Classification of Separable
Approximately Finite-Dimensional C*-
Algebras

UNIVERSITY OF
AUCKLAND

Wiaipapa Taumata Rau
NEW ZEALAND

Sean Yang

Department of Mathematics

The University of Auckland

Supervisor: Dr Pedram Hekmati

A Honours thesis of 2025 submitted to fulfill the requirements of the degree BAdvSci(Hons) in
Mathematics at the University of Auckland






Abstract

We shall prove the celebrated Elliott's classification theorem [1] of separable approximately
finite-dimensional C*-algebras using the techniques of K-theory, and provide a more categorical
interpretation of the main theorem and the results leading up to it. The methodology involved
will follow closely to the K-Theory textbook by M. Rgrdam [2] alongside further elaboration of
techniques involved in certain technical results for the sake of clarity. We shall also generalize the
intermediary results involving inductive limits to be inductive limits indexed by directed sets, this
includes the continuity of the K, functor.
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1 | Introduction

The theory of C*-algebras had never been more fundamental and quintessential in the development
of operator theory and related functional analysis topics. Elliott’s classification program is one of
the ongoing research program in an attempt to classify those C*-algebras given sufficiently nice
conditions. One of the famous, and perhaps the first, classification result of C*-algebras was provided
by G.A. Elliott in his paper in 1976 [1]. Which specifically classifies separable approximately finite-
dimensional algebras using the tools of K-theory.

The general process goes as follows, for a unital C*-algebra A, we consider the set of all possible
projection matrices (matrices p satisfying p = p? = p*) with entries of A, P_ (A), identified by
Murray-von Neumann equivalence ~. In the case of A = C, the equivalence relation ~ identifies
complex orthogonal projection matrices with their ranks. We consider the set of equivalence classes,
P (A)/ ~, identified by thre relation ~, and endow it with an Abelian semigroup structure by
equipping it with the direct sum operation @. The @ operation behaves in a natual way and is
compitable with the ~ relation, for example,

(Bs)e(

The Abelian semigroup (P, (A)/ ~,®) can be extended further to a more natural structure of

Abelian groups by taking the Grothendieck completion, this process introduces inverses from existing
elements which results in an Abelian group that is typically considered the smallest Abelian group
containing (P, (A)/ ~,®), or the Abelian group closure of (P (A)/ ~,®) if you will. This grants
us the K-group for A which is an invariant of A, and in fact, we obtain a functor K|, from the
category of unital C*-algebras C*-Alg; to the category of Abelian groups Ab. For example, the C*
-algebra of complex numbers C associates to the Abelian group Z as one identifies K,(C) =~ Z.
For the process of a nonunital C*-algebra A, we initiate the construction from its unitization A,
then the K|,-group for A with be the kernel of K (m) where = : A — C is the natural projection
map. Hence one has a functor from the category of C*-algebras C*-Alg to Ab. This process will be
described in Chapter 3.

Unforunately, the invariant K is not enough to distinguish even finite-dimensional C*-algebras,
thus we shall enrich the structure of K,(A) by giving a ‘natural’ ordering, making it into an
ordered Abelian group with a distinguished order unit (K,(A), Ky(AT),[14],). For example, the
matrix algebras M, (C) and M5 (C) associates to the triples (Z,Z*,2), and (Z,Z*,3), which have
different order units, namely 2 and 3 respectively. Hence one has a stronger invariant, and as it turns
out, this invariant is sufficient to classify approximately finite-dimensional algebras, which is the
celebrated Elliott's Theorem 4.5.5 and will be proven using Elliott’s Intertwining_Argument 5.4.8.

The classification theorem shall be the main result of Chapter 4 and this thesis.

The concepts and results introduced will be done as generally as possible despite the main result
not requiring the full generality. We will also have extra emphasis on category theory, as we can
package the results more neatly in categorical terms. The reader should be familiar with the language
of basic category theory; see Appendix 5.1 to 5.3.
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We shall formalize the definitions and fundamental results from C*-algebras with an extra emphasis
on category theory. While most of the results introduced should be well-known, we will also shed
light on more specific results that will be used later in the thesis. Most of the well-known results
will be cited from the B. Blackadar [3] and M. Takesaki [4] operator theory textbooks.

2.1 C*-Algebras

Definition 2.1.1. (C*-Algebra). A C*-algebra is a complex Banach space (A4, |-|) with:
e A multiplication operation A x A — A that is an associative bilinear map, and satisfies |ab| <

lal|b] for all a,b € A.

e An involution operation A — A, typically denoted as *, that satisfies

* (a+b)* =a*+b%

> (Aa)* = Aa*;

R (a*)* =a

» (C*-identity). [la*a| = |a|?;

for all a,b € A and A € C.

We say A is unital if it has a multiplicative identity, which we denote as 1 or 1, depending on the
context, and note that we require that |14 = 1. We say a A is a *-algebra if A is not necessarily
complete. In general, we denote |-| 4 to be the norm of A, and the subscripts is omitted if the
context clear. We say an element a € A is:

e Normal if aa* = a*a.
o Self-adjoint (or Hermitian) if a = a*, and denote H(A) to be the set of self-adjoints elements

of A.

e Projection if a = a* = a?, and denote P(A) to be the set of projections of A.
Assume A is unital.
e Unitary if aa* = a*a =14, and denote U (A) to be the set of unitary elements of A.
e Invertible in A if there is a b € A such that ab = ba =14, and we write a~! = b, and denote

GL(A) to be the set of all invertible elements of A.

Given a subset S C A, denote A(S) to be the smallest not necessarily unital C*-subalgebra of
A that contains S, if S ={ay,...,a,}, then write A(S) = A(aq,...,a,). A linear map p: A —
B between C*-algebra is a homomorphism if p(ab) = p(a)p(b) for all a,b € A, and we add the
prefix * if furthermore p(a*) = ¢(a)* for a € A. We note that *-homomorphisms are automatically
Lipschitz continuous with Lipschitz constant 1, i.e. ¢ is norm-decreasing; see [3, 11.1.6.6]. If A and
B are unital, then we say ¢ is unital if p(1,) =15.

One of the crucial results of C*-algebra is that if one has a *~homomorphism ¢ : A — B, then ¢
is an isometry if, and only if, ¢ is injective; see [3, [1.2.2.9]. We say such ¢ to be *-embeddings. We
say A is embedded in B if there is an injective *~homomorphism from A to B, and we say they are
isomorphic if the aforementioned *-homomorphism is also surjective, i.e. a *-isomorphism. The *
prefix will be omitted if the context is clear.

Thus in the category of C*-algebras, denoted as C*-Alg, the morphisms are *-homomorphisms.
We observe that C is the most trivial nonzero C*-algebra. We shall also denote C*-Alg; to be the
category of unital C*-algebra where the morphisms are unital *~homomorphisms. Here are some
common examples of C*-algebras.
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Example 2.1.2. (Space of Bounded Operators). Given Banach spaces X and Y, we denote B(X,Y)
to be the set of all bounded linear operators from X to Y, and B(X) = B(X, X). We note that
B(X) is a unital Banach algebra. If furthermore X is a Hilbert space, then B(X) is a unital C*
-algebra under the Hermitian adjoint. The restriction to compact operators X' (X) is a nonunital
C*-algebra unless X is finite-dimensional. Thus in particular, spaces like £5(N), or n x n complex
matrices M, (C) under the conjugate-adjoint are C*-algebras.

Example 2.1.3. (Space of Continuous Maps). Given topological spaces X and Y, we denote C(X,Y)
to be the space of continuous maps from X to Y. If Y is normed, we denote Cy(X,Y") to be the
space of continuous maps that vanishes at infinity, i.e. f € Cy(X,Y) if, and only if, f: X = Y is
continuous and for each € > 0, there is a compact K C X such that for all x € X \ K, one has
| f(x)|| <e. We note that if Y is normed (resp. a Banach algebra, or C*-algebra), then Cy(X,Y)
forms a normed space (resp. a Banach algebra, or C*-algebra), and if X is compact, then C(X,Y) =
Cy(X,Y) also satisfies those respective properties. In those cases, we can equip those spaces with
the supremum norm and pointwise operations. Note that if Y is a commutative C*-algebra, then X
can be assumed to be locally compact Hausdorff (resp. compact Hausdorff) and Y can be assumed
to be C in the case of Cy(X,Y") (resp. €(X,Y)) by Commutative Gelfand-Naimark 2.4.1. We denote
C(X):=C(X,C) and Cy(X) := Cy(X,C), where the former is a unital C*-algebra while the latter
is nonunital if X is noncompact.

The most natural way of constructing new C*-algebras from old ones is by taking direct sums.

Example 2.1.4. (Sum of C*-algebras). Given C*-algebras A and B, we can define the direct sum
A @ B of C*-algebras A and B with elements as (a,b) for a € A and b € B, and equip A & B with
pointwise operations, and the norm |(a,b)| = max{|al, [b]}. Then A @ B is indeed a C*-algebra.

The ideals of C*-algebras are have elegant properties. Given a two-sided ideal I C A, which means
that I is a subspace such that I C I for all r € A (note that we do not require I to be a *-algebra).
Then if I is closed, it follows that I is now a *-algebra, hence a C*-algebra, furthermore, one has a
quotient C*-algebra A/I with a canonical *-homomorphism 7 : A — A/I where the set and norm
of A/I is defined in the context of quotient Banach spaces; see [3, 11.5.1.1]. We obtain a following
variant of the first isomorphism theorem which will be used in Chapter 4.

Theorem 2.1.5. (First Isomorphism). Let ¢ : A — B be a *-homomorphism between C*-algebras
A and B, then im(y) is a C*-algebra. If ¢ : A — C'is a *-homomorphism into a C*-algebra C, and
ker(p) C ker(v)), then there is a unique *-homomorphism p : im(p) — C such that ¥ = po .

Proof. As I = ker(y) is a closed two-sided ideal of A, then A/I is a quotient C*-algebra. Define
v(a+I) = p(a), then it follows that v is a well-defined map, in particular v is a *-embedding, so
im(¢) = im(v) is a C*-algebra as v is an isometry. Now define p : im(¢p) — C as u(p(a)) = ¢¥(a),
which again is a well-defined map as ker(yp) C ker(¢), and it follows that p is a *-homomorphism.
Thus 1 = u o ¢ and uniqueness is apparent. [ |

It is well-known that all finite-dimensional C*-algebras are just direct sums of M, (C). The result
is stated below, and we shall assume this fact.
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Theorem 2.1.6. Let A be a finite-dimensional C*-algebra, then there exists ny, ...,n,, € N for some
m € N such that
A=Mm, C)& oM, (C).

Proof. See [2, Theorem 7.1.5]. [ ]

2.2 Unitization

One of the most important concepts is making our algebras unital. This process of unitization is
extremely relevant in our study of K-theory, so this chapter aims to provide a careful treatment of
understanding the structure of unitization and its various functorial properties.

