of distinct labellings is invariant up to
isomorphism of holomorphic maps. Better yet, we can exhibit equality between sets of
labelled monodromy representations of isomorphic holomorphic maps.

Lemma 1.2.6. Let f : C → X and f̃ : C̃ → X be non-constant holomorphic maps of
Riemann surfaces with X connected and branch points B. Let x0 ∈ X \B and Φf,x0 and
Φf̃ ,x0 be monodromy representations of f and f̃ at x0, respectively. Then,

|{ΦLf,x0 : L is a labeling of f−1(x0)}| =
d!

|Aut(f)|
. (1.10)
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Moreover, if f and f̃ are isomorphic,{
ΦLf,x0 : L is a labelling of f−1(x0)

}
=
{
ΦL
f̃,x0

: L̃ is a labelling of f̃−1(x0)
}
. (1.11)

Proof. To see explicitly the number of distinct labelled monodromy representations we
obtain, consider how a labelled monodromy representation ΦLf,x0 behaves under symme-
tries of f compared to Φf,x0 . An automorphism of f is a bijective holomorphic map
δ : C → C such that f ◦ δ = f . So δ permutes the elements of f−1(x0). Considering
how lifts of loops in the downstairs behave, let ρ be a loop based a x0, let p ∈ f−1(x0),
and αp be the unique lift of ρ starting at p and α̃p the unique lift ending at p. Note that
δ ◦ αp is also a lift of ρ, as f ◦ δ ◦ αp = f ◦ αp = ρ. Likewise δ ◦ α̃p is a lift. Moreover
δ ◦αp and δ ◦ α̃p are the unique lifts of ρ beginning and ending at δ(p), respectively. The
automorphism δ sends adjacent lifts to adjacent lifts. This tells us that a cycle of lifts of
ρ must be sent to another cycle of lifts of the same size under δ. In particular δ permutes
the elements of f−1(x0) in a way that keeps them in the same cycle, or completely swaps
a cycle with another, with respect to the lifts of ρ. Translating this to actions on the
cycles of σρ, they are either left unchanged or swapped with another cycle of the same
type, under δ. Either way the permutation is left unchanged i.e. σρ = δσρδ

−1. If L is a
labelling of the pre-image points f−1(x0) then

L ◦ σρ ◦ L−1 = (L ◦ δ) ◦ σρ ◦ (δ−1 ◦ L−1) = (L ◦ δ) ◦ σρ ◦ (L ◦ δ)−1

and so L and L◦ δ are two labellings who under a fixed monodromy representation Φf,x0
give rise to the same labelled monodromy representation – ΦLf,x0 = ΦL◦δf,x0

. Hence for each
distinct labelling L there are |Aut(f)| − 1 other distinct labellings that give the same
labelled monodromy representation. There are d! choices of labelling on f−1(x0), hence

|{ΦLf,x0 : L is a labeling of f−1(x0)}| =
d!

|Aut(f)|
.

To show the second equation, let π : C → C̃ be an isomorphism of f and f̃ , then
π restricts to a bijection between f−1(x0) → f̃−1(x0). Moreover the functions σ and
σ̃ obtained by the monodromy procedure are related by σγ = π−1σ̃γπ, for any γ ∈
Cur(X \ B, x0). Then the monodromy representations Φf,x0 and Φf̃ ,x0 are related by
conjugation. That is

Φf,x0([γ]) = π−1 ◦ Φf̃ ,x0([γ]) ◦ π

for all [γ] ∈ π1(X \ B, x0). Let L be a labelling of f−1(x0), by the equation above we
observe that

ΦLf,x0([γ]) = (L ◦ π−1) ◦ Φf̃ ,x0([γ]) ◦ (L ◦ π−1)−1 = ΦL◦π
−1

f̃ ,x0
([γ])

for all [γ] ∈ π1(X \B, x0) i.e. ΦLf,x0 = ΦL◦π
−1

f̃ ,x0
. Likewise if L̃ is a labelling of f̃−1(x0) we

have ΦL̃◦πf,x0
= ΦL̃

f̃ ,x0
. In particular as L̃ ◦π and L ◦π−1 are valid labellings of f−1(x0) and

f̃−1(x0) respectively, there is an equality of sets of labelled monodromy representations.
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From equation (1.10) and the definition of a Hurwitz number we observe that

Hd,g(λ1, . . . , λn) =
1

d!

∑
[f ]

∣∣{ΦLf,x0 : L is a labelling of f−1(x0)
}∣∣ , (1.12)

where the sum is over all isomorphism classes [f ] of Hurwitz covers of type (g, d, λ1, . . . , λn).

With equation (1.12), we have made some progress in our efforts to rephrase the
definition of a Hurwitz number. However, as things are, we need some explicit descrip-
tion of each isomorphism class of holomorphic map. It turns out we can remove this
dependence by introducing the abstract formulation of a monodromy representation.

Definition 1.2.7. Let X be a connected Riemann surface of genus g and B = {b1, . . . , bn}
a finite subset of X with x0 ∈ X \B. A labelled monodromy representation of type
(g, d, λ1, . . . , λn) is a group homomorphism

Φ : π1(X \B, x0)→ Sd

such that if ρi is a small loop about bi in X \ B, Φ([ρi]) is of cycle type λi. Also,
let M(g, d, λ1, . . . , λn) denote the set of all labelled monodromy representations of type
(g, d, λ1, . . . , λn).

As to why this is an abstraction of the idea of a monodromy representation as given
in Definition 1.2.5, see the discussion at the beginning of Section 1.2.2.

If f : C → X is a Hurwitz cover of type (g, d, λ1, . . . , λn) with x0 ∈ X \ B, and
L any labelling of f−1(x0), then ΦLf,x0 is a labelled monodromy representation of type
(g, d, λ1, . . . , λn). Then it follows that⋃

[f ]

{
ΦLf,x0 : L is a labelling of f−1(x0)

}
⊆M(g, d, λ1, . . . , λn), (1.13)

where again the union is taken over all isomorphism classes of Hurwitz covers of type
(g, d, λ1, . . . , λn).

Our goal for the next section is to show that

M(g, d, λ1, . . . , λn) ⊆
⋃
[f ]

{
ΦLf,x0 : L is a labelling of f−1(x0)

}
,

so that we obtain equality between all labelled monodromy representations of type
(g, d, λ1, . . . , λn) and all labelled monodromy representations of Hurwitz covers of type
(g, d, λ1, . . . , λn). In particular, it remains to show that any labelled monodromy repre-
sentation Φ of type (g, d, λ1, . . . , λn) can be written as a labelled monodromy represen-
tation ΦLf,x0 of a Hurwitz cover of type (g, d, λ1, . . . , λn). It will turn out that this occurs

in a unique manner – that is if ΦLf,x0 = ΦL̃
f̃ ,x0

= Φ then f ∼= f̃ .



20 CHAPTER 1. HURWITZ THEORY

1.2.2 Construction of Covers

We will show that given a labelled monodromy representation Φ : π1(X \B, x0)→ Sd of
type (g, d, λ1, . . . , λn) we can construct a holomorphic map f : C → X that exhibits Φ as
a labelled monodromy representation, and that such a map is unique up to isomorphism.
Note we will not give a rigorous proof, but instead emphasise the main idea behind the
construction. The details are then more a matter of book keeping.

This correspondence hinges on whether or not we have enough information to recover
a covering space structure of a punctured surface from a group homomorphism of the
fundamental group. The key to this idea is that the homomorphism contains information
about ramification profiles, that has been translated into cycle types of the generators
of the fundamental group. Consider a small loop γ winding about a branch point b in
the downstairs space X and observe the lifts of such a curve. The local geometry about
any point p ∈ f−1(b) is characterised by the ramification index kp. In particular, by
shrinking γ to be a sufficiently small loop about b, for each p ∈ f−1(b) we observe there
to be kp lifts of γ about p, such that when concatenating the distinct kp lifts about p we
obtain a curve that loops about the point p – and only the point p – exactly once. This
tells us that the cycle type of σγ is determined by the ramification profile of b, and is in
fact exactly the ramification profile of b. As we showed σ is invariant under homotopy,
any loop about a single branch point must have cycle type being the ramification profile
of that branch point.

One thing to observe at this point is that a description of the ramification profiles
is not enough to specify a covering space. In the context of holomorphic maps we
see that the data (g, d, λ1, λ2, . . . , λn) is not enough to specify a unique isomorphism
class of holomorphic maps, and hence the underlying covering space structure need not
be unique. If this were the case the problem of computing Hurwitz numbers would
become almost trivial. To specify a unique covering structure, not only do we need the
ramification profiles of branch points, but also information regarding the way in which
sheets of the covering space are ‘glued’ together between ramification points. By fixing
a base point x0 – it does not matter which x0 as X \B is always path connected – and
observing how the lifts of the generators of π1(X \ B, x0) travel between elements of
f−1(x0), we are able to recover this gluing information.

Theorem 1.2.8. Let X be a connected Riemann surface, and B be a finite set of points
in X. Fix some base point x0 ∈ X \B and let

Φ : π1(X \B, x0)→ Sd

be a labelled monodromy representation of type (g, d, λ1, . . . , λn). Then there exists a
Holomorphic map f : C → X with ΦLf,x0 = Φ for some labelling L of f−1(x0). Moreover,
f is unique up to isomorphism of holomorphic maps.

Proof. In the case that that Φ gives a transitive group action of π1(X \ B, x0) on Sd, a
proof of this fact along with a broader introduction to monodromy, can be found in [20,
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p.84]. Note that this approach is sufficient if one is simply interested in holomorphic
maps between connected Riemann surfaces, however we would like to consider a more
general approach.

