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Career Development 
The University of Auckland summer research was a pivotal experience that deepened my 
engagement with the mathematical sciences. It solidified my dedication to advancing in the 
field of Applied Mathematics and Statistics, particularly in developing efficient 
computational algorithms. My supervisor, Professor Pedram Hekmati, played a crucial role in 
my academic growth, offering profound insights into complex mathematical theories and the 
delicate nuances of algorithmic development. His guidance was key in sharpening my skills 
for the rigorous tasks of mathematical problem-solving and algorithmic efficiency. 
Collaborating with peers who share a passion for mathematics, I gained diverse perspectives 
that enriched my understanding and opened avenues for potential research collaborations. 
This scholarly exchange has been invaluable, reinforcing my resolve to contribute 
meaningfully to mathematical research and its applications in technology and science. 
 

Research Summary and Significance 
This report examines the advancement of algorithms for efficient matrix multiplication, a 
crucial operation in computational mathematics. It revisits Strassen’s algorithm which 
minimized scalar multiplications, setting a precedent for optimizing computational 
procedures. The study then transitions to framing matrix multiplication as tensor 
decomposition, introducing a conceptual basis for further algorithmic developments. This 
concept is operationalized through TensorGame, a platform that leverages Deep 
Reinforcement Learning to train AI in optimizing tensor decompositions. 
Results showcase the AI-derived algorithms' effectiveness compared to traditional methods, 
particularly for square matrices, indicating a step forward in computational mathematics. The 
summary highlights the intersection of classical algorithmic theory with AI, underscoring the 
potential of this synergy for future computational breakthroughs. 
 

Abstract 
This report investigates the enhancement of matrix multiplication algorithms through tensor 
decomposition and Deep Reinforcement Learning (DRL). Utilizing the innovative 
TensorGame, the study showcases the AI's prowess in refining algorithmic efficiency for 
square matrices. The findings reveal a promising direction for computational mathematics, 
highlighting the potential of DRL in algorithmic design and optimization. 
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1 Introduction 
 
In this section, we will introduce the basic matrix multiplication algorithm and outline 
Strassen’s algorithm for square matrices. 
 

1.1 Matrix Multiplication  
 
Standard Algorithm: For an 𝑛 × 𝑚 matrix 𝐴 and an 𝑚 × 𝑝 matrix 𝐵, if 𝐶 = 𝐴𝐵, then 𝐶 is an 
𝑛 × 𝑝 matrix with entries	𝑐!" = ∑ 𝑎!#𝑏#"$

#%& .  
 

 

 
For example, if we have two 2 × 2 matrices 𝐴 and 𝐵, then it takes 4 additions and 8 
multiplications in total to calculate their product 𝐶 = 𝐴𝐵.	
                               	𝐴             𝐵              𝐶 

%1 2
3 4* × %

5 6
7 8* = %19 22

43 50* 

Eight Multiplications 2

1 × 5 + 2 × 7 = 19
1 × 6 + 2 × 8 = 22
3 × 5 + 4 × 7 = 43
3 × 6 + 4 × 8 = 50

 

Executing eight multiplication steps for two 2×2 matrices may seem simple, but this becomes 
considerably more complex and time-consuming for larger matrices. The key reason lies in 
the binary arithmetic used by computers: addition is a straightforward, single-cycle operation 
for each bit, whereas multiplication involves multiple cycles of addition and bit-shifting. This 
difference significantly increases the computational load in standard matrix multiplication, 
underscoring the need for more efficient algorithms in handling larger matrices. 



Hence, decreasing the number of multiplications in any computational process, even if it 
means increasing additions or subtractions, can effectively accelerate the entire operation, 
leading to a quicker overall implementation. 

Consider the following illustration: we compare two algorithms for calculating the difference 
between the squares of two numbers, a and b. The figure below demonstrates that while both 
methods yield the identical outcome, the latter is notably more efficient, utilizing only half 
the number of multiplications required by the former.  
 