Construction 2.2.1. (Unitization of C*-algebras). For any C*-algebra A, we can embed A into a
unital C*-algebra, which we denote as A, such that A is a maximal ideal in A.
Let 1 ; be some symbol, and consider the direct sum of vector spaces:
AzAGB(ClA:{a—FalA:aEC}.
Define mulitiplication in a natural way such that 1;a =al ; = a forall a € 4, i.e.
(a+alz)(b+pl;) =ab+ab+ fa+afly

and also (a+alz)" =a*+aly forall a,b € A and o, 8 € C. Thus it clear that ~ is indeed a *-
algebra. The norm and the embedding will be briefly established in the next proposition; refer to [4,
p. 3] and [4, Proposition 1.5] for details.

We shall provide a proof sketch on why the unitization is indeed a C*-algebra, though the norm
structure of our unitization will not be relevant to our thesis.

Proposition 2.2.2. The unital algebra A is indeed a C*-algebra such that A is embedded into A
as a maximal ideal.

Proof Sketch. For each a € A, denote L, (z) = ax for each 2 € A, and by our definition, L, is
a linear map from A to A. If a € A, it is clear that |L,|| < |a| (given the operator norm), and

|Loa”| = lal®
so |L,| > |a|, hence |L,| = |a|. Thus T :a+ L, is an injective *~homomorphism from A to
B(A), hence T(A) is a C*-algebra. Define S: A —T(A)®C:ar L,
homomorphism, and for each a € A, denote |a| = |S(a)|, which makes A a C*-algebra. The
embedding of A as a maximal ideal into A is now clear. [ |

which is a bijective *-

We denote A to be a unitization A. Though as the construction may suggest, it is not true that
A=~ A@C (as C*-algebras) in general as the former is unital while the latter may not be. In the
case of unital C*-algebra, we can consider the element 1 ; — 14 which acts an indicator for elements
in A. And as it turns out: A is unital if, and only if, A~ A C; see next lemma.

Lemma 2.2.3. Let A be a unital C*-algebra, and p=1; —14. Then
(i) p is a projection with ap = pa = 0 for all a € A.
(i) A= A@® Cp as vector spaces.
(iii) The map ¢ : A® C — A given by p(a,a) = a + ap is an isomorphism.
In particular A = A @ C if, and only if, A is unital.
Proof. As 1 ;a = 1,a = a for all a € A, then (i) follows. For each a + al; € A, one has
a+aly=a—al,+ape A+ Cp,
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and if z€ ANCp, then z=0al; —al, =a for some a € A and a € C. In particular, a + al, =
al z, then by definition of formal sums, one has a =0, and a + al, =0, hence a =0, so z = 0.
Thus ANCp =0, and the sum is direct; this proves (ii).

It is clear that ¢ is linear, hence by (ii), ¢ is bijective. By (i) ¢ is a *-homomorphism, so this

proves (iii). ]
In any case, one induces a split-exact sequence1
LA B 7TA
0 sy A —— A — C —— 0 (2.1)
A4

where 1: A — A:ars a, 7r:/i—>C:a+o¢1A|—>a, and A:(Cl—néi:ozHalA. It will be under-
stood that the arrows refer to ¢, m, and A whenever we are presented with the diagram (2.1).
The unitization has a nice universal and functorial property, which we can then say that A is the
unitization of A up to isomorphism by universality, see Appendix 5.2 for a precise definition.

Theorem 2.2.4. (Universality of Unitization). Let ¢ be a *~homomorphism between C* algebras A
and B, then there is a unique unital *-homomorphism @ : A — B such that ot = 50 . Even
more, one has the commutative diagram:

la . T4
A c > A » C
N (2.2)
2 2
!B 4 T
B < >y B » C

Moreover,
(i) ¢ is injective if, and only if, @ is injective.
(ii) ¢ is surjective if, and only if, @ is surjective.

Proof. Define ¢(a+ al;) = ¢(a) + alp, then it is clear that ¢ is a *-homomorphism such
that @oty =g, and the diagram (2.2) commutes. Suppose ¢’ : A — B is another unital *-
homomorphism such that ¢’ o1y =tz o ¢, then given a +al; € A, one has

Pa+aly)=¢ (a)+alg=y9a)+alg=@la+aly),

which shows uniqueness. As p=p®v: A®Cl; - B@Cly where v:Cl; - Clg:al; —
alg is an isomorphism, then (i) and (ii) follows. [ ]

Theorem 2.2.5. (Functoriality of Unitization). The unitization operator ~ defines a faithful functor
from C*-Alg to the category of C*-Alg,. This means that, given C*-algebras A, B, C, and *-
homomorphisms ¢ : A — B and ¥ : B — C, one has:
() dop=1p.
(i) id, =id .
(iii) (Faithfulness). Suppose , 1 : A — B are *-homomorphisms. If ¢ = 1), then ¢ = 1.
Proof. Let a +al; € A, one has

(¥ op)(a+alz) =p(p(a) + alg = P(p(a) + alp) = $(@(a+ aly))
soﬂ?o?o:d;ocfo. Also
ﬁ;(a—kalg) =idy(a)+alj=a+al,

'Refer to Definition 5.4.2 for the definition and notation of arrows.
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soid, = id ;. Hence (i) and (ii) are shown.

In the case of (iii), by Universality of Unitization 2.2.4, one has tgo@ =151, so p =1 as tp is

injective. [ |

Example 2.2.6. (The trivial unitization). Note that if 0 is the trivial C*-algebra, then 0 = C, and
if 0: A — B is the zero map, then 0 = Ag o 74. Which funnily enough, 0: 0 — 0 gives 0 = id.

Example 2.2.7. Given a locally compact Hausdorff space X, the unitization of C,(X) is isomorphic
to C(X’) where X’ is the Alexandroff one-point compacitification of X; refer to [3, 1.1.2.2]. In
particular, one has the following corresponding: let oo be the point at infinity of X/, then one has
the *-isomorphism ¢ : C)(X) — C(X) defined as

_Jf@) ifteX
“’(f * aleo(X)>(t) - {a if t = oo

Hence one has the cooresponding split-exact sequence

L o
0 — GX) — (X)) &= C —— 0
A

where () = o(f), 7(f) = f(c0), and A(a) = 90(0 + a1@m)).

2.3 Spectral Theory

The spectral theory of C*-algebras is elegant and is what makes C*-algebra standout from other
algebraic normed structures as it leads onto continuous functional calculus seen in the next chapter.
We shall briefly introduce the concept of spectrum and some relevant results following from it. In
this chapter, let A; = A if A is unital, otherwise, let A, = A if A is nonunital and we denote 1 to
be the unit in A;. We denote the spectrum of a € A to be

o4(a) ={\ € C:a— Al is not invertible in A},

which is always a nonempty compact subset of C. In particular, if a € A, then 0 € 0 4(a); see [5,
[1.1.4.1 and 11.1.4.2]. We may omit the subscript 4 if the context clear.

Lemma 2.3.1. Let a,b be elements of some C*-algebra A. Then:
(i) 0.4(ab) \ {0} = 04(ba) \ {0}.
(ii) If f € Clz,Z] (f is a complex polynomial), then o ;(f(a)) = f(o4(a)) = {f(A) : A € g4(a)}.
(iii) If B is a C*-subalgebra of A, then oz(a) = 0 4(a).
(iv) If o : A — Bis a *-~homomorphism, then oz(¢(a)) C o 4(a). If ¢ is injective, then o5(p(a)) =

o4(a).
Proof. See [3, 11.1.4.2] for (i) to (ii), [4, Proposition 4.8] for (iii) [3, 1l.1.6.7] for (iv). The rest
are easy, with last part of (iv) follows from (iii). [ ]

Define the spectral radius r(a) = /\ma(x)|)\], and if a is a normal element, then r(a) = |a|; see
co(a

[3, 11.1.6.3]. So in particular, |a| = \/r(a*a), and note that by Lemma 2.3.1 (iii), the spectral radius
is independent of the spectrum that the element resides in.

We say an element a is positive if a is normal with o(a) C [0,00). It turns out, a is positive if,
and only if, a = z*x for some x € A. We define A" to be the set of positive elements of A. Given
a,b € H(A), define b > a if o4(b—a) C [0,00), thus it follows that (H(A),>) forms an ordered
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vector space over R where the relation > is a partial order, i.e. the addition on A" and scalar
multiplication over [0, 00) preserves the >. See [4, Theorem 6.1, p. 23] for the details.
Let a € A;, and note that a > X\ and a € AT for some A > 0 implies a is invertible in A; as 0 ¢
o(a). Also given a a € H(A), one has a < |a|1; as o(a) is bounded by |al.

Now given b € A, then bab* > 0 if a > 0, as a = z*z for some = € A, hence

bab* = bz*zb* = (zb*)*(xb*)

shows that bab* is positive. It turns out the product of positive elements are also positive: take a, b €
A™, then following from Lemma 2.3.1 (i) and Example 2.4.7: o(ab) U {0} = a(ab%b%) u{0} =
a(b%ab%) U {0} and as b2abz > 0, thus ab is positive.

The following lemma is used in Chapter 4 and is especially prominent in Lemma 4.1.2.

Lemma 2.3.2. Let p, q be projection elements of a C*-algebra. Then the following are equivalent:
(i) ¢ <p.

(i)) ¢ = qpq.
(iii)) ap =1¢.
(iv) pg=gq.

Proof. Write 1 = 1 4. (i)=>(ii). One has that ¢* = qq¢* < qpq*, so q(1 — p)g < 0, hence ¢(1 —
p)g =0 as q(1 — p)g* is positive. So ¢ = gpq.
(ii)=>(iii). As

=q—qpq=q(1—p)g=(q(1—p))((1—p)g)",
thus 0 = ¢(1 — p) by C*-identity, so gp = q.
(iii)=(iv). As
(1=p)g)((1=p)g)* = (1 —p)g(1 —p)=(1—p)(g—gp) =0

thus (1 — p)q = 0 by C*-identity, so ¢ = pq.
(iv)=(i). As p(1 —¢q) >0 (product of two projections, hence positive elements), one has p >
pPq =q. u

We say two elements a,b € H(A) are orthogonal if ab = 0, and we write a L b. Note that ab =
0 if, and only if, ba = 0 as the elements are self-adjoint. We also say that two *-homomorphisms
©,% : A — B between C*-algebras are orthogonal if ¢(a)y(b) = 0 for all a,b € A, note that this
implies 1 (a)p(b) =0 for all a,b € A as given a,b € A, one has

P(a)p(b) = (p(b")y(a"))" = 0" =0.

The following lemmas are crucial in lifting our morphisms identified by the K, functor; these results
are exclusively used in Lemma 4.5.3.

Lemma 2.3.3. Let n € N and p,, ..., p,, be projections of a C*-algebra. Then the following are
equivalent:
(i) py,...,p, are mutually orthogonal.
(ii) p; + ... + p,, is a projection.
(iii) py + ... +p, < 1.
Proof. (i)=(ii). If p;p; = 0 for distinct i, j < n, then one has

(Zpi)Q =Y pp; =Y _pE=>_p

i<n 1,J<n i<n i<n
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shows that p; + ... + p,, is a projection.
(il)=>(iii). Trivial as o(p, + ... + p,,) C {0,1}.
(iii)==>(i). Let ¢, j < n be distinct. Then
pi+tpj<p+..+p, <1
= pi(pi + ;)P < Pip;
= P T 0iPp; < D;
= p;ip;p; <0
= p;ip;p; =0

where the last equality holds because p;p,p; is positive. Now

2
lppill” = || ()" (pj0:) || = [lpipjpsp: ]| = ||pipss]| = 0

so p;p; = 0. This shows (i). [
We say an element v € A to be a partial isometry if v*v is a projection. In that case, as o(vv*) U

{0} = o(v*v) U {0} C {0,1} and vv* is normal, then vv* is also a projection by Corollary 2.4.4 and
hence v* is a partial isometry. We shall borrow the relation vv*v = v in Proposition 3.1.1.