The idea behind the more general proof, which can be found in [5, p.96], is to
construct a covering space of X \B using the group homomorphism Φ. As we discussed
earlier, Φ contains enough information to reconstruct a covering space – via ramification
profiles and glueing instructions – exhibiting Φ as monodromy representation up to
labelling of points. This procedure is outlined in Example 1.2.9. Applying Riemann’s
Existence Theorem, this covering space characterises a unique isomorphism class of
holomorphic maps, which we will take to be represented by f . f is a Hurwitz cover of
type (g, d, λ1, . . . , λn) and exhibits a labelled monodromy representation ΦLf,x0 = Φ, by
construction.

Example 1.2.9. We demonstrate the covering space construction with a specific exam-
ple. Let X be a complex torus, fix x0 ∈ X, and let B = {b1, b2, b3} ⊆ X \ {x0}. The
fundamental group of the torus with 3 punctures is given by,

π1(X \B, x0) ∼= 〈α, β, ρ1, ρ2, ρ3 : αβα−1β−1ρ3ρ2ρ1 = 1〉 (1.14)

where ρi can be interpreted as a counter-clockwise loop about bi for 1 ≤ i ≤ 3, α is a loop
through the hole of the torus, and β a loop about the rim. Define a group homomorphism
Φ : π1(X \B, x0)→ S3 by

ρ1, ρ2, ρ3 7→ (1, 2, 3) and α, β 7→ e. (1.15)

Φ is indeed a group homomorphism as

Φ(αβα−1β−1ρ3ρ2ρ1) = (1, 2, 3)3 = e, (1.16)

and so Φ is a labelled monodromy representation of type (1, 3, (3), (3), (3)).

Our aim is to construct a covering space of X \B that exhibits the above monodromy
representation up to some labelling of the pre-image points. This is achieved by creating
3 identical copies of X\B, and glueing them together based on how the lifts travel between
the pre-image points of x. Note that we expect the covering space to exhibit three points
with ramification index 3, so the resulting covering space should extend to a Hurwitz
cover of type (1, 3, (3), (3), (3)). By the Riemann-Hurwitz formula the resulting covering
surface should be of genus 4.

• The first step in the procedure is to convert X \B into a suitable identification poly-
gon. Then the gluing procedure simply corresponds to a quotient by an equivalence
relation on the edges of the three polygons, based on how lifts of the generators of
the fundamental group must travel between them. ‘Cutting’ along α and β, X \B
is homeomorphic a quotient space of a square with three punctures. Picking a cor-
ner of this square, draw curves in X \ B from each bi to to this corner, for each
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1 ≤ i ≤ 3. Again ‘cutting’ along theses curves, the resulting space is homeomorphic
to a quotient space of a regular decagon – missing some points on the boundary.
This procedure is illustrated in Figure 1.1. We will denote this identification poly-
gon S and note that S ∼= X \B.

Figure 1.1: A chain of homeomorphisms, converting X \B into an identification polygon.

• Let S1, S2, S3 be three disjoint copies of the space S, with functions fi : Si → S
being identifications between the two spaces. Let C̃ = S1 t S2 t S3, and define the
map f̃ : C̃ → S by

f̃(x) =


f1(x) if x ∈ S1;
f2(x) if x ∈ S2;
f3(x) if x ∈ S3.

(1.17)

Next we want to find a suitable equivalence relation ∼ on the edges of the polygons
in C̃, such that the quotient space C̃/ ∼ together with the descendant of f̃ , gives
a suitable covering space of S. Let xi = f−1i (x0) for each i ∈ {1, 2, 3} and let our
labelling be such that L : xi 7→ i.

• Consider the curve ρ1 about the puncture b1, depicted in Figure 1.2. As ρ1 7→
(1, 2, 3), we want ρ1 to exhibit three distinct lifts under the map f : C̃/ ∼→ S:
traversing from x1 to x2, x2 to x3, and from x3 to x1.

ρ1 can be thought to be split into two parts, one travelling away from the center of
S and one traversing towards the center. Observe the pre-image of the image of
ρ1 in S under f̃ . This will simply look like three copies of the right hand side of
Figure 1.2, one for each Si. We can then, for example, rearrange the polygons S1
and S2 so that the part of the preimage traversing from x1 to some edge in S1 and
the part travelling from some edge to x2 in S2 align. We take the resulting edges
that align to be equivalent under our relation ∼. This provides a lift of ρ1 under
f traversing from x1 to x2. We repeat this procedure so that four other edges are
made equivalent, yielding the remaining two required lifts of ρ1 under f . We have
colour coded the lifts and edges made equivalent in Figure 1.3. If you have ever
played a game of Tantrix, it might be a helpful analogy for visualising the process.
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Figure 1.2: This illustrates how ρ1 appears in the identification polygon S.

Figure 1.3: Each colour represents a different lift of ρ1, and which edges are to be
identified.

Figure 1.4: The resulting space from gluing together S1, S2, S3 along edges specified by
the lifts of ρ1. Note the puncture at b1 remains.

Quotienting out the edges made equivalent under ∼ by ρ1 we obtain the space in
Figure 1.4. This space exhibits local geometry expected about the point b1 i.e. it
has ramification index 3 under f . The space also clearly remains a covering space
of S if we were to spontaneously re-glue the remaining edges.
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• Continuing with this procedure for ρ2, ρ3, α and β we eventually identify each edge
of the polygons S1, S2, S3 with some other edge to obtain a closed surface. Note that
α and β are mapped to the identity under Φ, and so under this procedure, for each
polygon S1, S2, S3 we simply glue the two sides corresponding to α back together,
and likewise for the sides corresponding to β (i.e. no two distinct polygons are
glued together along these edges). f then gives a covering of X \B.

For a simpler example, consider how one might use this procedure to construct the cov-
ering space corresponding to the map f : CP1 → CP1 : z 7→ z2.

1.2.3 Hurwitz Numbers and Monodromy Representations

Equipped with the main theorem of the previous section the desired correspondence
between Hurwitz numbers and Monodromy representations is then almost immediate.

Theorem 1.2.8 tells us that

M(g, d, λ1, . . . , λn) ⊆
⋃
[f ]

{
ΦLf,x0 : L is a labelling of f−1(x0)

}
,

and that

M(g, d, λ1, . . . , λn)∩
{
ΦLf,x0 : L is a labelling of f−1(x0)

}
∩
{
ΦL̃
f̃ ,x0

: L̃ is a labelling of f̃−1(x0)
}

= ∅

when f 6∼= f̃ . In conjunction with equation (1.13) we have that

M(g, d, λ1, . . . , λn) =
⊔
[f ]

{
ΦLf,x0 : L is a labelling of f−1(x0)

}
. (1.18)

Then the theorem below follows.

Theorem 1.2.10. The Hurwitz number can be written as

Hd,g(λ1, λ2, . . . , λn) =
1

d!
|M(g, d, λ1, . . . , λn)|. (1.19)

Proof. It follows from equation (1.18) that

|M(g, d, λ1, . . . , λn)| =
∑
[f ]

∣∣{ΦLf,x0 : L is a labelling of f−1(x0)
}∣∣ .

Then by equation (1.12) the result follows.

This result is incredibly powerful as it translates the problem of computing Hurwitz
numbers into something combinatorial. This result says that a Hurwitz number is a
count of certain group homomorphism from the fundamental group of a punctured genus
g surface into the symmetric group. This theorem is what will ultimately bridge the
gap between Hurwitz numbers and the symmetric group – specifically giving Hurwitz
numbers as the product of characters of the symmetric group in the form of Burnside’s
character formula. Before proceeding we will spend some time playing with examples of
how we might compute Hurwitz numbers using this monodromy interpretation.
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1.2.4 Computations

We will now display the powerful computing power of this shift in interpretation with the
following examples. Computations that might have seemed impossible in the setting of
curve counting, become relatively easy. In Example 1.2.11 we will highlight this disparity
by recalling Example 1.1.19. In Examples 1.2.12 and 1.2.13 we will compute all Hurwitz
numbers of degree 2 and 3 respectively. Note throughout these examples let χ = 2− 2g
be the Euler characteristic of a connected genus g surface.

Example 1.2.11. Recall our calculation of Hd,0((d), (d)). The Riemann sphere with two
punctures is homeomorphic to the circle S1. The resulting fundamental group is then
the free group generated by one element, isomorphic to Z. We then want to count group
homomorphisms Φ : Z→ Sd, such that Φ(1) is of cycle type (d). There are d!/d = (d−1)!
such options, and so by equation (1.19) we have

Hd,0((d), (d)) =
(d− 1)!

d!
=

1

d
. (1.20)

Example 1.2.12. It is now suiting to note some properties of Hurwitz numbers. Given
the right hand side of equation (1.19) is counting homomorphisms between finite groups,
we are guaranteed that Hurwitz numbers are indeed finite. Moreover, just as we might
not always expect a monodromy representation to exist under certain conditions we do
not expect Hurwitz numbers to always be non-zero. In this example we will attempt to
calculate all Hurwitz numbers of degree 2,

H2,g((2)n) (1.21)

where (2)n denotes (2), (2), . . . , (2) n times. The Riemann-Hurwitz formula imposes a
restriction on the genus of the covering space h, in particular, 2h = 4g − n − 2. We
immediately see that n cannot be odd (we cannot have half genus), so we are forced to
conclude

H2,g((2)n) = 0 (1.22)

when n is odd.
Now let n be even. The fundamental group of a genus g surface with n punctures has

a finite presentation

G = 〈α1, β1, . . . αg, βg, ρ1, . . . , ρn :

(
g∏
i=1

[αi, βi]