 

1.2 Strassen’s Algorithm 
Despite extensive research by mathematicians to find a more efficient algorithm, it was not 
until 1969 that Volker Strassen made a breakthrough. He introduced an innovative method 
that required only seven multiplication steps. 
 

  



                               	𝐴             𝐵              𝐶 

%1 2
3 4* × %

5 6
7 8* = %19 22

43 50* 

Seven Multiplications 

⎩
⎪⎪
⎨

⎪⎪
⎧
(1 + 4) × (5 + 8) = 65
(3 + 4) × 5 = 35
(6 − 8) × 1 = −2
(−5 + 7) × 4 = 8
(1 + 2) × 8 = 24

(−1 + 3) × (5 + 6) = 22
(2 − 4) × (7 + 8) = −30

 

65 + 8 − 24 + (−30) = 19 

−2 + 24																										 = 22 

35 + 8																														 = 43 

65 − 35 + (−2) + 22		 = 50 
 
 
Strassen's algorithm optimizes matrix multiplication beyond the basic 2x2 case by 
exploiting the nature of matrices as arrays of smaller submatrices. Consider a 
2,000×2,000 matrix, which can be treated as a 2×2 matrix where each element is itself a 
1,000×1,000 submatrix. By recursively breaking these down into 500×500 blocks, 
Strassen’s algorithm applies its multiplication strategy efficiently at each level. The 
larger the matrices involved, the more pronounced the benefits: fewer multiplications 
translate to significant computational efficiency gains, making Strassen's method 
especially advantageous for large-scale matrix computations. 
 

 

 
 
 
 
 
 
 
 
 
 
 

 



2 Tensor Decomposition 
 
In this section, we explore innovative strategies for discovering new matrix multiplication 
algorithms. A practical method involves reframing the challenge within the context of tensor 
decompositions. 
 

2.1 Matrix Multiplication as Tensor Decomposition 
 
Tensor decomposition, a vital concept in this exploration, refers to the process of breaking 
down a tensor into simpler, constituent parts. Tensors themselves are an extension of 
matrices, representing multidimensional arrays of numbers. While matrices, or 2D-tensors, 
are organized as two-dimensional grids indexed by two indices i and j, tensors extend this 
concept to higher dimensions.  
 

  
 
For example, a 3D-tensor involves a third index, k, creating a three-dimensional array.  
 

  
 
A 3D-tensor, expanding upon the concept of a matrix or a 2D-tensor, can be visualized as a 
cube of numbers, with each element defined by three coordinates. Just like a matrix is 
represented as a rectangular grid, a 3D-tensor manifests as a three-dimensional array. 
Particularly when a tensor consists solely of 0s and 1s, this structure allows for a clear 
visualization: 1s can be marked with colored boxes, while the zeros remain uncolored, as 
illustrated in the following image:  
 

  



The concept that a matrix multiplication algorithm equates to a tensor decomposition starts 
with this key insight: for predetermined matrix sizes, a unique 3D-tensor T, composed only of 
0s and 1s, accurately embodies the multiplication of two matrices A and B resulting in C. 
Intriguingly, any breakdown of this tensor T not only represents the multiplication process 
but also provides a new method for performing the multiplication. In essence, discovering 
novel algorithms for matrix multiplication is fundamentally about finding different ways to 
decompose the relevant tensor. 

 

To demonstrate this concept, let's consider the example of multiplying two 2x2 matrices:  
 

 

 
The depicted tensor T in the figure illustrates the process of 2x2 standard matrix 
multiplication. To expound this in a coordinate-based approach, the 𝒂𝒏would be in horizontal 
way and the 𝒃𝒏 would be in vertical way. The highlighted squares in the tensor correspond to 
the scalar products that need to be computed and summed to obtain the entries of the resulting 
𝑐( The orange square means we multiply the corresponding coordinates, and the sum of these 
two orange squares is our 𝒄𝟏.The subsequent segments of T similarly guide the computation 
of C's other elements. 