Lemma 2.3.4. Let vy, ..., v,, be partial isometries of a unital C*-algebra, and suppose
vavi =1= Zviv;‘.
1<n <n
n . .
Then 3 " | v; is unitary.
Proof. By preceding lemma, as vv} + ... +v,v}, = 1 is a projection, then v,v],...,v, v} are
mutually orthogonal. Let i, j < n be distinct, so
X

* *

* — J— * —
v;v; = v;v;v;v,050,; = v;0v; = 0.
So one has,
* — * — * —
E v, g v, | = g v;v; = E viv;, =1
i<n i<n 2,J<n i<n
- . -

and similarly (Zzgn vi> (Zign vi) = 1. Thus Zign v, is unitary. n

2.4 Continuous Functional Calculus

It turns out every C*-algebra A has the following identifications.

Theorem 2.4.1. (Commutative Gelfand-Naimark). Let A be a commutative C*-algebra, then there
is a locally compact Hausdorff space X such that A is isomorphic to Cy(X). If A is unital, then X
can be chosen as compact Hausdorff, i.e. A = C(X).

Proof. See [3, 11.2.2.4]. [

Theorem 2.4.2. (Gelfand-Naimark-Segal). Let A be a C*-algebra, then A is embedded in B(H)
for some Hilbert space H. If A is separable, then H can be chosen to be separable.
Proof. See [3, 11.6.4.10]. [ ]
Following from Commutative Gelfand-Naimark 2.4.1, we achieve the following result to obtain an

effective way of constructing C*-algebra elements; this is the strength and elegance of C*-algebras.
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Theorem 2.4.3. (Continuous Functional Calculus). Let a be a normal element of a C*-algebra A.
Then one has a *-isomorphism:
Cloa(a)) = Ala,15) : f = f(a)

where if p(z) = Zi,jgn ¢; ;27 € Clz,Z], then p(a) = ngn ¢; ja'(a*)?, and if (p,)ney is a
sequence of polynomials that converges uniformly to a f € C(o(a)), then f(a) = lim,_, . p,(a).
Furthermore, given a € A and f € C(o(a)):
(i) If f(0) =0, then f(a) € A(a).
(i) One has im(f) = f(o(a)) = o(f(a)).
(iii) If Bis a C*-algebra and ¢ : A — B is a *-homomorphism, then ¢(f(a)) = f(¢(a)).

Proof. See [3, 11.2.3.1 and 11.2.3.2]. [

For example, this gives us a convenient way of generating unitary elements out of self-adjoint
elements. Let a € A be a self-adjoint element, then o(a) C R. Define f(t) = e® on o(a), then f
is unitary and f € C(o(a)), thus f(a) = €' is a unitary element. In fact, one has an immediate
corollary of identifying self-adjoint, unitary, and projection elements.

Corollary 2.4.4. Let a € A be normal. Then the following holds:
(i) a is a self-adjoint if, and only if, o 4(a) C R.
(i) ais a projection if, and only if, 0 4(a) C {0,1}.
(i) If A is unital, then a is unitary if, and only if, o 4(a) CS' :={z € C: |2] = 1}.
Proof. See [3, 11.2.3.4]. [ ]
This next lemma gives a sufficient condition on when the map a — f(a) is continuous given
normal elements a € A.

Lemma 2.4.5. Let K C C be a nonempty compact set, and denote 2 to be the set of all normal
elements with spectrum contained in K from a C*-algebra A. Given f € C(K), then the induced
map a > f(a) from €, is continuous.

Proof. Let € > 0 and by Stone-Weierstrass theorem, there is a polynomial p € C|z,Z] such that
[f — plle <e. Itis clear that p is continuous from Q to A by a — p(a), so given a € A, there is a
d > 0 such that for all b € A with |a —b|| < §, one has ||p(a) — p(b)| < €. In particular,

If(a) = f(B)] < [f(a) —pla)] + p(a) — p(b)]| + [p(b) — F(b)] < 3e,
hence f is continuous from . [ |
Using the theory of positive elements and continuous functional calculus, we also have a lemma

regarding the invertibility of elements and the unitalizability of our C*-subalgebras. This lemma will
in Chapter 4.

Lemma 2.4.6. Let B be a C*-subalgebra of a unital C*-algebra A. Let a € B, then one has

(i) Suppose B is unital. Then a is left-invertible in B if, and only if, a*a is invertible in B.

(ii) If a is invertible in A, then B is unital and a is invertible in B.
Proof.

(i) Suppose a is left-invertible. Let b be the left-inverse of a and note that |[b] # 0. As b*b < ||b]?1,
then 1 = (ba)*(ba) = a*b*ba < a*|b|?1a = |b|?a*a, so 0 < ||b| 2 < a*a. Thus a*a is invertible.
If a*a is invertible, then (a*a) "a* is a left-inverse of a.

(i) As a is invertible, then so are a*a and aa*. As 0 ¢ K = o0 ,(aa*)Uo,(a*a), and as K is
compact, then we can define a continuous function f € €(C) such that
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f(z) =

0 ifz¢ K
% if ze K’

By the Continuous Functional Calculus 2.4.3 (i), as f(0) = 0, one has that f(aa*) = (aa*)"! €
Alaa*) and f(a*a) = (a*a)~! € A(a*a). In particular, (a*a)7!,(aa*)"! € A{a) C B, now a
has a left-inverse (a*a)™'a* in B and a right-inverse a*(aa*)™! in B, so a is invertible in B. In

particular 1 = a~'a € B, so B is unital. [ ]
Here are some common constructions of new elements via continuous functional calculus, which
are analogous to the modulus and argument of complex numbers.

Example 2.4.7. (Absolute Value). Let a € A be an element, then a*a is positive, so o(a*a) C
[0, 00), thus the map f(t) = t= is in C(c(a*a)). Hence we can define f(a*a) = (a*a)% € A(a*a) as
f(0) = 0 such that f(a*a)" = a*a. Define the absolute value of a to be |a| := (a*a)%, so it follows
that [a|? = a*a, and |a| is invertible if a is, with [a|™! = |a™!].

Now for each bounded set B C A", then R = sup{|a| : a € B} is finite, in particular, B C {a €
A:o(a) C[0,R]} as the norm and spectral radius are equivalent for normal elements, hence by
Lemma 2.4.5, the map =z — z2 on B is continuous. Thus the square root map on AT is continuous
as it is continuous on each bounded subset, thus the absolute value map on A is continuous as a

composition of continuous maps.

Example 2.4.8. (Polarization). Let a be an invertible element of a unital C*-algebra A. Then one
can define w(a) := ala|™!, and note that

w(a)'w(a) = |a| " aala[™ = |a||a[*|a[Tt =1

and

w(a)w(a)* = ala| ta|ta* = ala™!|?a* = ala*a) ta* =1
hence w(a) is unitary, and we say w(a) is the polarization of a. Thus w is a continuous map from

GL(A) to U(A) as a composition of continuous maps. Furthermore, w(y(4) = idy(4)-

2.5 Matrix Algebras

Given a C*-algebra A, and m, n.p, q € N, we can construct matrices with entries from A equipped
with the natural matrix operations. That is, denote M, ,,(A) to be the set of all tuples (a;;)i<n

Jj<m

where a;; € A for all i <m and j < n, we shall omit the indexing subscripts if the context is clear.
Define (aij)* = (aji*) € M, ,,(A). Denote the space of square matrices to be M,,(A) = M, ,(A),
which is called a matrix algebra of A.

We denote 0,, ,, or 0,, to be the zero matrices of M,, .(A) and M, (A) respectively. Similarly,

m,n

let 1,, be the identity matrix of M,,(A). In general, given a € M,, ,,(A) and b € M, ,(A), define

a 0
a®b= diag(aa b) = (0 rz,q> € Mm+p,n+q(A)'

p,n

Construction 2.5.1. (Induced map between matrix algebras). Given a map ¢ between C*-algebras
A to B, we denote the induced map ¢,, : M, (A) = M, (B) defined as ¢, ((a;;)) = (¢(a;;)). In
any case, we will just write ¢ instead of ¢, if the context is clear, and note that if ¢ is a *-
homomorphism, then so is ¢,,.

10
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Let a = (aij) € M, (A), define the norm |a| = |¢,(a)|, where ¢ is an *-embedding ¢ : A —
B(H) for some Hilbert space H, which exists by Gelfand-Naimark-Segal 2.4.2, and we have the
(A) — B(H™) given by

e(ary) - plas,) hy ¢(ary)hy + -+ p(an1)hy,
o, (a)h = : : Pl = :
plan1) -+ lan,) ) \ Iy plan1)hy + -+ @(an, ) hn
Thus M,,(A) also forms a C*-algebra under the usual matrix operations; see [2, 1.3] for more details.
Given a € M,,(A), one must have |a| = y/r(a*a), thus the choice of the norm is independent of
the embedding. Note that 2, has a natural functorial property shown in the next lemma.

induced map ¢,, : M,

n

Lemma 2.5.2. (Functoriality of Matrix Algebras). Let n € N, then M,, defines a covariant faithful
exact functor that preserves zero. That is, give C*-algebras A, B, C, and *-homomorphisms ¢ :
A — B, ¥ : B— C, one has the following:
() Wop)y =1, pp.
(i) (ida), =idar (a)-
(iii) If O is the trivial C*-algebra, then so is M, (0).
)
)

(iv) If 0: A — B is the trivial map, then so is 0,,.
(v) If one has an exact sequence:
@ (4
0 » A © > B » > 0
then one induces an exact sequence:
Pn Pn

0 — M, (A) — M, (B) — M, (C) —— 0
(vi) Suppose @, : A — B are *~homomorphisms. If M, (¢) = M, (¢), then ¢ = .

Proof. Statements (i) to (iv), and (vi) should be obvious. For (v), claim that im(¢p,,) = ker(¢,,).
Given a € M,,(A), then ©(a;;) € ker(¢), so ¢(p(a;;)) =0 for all 4,j < n, hence ¥(p(a)) =0,
thus im(y,,) C ker(¢),,). Given b € ker(z,,), then ¥(b) = 0 implies b,; € ker(z), so there is a a;; €
A such that ¢(a,;) = b;; for each i,j < n. Define a = (a;;) € M, (A), then ¢(a) = b is obvious,
so im(¢g,,) = ker(¢),,). As the claim does not rely on the fact that ¢ is injective and v is surjective,
then following from the claim, one has ker(y,,) = 0 and im(¢,,) = M,,(C), as required. [

The next lemma provides a natural bound on the norm on the of matrices. In particular, we have
convergence in matrices if, and only if, we have convergence between matrix elements.