)
ρ1 . . . ρn = e〉. (1.23)

A relevant monodromy representation is a group homomorphisms from Φ : G→ S2 such
that each ρi has cycle type (2). Note that we must have Φ(ρi) = (1, 2) for each ρi ∈ G,
as S2 = {e, (1, 2)}. Then our choices of Φ(ρi) are fully determined, and so monodromy
representations may only be distinguished by choices of each αi, βi. As S2 is Abelian and
n is even, the relation

e = Φ

((
g∏
i=1

[αi, βi]

)
ρ1 . . . ρn

)
= Φ

(
g∏
i=1

[αi, βi]

)
(1, 2)n =

g∏
i=1

[Φ(αi), Φ(βi)] (1.24)
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is satisfied regardless of the choice of αi of βi. So there are 22g distinct monodromy
representations determined by the choice of each αi and βi. Hence by equation (1.19)

H2,g((2)n) =
1

2!
22g = 22g−1 = 21−χ. (1.25)

Example 1.2.13. For a final example consider Hurwitz numbers of the form

H3,g((3)m, (2, 1)2n) (1.26)

for m,n ≥ 1. Let us first focus on the case when g = 0. The fundamental group is given
by

G = 〈ρ1, . . . , ρm, σ1, . . . , σ2n : ρ1 . . . ρmσ1 . . . σ2n = e〉. (1.27)

We count group homomorphisms sending ρi’s to elements of S3 of cycle type (3) and
σj’s to elements of cycle type (2, 1) (i.e. transpositions). The defining relation of the
group G must be satisfied, and so letting Φ denote an appropriate homomorphism

Φ(ρ1 · · · ρmσ1 · · ·σ2n−1) = Φ(σ2n). (1.28)

Note that regardless of choice of homomorphism Φ, Φ(ρi) is an even permutation, and
Φ(σj) is odd, and thus the product Φ(ρ1 · · · ρmσ1 · · ·σ2n−1) is an odd element of S3,
and so is always a transposition i.e. a valid choice of Φ(σ2n). Hence we can choose
Φ(ρ1), . . . , Φ(ρm), Φ(σ1), . . . , Φ(σ2n−1) freely, of which there are 2m · 32n−1 choices, and
set Φ(σ2n) as the corresponding product. Clearly we cannot make any other choices as a
group homomorphism is determined by the image of the generators, so

H3,0((3)m, (2, 1)2n) =
1

3!
2m32n−1 = 2m−132(n−1). (1.29)

Now consider g = 1. The fundamental group of a torus with 2n+m punctures is given
by

G = 〈α, β, ρ1, . . . , ρm, σ1, . . . , σ2n : [α, β]ρ1 . . . ρmσ1 . . . σ2n = e〉 (1.30)

Focusing on α and β, we observe that Φ([α, β]) ∈ S′3 = {e, (1, 2, 3), (1, 3, 2)}, so re-
gardless of the choice of α and β, Φ([α, β]) is even. Thus, freely choosing the image of
α, β, ρ1, . . . , ρm, σ1, . . . , σ2n−1 (with appropriate restriction to cycle type) we observe that

Φ([α, β]ρ1 · · · ρmσ1 · · ·σ2n−1) = Φ(σ2n) (1.31)

is an odd permutation in S3, and thus Φ(σ2n) is necessarily a transposition and Φ a valid
choice of monodromy representation. There are 6 · 6 = 22 · 32 choices of the images of α
and β (as there are no cycle type restrictions), and 2m · 32n−1 choices for the remaining
generators (excluding σ2n which is fully determined by these choices). Hence

H3,1((3)m, (2, 1)2n) =
1

3!
22322m32n−1 = 2m+132n. (1.32)
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Finally let g be an arbitrary positive integer. Then the arguments above generalise
very easily to this case. The fundamental group of a genus g surface with 2n + m
punctures is given by

G = 〈αi, βi, ρj , σk :

g∏
i=1

[αi, βi]
m∏
j=1

ρj

2n∏
k=1

σk = e〉 (1.33)

Freely choosing the image of the generators of type αi, βi, ρj and σk for 1 ≤ k ≤ 2n−1 we
have that their product is necessarily an odd element of S3 and thus a transposition, and
so the corresponding homomorphism is a valid monodromy representation (assuming the
generators are chosen with cycle type restrictions). So there are (6× 6)g choices of the
image of the generators of type αi, βi, and 2m32n−1 of the remaining generators. Hence

H3,g((3)m, (2, 1)2n) =
1

3!
22g32g2m32n−1 = 2(m−1)+2g32(n−1)+2g. (1.34)

Moreover, if we let a, b ∈ N then

H3,g((3)a, (2, 1)b) = 2a−χ3b−χ · (1 + (−1)b). (1.35)

Note this example was made significantly easier by the fact that the only odd elements
of S3 are transpositions. We could not use the same argument for calculating Hurwitz
numbers of degree 4 for example, as S4 has three odd cycle types, and more cases would
need to be considered.
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1.3 Burnside’s Character Formula

This section will provide one of the most powerful results in the study of Hurwitz numbers
– that being Burnside’s character formula. Making use of Theorem 1.2.10 one obtains
a readily computable formula for all Hurwitz numbers in terms of irreducible characters
of the symmetric group. First we will give a brief overview of the representation theory
of the symmetric group and then proceed with the proof of the formula.

1.3.1 Representations of the Symmetric Group

Representation theory allows us to study the structure of a group using linear algebra.
Often we can tell more about the group structure by considering the ways in which we
can represent a group rather than studying its abstract presentation. By a representa-
tion of a group G we mean a complex vector space V endowed with some linear group
action on V . That is, we identify elements of G with elements of GL(V ) via some group
homomorphism. Of particular interest are representations where the group action of G
cannot be isolated to a proper subspace of V , wherein these representations are said to
be irreducible. For a finite group G there are as many distinct irreducible representa-
tions as there are conjugacy classes of G. Moreover, any representation of G on a finite
dimensional vector space V can be decomposed into direct sums of irreducible represen-
tations. So the irreducible representations of a finite group serve as building blocks for
all other finite dimensional representations of G.

In the case of the symmetric group Sn, the conjugacy classes are indexed by partitions
of n corresponding to the distinct cycle types in Sn. The irreducible representations of
Sn are given by the Specht modules Sλ. The construction of these representations
would take us on a diversion from the main focus of this section, a good outline of the
construction can be found in [26], and [14]. If V is a finite dimensional representation
of Sn, it can be written as

V ∼=
⊕
λ`n

Sλ
⊕dλ

,

where dλ = dim(HomSn(Sλ, V )). A rather important representation of Sn – and in
fact any finite group – is given by the group algebra, which encodes all irreducible
representations of Sn.

Definition 1.3.1. The group algebra of Sn is a finite dimensional complex algebra
CSn, with vector space basis Sn and where multiplication is inherited from Sn. That is
σ · π = σπ for any σ, π ∈ Sn.

The group algebra CSn carries a natural representation of Sn given simply by left
multiplication. So CSn is an n! dimensional representation of Sn, often called the regular
representation of Sn. We can decompose CSn in terms of Specht modules as

CSn ∼=
⊕
λ`n

Sλ
⊕dim(Sλ)

.
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In particular we can find a basis of CSn such that for any σ ∈ Sn the corresponding
matrix under the regular representation is an n! × n! matrix in block diagonal form –
where each block corresponds to the restriction of the action of σ onto an irreducible
sub-representation of CSn.

Letting λ1, λ2, . . . , λp be the partitions of n, we have

σ 7→



Bλ1 . . .

Bλ1

 Bλ2 . . .

Bλ2


. . . Bλp . . .

Bλp





, (1.36)

where Bλi is a dim(Sλi)× dim(Sλi) square matrix appearing dim(Sλi) times in the ma-
trix representation on σ.

To any representation of Sn we can associate a function χ : Sn → C given by taking
the trace of the corresponding matrix representation of an element.

Definition 1.3.2. Let ρ : Sn → GL(V ) be a finite dimensional representation of Sn.
The character of ρ is a function χρ : Sn → C given by

χρ(σ) = trace(ρ(σ)).

A character is said to be irreducible if ρ is.

By fixing a basis of V , the trace can be viewed as the sum of the diagonal entries of the
matrix representation of ρ(g) – which is independent of the basis chosen. Importantly, the
character of an irreducible representation is unique up to isomorphism, allowing one to
transition the study of irreducible representations of a group into irreducible characters.
Characters are constant over conjugacy classes as ρ is a homomorphism and the trace is
invariant under conjugation, and in particular the collection of all irreducible characters
are a basis for the set of class functions – functions f : Sn → C that are constant
over conjugacy classes of Sn. Let λ1, λ2, . . . , λp be the partitions of n and χλi be the
irreducible character associated to Sλi . We can associate to Sn a p× p invertible matrix
Φ whose entries are Φij = χλi(λj) := χλi(g) – where g is of cycle type λj – we call Φ the
character table of Sn.
Importantly we have,

χλ((1n)) = dimSλ

for any λ ` n.
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Example 1.3.3. Here we give the character table of the S4. The partitions of 4 are
given by (14), (4), (2, 12), (3, 1), (2, 2), so Φ is a 5 × 5 matrix. The entries can be read-
ily calculated by means we will discuss in later sections – in particular by using the
Murnaghan-Nakayama rule.