Here's Strassen’s algorithm using tensor decomposition.  



 

 
The matrices U, V, and W in the tensor decomposition correspond to the positions of a, b, c, 
separately. For example, the first operation utilizes elements a1 and a4 from matrix A, and 
accordingly, only these positions are marked with 1 in the U matrix to denote their selection. 
This methodical approach reduces the overall number of scalar multiplications required, thus 
optimizing the process of matrix multiplication. 

 
Once we fix the dimensions of matrices A and B, constructing tensor T becomes quite 
straightforward. The pivotal aspect here is that T allows for multiple unique decompositions 
into sums of outer products of three vectors, as follows:  
 

 
 
A tensor decomposition breaks down tensor T into several components. The total number of 
these components, denoted as R, is known as the decomposition's rank. This rank is directly 
tied to the count of multiplications needed in the matrix multiplication algorithm derived 
from this particular decomposition. 
 

2.1.1 Outer Product 
 
An outer product is an operation that takes two vectors and produces a matrix or higher-order 
tensor. For vectors 𝒖	and	v, their outer product, denoted by	 𝑢 ⊗ 𝑣 , results in a matrix where 
the element at the 𝑖*+ row and 𝑗*+column is the product of the 𝑖*+	element of	
𝒖	and	the	𝑗*+	element	of		v. In the context of tensor decomposition, the outer product 



extends to three vectors, generating a 3D-tensor whose elements are products of the 
corresponding elements of each vector.  

Here is how Strassen’s algorithm unfolds using tensor decomposition: 
Let 𝐴 and 𝐵 be 2 × 2 matrices that we want to multiply and let 𝐶 be the resulting matrix. 
Strassen’s algorithm decomposes the multiplication process into seven unique products of 
linear combinations of the elements of 𝐴 and 𝐵. 

In Strassen’s algorithm, each outer product of vectors	𝑢(*), 𝑣(*),	and	𝑤(*) constructs a rank-1 
tensor. When these tensors are summed, they form the complete tensor 𝑇, which represents 
the maytrix multiplication 𝐴𝐵 = 𝐶.  

𝑇	 = 	=𝑢(")⊗𝑣(")
$

"%&

⊗𝑤(") 

For each index 𝑡 from 1 to 7, the vectors 	𝑢(*), 𝑣(*),	and	𝑤(*) correspond to a unique set of 
operations. The outer product 𝑢(*)⊗𝑣(*)⊗𝑤(*) creates a tensor that contributes to a single 
element of the resulting matrix 𝐶 when the calculations involving elements of 𝐴 and 𝐵 are 
completed. The sum of these products, across all values of t, yields the reconstructed matrix 
𝐶.	 

To compose the tensor 𝑇, we add up all the rank-1 tensors created by these outer products. 
This product is not an approximation but an exact representation of the multiplication 
process: 

 

Each rank-1 tensor produced by these outer products represents a single multiplication step in 
Strassen’s algorithm, and their sum constitutes the tensor 𝑇 that fully represents the matrix 
multiplication 𝐴𝐵 = 𝐶. 

Let’s get back to our previous example: 

Adding up all the rank-1 tensors created by these outer products: 
𝑇 = G𝑢(&)⊗𝑣(&)H ⊗ 𝑤(&) + G𝑢(/)⊗𝑣(/)H⊗ 𝑤(/)…+ G𝑢(0)⊗𝑣(0)H ⊗ 𝑤(0) 

To encapsulate, unearthing a new algorithm that necessitates exactly 𝑅 multiplications can be 
achieved by decomposing the tensor 𝑇 into a sum of 𝑅 exact products of the form	𝑢 ⊗ 𝑣 ⊗
𝑤	as	mentioned previously. 
The challenge lies in the sheer volume of potential decompositions, which is as vast as the 
plethora of matrix multiplication algorithms in existence. Navigating this expansive 
combinatorial landscape demands innovative and sophisticated approaches. For instance, 
Alpha Tensor addresses this by engaging with a three-dimensional board game called Tensor 
Game. 