Lemma 2.5.3. Let A be a C*-algebra and n € N. Then given a = (a,;) € M, (A), one has

max|ag|| < fla < > fay]l
nIsn 3,j<n
In particular, for each k € N and a(® = (ag?
(a;;) € M, (A) if, and only if, limy_, ag? = a;; for each i,j < n.
Proof. Fix i,j < n and let (¥ be a matrix such that its (i, j)-entry is a;; and zero everywhere

) € M, (A), the sequence (a®), .y converges to a =

else. Then for any h € H™, one has
lon ()R]l = [le(ais) sl < llp(asp)lllIRsl < lle () [11,

so taking the supremum over |[h| = 1 one obtains, ||¢, (e!™@)| < ||g0(aij)||. Similarly, for each h €
H, one can define b’ = (0, ..., h,...,0) € H™ where h is in the jth entry, so

le(ai)hll = len(e)n’] < e, ()R = le, ()]

11
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and taking the supremum over ||| = 1, one obtains ||<p(aij)|| < |len, (e (ij))”. Hence

] = [len ()| = lle(aip) [l = llai;-

Thus

< 21 =3 flagll

©,J<n 1,j<n

Z e(19)

1,J<n

lall =

Givenah e H"andi,j<mn,leth = (O, s gy ...,0) € H" where h; is in the jth entry, so one has

len ()bl = lle(a) byl <[> le(aip)hsll” = len(@h] < lpa(allnl

i<n

so taking the supremum over |[h] =1, one obtains ||a;| < |al, hence max; ;. ||a;;|| < llal. The
rest follows. [ |
We shall see how matrix algebras pair with common C*-algebras and their natural constructions.

Example 2.5.4. (Some common matrix algebras). Let A be a C*-algebra, X be a locally compact

Hausdorff space, H be a Hilbert space, and n,m € N. Then:

(i) One has the obvious identification: M, (M, (A)) = M,,,..(A).

(ii) One has the obvious identification M, (Cy(X,A)) = Cy(X, M,,(A)). This is given by ®:
M, (Cy(X,A)) — C’O(X M (A)) where given f = (f;;) € M, (Cy(X, A)), define (®(f));; €
Co(X,A) as [(®(f));](x) = ) for all z € X and 4,j < n. It follows that ® is a well-
defined *—isomorphlsm by Lemma 2.5.3.

(iii) One has the identification M, (B(H)) = B(H™). Let i < n, define m; : H® — H as the ith
coordinate projection map, and A, : H — H™ as the ith coordinate inclusion map, so one
defines

®:BH") = M, (BH)): T (m;oT o N); jcn-
This map is clearly linear, and as A; o 7; = §,; where §,; = id . whenever i = j and 0 otherwise,
then given S, T € B(H™), one has

B(S)®(T) = (moSoA;)(meoT o)) =®(ST)

by direct computation. Given z € H and y € H", one has (\;z,y) = (z,y;) = (x, my), so
Af =m;, thus ®(T™) = (7r oT*o);) = ®(T)*. So ® is a *-homomorphism.
If &(T) = 0, then given x € H", one has (T'\;z;); = 0 for each 4, j < n, thus TA;z; = 0, and as
=73 ._ X\%; onehas Tz = 0. Hence T' = 0, and thus @ is injective, hence an |somorph|sm.

Example 2.5.5. (Unitization of matrix algebras). Let A be a C*-algebra, then it is not true in

general that Mm) =~ M

n

(A) Indeed, referring to Example 2.2.6, one has
M, (0) 20 = C % M,(C) = M, (0)
unless n = 1. It is clear that M, (A) is usually much larger than M’T(;l) e.g. dim(]l/[2 (C)) =38
and d1m<ﬂ7[;(76)> = 5.;
Let I be the unit of M, (A) and 1 =diag(14,...,14). Let M,, = M, (A) + C1, this is a closed

N — e’
n times

subspace as a sum of a closed subspace and a finite-dimensional subspace, and hence it is clear that
this is a unital C*-algebra. As M, (A) NC1 = 0, then we can view the sum as a vector space direct
sum, then one has the *-isomorphism

"By Lemma 2.2.3, C = C & C and M,(C) = M,(C) & C as they are unital algebras.

12
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oM, >M,(A):a+al—a+al.

—_— ~ —

Thus one can identify M, (A) as a C*-subalgebra of M, (A) given by M, . Define ¥ : M, (A) —
M, (A) given by ¥(a) = ® !(a), so one has a commutative diagram with exact rows (by Functo-
riality of Matrix Algebras 2.5.2),

la B T
0 —— M,(4) — M, (4) — M,(C) —— 0

n

‘ ]mp ]j
v, J T, (©

0 — M,(4A) — M,(A4) » > 0

where j: C — M, (C) : & — al. Hence M, (A) = M, (A) if, and only if, j is an isomorphism by
Five Lemma 5.4.5, which only holds if, and only if, n = 1.

Example 2.5.6. (Matrix algebra of direct sums). Let A and B be C*-algebras and n € N, then
M, (A® B) = M, (A) @ M, (B). Note that given A, = (a§;>),A2 - (ag?) € M, (A) and B, =
(bgjl-)),B2 = (bg)) € M, (B), then (using Einstein summation notation)

s a05)5 (o 0))((02.2)) = ( (oo 12) )

o ((a2a), (6562)) = (A1 Ay, By By) = (Ay, By)(Ay, By) € M, (4) @ M, (B)

shows our equivalence. We shall make use of this identification going forward.
2.6 The Unitary Group of C*-Algebras

We shall dedicate this chapter to discuss the structure of 2 (A), which will be relevant in proving
the split-exactness of the K, functor; see Lemma 3.4.5. Note that Z(A) forms a group under the

usual multiplication. Let
u

n

(A) = UM, (4))
for each n € N. Given u € U(A), define adu : A — A as (adu)(a) = u*au, then it follows that adu
is a *-isomorphism. Indeed, it should go without saying that adu is a *-homomorphism, so note that:
uau =u'bu = a=">
(adu)(uau*) = a

shows injectivity and surjectivity respectively. Note that for u € %(A), one has |ul? = |u*u|| =
1| = 1, hence |ju| = 1.

Given a,b € A, and a subset B C A, we write @ ~;, b in B if there is a continuous map, called
a path, v : [0,1] — B (B has the subspace topology) such that v(0) = a and (1) = b. It is clear
that ~, defines an equivalence relation, and we denote

UO(A) = {u EUA) :u ~ 1in U(A)}a
US(A) = U (M, (A)).

We first prove a nice structural identification of 2°(A).

Lemma 2.6.1. Let u,v be unitary elements of a unital C*-algebra A. Then:
(i) If o(u) € SY, then u € U°(A). In particular, u = e for some self-adjoint h € A.
(i) [lu—v|| <2 always, and if |u —v| < 2, then u ~} v in U(A).

Proof.

13
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(i) If o(u) C S, then there is a 6 € (—m, 7] such that e? ¢ o(u). Consider the argument map
arg : S'\ {e"’} — (0,0 4 27), which is continuous, and observe that e**'8") =y and arg(u)
is self-adjoint. Thus targ(u) is self-adjoint for all ¢ € [0,1], and the map t = e *&®) shows
that 1, ~,, 8% =y, Hence u € U°(A).

(ii) Clearly |u — v| < |u| + |v| = 2. Observe that |u*v — 1| = |u*(v —u)|| < [Jv —ul| < 2,s0 —2 ¢
o(u*v—1) so —1 ¢ o(u*v). As u*v is unitary, then by part (i), u*v ~, 1, so u ~, v by left
mulitiplication of u. [ |

Proposition 2.6.2. (Structure of U°(A)). Let A be a unital C*-algebra. Then
(i) U°(A) is a normal subgroup of U(A).
(i) U°(A) is the path-connected and a clopen subspace of U(A).
(iii) An element a is in «4°(A) if, and only if,
a = exp(ihy)---exp(ihy)
for some self-adjoint elements hq, ..., h;, € A with £ € N.
Proof. Note that 2°(A) is path-connected from definition. Define
G = {exp(ih,)---exp(ihy) : hy,...,h;, € H(A) for k € N}.

Note that if h is self-adjoint, then exp(ih) is unitary; see discussion in Chapter 2.4. In particular,
note that given ¢ € [0, 1], th is self-adjoint, and hence exp(ith) € U (A). By Lemma 2.4.5 the map
f:Q — A defined as f(z) = exp(iz) is continuous where 2 is from the lemma defined by K =
[—|IR[l, |R]]. As o(th) C K for each t € [0,1], then t + exp(ith) is continuous as a composition
of continuous map of f and t  th. Thus one has exp(ih) ~, exp(i0) = 1 in U(A), so exp(ih) €
UO(A). AsU(A) is closed under multiplication, and multiplication preserves ~,, then it follows that
G CU°(A).
It is clear that G is a subgroup of U (A) by observing that exp(—ih) = exp(ih)!.
Let w e U(A) and v € G with |Ju—v| <2, then |1 —uv*|=|(v—u)v*| <|v—u| <2, then
following from the proof of Lemma 2.6.1 (ii) and the conclusion of Lemma 2.6.1 (i), we observe
that uv* = e for some self-adjoint h € A, hence u = e*"v € G, so G is open in U(A).
As G is an open subgroup, we observe that G is also closed in U(A), as U(A) \ G is a union of the
cosets of GG, which are homeomorphic to G.
As G is a nonempty clopen set in 2 (A) and is a subset of a connected set «U°(A), then G = U°(A).
So it suffices to show that 2%(A) is normal. Indeed, given u € U°(A) and v € U(A), note that one
has a continuous map t + u, in U(A) with uy = v and u; =1, so t = v*u,v is a continuous map
then in U (A) with v*uv = v*uqv ~), v*ugv = 1, hence v*uv € U°(A), as required. [ ]
The following lemmas gives sufficient conditions on when unitary elements in B can be identified
as lifted unitary elements from A. They are used for showing Half Exactness of K, 3.4.7 in Chapter 3.

Lemma 2.6.3. (Whitehead). Let u,v be unitary elements of a unital C*-algebra A. then

(g 2) - (161) (1)) - (”0“ (1)) ~ (8 2) in Uy (A).

In particular, u @ u* ~ 1,.
Proof. Let w = (0 1). As —1 ¢ o(w), and the matrix is unitary, then w ~, 1, by preceding

10
lemma. Hence as
u 0\ quva
0v) \01 01

14
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by replacing the second instance of w with 1, to get

(60) % (o)

Replacing both instances of w with 1, to get

u 0 L (w 0
Ov) n\0 1/
The rest follows. [ |

Lemma 2.6.4. Let A and B be unital C*-algebras and let ¢ : A — B be a surjective *-homomor-
phism.

(i) @(U°(4)) = U°(B).

(i) If w € U(B) and suppose there is a v € A such that u ~;, ¢©(v) in U(B), then u € p(U(A)).

(iii) For u € U(B), there is a v € UY(A) such that p(v) = u @ u* where ¢ : M,(A) — My(B) is
the induced matrix map.
Proof.