S4 (14) (4) (2, 2) (3, 1) (2, 12)

χ(14) 1 −1 1 1 −1

χ(4) 1 1 1 1 1

χ(2,2) 2 0 2 −1 2

χ(3,1) 3 −1 −1 0 −1

χ(2,12) 3 1 −1 0 −1

The set of class functions forms a complex vector space under pointwise addition and
scalar multiplication, and can be endowed with an inner product,

〈f, h〉 =
1

|Sn|
∑
g∈Sn

f(g)h(g) =

p∑
i=1

f(λi)h(λi)

|ξ(λi)|
, (1.37)

where λ1, . . . , λn are the partitions of Sn and f(λi) = f(g) where g is of cycle type λi –
here |ξ(λ)| denotes the size of the centraliser of an element of cycle type λ. The set of
irreducible characters {χλ1 , χλ2 , . . . , χλp} of Sn are an orthonormal basis for the space
of class functions,

〈χλi , χλj 〉 = δij . (1.38)

Moreover it can be shown that∑
µ`n

χµ(λi)χµ(λj) = |ξ(λi)|δij . (1.39)

Equations (1.38) and (1.39) are referred to as the orthogonality relations of the
character table Φ, corresponding to products of the rows and columns of the matrix. It
is also worth noting that all character values of a Sn are real.

All of what we have discussed can be found in any introductory text book to repre-
sentation theory – for example [14] or [8]

1.3.2 The Center Z(CSn)

Schur’s lemma is an extremely useful tool in representation theory. It tells us how group
actions are allowed to translate between finite dimensional irreducible representations.
One of its consequences is of particular importance to us.

Lemma 1.3.4 (Schur). Let V be an irreducible representation of Sn. Let τ ∈ GL(V )
such that

σ(τv) = τ(σv)

for all v ∈ V for any σ ∈ Sn. Then τ is a scalar multiple of the identity.
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As one might guess form this theorem we will be particularly interested in a com-
mutative subalgebra of CSn.

Definition 1.3.5. The center of the group algebra Z(CSn) is the subalgebra of CSn
consisting of all central elements. That is

Z(CSn) = {σ ∈ CSn : σδ = δσ for all δ ∈ CSn}.

Remark 1.3.6. Let σ ∈ CSn then the map τ : v 7→ σv on CSn gives an element of
GL(CSn). Moreover τ |Sλ is an element of GL(Sλ). If σ ∈ Z(CSn) then τ |Sλ commutes
with all elements of GL(V ) of the form v 7→ δv where δ ∈ Sn. Hence by Schur’s lemma
above τ |Sλ is simply a scalar multiple of the identity automorphism on Sλ. By fixing
a basis as described earlier we have that τ is a block diagonal matrix of the form in
equation (1.36), where each component is of the form

Bλi = bλiIdimSλi×dimSλi

for some bλi ∈ C. In particular

τ 7→


bλ1I1

bλ2I2
. . .

bλpIp

 ,
where Ii is the (dimSλi)2 × (dimSλi)2 identity matrix.

With this observation, we have the motivation behind the following lemma. A precise
run down of this result can be found in [28, p. 109], although in a more general approach
than we have taken.

Lemma 1.3.7. Let λ1, λ2, . . . , λp be the partitions of n. Then Z(CSn) has a basis
{eλ1 , eλ2 , . . . , eλp} indexed by partitions of n, where

eλieλj =

{
eλi if i = j

0 if i 6= j

In particular, there is a basis of CSn such that the matrix representation of the action
of Z(CSn) on CSn is specified by

eλi 7→



01
. . .

0i−1
Ii

0i+1

. . .

0p


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where 0j and Ij are the (dimSλj )2 × (dimSλj )2 zero and identity matrices. From this
we observe Z(CSn) is a p-dimensional subalgebra of CSn.

Z(CSn) has another basis indexed by partitions of Sn.

Definition 1.3.8. Let Cλ ⊆ Sn denote the conjugacy class of elements with cycle type
λ. We denote by cλ the sum of all elements of cycle type λ in Sn, or formally

cλ :=
∑
σ∈Cλ

σ ∈ CSd. (1.40)

Let λ ` n and g ∈ Sn, then observe that

g−1cλg = cλ,

as conjugation permutes the entries of a conjugacy class. It follows that cλ is a central
element. So if λ1, λ2, . . . , λp are the partitions of n, then {cλ1 , cλ2 , . . . , cλp} are p linearly
independent central elements, and forms a basis for Z(CSn).

We have established that there are two basis of Z(CSn) indexed by partitions,
{eλ}λ`n and {cλ}λ`n. Knowing how to change between these two basis is critical to
the character formula. Ordering the partitions of n as λ1, λ2, . . . , λp, the change of bases
matrix from {eλ}λ`n to {cλ}λ`n, is given by

1

d!


dimSλ1χλ1(λ1) dimSλ2χλ2(λ1) . . . dimSλpχλp(λ1)
dimSλ1χλ1(λ2) dimSλ2χλ2(λ2) . . . dimSλpχλp(λ2)

...
...

. . .
...

dimSλ1χλ1(λp) dimSλ2χλ2(λp) . . . dimSλpχλp(λp)


or in other terms

eλ =
dimSλ

d!

∑
µ`n

χλ(µ)cµ and, cλ = |Cλ|
∑
µ`n

χµ(λ)

dimSµ
eµ. (1.41)

The expression for cλ can be verified using the orthogonality relations of the character
table.

This will be all the machinery we will need for the remainder of this chapter.

1.3.3 Counting Cycle Types and The Character Formula

In this section we will prove the character theorem using what we have discussed so
far. The idea behind the proof is to express counts of monodromy representations as
the coefficient in a product of elements in Z(CSn). Changing basis between {eλ}λ`n
and {cλ}λ`n we can manipulate the expression to give a computable formula for these
counts. So first let us consider how counts of monodromy representations are related to
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taking products in the group algebra in the following lemma.

Let σ ∈ CSd and g ∈ Sd we denote by [g]σ the coefficient of g in σ.

Lemma 1.3.9. Let d ≥ 1 and g be integers, and λ1, . . . , λn be partitions of d. Then

Hd,g(λ1, . . . , λn) =
1

d!
[e]

(∑
λ`d
|ξ(λ)|c2λ

)g
cλncλn−1 · · · cλ1 (1.42)

Proof. As mentioned, consider the number of monodromy representations |M(g, d, λ1, λ2, . . . , λn)|.
Then from equation (1.19) it follows that we must prove

|M(g, d, λ1, λ2, . . . , λn)| = [e]

(∑
λ`d
|ξ(λ)|c2λ

)g
cλncλn−1 · · · cλ1 , (1.43)

and we are done.

Consider the zero genus case. [e]cλcλn−1 · · · cλ1 is exactly the number of products of
elements of Sd, such that σnσn−1 · · ·σ1 = e, where σi has cycle type λi. This is precisely
the number of monodromy representations of type (0, d, λ1, . . . , λn), and so

|M(0, d, λ1, λ2, . . . , λn)| = [e]cλcλn−1 · · · cλ1 (1.44)

So it remains to see how we can encode the information regarding the genus in the prod-
uct above.

|M(g, d, λ1, λ2, . . . , λn)| is the number of choices of µ1, µ2, . . . , µg, η1, . . . , ηg, σ1, . . . , σn ∈
Sd such that

g∏
i=1

[µi, ηi]σnσn−1 . . . σ1 = e. (1.45)

and σj is of cycle type λj . For each commutator [µi, ηi] = (η−1i )µiηi, η̃i := (η−1i )µi and
ηi are in the same conjugacy class. Taking any two choices of η̃i, ηi ∈ Cλ (where ηi is
of cycle type λ) there are |ξ(λ)| choices corresponding of µi in Sd giving (η−1i )µi = η̃i.
With this correspondence, for a fixed 1 ≤ i ≤ g, we can encode all possible choices of ηi
and µi in terms of choices of ηi and η̃i (up to multiplicity), as elements of the product∑

λ`d
|ξ(λ)|cλcλ. (1.46)

Thus all possible products, as in the left hand side of equation (1.45) (up to multiplicity)
can be represented as elements of the product(∑

λ`d
|ξ(λ)|c2λ

)g
cλncλn−1 . . . cλ1 . (1.47)
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Moreover, those products satisfying equation (1.45) will evaluate to the identity. So the
number of such products may be taken to be the coefficient of e in the expression above.
Namely,

|M(g, d, λ1, λ2, . . . , λn)| = [e]

(∑
λ`d
|ξ(λ)|c2λ

)g
cλncλn−1 . . . cλ1 (1.48)

The character formula then arises as a simple calculation using the change of basis
formulas in equation (1.41).

Theorem 1.3.10 (Burnside’s Character Formula). Let g and d ≥ 1 be integers, and
λ1, λ2, . . . , λn partitions of d. Then

Hd,g(λ1, λ2, . . . , λn) =
∑
λ`d

(
dimSλ

d!

)2−2g n∏
i=1

|Cλi |χλ(λi)

dimSλ
. (1.49)

Proof. From Lemma 1.3.9 we have the equality,

Hd,g(λ1, λ2, . . . , λn) =
1

d!
[e]

(∑
λ`d
|ξ(λ)|c2λ

)g
cλncλn−1 . . . cλ1 . (1.50)

Using the equations of (1.41), and the multiplicative properties of the basis {eλ}λ`d.

cλncλn−1 . . . cλ1 =

n∏
i=1

∑
µ`d

|Cλi |χµ(λi)

dimSµ
eµ

 =
∑
µ`d

(
n∏
i=1

|Cλi |χµ(λi)

dimSµ

)
eµ.

And likewise

∑
λ`d
|ξ(λ)|c2λ =

∑
λ`d
|ξ(λ)|

∑
µ`d

|Cλ|χµ(λ)

dimSµ
eµ

2

=
∑
λ`d
|ξ(λ)|

∑
µ`d

(
|Cλ|χµ(λ)

dimSµ

)2

eµ

=
∑
µ`d

(∑
λ`d
|ξ(λ)||Cλ|2

(
χµ(λ)

dimSµ

)2
)
eµ

=
∑
µ`d

d!