3 Tensor Game 
 
In this section, we investigate the concept of Tensor Game, a novel approach that casts tensor 
decomposition as a reinforcement learning challenge within a 3D board game framework. 
 

3.1 Goal of Tensor Game 
 
The primary aim with the game is to determine a decomposition of a given tensor 𝑇, into a 
sum of exactly 𝑅 outer products, where 𝑅 represents the minimal number of multiplicative 
operations required in the matrix multiplication algorithm. This pursuit aligns with the 
overarching goal of enhancing computational efficiency in matrix multiplication tasks.  
 

 
 

3.2 Steps of Tensor Game 
 
The Tensor Game is executed in a sequence of strategic actions, each geared towards 
deconstructing the designated tensor 𝑇. The procedural steps are: 
Initial Step (t=0): We begin with the tensor 𝑇, which we aim to decompose:  
 

 

 
Progressive Steps (t=1,2,3,…): In each round, the player chooses a trio of vectors 
𝑢(*), 𝑣(*),	and	𝑤(*).  



The state of play, 𝑆*, evolves by deducting the outer product of these vectors from the 
preceding state, calculated as: 
 

 

Conclusion of the Game: After 𝑅 iterations, the game reaches its end, with the objective of 
transforming the tensor into a null state: 

 
This endpoint signifies a successful decomposition of the original tensor 𝑇 into a series of 
outer products. The target is to accomplish this with a minimal number of steps, reflecting the 
count of multiplications in the algorithm being designed. A system of incentives penalizes 
unnecessary moves to promote the most direct path to the zero-tensor. Exceeding a 
predetermined number of moves incurs additional penalties, emphasizing the importance of 
optimization in the decomposition process. 

4 Deep Reinforcement Learning 
 
In this section, we delve into Deep Reinforcement Learning (DRL), exploring its application 
as a powerful tool in optimizing tensor decomposition strategies within the framework of the 
Tensor Game. 
 

4.1 Definition of Deep Reinforcement Learning 
Deep Reinforcement Learning (DRL) is a sophisticated computational approach that 
empowers machines to learn optimal strategies through direct interaction with their 
environment, refining their actions based on successively received feedback to achieve a 
predefined objective. Central to DRL is the concept of an agent that, when faced with a 
problem as complex as finding faster matrix multiplication algorithms, learns to navigate the 
intricate landscape of possible solutions. 

In the specific context of the Tensor Game, DRL is utilized to train an agent to discover 
efficient tensor decompositions, which directly translate to faster matrix multiplication 
methods. By simulating the game environment, the DRL agent experiments with various 
sequences of outer products, effectively learning to optimize the steps required to reach the 
goal state. The deep neural networks within the DRL framework serve as the agent's evolving 
'brain', enabling it to discern patterns and make increasingly informed decisions, ultimately 
leading to the formulation of more efficient algorithms for matrix multiplication. 



4.2 Overview of the model 
 
Alpha Tensor employs a deep reinforcement learning framework, centred around an 
intelligent agent tasked with exploring the realm of tensor decompositions through the 
gameplay of Tensor Game. The model's decision-making process hinges on a well-defined 
policy guided by reward functions, with each game played contributing valuable data. This 
data is then processed through a neural network, which iteratively refines and enhances the 
agent's policy and value estimations. The workflow of Alpha Tensor involves the following 
key steps:  
 

 

• Tensor Game Initiation: A three-dimensional tensor T, which represents the matrix 
multiplication 𝑨𝑩 = 𝑪, serves as the starting point. 

• Data Augmentation: The tensor T undergoes a transformation through a randomized 
selection of basis changes, diversifying the representation of the tensor and, by 
extension, the gameplay. This allows Alpha Tensor to explore various 
decompositions in parallel, infusing the learning process with a rich diversity of 
scenarios. 