(i) As ¢ is surjective, then ¢ is unital, hence by continuity, one has ¢(U°(A)) C U°(B). Note
that by Structure of %/°(A) 2.6.2, elements of &°(B) is a exp(ih) where h is self-adjoint in B,
and note that by Continuous Functional Calculus 2.4.3 (iii), one has p(exp(iz)) = exp(ip(z))
for £ € A. With that in mind, let h € B be self-adjoint, then there is a £ € A such that
@(z) = h. Now k = (z + z*)/2 is self-adjoint in A and (k) = h, then exp(ik) € U°(A), and
¢(exp(ik)) = exp(ih), hence it follows that p(U°(A)) = U"(B).

(i) As1 ~, ¢(v)*u, then up(v)* € U°(B), then by part (i), thereis a w € U°(A) such that p(w) =
up(v)*, in particular, o(wv) = u. Hence u € (U (A)).

(iii) By Whitehead 2.6.3, one has u @ u* ~}, 1, in U5(A), and as the induced map ¢ : M,(A) —
M, (B) is a surjective *-homomorphism, then by the rest follows from part (ii). [

15



3 | The K,-Theory for C*-algebras

We proceed to construct our first K-group for C*-algebras. The general idea is that given a

C*-algebra A, we identify projection matrices of A by the Murray-von Neumann relation, which
is compatible with the direct sum operation. Hence we obtain an Abelian semigroup structure by
quotienting out the relation, and take the Grothendieck completion to obtain the associated Abelian
groups called the K;-groups.

The first chapter is to discover the relationship between the various relations on our projection
matrices. The two main relations we are interested in are the Murray-von Neumann relation—-where
we identify projections by partial isometries—and the homotopic relation ~,. It will be shown that the
Murray-von Neumann relation is equivalent to identifying bounded operators on Hilbert spaces by
the same rank, the Murray-von Neumann relation provides an algebraic relation between projections,
which allows algebraic approach to compute the K-groups. The homotopic relation allows a more
topological approach, and in fact identifications on the K-group level.

The second chapter will be a brief construction of Grothendieck groups, where we essentially
‘generate’ Abelian groups from Abelian semigroups by introducing inverses. As it will be shown later
that we obtain an Abelian semigroup, in fact a monoid, through quotienting out the Murray-von
Neumann relation on the space of projection matrices.

The third chapter will bring the first two chapters together in order to finally establish the K,
-group for C*-algebras. We discuss the immediate consequences, and the functoriality property of
such constructions.

3.1 Equivalence Relations on Projections

Let n € N. Denote P, (A) be the set of all n x n projection matrices a € M, (A), and let
P (4) = U,y Pr(4).

Assuming A is unital.

Let U (A) = UkeN U, (A).

Denote GL,,(A) to be the set of all n x n invertible matrices a € M, (A).

Given a,b € A, we say they are:

e Similar if there is a g € GL(A) such that a = g~1bg, and we write a ~ b.
e Unitarily equivalent if there is a u € Z[(/i) such that a = ubu*, and we write a ~,, b. If u €

U(A), wesay a ~, bin U(A).

e Murray-von Neumann equivalent if there is a v € A such that a = v*v, and b = v*v, and we

write a ~ b.

We denote GL{(A) := {g € GL,(A) : g ~;, 1, in GL(A)} with GL°(A) := GL{(4).

Given two continuous maps f : A — B and g : A — B between topological spaces A and B, then
they are pointwise homotopic in B if there is a map F':[0,1] x A — B such that F(0,a) =
f(a) and F(1,a) = g(a) for all a € A, and t — F'(t,a) is continuous for each a € A, and we write
f ~, g, in particular, one has f(a) ~;, g(a) for each a € A. We omit the prefix pointwise if F' is
continuous, which automatically implies pointwise homotopy.

It is clear that ~;,, ~,, and ~ are equivalent relations, and it turns out ~ is an equivalent

s

relation on P(A). We will show that in a more general setting: given p € P, (A) and ¢ € P, (A),
then we write p ~ ¢ is there is a v € M,,, ,,(A) such that p = v*v and g = vv*, and note that v are

16



The K,-Theory for C*-algebras Equivalence Relations on Projections

L. .1
partial isometries.

Proposition 3.1.1. The relation ~ on P__(A) is an equivalence relation. Furthemore:
(i) Ifve M, ,(A) is a partial isometry, then vv*v = v.
(i) If ¢ : A — B is a *-homomorphism to a C*-algebra B, then p ~ ¢ implies p(p) ~ ¢(q) for all
p,q € P (4).
Proof. Let p € P, (A), ¢ € P,,(A), and r € P, (A). It is clear that p = p*p and p = pp*, so ~
is reflexive.
Given v € M, ,,(A) such that p = v*v and ¢ = vv*, then replacing v with v* to get ¢ ~ p, so ~ is
symmetric. Assume m > n, and let z = (v —vv*v) @ 0y 1,11 € My my1(A), SO

o= (0 — v ) ® 0y 1) (0 — 00" 0) © 0y i)
= (0 — (") — (0"0)? + (0)) ® O i1 =0,

hence ||z]|? = |2*z| = 0, thus z = 0, i.e. v = vv*v. Thus v* = v*vv*, in particular, vv* = vo*vv* =
(vv*)?, and as vv* is self-adjoint, then v* is also a partial isometry. This shows (i).

Suppose p ~ q and g ~ , so there is a v € M}, ,,(A), and w € M,, ,,(A) such that p =v*v, ¢ =
w* = w*w, and r = ww*, then

2 _

(wv)*(wv) = v*w wv = v*qu = (v*v)? = p,

and

2:

(wv) (wv)* = wov*w* = wew* = (ww*)* =7,

so p ~ r. Hence ~ is transitive, thus ~ is an equivalence relation.
Let p,q € P, (A) with p ~ g, then p = vv* and ¢ = v*v for some v € M, ,,(A) and m,n € N, thus

p(p) = p(v)p(v)" and p(q) = ©(v)*¢(v), s0 ©(p) ~ ¢(q). This shows (ii). =
The next propositions tells us how the relations are related to each other.

Proposition 3.1.2. Let p, ¢ be projections of a unital C*-algebra A. Then the following are
equivalent:
(i) pr~, qinU(A);
(i) p ~y g in U(A);
(i) p~gand 1, —p~1,—q.
Note that if A is nonunital, then p ~ ¢ is now implied by p ~,, q.
Proof. Letp=1; —1,, so A= A+ Cf. Note that af = fa =0 for all a € A.

(i)=>(ii). If p ~, g, then thereisa z € U(A) and A € C such that p = z¢gz*. Now there is a u €
A such that z = u + Af, now observe that

1 =2"2=u'u+ A2f =u'u— |\?14 + |A?1

so |A|? =1 by comparing 14, and u*u — |\|?1 4 = 0 by comparing elements in A, hence u*u = 1.
Similarly, uu* = 1, by looking at zz* =1, thus u € U (A). Now observe that

q=2z"pz= (u* + Xf)p(u + Af) = u*pu,
as required.

(il)=>(iii). Suppose ¢ = upu* for some u € U(A), and let v = up and w = u(1 4 — p). Now one has

'Recall that v is a partial isometry if v*v is a projection; see discussion after Lemma 2.3.3.
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v*'v =putup* =p and wv* =upp*u* = q,

(3.1)
similarly w*w =14 —p and ww*=14—g¢q.
(iii)==>(i). Suppose there are v,w € A such that (3.1) is satisfied. Let z = v+ w + f, then
Zz=W 4w+ fllv+tw+ f)=p+v'wtwv+(1y—p) + f
=1;+ (v'w+ wv)
and similarly
22" =1+ (vw* + wv*).
Now
v'w = (v°q)((14 —Qw) = v"(q(14 —q))w =0
similarly w*v = vw* = wv* = 0, hence z € Z[(A) Finally,
zpz* = (v+w+ fp(v* + w* + f) = vpv* + wpw* + vpw* + wpv*
=¢"+0+0+0=g¢. -

Lemma 3.1.3. Let a,b be elements of a unital C*-algebra A. If a € GL(A) and |a —b|| < ||a™ ||,
then b € GL(A) and a ~;, b in GL(A). In particular, if |a| < A for some A > 0, then £\ ¢ o(a).
Proof. The inverse of b is given by the series

1 1 a? n
b a—(a—>b) - 1—a(a—Db) :ailz(ail(a_b))

n>0

which exists as [|a — b|| < ||a_1||_1. Define ¢, = tb + (1 — t)a for ¢t € [0, 1], thus
la—c| =lla—tb—a+ta] <tla—b]| < |la”t] ™,

hence ¢, € GL(A), thus a = ¢4 ~, ¢; = b as t = ¢, is continuous.

If |a| < A for some A > 0, then

I
a+ Al 14+ ) la

=421 (Fata)"

n>0

which exists as |a/A| < 1. Hence a 4 Al is invertible, so £\ ¢ o(a). ]

Lemma 3.1.4. Let a, b be self-adjoint elements in a unital C*-algebra A such that b = zaz~! for
some z € GL(A), then b = w(z)aw(2)*. Hence, a ~, b implies a ~, b in U(A).
Proof. Note that bz = za implies z*b = az*, hence
|2|2a = (2*2)a = 2*(bz) = (az*)z = a|z|2.
Thus a commutes with |z|2, hence everything in A(1,|z|?). By considering the map f : t > 73 on
o(|z[?), one has |z| = f(]z]?) € A(1,]z]?), so a commutes with |z|. Now

w(z)aw(2)* = z|z|alz| 12" = za(z*2) '2* =b. -

Proposition 3.1.5. Let p, g be projections of a C*-algebra A. Then p ~;, ¢ in P(A) if, and only if,
there is a u € U° (/i) such that ¢ = upu*.

Proof. “<". Suppose ¢ = upu* for some u € U° (/1) thenu ~), 1 , in particular g ~;, 1;p1; =
.
“=". Suppose p ~;, q in P(A), then by compactness, there is a n € N and py,...,p, € P(4)

18
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such that p = p; ~}, Py ~}, ... ~p, D, = q With ||pl —pi+1|| < 1/2 for each 1 <i<n—1. So by
transitivity of ~,,, we may assume |p — ¢| < 1/2. Write 1 = and define

z=pg+(1—p)(1—q) €A
now one has
|z =1 = lpg+1—p—qg+pg—1|

= ||lpq — p* + pg — ¢*||

= |p(a—p) + (»— )|

= (lpl + lalDlp — 4l

<2[p—q| <1,
hence z € GL(A) and z ~;, 1 in GL(A) by Lemma 3.1.3.