(dimSµ)2

(∑
λ`d
|Cλ|(χµ(λ))2

)
eµ

=
∑
µ`d

(
d!

dimSµ

)2
(∑
λ`d

(χµ(λ))2

|ξ(λ)|

)
eµ

=
∑
µ`d

(
d!

dimSµ

)2

〈χµ, χµ〉eµ

=
∑
µ`d

(
d!

dimSµ

)2

eµ,
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So (∑
λ`d
|ξ(λ)|c2λ

)g
=
∑
µ`d

(
d!

dimSµ

)2g

eµ

and(∑
λ`d
|ξ(λ)|c2λ

)g
cλncλn−1 . . . cλ1 =

∑
µ`d

(
d!

dimSµ

)2g
(

n∏
i=1

|Cλi |χµ(λi)

dimSµ

)
eµ

=
∑
µ`d

(
d!

dimSµ

)2g
(

n∏
i=1

|Cλi |χµ(λi)

dimSµ

)(
dimSµ

d!

∑
λ`d

χµ(λ)cλ

)

=
∑
λ`d

∑
µ`d

(
d!

dimSµ

)2g−1
χµ(λ)

(
n∏
i=1

|Cλi |χµ(λi)

dimSµ

) cλ
Observing that e = c(1d) and that χµ((16)) = dimSµ, one has

1

d!
[e]

(∑
λ`d
|ξ(λ)|c2λ

)g
cλncλn−1 . . . cλ1 =

∑
µ`d

(
d!

dimSµ

)2g−1 χµ((16))

d!

(
n∏
i=1

|Cλi |χµ(λi)

dimSµ

)

=
∑
µ`d

(
d!

dimSµ

)2g−2
(

n∏
i=1

|Cλi |χµ(λi)

dimSµ

)

giving us the character formula.

Example 1.3.11. Using the character formula we calculate H3,g((3)a, (2, 1)b) for a, b ≥
1, as we did in Example 1.2.13. The partitions of 3 are (13), (2, 1) and (3), and the
character table of S3 is given below.

(13) (3) (2, 1)

χ(13) 1 1 −1

χ(3) 1 1 1

χ(2,1) 2 1 0

Using equation (1.50), we have

H3,g((3)a, (2, 1)b) =
∑
λ`3

(
dimSλ

3!

)2−2g ( |C(3)|χλ((3))

dimSλ

)a(
|C(2,1)|χλ((2, 1))

dimSλ

)b

=
2a3b

(3!)2−2g

∑
λ`3

(
dimSλ

)2−2g−a−b
χλ((3))aχλ((2, 1))b

= 2a−(2−2g)3b−(2−2g)
(

1 + (−1)b
)

= 2a−χ3b−χ
(

1 + (−1)b
)
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There are a few cases of Hurwitz numbers that behave nicely with the character
formula.

Definition 1.3.12. Let µ, ν ` d and r a positive integer, we define the double Hurwitz
number by

Hr
d(µ, ν) := Hd,0(µ, ν, (2, 1

d−1)r). (1.51)

From the equation (1.49),

Hr
d(µ, ν) =

1

|ξ(µ)||ξ(ν)|
∑
λ`d

χλ(µ)χλ(ν)

(
|C(2,1d−1)|χλ((2, 1d−1))

dimSλ

)r
(1.52)

A double Hurwitz number counts coverings of the Riemann sphere with two special
branch points – and some arbitrary number of simple ramifications. In the case that
r = 0, from the orthogonality relations of the character table of Sd,

H0
d(µ, ν) =

1

|ξ(µ)||ξ(ν)|
∑
λ`d

χλ(µ)χλ(ν) =
1

|ξ(µ)|
δµ,ν .

As one might expect, by considering monodromy representations of the fundamental
group, µ and ν have to be identical, and 1

|ξ(µ)| = |Cµ|/d!.

It becomes convenient to shorten the expression of a double Hurwitz number by
introducing the weighted character, in particular, for λ, µ ` d

fλ(µ) =
|Cµ|χλ(µ)

dimSλ
. (1.53)

Also observe that we can rewrite Burnside’s character formula in terms of weighted
characters in the obvious way, which appears in some texts. For our purposes shorten
fλ2 := fλ((2, 1d−1)), where d will be made clear from context. Then equation (1.52)
becomes

Hr
d(µ, ν) =

1

|ξ(µ)||ξ(ν)|
∑
λ`d

χλ(µ)χλ(ν)
(
fλ2

)r
. (1.54)

Definition 1.3.13. Let r ≥ 0, d ≥ 1 and g be integers, and µ ` d. A simple Hurwitz
number is defined by

Hr
d(µ) := Hd,0(µ, (2, 1

d−1)r) (1.55)

Using the character formula,

Hr
d(µ) =

1

|ξ(µ)|
∑
λ`d

(
dimSλ

d!

)1−2g

χλ(µ)(fλ2 )r (1.56)

Here we exchange freedom in the choice of ramification for freedom in the choice of the
genus. In the case r = g = 0, we have,

H0
d(µ) =

1

d!|ξ(µ)|
∑
λ`d

χλ((16))χλ(µ) =
1

d!
δµ,(1d), (1.57)

corresponding to the covers of an unramified Riemann sphere.



Chapter 2

Expectation Values

In this chapter we discuss how Hurwitz numbers arise as expectation values of operators
on an infinite dimensional vector space. The framework we will introduce in order to
achieve this is but a small piece in a much larger effort conducted by a group of physicists
know as the Kyoto school in the late 20th century, which laid the ground work for
the establishment of the connections between certain generating functions of Hurwitz
numbers and solutions to infinite families of partial differential equations. A shorter
overview of this construction can be found in [10] along with some further applications
that we have not mentioned. The conclusion of this section will not contribute much on
its own to this pursuit however, but we will provide an outline of a remarkable connection
between simple Hurwitz numbers and the KP hierarchy. For the interested reader, we
have given some references that explore the connections mentioned above in greater
detail towards the end of this section.

2.1 Fermionic Fock space

2.1.1 Construction of F

In this section we will construct an infinite dimensional Hilbert space which has a very
natural interpretation as a sort of ‘state space’ of electrons in a Dirac sea, which we
encapsulate in terms of Maya diagrams.

Let Z 1
2

denote the set of half integers i.e. Z 1
2

= {. . . ,−3
2 ,−

1
2 ,

1
2 ,

3
2 , . . . }. Let V be a

complex vector space with basis indexed by half integers, namely

V :=
⊕
i∈Z 1

2

Cvi, (2.1)

for some fixed basis {vi : i ∈ Z 1
2
}.

Definition 2.1.1. For a sequence X = {i1, i2, i3, . . . } of half integers, denote

vX := vi1 ∧ vi2 ∧ vi3 ∧ · · · (2.2)

37
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If X satisfies the following conditions:

• i1 > i2 > i3 > . . .

• there is some N ∈ N with in = iN + (n−N) for all n ≥ N .

then we call vX a semi-infinite wedge (or abbreviated to wedge).

If vX and vZ are semi-infinite wedges, and if X and Z are equal as sets, then by
the alternating property of the wedge product vX = ±vZ . Otherwise vX and vZ are
linearly independent by construction. We also observe that there are countably many of
these semi-infinite wedges. In particular, although each semi-infinite wedge is an object
in an infinite dimensional vector space, we only require a finite amount of information
to describe one i.e. the vectors vi1 , vi2 , . . . viN .

A useful tool for visualising semi-infinite wedges is through the use of Maya diagrams.
These diagrams are to be thought of as black beads on a string, placed at positions
indexed by Z 1

2
. Given a wedge vX , the corresponding Maya diagram is obtained by

placing a black bead at the position indexed by i if i ∈ X, leaving the positions indexed
by i 6∈ X blank. As mentioned before, vX can be described by a finite number of indices.
This is what allows us to draw Maya diagrams, where all place holders not drawn to the
left of the diagram are empty, and all place holders to the right of the diagram are taken
to be filled by a black bead.

Example 2.1.2. The Maya diagram of the wedges v 5
2
∧ v 3

2
∧ v− 3

2
∧ v− 7

2
∧ · · · and v− 1

2
∧

v− 3
2
∧ v− 5

2
∧ · · · are given by

0
and

0

respectively. Note that the Maya diagram uniquely determines a semi-infinite wedge, so
we will tend to talk about wedges and Maya diagrams interchangeably.

It may be relevant to think of these diagrams as systems of fermions occupying energy
levels in some Dirac sea. In fact the origin of the fermionic Fock space was precisely
motivated to describe systems of an unspecified number of fermions, and in turn has a
related space called the bosonic Fock space construed from vector spaces of polynomials
in many variables.

Definition 2.1.3. Let E := {e1, e2, e3, . . . } be the set of all semi-infinite wedges. We
can endow the vector space F := span W with an inner product 〈·, ·〉 such that W is
taken to be an orthonormal set and extended by sesquilinearity. The fermionic Fock
space F is taken to be the Hilbert space completion of F , that is

F := spanE. (2.3)
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Alternatively one can view F as the Hilbert space completion of the free complex
vector space generated by all Maya diagrams, with a similarly defined inner product. It
is standard theory of Banach spaces that any normed linear space can be embedded as a
dense subspace of a Banach space, so our definition of F as the completion of spanE is
well defined. Given F has a countable orthonormal basis E it follows that F is separable
and isometrically isomorphic to the space `2(N) as Hilbert spaces, as is the case for most
Hilbert spaces used in physics. Moreover for any x ∈ F we can write,

x =
∞∑
i=1

〈x, ei〉ei := lim
n→∞

n∑
i=1

〈x, ei〉ei (2.4)

2.1.2 Operators on F

With a sound description of the Hilbert space F we can define a number of fairly natural
linear operators on this space. By equation (2.4) and Hahn-Banach Extension Theorem,
it is enough to define a continuous linear operator A on spanE and extend uniquely to
a continuous linear operator Â on F , with Â|spanE = A and operator norms ‖A‖ = ‖Â‖,
specified uniquely by

Âx =
∞∑
i=1

〈x, ei〉Aei. (2.5)

Again this does not appear to differ from the usual intuition of how an operator acts on
a vector space, and so we will often refer to the operators A and Â interchangeably.