• Monte Carlo Tree Search (MCTS): This is a heuristic search algorithm used for 
making decisions at each step, combining it with reinforcement learning to choose the 
next action. MCTS iteratively builds a search tree based on the exploration of possible 
moves and uses the policy function for decision-making and a value function to 
evaluate the potential of each move. 

• Gameplay Output: The series of actions taken, equating to a decomposition of T, is 
recorded as a played game. 

• Deep Reinforcement Learning Phase: The model samples states from the played 
games or synthetic data and feeds them into a neural network, which learns and 
updates the policy and value functions that inform the MCTS. 



• Model Updates: With new insights gained from played games and synthetic data, the 
model updates the policy and value functions, readying itself for a new iteration of 
improved decision-making. 

 

4.2.1 Data Augmentation and Monte Carlo Tree Search(MCTS) 
 
Alpha Tensor leverages data augmentation and linear algebra to manipulate the core tensor T, 
preserving its rank R across different basis transformations. This process not only diversifies 
the tensor's representation but also ensures its fundamental properties remain unchanged. In 
each iteration of the Tensor Game, the model deploys Monte Carlo Tree Search (MCTS) 
alongside reinforcement learning to navigate the decision space. This combination allows the 
model to evaluate potential decompositions efficiently, using policy and value functions to 
guide the search towards optimal solutions.  
 
 

 

 
The game's iterations are invaluable, generating tensor-factorization pairs that serve as a 
foundation for both reinforcement and supervised learning within the neural network. This 
hybrid training approach refines the model's strategy, incrementally improving its capability 
to decompose tensors. Through this iterative process, Alpha Tensor not only enriches its 
dataset with diverse tensor decompositions but also sharpens its neural network's ability to 
predict and evaluate the most efficient pathways for matrix multiplication. 

 
The transformer-based neural network architecture of Alpha Tensor acts as a sophisticated 
guide in this process. With an axial attention mechanism at its heart, the model effectively 
encodes the state of the game, providing a nuanced understanding that informs both the 
policy and value heads. As a result, the agent's skill in identifying and executing more 
effective matrix multiplication algorithms is continuously enhanced, driving advancements in 
computational mathematics. 

 



5   Results 

In this section, we present the empirical findings of Alpha Tensor’s computational 
experiments, focusing on the complexity of matrix multiplication for square matrices. The 
evaluation benchmarks Alpha Tensor’s algorithms against the established standards and 
observes their performance in both modular and standard arithmetic frameworks. 
 

 

 
The comparison reveals Alpha Tensor’s capability to either meet or improve upon the best-
known tensor ranks, which signify the total number of scalar multiplications required. For 
example, in the 4x4 matrix multiplication case, Alpha Tensor demonstrates optimization by 
achieving a rank of 47, against the previously best-known rank of 49. These findings, though 
incremental in their nature, are a testament to the potential of Alpha Tensor’s approach and 
the strides it is making in computational mathematics. 

 
It's crucial to note, however, that these results are derived from synthetic data simulations. 
The true efficacy and efficiency of Alpha Tensor’s algorithms in real-world scenarios, 
especially those involving specialized matrix structures such as sparse matrices, have yet to 
be validated. Additionally, while speed enhancements are of clear interest, the importance of 
numerical stability in practical matrix multiplication remains a paramount concern. This 
aspect has not been thoroughly investigated, indicating an avenue for future research and 
exploration within Alpha Tensor’s framework. 

 
Conclusively, this section illustrates the contributions of Alpha Tensor to the advancement of 
matrix multiplication algorithms. Although not revolutionary, the system's methodical 
improvements and its potential to revolutionize algorithmic design in computational tasks are 
promising. The anticipation of applying Alpha Tensor’s methodologies to a wider array of 
mathematical problems provides an exciting direction for future developments in the field. 
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