Thus u := w(z) ~, w(1) =1 in U(A) (see Example 2.4.8), so u € U° (/i) As pz = pq = zq, hence
g = 2 !pz, hence by Lemma 3.1.4, one has ¢ = u*pu, as required. [ |

Lemma 3.1.6. Let p be a projection in a C*-algebra A, and a € A be self-adjoint. Let § = |la —
pll, then o(a) C [—0,6] U1 —0d,1 + 9]

Proof. Let t e R\ ([—6,0]U[1 — 4,1+ 4]) and d > § be the distance of ¢ to {0,1}. Now p —
t1 is invertible in A4, so

[(p—t1)" Y| =7((p—t1)~") = max{|—¢t[ "}, |1 —¢[ 1} =d*
aso((p—t1)™t) ={—t"1, (1 —t)"'} by Continuous Functional Calculus 2.4.3 (ii). Thus
1—@—th)Ha—tD)| = [(p—t) " (p—tl—a+tl)]|
<=ty ?lp—al <d 6 <1,

hence (p —t1)~!(a — t1) is invertible, hence so is a — t1, thus 1 ¢ o(a), as required. [

Proposition 3.1.7. Let p, g be projections on a C*-algebra A. Then |p — q|| < 1 always, and if |p —
q| <1, then p ~;, g in P(A).

Proof. Let u=1—2p € A, then u* = u, and w*u = (1—2p)2 =1,s0u € U(A) hence |u| =
1. In particular, [p— g < ||3-1—p|| +||3 -1 —q|| < 1. Now suppose [p — gq| < 1.
Let a, = (1 —t)p + tq, so t > a, is continuous on t € [0,1] and p=ay ~j, a; =¢q in A. Let t €
[0,1], and it suffices to show a, € P(A). Now one has
1
3
Let§ = @ andQ2={a€ A:0(a) C[-6,0]U[l —6,1+ 6]}, thus by Lemma 3.1.6, one has a, €
Q. As § < 3, then define f € €([—6,6]U[1—4,144]) by flizs.s =0 and flj1_514.6 =1, thus
f(a,) € P(4).
As a, is self-adjoint, then by Lemma 2.4.5, the map ¢ — f(a,) is continuous, so

p =id,,(p) = f(p) = f(ag) » f(a;) = ¢ in P(A). -

It turns out, these relations are rather ‘equivalent’ when lifted into matrices.

. , 1
min{|la; — p|, la; — ¢} = min{t|p —q|, (1 —t)|p —q|} < 5llp — | <

Proposition 3.1.8. Let p, ¢ be projections in a C*-algebra A. Then
(i) f p~gq, thenp®0; ~, ¢®0; in My(A).
(ii) If p~, q, then p® 0y ~; ¢ ® 0y in M,(A).
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Proof.
(i) Suppose there is a v € A such that p = v*v and ¢ = vv*. Note 1 = 1 here. Define:

u = v o l—g and w= q 1—q.
1—p o* 1—-¢ ¢

Using the fact that 1 — p is also a projection, and vp = v = qu, one can conclude that u,w €
U, (/1) Now
PO\ . «_ (a0) ._ (a0
wu(o O)uw —w(o O)w - (0 0)
and

+(1—g)(1—p) (1—q* ) (v—p—q+qp v*—qv*> (1 0) 7
o ((1—Q)U+Q(1—P) (I—q)+qv q—qp qv* —q 01 2(4)
As <(1J 2) is the identity in M,(A), then wu € Z[(M (A)> by the identification made in
Example 2.5.5. Sop &0, ~,, ¢ P 0;.

(i) Suppose thereis a u € U(A) such that ¢ = upu*. By Whitehead 2.6.3, there is a path t — w,

in Uy, (/1) on t € [0,1] such that wy =1, and w; = u @ u*. Thus it is clear that ¢ = w,(p &

0, )w; is a path on [0,1] from p & 0, to ¢ ® 0. [ ]
Thus one has current the roadmap of relations as shown in Diagram 1.
lp—al <1 P~ 4 pP®0; ~p, ¢®0, in Py(A)
3.14

p ~p, qin P(A) <=)p~uqinuo(fi) =>p~uqinll(fi) "MAMS p o~ g in U(A)

1.2

POy ~, ¢®0, 3.1.8
in Z[Q(/i) p~4q

ly—p~1y—9¢q

Diagram 1: The roadmap of relations given projection elements p and ¢ in a C*-algebra A, where
~ means that the underlying C*-algebra is unital.

Here is the promised result where the ~ identifies bounded operators on Hilbert spaces by its
rank. Furthermore, in the finite-dimensional case, one has that ~ and ~,, are equivalent. Note that
given a bounded operator T' on a Hilbert space H, we define rank(7") = dim(im(7")) where the
dimension is the cardinality of Schauder (orthonormal) basis of the underlying Hilbert space.

Proposition 3.1.9. Let H be a Hilbert space, and p,q € P__(B(H)). Then

(i) One has p ~ ¢ if, and only if, rank(p) = rank(q).

(i) One has p ~,, q if, and only if, rank(p) = rank(q) and dim(ker(p)) = dim(ker(q)).

(iii) One has rank(p & q) = rank(p) + rank(q) as cardinal numbers (or infinities).

Assume H is finite-dimensional.

(iii) One has p ~ ¢ if, and only if, p ~,, q.

(iv) One has tr(p) = rank(p), where p is identified as a matrix. In particular, if rank(p) = k, then
p~I.
Proof. Assume p€ P, (B(H)) and g€ P, (B(H)) for some n,m € N, and we make the

identification M, (B(H)) =~ B(H™"), see Example 2.5.4.
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(i) Suppose p ~ g, then then there is a v € B(H™, H™) such that p = v*v and ¢ = vw*. By
Proposition 3.1.1, one has v = qv = vp, so we can consider v as a map from im(p) to im(g),

which are Hilbert spaces as im(p) = ker(idy —p) is closed and similarly for im(g). Let = €

H™, as q = qq = vpv*, then v(pv*z) = gz shows that v is surjective. Let z,y € H", so as
(vpz, vpy) g = (PT,v"vpY) i = (PZ, PPY) ir = (DT, DY) b,

so v is an isometry. Thus im(p) = im(q) as Hilbert spaces, hence rank(p) = rank(q). If

rank(p) = rank(q), then there is a surjective linear isometry v : im(p) — im(q). Let z,y € H™,
one has that

<'U*'pr,py>im(p) = <'pr,'Upy>im(q) = <pxapy>im(p) = <ppx’py>im(p)a

thus the maps v*v and p agree on the inner product of im(p), hence v*v = p|;,(,). Similarly,

v* : im(g) — im(p) defines a linear isometry, and by similar argument, one has vv* = gl ,), S0
v = vp\im(p) = qu. Define w : H® — H™ as wx = vpx for x € H™, so w*w = p*v*vp = ppp =
p and ww* = vpp*v* = vpv* = quv* = qq = q, so p ~ q, as required.

(i) By Diagram 1, part (i), and the fact that ker(p) = im(1,4 — p), one has

pyg<=p~qgandly —p~1y—gq
<= rank(p) = rank(q) and dim(ker(p)) = dim(ker(gq)).

(iii) Note that one hasthemapp @ ¢q: H® @ H™ — H™ @ H™, hence im(p & ¢) = im(p) & im(q),
then the statement follows.

(iv) If H if finite-dimensional, then by rank-nullity theorem, one has rank(p) = rank(q) if, and only
if, dim(ker(p)) = dim(ker(q)), the rest follows from (ii).

(v) Choose a basis B for H, and denote [p]z to be the matrix of p with rest to the basis B. Note
that by the cyclic property of trace, tr(p) = tr([p]g) is independent of the basis B. Since tr(p)
is the sum of eigenvalues of p, and the only eigenvalues of p are 0 and 1, then it follows that
tr(p) = dim(ker(p — idy)) = dim(im(p)) = rank(p), as required. [ ]

3.2 Grothendieck Groups

The purpose of this section is to provide a careful treatment of extending Abelian semigroups into
full on Abelian groups, which will be the last ingredient we need to construct our K-groups.

Recall that a semigroup (S, +) is a nonempty set S equipped with a binary operation + : S X
S — S that is only needed to be associative. We say the semigroup (S,+) is Abelian if + is
furthermore commutative, and we say (S, +) is a monoid if there exists an additive identity 0 such
that s+ 0 =0+ s = s for all s € S. We will be mainly interested in Abelian semigroups, so assume
(S,+) as such. We say S has the cancellation property if for each z,y,2€ S, c+z2=y+ 2
implies = y.

Define a relation ~ on S x S as such:

(x1,Y1) ~ (x4,yy) if, and only if, there is a z € S such that z; +y, + 2 =z, + y; + 2.
Note that this relation is clearly reflexive as S # () and symmetric, and further work can show that
this relation is transitive. Define G(S) =S x S/ ~, and define (x,y) to be an equivalence class of
(z,y) € S x S under ~. Define the operation 4+ on G(S) by

(1, 91) + (22, 42) = (@1 + 2o, 41 +¥2)-
It follows that (G(S), +) is an Abelian group with additive identity given by 0 = (z, x), and additive
inverses given by —(z,y) = (y,x) for all z,y € S; for details, refer to [6, p. 39]. We say G(S5) is
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the Grothendieck group or Grothendieck completion of S, and we also have a canonical map
or Grothendieck map vg : S — G(S) given by v¢(z) = (x + y,y) for a fixed y € S, note that g is
well-defined and is independent of the choice of y € S.

We have some nice properties of Grothendieck groups in general, in particularly, (iv) in the next
proposition tells us that Grothendieck completions of Abelian semigroups with the cancellation
property are precisely the smallest Abelian group that is generated by the semigroup.

Proposition 3.2.1. (Structure of Grothendieck Groups). Let S be an Abelian semigroup.

() G(S) = 75(5) —7s5(9).

(i) Given z,y € S, one has vg(z) = v4(y) if, and only if, z + z = y + z for some z € S.
(iii) g is injective if, and only if, S has the cancellation property.

(iv) Let H be an Abelian group, and suppose S is an Abelian semisubgroup of H. Then S has the

cancellation property and G(S) = (S) =S — S.
Proof.
(i) Clearly v5(S) —v5(S) C G(S). Now given (z,y) € G(S), one has

(@, y) = (2,9) + 2(y,9) = (& + 2y, 3y) = (¢ + 4,9) — (Y + 4,9) = 75(2) —75(1);
s0 G(S) = 75(5) —7s(9).

(i) Suppose yg(x) = v4(y), so (x +y,y) = (y + z,x). Then there is a w € S such that

r+yt+rt+tw=y+y+r+w,
choose z =y + = 4+ w, and we are done. Conversely, suppose z 4+ z =y + z for some z € S,
then
Vs(@) = (& +2,2) = (y+ 2,2) = 15(v)-

(iii) This follows from (ii).

(iv) Itisclear that S — S C (S) (the smallest subgroup of H containing S), and S — S is a subgroup
of H, so (S§) CS —S. Hence (S) =S5 — 5. It is clear that S has the cancellation property,
thus g is injective, so it follows that G(S) = vg(S) —v4(S) = S — S = (S5), as required. W

Thus by part (iv) of the preceding proposition, given an Abelian group H, we may assume that

G(H) is H. Immediately, we have the universality and functoriality properties of the Grothendieck

completion G.

Theorem 3.2.2. (Universality of Grothendieck Completion). If ¢ : S — H is an additive map
between an Abelian semigroup S and an Abelian group H. Then there is a unique homomorphism
Y : G(S) — H such that o yg = .