Within the context of Maya diagrams it is natural to define operators that correspond
to adding or removing a bead. These are what we will refer to as the wedging and
contracting operators, whose names become clear in the following definition.

Definition 2.1.4. For each n ∈ Z 1
2
, we define the linear operators ψn such that for each

semi-infinite wedge vX ∈W , X = (ik)k∈N,

ψnvX =

{
0 if n ∈ X,
(−1)jvi1 ∧ · · · ∧ vij ∧ vn ∧ vij+1 · · · if n 6∈ X, where ij < n < ij+1.

(2.6)

and extended by linearity to spanE. Likewise we define ψ†n on spanE to be such that

ψ†nvX =

{
(−1)j−1vi1 ∧ · · · ∧ vij−1 ∧ vij+1 · · · if n ∈ X, where n = ij ,

0 if n 6∈ X.
(2.7)

We will often call ψn and ψ†n the wedging and contracting operators respectively.

From the definitions of ψn and ψ†n, for any semi-infinite wedge ei ∈ E we have
ψnei, ψ

†
nei ∈ −E ∪ {0} ∪ E. In particular, ‖ψnei‖, ‖ψ†nei‖ ≤ 1 and it follows that the

wedging and contracting operators are bounded linear operators on spanE and thus
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continuous on spanE. We also observe that ‖ψnx‖, ‖ψ†nx‖ ≤ ‖x‖ for each x ∈ spanE

and have operator norms ‖ψn‖ = ‖ψ†n‖ = 1. Given that ψn and ψ†n are continuous
linear operators on spanE we can extend them to operators on F as we discussed above,
and by ψn and ψ†n we will mean the operators ψ̂n and ψ̂†n on F unless specified otherwise.

It is worth mentioning how these operators interact with one another.

Lemma 2.1.5. For each n,m ∈ Z 1
2
, the wedging and contracting operators obey the

relations

ψnψm + ψmψn = 0,

ψ†nψ
†
m + ψ†mψ

†
n = 0,

ψnψ
†
m + ψ†mψn = δnm.

Moreover, ψn and ψ†n are indeed adjoint.

Proof. These relations can be easily shown considering the action of these operators on
E in terms of their Maya diagrams. We show the most interesting example. The opera-
tors of the form ψnψ

†
m and ψ†mψn have a nice interpretation in terms of Maya diagrams:

by attempting to add a black bead at position n and then attempting to remove a black
bead at position m, multiplying the result by the number of black beads one needs to
jump across between positions n and m. Consider the Maya diagram of an arbitrary
semi-infinite-wedge v. If n 6= m, there are four cases to consider, corresponding to
whether or not there is a black bead at positions n or m, and it is simply a matter of
checking that indeed (ψnψ

†
m+ψ†mψn)v = 0 for each case. If n = m then, ψnψ

†
mv = 0 and

ψ†mψnv = v if there is not a black bead at position n, or ψnψ
†
mv = v and ψ†mψnv = 0 if

there is a black bead at position n. This shows the last expression given above.

For any x, y ∈ F , we have

〈ψnx, y〉 =

〈 ∞∑
i=1

〈x, ei〉ψnei,
∞∑
j=1

〈y, ej〉ej

〉
=

∞∑
i=1

∞∑
j=1

〈x, ei〉〈y, ej〉〈ψnei, ej〉,

〈x, ψ†ny〉 =

∞∑
i=1

∞∑
j=1

〈x, ei〉〈y, ej〉〈ei, ψ†nej〉.

To show that ψ†n is the adjoint of ψn it is enough to show that 〈ψnei, ej〉 = 〈ei, ψ†nej〉
for any two semi-infinite wedges ei and ej . Note ψnei = ±ej if and only if ±ei =

ψ†nej , and the above equality holds. So if ψnei 6= ±ej then ±ei 6= ψ†nej and we have

both 〈ψnei, ej〉 = 0 = 〈ei, ψ†nej〉. So regardless the equality holds and ψ†n and ψn are
adjoint.

A family of operators of particular interest to us are the shift operators αn which
count all the valid ways a black bead can be picked up from a Maya diagram and shifted
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n places to the left. Although one has to be careful to avoid unaccounted infinite sums
occurring, and for this reason we introduce the normal ordering of an operator of the
form ψnψ

†
m.

Definition 2.1.6. For each n,m ∈ Z 1
2

we define the normal ordering of ψnψ
†
m to be

the operator given by

En,m :=

{
ψmψ

†
n if 0 < n,

−ψ†nψm if n < 0.
(2.8)

For each n ∈ Z define the shift operator

αn :=
∑
i∈Z 1

2

Ei,i+n (2.9)

The normal ordering of ψmψ
†
n is more traditionally denoted by : ψmψ

†
n :, however

we opted for a slightly more compact notation. Using the anti-commutator relations
established in Lemma 2.1.5 we observe that when n 6= m, En,m = ψmψ

†
n. However if

n = m then En,n = ψnψ
†
n if 0 < n and En,n = ψnψ

†
n − 1 if n < 0, obtaining an operator

distinct from ψnψ
†
n. The one rule that one should remember is that En,n 6= ψnψ

†
n.

The introduction of this normal ordering may seem somewhat unnecessary, however
this construction makes the operator α0 well defined, as well as allowing us to always
write αn as a finite sum of bounded linear operators when acting on an element of spanE.
We also give α0 a special name, often called the charge operator. Given an arbitrary
semi-infinite wedge vX one can check that

α0vX =
∑
n∈Z 1

2

En,nvX =
∑

n∈Z 1
2
,0<n

En,nvX +
∑

n∈Z 1
2
,n<0

En,nvX =
(
|X+| − |X−|

)
vX ,

where X+ = X ∩ {n ∈ Z 1
2

: 0 < n} and X− = (Z 1
2
\X) ∩ {n ∈ Z 1

2
: n < 0}. So vX is

an eigenvector of α0 with eigenvalue q = (|X+| − |X−|) called the charge of vX . So F
has an orthonormal basis of eigenvectors of α0, these being the semi-infinite wedges.

Example 2.1.7. It may not be immediately clear from the expressions above, but the
charge of a semi-infinite wedge is simply the difference in the number of black beads to
the left of the zero mark, and the number of empty place holders to the right of the zero
mark. Below are a few examples.

0 0 0

Figure 2.1: Maya diagrams of semi-infinite wedges of charge q = 3, 0,−1 (left to right).

We can think of semi-infinite wedges whose Maya diagrams resemble that of the far
left diagram above i.e. with all black beads squished to the right, as being representative
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of all wedges with some particular charge. In particular, moving beads respects the charge
and we will soon show that indeed any wedge can be obtained by re-arranging beads on a
Maya diagram of this form.

Unfortunately, as one might expect, the shift operators αn for n ∈ N \ {0} are
not bounded on spanE, as we can always construct a semi-infinite wedge v, so that
‖αnv‖ = M for any M ∈ N. So there is no immediate way to extend αn to an operator
on F , however we will not need to make use of this for now and we think of αn as acting
on a dense subspace spanE of F .

We now show some key characteristics of the shift operators αn – when n 6= 0.

Lemma 2.1.8. For any n,m ∈ Z \ {0},

[αn, αm] = −nδn,−m. (2.10)

Moreover we have that
α†n = α−n,

on spanE.

Proof. Noting that we can write [AB,C] = A(BC +CB)− (AC +CA)B, and using the
relations of Lemma 2.1.5 one can write

[Ei,j , ψk] = δi,kψj and [Ei,j , ψ
†
k] = −δj,kψ†i ,

for i 6= j given we can write Ei,j = ψjψ
†
i . Then one can check that

[αn, ψk] = ψk+n and [αn, ψ
†
k] = −ψ†k−n.

Then, using the fact that [A,BC] = [A,B]C +B[A,C] we calculate

[αn, αm] =
∑
i∈Z 1

2

[αn, Ei,i+m]

=
∑
i∈Z 1

2

(
[αn, ψi+m]ψ†i + ψi+m[αn, ψ

†
i ]
)

=
∑
i∈Z 1

2

(
ψi+n+mψ

†
i − ψi+mψ

†
i−n

)
.

If n 6= −m then we can split the sum above, and change indices on the right hand sum
from i 7→ i+ n to get [αn, αm] = 0. If n = −m then

[αn, αm] =
∑
i∈Z 1

2

(
ψiψ

†
i − ψi−nψ

†
i−n

)
=
∑
i∈Z 1

2

(
ψiψ

†
i + ψ†i−nψi−n − 1

)
= −n.