Proof. Define ¢ : G(S) — H : (z,y) = p(z) — ¢(y). Suppose (z,y) = (z’,y’) for z,z’,y,y" €
S, then there is a z € S such that z + v’ + z = 2’ + y + 2z, and one has

b((z,y) —9((2",y") = p(x) — oY) — (') + o(y') = p@+y' +2) —p@" +y+2) =0,
so 1 is well-defined. It is clear that 1 o 7g = ¢ and % is a homomorphism. Thus existence is shown.
Suppose there is another homomorphism ¢’ : G(S) — H such that ¢’ o yg = ¢. Given (z,y) €
G(S), by Structure of Grothendieck Groups 3.2.1 (i), there are z’,y’ € S such that (z,y) =
vg(x") —v5(y’), thus one has

V' ((z,9) =¥ (v5(2") —=75(y') = (" e v5)(2") — (¥ o 75)(y') = w(2) — 0(y) = ¥((z,9)),

shows 1 = 1), as required. [ |
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Theorem 3.2.3. (Functoriality of Grothendieck Completion). If ¢ :S — T is an additive map
between Abelian semigroups S and T'. Then there is a unique homomorphism G(¢) : G(S) — G(T')
such that v, o @ = G(p) © 7g.

Proof. Define G(p):G(S) = G(T) : (z,y) — (p(z),¢(y)). Suppose (z,y) = (z’,y’) for
x,x’,y,y € S, then there is a z € S such that x + vy’ + 2 = 2’ + y + z, and one has

G(p)((z,9)) = Glp)((2",9") = (p(z), 0(y)) + (p(y'), p(z'))
= (@ +9"),0(y+2')) + (p(2), 0(2))
= (pl@+y +2),p(y + 2" +2))
=0,
so G(y) is well-defined. It is clear that G(¢) o vg = 77 © ¢, and G(p) is a homomorphism. Thus
existence is shown.
Suppose there is another homomorphism ¢’ : G(S) — G(T') such that ¢’ oyg = vp o ¢. Given
(x,y) € G(S), by Structure of Grothendieck Groups 3.2.1 (i), there are 2’,y" € S such that (z,y) =
vg(x") —v5(y’), thus one has
o' ({z,y)) = (¢ 2 y) (") = (¢" 0 75)(¥') = (G() e 75)(2) — (G(p) 2 75)(¥) = G(0)({z,9)),

so ¢’ = G(yp), as required. [

Here are some immediate examples of Grothendieck completions. Note that the second example
is rather nondegenerate despite having seemingly more structure than the first.

Example 3.2.4.

e We note that N = {1, 2, ...} under usual addition + forms an Abelian semigroup with the cancel-
lation property. As N is identified as a subgroup of Z, in particular, N— N = Z, then G(N) = Z.

e If consider NU {oo} where 0o + z = oo for all z € N, then (NU {00}, +) is an Abelian semigroup
with no cancellation property, in particular, one observes that G(NU {o0}) =0 as (z,y) =
(00, 00) for all z,y € NU {oo}.

3.3 The K,-Group Construction

In this chapter, we aim to build our first K,-group, which will serve as our foundation for the
K-groups. In the preceding section, we have established the Murray-von Neumann relation ~ on
P, (A) is an equivalence relation, so we denote the equivalence classes of ~ by [-]. We now establish
that ~ is a relation that is compatible with the @ operation. With this, one can construct an Abelian

semigroup (P (A)/ ~,+).

Proposition 3.3.1. Let A be a C*-algebra, and p,q,7,s € P (A). Then:
(i) p~p®0,, for each n € N.
(i) fp~qgandr~s, thenp®r~qgds.
(i) p® g~ q®p.
(iv) LetneN,ifp,ge P, (A)andp L q, thenp+qg~pDgq.
(v) (p®@g)®r=p®(¢&T)
Proof. Let m,n € N.

(i) Suppose p € P,,(A), and let v = <0p ) eM

n,m m+n,n

(A),sop=v'v~vw* ' =p&d0

n-
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(i) There are matrices v and w such that p = v*v, ¢ = vv*, r = w*w, and s = ww*. Define u =
v @ w, then u*u—SEBrwuu* =qPs.

(iil) Let u = (03;71 0" ) € My (A), then uru=p@ g ~uu’ = g®p.

(iv) Suppose pg = 0, then gp = 0. Define u = (5) € My, ,(A), then w'u =p+qg~uu*=p®gq.
(v) Trivial. [ ]

We define a binary operation + on P__(A)/ ~ by

[Pl + (g = [p@dl.

By Proposition 3.3.1 (ii) and (v), + is well-defined and associative, by (i), 0 = [0,,] is the additive
identity for each n € N, and finally by (iii), + is commutative. Thus (P (A)/ ~,+) is an Abelian
monoid.

Given a C*-algebra A, by Grothendieck completion, one has an Abelian group, called the K-
group for A defined as

Koo(A) = G(Poo (4)/ ~, +).

We denote the classes of K;,(A) to be [p], where [-]; : P (A) = Kyy(A) is a composition of the
class map [-] under the relation ~, and the Grothendieck map v, : P (A)/ ~— Ky,(A). Thus
we immediately note that Ky,(A) = {[plo — [glo : P,q € Poo(A)}. We say that K,,(A) has the
cancellation property if the underlying Abelian semigroup P (A)/ ~ has the cancellation property,
which is equivalent to [p], = [¢], if, and only if, p ~ ¢ for all p,q € P (A) by the Structure of
Grothendieck Groups 3.2.1 (iii). We shall consider another relation called the stable equivalence

which allows us to identify when [p], = [¢],-

Construction 3.3.2. (Stable Equivalence). We define the stable equivalence relation ~_ on

s
P (A) where A is any C*-algebra such that for any p,q € P, (A) for some n € N, we write p ~, ¢
if there isa r € P,,(A) such that p @ r ~ ¢ @ r. It can be easily verified that this relation is reflexive
and symmetric, to show transitivity, observe that p@a ~qg®aand ¢db~rdb, thenasa P b ~
b @ a, one has

PP (aBb)~qgD(adb)~T7D(adb)
shows p ~, r, if p~, ¢ and ¢ ~, . The reason we introduce this relation is that it can be used
to show that it is equivalent to the [-], relation for K,-groups. If A is furthermore unital, then it
can be shown that p ~, ¢ if, and only if, p® 1,, ~ ¢® 1,, for some n € N. Indeed, given any r €
P,(A), letv=(r 1,-7), one has v*v =r® (1, —r) and vww* =1, sor® (1, —r) ~ 1,,, hence

p®l, ~pdrd (1, —r).

Soif p~,q, then p®1l, ~q®1, forall neN, and if p® 1, ~qg®1, for some n €N, then
P~ 4

Proposition 3.3.3. (Structure of K,). Let A be a unital C*-algebra, then
() [p @ dqlo = [plo + [dlo for all p,q € P (A).
(i) [0,]o =0 for all n € N.
(iii) If p,q € P,(A) and p ~}, q, then [p]y = [go.
(iv) If p,q € P, (A) and p L g, then [p + ¢y = [Pl + [d]o-
(v) One has [p]y = [¢], if. and only if, p ~, ¢ for all p,q € P (A).
(vi) Koo(A) ={[plo —ldlo : p.q € P,,(A),n € N}.
Proof. For (i), observe that

[P @ dlo = vallp ®al) = va(lp] + [g]) = 7a(lp]) +va(ld]) = [plo + [dlo;
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so [plo + [0,]o = va(lp @ 0,]) = va(lp]) =
that p ~}, g implies p ~ g, so one has [p] = [g], hence [p], = [g],. For (iv), if p L g, then by
Proposition 3.3.1 (iv):

[plo, thus [0,,] = 0 hence (ii) is proven. For (iii), note

[p +dlo = v4(lp] + [g]) = [Plo + [dlo-

For (v), [plo = [q], means that there is a r € P, (A) such that [p] + [r] = [q] + [r], in particular,
pBr~qgdr, sopr~y,q. Similarly, if p ~, g, then there isa r € P,,(A) such that p®r ~qg@r,
hence [p] + [r] = [g] + [r], thus [pl, = [go-

For (vi), it is clear that {[p], — [¢]o : p,q € P,,(A),n € N} C K,,(A). Now given p € P, (A) and
g€ P, (A), and suppose m > n, then p®0,, , € P, (4) and [p®0,,_,]o0 — [d]o € Koo(A) by
(ii), so it follows that Ky,(A) = {[plo — gl : P, ¢ € P,,(A),n € N}. ]

Theorem 3.3.4. (Universal Property of K,-Groups). Let A be a C*-algebra, let S be an Abelian
semigroup, and suppose that p: P__(A) — S is a map such that

(i) wp®q) = u(p) + p(q) for all p,q € P (A).

(ii) If p,q € P (A) satisifies p ~ g, then pu(p) = p(q).

Then there is a unique homomorphism v : Ky,(A) — G(S) such that v e [-], = g o p. Furthermore:
(a) If i is injective and S has cancellation property, then v is injective.

(b) If w is surjective, then v is surjective.

Proof. Note that by (ii) one has a map i : P_(A)/ ~— S such that p=jio[], and f is an
additive map by (i). Hence we can define v’ : P__(A)/ ~— G(S) as v([p]) = v5(fi([p])), which is an
additive map, thus by the Universality of Grothendieck Completion 3.2.2, one has a homomorphism
v: Ky (A) = G(S) such that v o [-], = v/, the uniqueness v follows.

For (a), if /i is injective and S has the the cancellation property, then v4 has the cancellation

property by theStructure of Grothendieck Groups 3.2.1 (iii), g is injective, hence v is injective as

a composition of injective maps.

For (b), if w is surjective, then f[i is surjective as [] is surjective. Let z € G(S), then by the
Structure of Grothendieck Groups 3.2.1 (i), one has z = y4(z) — vg(y) for z,y € S, hence there are
z',y € P(A)/ ~ such that ji([z']) = z and fi([y']) = y. Thus V([x’]o — [y’]o) = z, shows that
V IS surjective. ]

Given a *-homomorphism ¢ : A — B between C*-algebras, this induces a natural *-homomor-
phism betweem between matrix algebras M, (A) to M, (B) by Construction 2.5.1. As *-homomor-

phisms preserves projections, then we can induce a map ¢ :P_ (A) — P_(B). Consider the
following composition =[]y o ¢ : P (A) — Kyy(B), then as ¢ preserves the ~ relation, then p
is invariant under the ~ relation, i.e. it satisfies (iii) of the Universal Property of K,-Groups 3.3.4.

As (i) and (ii) of the Universal Property of K,,-Groups 3.3.4 is also satisfied, then there is a unique
homomorphism Ky,(¢) : Kyo(A) = Kyo(B) such that [-], o Kyo(¢) = p, in particular, one has the
commutative diagram:

KOO<A> —_— KOO(B)
00 (%)

Given this construction from *-homomorphisms between C*-algebras to group homormophisms
between K),-groups, one has that K, defines a functor that preserves the zero objects.
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Theorem 3.3.5. (Functoriality of Ky,). Let A, B,C be C*-algebrasand ¢ : A — B, ¢ : B — C be
*-homomorphisms. One has:
(i) Koo(idA> = idKOO(A)'
(i) Koo(v o) = Koo(¥) ° Koo ()
(iii) The K, preserves the zero map 0: A — B, so K,(0) : Ky (A) = Kyo(B) is the trivial
homomorphism.
(iv) If 0 is the trivial C*-algebra, then K),(0) is the trivial group.
Proof. Trivial. [

Lemma 3.3.6. If A and B are C*-algebras and ¢,v : A — B are orthogonal *-homomorphisms,
then ¢+ : A — B is a *-homomorphism, and Ky,(¢ + ) = Kyo(¢) + Koo ().