To show that α†n = α−n it remains to show that 〈αnei, ej〉 = 〈ei, α−nej〉 for any
ei, ej ∈ E, as was the case when we considered the wedging and contracting operators.
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Note that |〈αnei, ej〉| ∈ {0, 1}, as there is no way to move two distinct beads to yield
the same Maya diagram. If 〈αnei, ej〉 = 0 then there is no way to move a bead in
the Maya diagram of ei to obtain ej , then clearly there is no way to move a bead
in ej to get to ei – else one could simply reverse the action to get 〈αnei, ej〉 6= 0.
So 〈αnei, ej〉 = 0 = 〈ei, α−nej〉. If |〈αnei, ej〉| = 1 then there is a way to alter the
Maya diagram from ei to get to ej , reversing the direction of the alteration we have
|〈ei, α−nej〉| = 1 = |〈αnei, ej〉|. Given the number of black beads jumped across is the
same we can remove the absolute values and we are done.

2.1.3 Partitions and Characters

Similar to how we can assign a charge to a semi-infinite wedge we can assign a partition.
Moreover, the charge together with a partition uniquely determines the wedge. There
are many ways of identifying a partition corresponding to a wedge, so bear this in mind
during the procedure we will outline.

Let vX be a semi-infinite wedge and consider the corresponding Maya diagram. The
aim is to construct a Young diagram by drawing its boundary above the Maya diagram.
Above each empty place holder draw a line segment traversing down and to the left,
and above each black bead draw a line segment traversing up and to the right. Draw
these line segments so that they form one continuous line above the Maya diagram.
Excluding the two infinitely long straight lines that are formed in this procedure, we
obtain the desired boundary. As a line can never traverse down and to the left or up and
to the left we can guarantee that this will indeed form the outline of a rotated Young
diagram. The columns traversing up and to the left we take to be the components of
the corresponding partition i.e. such that the resulting Young diagram has be rotated
3π
4 radians counter-clockwise.

0 7→ 0 7→

Figure 2.2: How a Young diagram is obtained from a Maya diagram.

One may then ask where the corner of the Young diagram is situated with respect
to the Maya diagram, as in the above diagram. Observe the point on the continuous
line above the 0 index on the Maya diagram, and consider the rectangle between this
point and where the corner of the Young diagram lies above the Maya diagram. Then
one can see the index of the corner of the Young diagram is given by the difference in
the length of the sides of the rectangle, as depicted in figure 2.3. This is simply the
difference between the number of black beads to the left of 0 and the number of empty
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place holders to the right of 0: precisely the charge corresponding to vX

√
2|X−|

√
2|X+|

|X+| − |X−|0

Figure 2.3: Determining where the corner of the Young diagram rests on the Maya
diagram.

With these observations, it is enough to see that a Maya diagram – and thus a semi-
infinite wedge – is uniquely determined by a tuple (q, λ) consisting of an integer q and
partition λ. We will be interested in how operators behave with these partitions and so
it is convenient to index semi-infinite wedges in this way, using ket notation we define
|q, λ〉 := vX where vX is a semi-infinite wedge whose Maya diagram can be identified by
(q, λ).

As mentioned before, the basis elements |q, 0〉 are ‘distinguished’ members of the set
of all wedges of charge q. That is all semi-infinite wedges |q, λ〉 with same q are obtained

in orbit of |q, 0〉 under the operators Ei,j = ψjψ
†
i , j 6= i. The operators Ei,j correspond

to attempting to pick up a black bead at position i and place it at position j in regards to
Maya diagrams, and as a result preserve the charge, yet alter the corresponding partition.
If λ = (λ1, λ2, . . . , λn), then we can write

ψq− 1
2
+λ1

ψ†
q− 1

2

|0, q〉 = |q, (λ1)〉,

ψ(q−1)− 1
2
+λ2

ψ†
(q−1)− 1

2

|(λ1), q〉 = |q, (λ1, λ2)〉

...

ψ(q−(n−1))− 1
2
+λn

ψ†
(q−(n−1))− 1

2

|q, (λ1, . . . , λn−1)〉 = |q, λ〉

Example 2.1.9. Constructing the wedge |0, (4, 2)〉 from |0, 0〉:

0

|0, 0〉 7→

0

E− 1
2
,− 1

2
+4|0, 0〉 = |0, (4)〉 7→

0

E− 3
2
,− 3

2
+2E− 1

2
,− 1

2
+4|0, 0〉 = |0, (4, 2)〉

Figure 2.4
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More generally the action of Ei,j with i 6= j can be seen as an attempt to add or
remove a connected component along the boundary of the corresponding partitions – i.e.
a border strip or rim hook of the corresponding partition – where sign of the resulting
partition is dependent upon the number of black beads between i and j, given by the
number of rows the border strip traverses in the corresponding Young diagram. Then,
for any n ∈ N, the operator αn counts all possible ways in which a border strip with n
squares – the length of the border strip – can be added to a partition, and α−n counts
all possible ways in which a border strip of length n can be removed from a partition
(up to sign).

Example 2.1.10. We will not explicitly prove the assertion above but will provide a
number of examples to convince the reader. Another overview of this process can be
found in [15]. Consider the partition |0, (4, 3, 3, 1, 1)〉. One can verify that

α−2|0, (4, 3, 3, 1, 1)〉 = −|0, (4, 2, 2, 1, 1)〉+ |0, (4, 3, 1, 1, 1)〉 − |0, (4, 3, 3)〉,
α−3|0, (4, 3, 3, 1, 1)〉 = −|0, (4, 2, 1, 1, 1)〉,
α−4|0, (4, 3, 3, 1, 1)〉 = |0, (2, 2, 2, 1, 1)〉,
α−5|0, (4, 3, 3, 1, 1)〉 = |0, (4, 3)〉+ |0, (2, 2, 1, 1, 1)〉,

where in terms of Young diagrams

α−2 = − + −

α−3 = −

α−4 =

α−5 = +
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The parts of the partition that have been highlighted are border strips of the original
partition that can be thought of as being ‘removed’ by the shift operator.

This interpretation of the action of the shift operators is incredibly reminiscent of the
recursive procedure specified by Murnaghan-Nakayama rule which calculates irreducible
characters of the symmetric group by counting all the ways one can remove border strips
from a partition, where the size of the strips is determined by another partition. A proof
of this result can be found in [17].

Lemma 2.1.11 (Murnaghan-Nakayama Rule). Let λ, µ ` d where µ = (µ1, µ2, . . . , µn)

χλ(µ) =
∑
|β|=|µ1|

(−1)height(β)χλ−β(µ− µ1) (2.11)

where the sum is over border strips β of λ of length |µ1|, λ− β is the partition resulting
from removing β, and µ − µ1 is the partition (µ2, µ3, . . . , µn). Here height(β) is the
number of rows β traverses minus 1.

One can recursively apply this formula to calculate χλ(µ) as simply a sum of 1’s and
−1’s. To encode the irreducible characters of the symmetric in terms of coefficients of
elements in F , we need operators that exhibit the recursive nature of this rule.

Definition 2.1.12. Given a partition µ ` d ∈ N, with µ = (µ1, µ2, . . . , µn) define the
operator

αµ =
n∏
i=1

αµi and α−µ =
n∏
i=1

α−µi (2.12)

By the commutation relations given in Lemma 2.1.8, the order of the products above
does not matter, and we have α†µ = α−µ.

Then as one might expect, we can almost directly apply the above operators to obtain
irreducible characters of the symmetric group.

Lemma 2.1.13. Let µ ` d ∈ N. Then

α−µ|q, λ〉 = χλ(µ)|q, 0〉 and αµ|q, 0〉 =
∑
λ`d

χλ(µ)|q, λ〉 (2.13)

for any fixed λ ` d.

Proof. The first formula is more or less a straight forward application of the Murnaghan-
Nakayama rule, given the interpretation of the action of αn on a partition.

Given the first formula holds, for any λ ` d the inner product evaluates to

〈q, 0|α−µ|q, λ〉 = χλ(µ).

So given the irreducible characters of the symmetric group are all real valued, we have
that

〈q, λ|α†−µ|q, 0〉 = 〈q, λ|αµ|q, 0〉 = χλ(µ) = χλ(µ).
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So we can write
αµ|q, 0〉 =

∑
λ`d

χλ(µ)|q, λ〉,

given that αµ|q, 0〉 must be a sum of semi-infinite wedges, corresponding to partitions of
size d and charge q.

This is a remarkable formula to emerge so easily from simple considerations of how
the basis elements behave under certain operations. Given partitions µ and ν of d, we
can calculate the product of the columns of the character table of Sd. That is

〈q, 0|α−µαν |q, 0〉 =
∑
λ`d

χλ(ν)〈q, 0|α−µ|q, λ〉 =
∑
λ`d

χλ(ν)χλ(µ) (2.14)

2.1.4 Matrix elements

Given the close relationship between Hurwitz numbers and the symmetric group, and the
relationship displayed above between fermionic Fock space and the symmetric group, a
natural approach is to then bridge the gap. In particular, using the character equation of
1.3.10 we can encode certain Hurwitz numbers as expectation values of certain operators
on fermionic Fock space. Before proceeding we want a way of encoding information
regarding the simple ramifications of a Hurwitz number into the expectation value of an
operator.

Definition 2.1.14. Define the operator F2 on spanE by

F2 :=
∑
i∈Z 1

2

1

2
i2Ei,i.

This is well defined on spanE in same way that α0 is well defined on spanE – only a
finite number of terms act non-trivially given a semi-infinite wedge. Again this operator
fails to be bounded, yet this still does not concern us.

To realise the action of F2 on a semi-infinite wedge we require a new way of viewing
a partition, and with it a useful result. To a partition λ we can associate two decreasing
sequences of half integers (a1, a2, . . . , an) and (b1, b2, . . . , bn). These are constructed by
splitting the Young diagram of λ along the diagonal sloping down and to the right, and
letting ai and bi be the number of boxes – including the half boxes – to the right and
below of the ith diagonal box, respectively.

Example 2.1.15. Consider the partition λ = (4, 3, 3, 2, 1),
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We then have (a1, a2, a3) = (3 + 1
2 , 1 + 1

2 ,
1
2) and (b1, b2, b3) = (4 + 1

2 , 2 + 1
2 ,

1
2).

Likewise given any two decreasing sequences of half integers (a1, a2, . . . , an) and
(b1, b2, . . . , bn), we can construct a partition. These tuples are referred to as the modified
Frobenius notation of a partition. There is then a nice result between this notation and
the weighted character f2(λ) which we will make use of.

Lemma 2.1.16 (Frobenius). Let λ be a partition with modified Frobenius notation
(a1, a2, . . . , an) and (b1, b2, . . . , bn). Then the weighted character fλ2 is given by

fλ2 =
1

2

n∑
i=1

(
a2i − b2i

)
. (2.15)

With a slight change in notation, this result can be found as an exercise in [8, p.52].
Note that many other weighted characters can be expressed as polynomials in a similar
way, derivations of these can be found in [27].

Given a wedge |0, λ〉, let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be the modified Frobenius
notation of the partition λ. Observe that (a1, a2, . . . , an) describes the positions of black
beads to the left of the 0 mark on the Maya diagram of |0, λ〉, and (b1, b2, . . . , bn) the
empty positions to the right of the 0 mark on the Maya diagram.

Example 2.1.17. Consider the partition λ = (4, 3, 3, 2, 1).

0

Figure 2.5: Maya diagram of |0, (4, 3, 3, 2, 1)〉 with corresponding Young diagram.

We see that the Maya diagram corresponding to λ has empty slots to the right of 0
(coloured blue) at positions −(4 + 1

2), −(2 + 1
2), −1

2 , and black beads placed to the right
of 0 (coloured red) at positions 3+ 1

2 , 1+ 1
2 and 1

2 . We see that the black beads are placed
at positions a1, a2, a3 and empty slots at −b1,−b2,−b3.

Define the operator F2 on spanE by

F2 :=
∑
i∈Z

1

2
i2Ei,i.

This is indeed well defined as the action of F2 on a semi-infinite wedge can always be
written in a finite number of terms. Then let λ be a partition with modified Frobenius
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notation (a1, . . . , an) and (b1, . . . , bn). Then by Lemma 2.1.16 and the observations above

F2|0, λ〉 =
1

2

 ∑
i∈Z,i<0

i2ψiψ
†
i −

∑
i∈Z,i<0

i2ψ†iψi

 |0, λ〉
=

1

2

(
n∑
i=1

(ai)
2 −

n∑
i=1

(bi)
2

)
|0, λ〉

= fλ2 |0, λ〉

We have successfully encoded the weighted character fλ2 as an eigenvalue of an operator
on spanE.

Theorem 2.1.18. Let µ, ν ` d and r a positive integer, then

Hr
d(µ, ν) =

1

|ξ(µ)||ξ(ν)|
〈0, 0|αµF r2α−ν |0, 0〉 (2.16)

Proof. This is more or less a straight forward application of what we have discussed so
far in this chapter. By above and Lemma 2.1.13

〈0, 0|α−µF r2αν |0, 0〉 =
∑
λ`d

χλ(ν)〈0, 0|αµF r2 |0, λ〉

=
∑
λ`d

χλ(ν)(fλ2 )r〈0, 0|αµ|0, λ〉

=
∑
λ`d

χλ(ν)(fλ2 )rχλ(µ)

Then using Burnside’s character formula we obtain equation (1.52), and

〈0, 0|α−µF r2αν |0, 0〉 = |ξ(µ)||ξ(ν)|Hr
d(µ, ν).

As it is now we have done nothing but rewrite equation (1.54) in terms of operators
on F , relying on the mutual connection between Hurwitz numbers, Fock space and the
symmetric group. The power of this approach comes from the context in which we have
set Hurwitz numbers.

2.1.5 Further Applications

To end, we will give a brief outline of how one can show the generating function of the
simple Hurwitz numbers is a solution to the KP hierarchy. We will follow the approach
given in [4]. Another approach can be found in [25], and a similar result is given for
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double Hurwitz numbers in [21]. The process we will outline arises fairly naturally
from the context in which we have placed Hurwitz numbers above. Note the fermionic
Fock space has a symmetric counterpart B dubbed the bosonic Fock space, consisting of
polynomials in an infinite number of variables. In particular,

B :=
⊕
q∈Z

C[x1, x2, . . . ]z
q.

The space C[x1, x2, . . . ] has a natural basis given by Schur polynomials sλ, so B has
a basis {sλzq} indexed by partitions and integers. F and B are isomorphic as vector
spaces under the identification σ : |q, λ〉 7→ sλz

q. This isomorphism preserves actions of
the infinite dimensional Clifford and Heisenberg algebras on F and B, this observation
is often called the boson-fermion correspondence.

The infinite dimensional Lie group GL∞ is defined by

GL∞ = {(aij)i,j∈Z : aij = δij for all but finitely many aij} .

Endowing F with a particular representation of the closure GL∞, it follows that the
solutions of the KP hierarchy are exactly those in the image of the orbit of the vacuum
vector |0, 0〉 under the action of GL∞ i.e. σ

(
GL∞|0, 0〉

)
are exactly the solutions to the

KP hierarchy.

The generating function of the simple Hurwitz numbers H(z, x1, x2, . . . ) can be writ-
ten as

H(z, x1, x2, . . . ) =

∞∑
d=1

∞∑
r=1

∑
µ`d

Hr
d(µ)xµ1xµ2 . . . xµn

zr

r!
,

where µ1, . . . , µn are the components of each partition µ. The ‘cut-and-join’ operator J
is defined on B by

J =
1

2

∑
n∈N

∑
i+j=n

(i+ j)xixj
∂

∂xi+j
+ ijxi+j

∂

∂xi

∂

∂xj

 ,

and it can be show that H(z, x1, x2, . . . ) is a solution to the equation

∂

∂z
H(z, x1, x2, . . . ) = JH(z, x1, x2, . . . ),

a proof of which can be found in [9]. Utilising equation (1.57) we observe that

H(0, x1, x2, . . . ) = ex1

and so we can write

H(z, x1, x2, . . . ) = ezJex1 .
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One can then construct an operator H̃ ∈ GL∞, written as exponentials of shift operators
(αn’s) such that under the boson-fermion correspondence

σ
(
H̃|0, 0〉

)
= ezJex1 = H(z, x1, x2, . . . ).

It follows that H(z, x1, x2, . . . ) is a solution to the KP hierarchy.

For those that are interested in Gromov-Witten theory, a collection of works by
A.Okounkov and R.Pandharipande [23, 22, 24] utilises this understanding of Hurwitz
numbers to prove a handful of remarkable results in the subject.



52 CHAPTER 2. EXPECTATION VALUES



Conclusion

In summary, a Hurwitz number is a topological invariant of a genus g surface, given by
an enumeration of ramified coverings admitting some specified collection of ramification
profiles. These invariants are ultimately combinatorial in nature, as emphasised by the
correspondence between monodromy representation and ramified coverings, allowing us
to exhibit Hurwitz numbers as counts of group homomorphism between finite groups.
With some effort, these counts can be represented as products of irreducible characters
of the symmetric group with Burnside’s character formula. Furthermore, by consider-
ing certain operators on fermionic Fock space, we can represent products of irreducible
characters of the symmetric group as expectation values. Many other results concern-
ing the nature of Hurwitz numbers can be shown working within this formalism. The
expressions obtained for the double Hurwitz numbers from each of these considerations
are given below.

Hr
d(µ, ν) =

∑
[f ]

1

|Aut(f)|

=
1

d!

∣∣∣{(ρ, σ, τ1, . . . , τr) ∈ (Sd)
×(2+r) : ρστ1 · · · τr = e, τi ∈ C(2,1d−2), ρ ∈ Cµ, σ ∈ Cν

}∣∣∣
=

1

|ξ(µ)||ξ(ν)|
∑
λ`d

χλ(µ)χλ(ν)
(
fλ2

)r
=

1

|ξ(µ)||ξ(ν)|
〈0, 0|αµF r2α−ν |0, 0〉.

An interesting theme to note throughout the first chapter is the exhibition of a
‘conservation of complexity’. That is, by changing the complexity of the language in
which we talk about Hurwitz numbers, the difficulty in calculation changes accordingly.
For example, it is fairly simple to give the original formulation of Hurwitz numbers
in terms of counts of holomorphic maps, yet this definition is cumbersome to use and
much effort is needed to carry out any calculations using it. With the classification of
holomorphic maps in terms of ramified coverings and by introducing monodromy repre-
sentation, we were able to bring holomorphic maps into a realm of further abstraction
where the machinery we developed was able to focus on identifiable characteristics of
isomorphism classes of holomorphic maps, rather than explicit descriptions. As a result
Hurwitz numbers can be calculated with relative ease using this perspective, as much
of the work is already done for us through this abstraction. In the case of Burnside’s

53
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character formula, simplicity in the formulaic description is sacrificed in favour of ease
of calculation: in knowing all the irreducible characters, and conjugacy classes, of the
symmetric group Sn, all Hurwitz numbers of degree n can be calculated directly using
this formula. This observation is not unique to our discussion, yet it seems indicative
on any sound mathematical theory.

As a final note, we should acknowledged the rich theory behind Riemann surfaces
which underpins our discussion on holomorphic maps. For example, the Riemann-
Hurwitz formula is an immediate consequence of the famous Riemann-Roch theorem.
Much of Chapter 1 can alternately be found in [20], which gives a broad introduction to
Riemann surfaces.
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