Proof. Note ¢ + 1 is a *-homomorphism is trivially proven. For all p € P__(A), one has ¢(p) L
¥(p), hence by the Structure of K, 3.3.3 (iv), one has

Koo +9)[plo = [(¢ +¥)(p)]o = [p(p) + ¥()]o = [¢(P)]o + [¥(P)]o = Koo (#)[Plo + Koo (¥)[Plo,

so Koo (p +9) = Koo () + Koo (¥). u
We say two C*-algebras A and B are homotopic if there are *-homomorphisms ¢ : A — B and

¥ : B — A such that ¢ 09 ~; idg (pointwise homotopy) and ¢ o ¢ ~;, id 4.

Theorem 3.3.7. (Homotopy Invariance of K ). Let A and B be C*-algebras. If A and B are
homotopic, then Ky,(A) = K, (B).

Proof. Let ¢: A — B and ¥ : B — A be the associated *-homomorphisms. So for each ¢ €
[0,1], there is a *-homomorphism h, : A — A with hy =1 o ¢ and h; =id,, such that for each
a € A, the map t — h,(a) is continuous. So given p € P__(A), one has that (¢ o ¢)(p) ~}, p, thus

[plo = [(¥ o @) (P)]o = Koo (¥ ° ¢)[plo = (Koo (¥) ° Koo (¢))[plo
s0 Koo (¥) © Koo(p) = idg, (). Similarly, Ko(¢) o Koo(¢) = idg, () Thus Koo(A) = Koo(B).m

Proposition 3.3.8. Let A be a unital C*-algebra, then the split-exact sequence

L 5 ™
0 > A © » Ae=—=2 C —— 0
A
induces a split-exact sequence of groups
Koo (e) ~ Koo ()
0 — Ky(4) — KOO(A) =2 Ky(C) — 0 (3.2)
Koo(A)

Proof. Let g =1; — 14, and by Lemma 2.2.3, A = A® Cq, and define
p:A—A:a+agra and v:C— A:a ag.
Note that
idy =pot, iddy=top+vem, mor=0, mo=idg,
thus by functoriality of K, and Lemma 3.3.6, one has
idKOO(A) = Kyo (1) o Koo (¢)
Koo () o Koo (A) = idKOO((C)
Koo () o Koo (e) =0
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idKOO(A) = Koo(t) o Koo (1) + Koo (¥) o Koo ().

It suffices to show ker(Ky,(:)) =0, im(Kyy(m)) = Kyo(C), im(Ky(t)) = ker(Ky(7)), and
Koo(m) © Kog(A) = idg, (), Which the last identity is already shown.

By first identity: ker(Ky,(¢)) C ker(Kyg(p) o Koo(t)) = ker(idKOO(A)) = 0.

By second identity: Ko(C) = im (idg,,c)) = im(Koo(m) o Koo(X)) C im (Ko ().

By third identity: im(Kyo(e)) C ker(Kyy(m)). Now given [p], € ker(Ky, (7)), one has [p], =
Koo (1) (Koo(p)[ply) by the fourth identity, so ker(Ky,(m)) C im(Kyq(¢)). ]

Proposition 3.3.9. (Structure of K,,(B(H))). Let H be a Hilbert space, then the rank map

rank : P (B(H)) — Ny U {00} satisfies the conditions of Universal Property of K,-Groups 3.3.4.

Furthermore:

(i) If H is infinite-dimensional, then K,,(B(H)) = 0.

(i) If H is finite-dimensional, then K (tr): Ky (B(H)) — Z defined as K,(tr)([p],) = tr(p)
defines an isomorphism, and K,,(B(H)) has the cancellation property.

Proof. Note that by Proposition 3.1.9, the map rank satisfies the conditions of Universal Property
of Ky,-Groups 3.3.4, and rank is injective on P__(B(H))/ ~.

(i) If H is infinite-dimensional, then rank(idy) = oo, then rank:P_ (B(H)) — Ny U {oo} is
surjective, thus by Universal Property of K,-Groups 3.3.4, there is an isomorphism from
Ky (B(H)) to G(Ny U {0}), which we note G(Ny U {co}) = 0 by Example 3.2.4.

(i) If H is finite-dimensional, then rank surjects onto N, thus P__ (A)/ ~ has the cancellation

property as it embeds into N, as Abelian semigroups. By Proposition 3.1.9, one has rank =
tr, thus by Universal Property of K,-Groups 3.3.4, the K,(tr) : Ky,,(B(H)) — Z (we identify
G(Ny) =2 Z) defined as K(tr)([p]y) = tr(p) is an isomorphism. [

3.4 The K-Group Construction

Unfortunately, the K, functor does not have nice properties such as preserving some variations
of exactness or being additive, thus we introduce a slightly more complicated structure than K,
which does indeed have those nice properties. Hence the aim of this section is to properly introduce
the K-group for C*-algebras, and prove the nice functorial properties of K, which K, lacks. Given
a C*-algebra A, we define the K-group for A to be

Ky(A) == ker(Kgo(m))
where 7 : A — C is the natural projection map. Note that we see K, immediately generalizes K,
in the unital case.

Proposition 3.4.1. If A is a unital C*-algebra, then K(A) = K,,(A).
Proof. By Proposition 3.3.8, we see that K;(A) = im(K,(¢)) = Ky,(A) if Ais unital as Ky,(¢)
is now injective. ]
We may identify K;(A) as K,,(A) if A is unital. Note that for [p], € K,(A), then [7(p)], =0,
which means that 7(p) is a zero matrix, so p € P__(A). The functoriality of K, actually carries over
pretty well. Given a *~homomorphism ¢ : A — B between C*-algebras A and B, by the Functoriality
of Unitization 2.2.5, one induces a commutative diagram:
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L . Ta
A > A > C
L Y ]
B > B > C
Then funtoriality of K,, one induces a commutative diagram
Koo(t) Koo(ma)

Kop(4) — KOO(A) — Ky(C)

Koo(¥) l Koo(9) l ‘
Koo(B) —= KOO(B) — Ky (C)
Koo(v) Koo(7p)
Where Ky,(p) and Kyy(@) are uniquely determined, and define K,(p) : K,(A) = Ky(B) as

Koo (P)| k,(a)- We first need to verify that K,(y) actually maps into K,(B), so given [p], € Ky(A),
one has

Koo (m5) (Ko (@)[plo) = Koo(m4)[plo =0
so K, () is a well-defined map. Finally, just like K,, we see that K shares many similar properties.

Theorem 3.4.2. (Functoriality of K,). Let A, B, C be C*-algebras, and ¢ : A — B and ¢: B —
C' be *-homomorphisms. Then
(i) Ko(idy) = idg, (a)-
(i) Koo @) = Ky(¥) o Ko(e).
(iii) If 0 is the trivial C*-algebra, then K, (0) is the trivial group.
(iv) If 0: A — B is the zero map, then K,(0) : K,(A) — K,(B) is the trivial homomorphism.
Proof.
(i) Note that id, = id 4, thus given [p], € K,(A), one has

Ky (ida)[plo = Koo (id4 ) [plo = [ida(p)]o = [plo

so KU(idA),f_idKo(f)'

(i) Note that 1)o@ =10 @, so one has
Ko(hop) = Ky ("m>|KO(A) = Koo (&) ° K00(¢)|KO(A) = Ky () o Ko ()

(ii) Note that 0 = C, so as the projection map 7 :0 — C is the identity map, then K,(0) =

ker(m) = 0.
(iv) The zero map is a composition of the sequence

A—-0—B
so then by (ii) and (iii), one the K,(0) is the composition of the sequence
Ky(A) - 0— Ky(B)

which is the trivial homomorphism. [ |

Proposition 3.4.3. (Homotopy Invariance of K;). Let A, B be C*-algebras and ¢,1 : A — B be
*-homomorphisms. Then

(i) If @ ~p, 1, then Ky(p) = Ko().
(ii) If A and B are homotopic with maps ¢ : A — B and ¢ : B — A, then K,(A) = K,(B) where

Koy(p) = Ko(¥)~".
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Proof. If ¢ ~;, 9, then so is @ ~, 1, then K, (o) = K,(¢)) from the Homotopy Invariance of
K, 3.3.7, which adapting its proof and using (i), (ii) follows. [

To further investigate the property of K,(A) groups, we define the scalar map s  : Ay o7y :
A— A, so sy(a+alz)=al;. Note that 7405, =, and id; —s, maps into A. Let s, :
M, (A) — M, (A) be the induced map via Construction 2.5.1, and we say a € M, (/1) UA is
scalar if s(a) = a. The scalar mapping has the following natural property: given a *-homomorphism

¢ : A — B between C*-algebras A and B, then one has the commutative diagram:
@

—

(3.3)

SA

¢
—

by
0 +——
w
[u9]

Proposition 3.4.4. (Structure of K;). Let A be a C*-algebra, then:
(1) Ko(A) = {lplo — [s(n)]o : p € P, (A) for n € N}.

(ii) For each p,q € P, (A) the following are equivalent:

(@) [plo — [s()]o = g0 — [s(9)]o-

(b) There are ry,ry € P (C) such thatp®r; ~ g r,.

(c) There are k,l € Nsuchthat p® 1, ~g¢®1; in P (A)
(iii) f p e P (fi) satisfies [p], = [s(p)]y, then p® 1, ~ s(p) ® 1, in P, (A) for some k € N.
(iv) If ¢ : A — B is a *-homomorphism, then

Ko(p)([plo — [s(p)lo) = [2(p)]o — [s(&(p))]o
for each p € P (/1)
Proof.
(i) Letp € Poo(fi), then as mo s =, so
Koo(m)([Plo = [s(P)lo) = [7(P)lo — [7(s(p))]o = 0
hence [p], — [s(p)], € K,(A). Let g € K,(A), then there isa n € N and u,v € P, (A) such
that g = [u]y, — [v], by the Structure of K, 3.3.3 (vi), and let
p=u®dl,—v and ¢=0,®1,

so [plo — [alo = [u]o — [v]o = g- As s(q) = q and Ky(7)(g) = 0, then
[s(p)]o — lalo = Koo(s)([Plo — [alo) = (Koo(A) e Kgg(m))(g) =0

so [s(p)ly = lalo- Thus g = [ply — [s(p)]o. hence (i) s shown.
(i) Note that I, is the identity matrix in M, (C). Let p,q € P (A) and using the stable

equivalence ~ (see Construction 3.3.2), one has
[plo = [s()lo = [dlo — [s()]o = [p @ s(9)]o = [a® s(p)]o
< p®s(q) v q®s(p)

(34)
=pds(q)®Il, ~qds(p)®I, foranyn e N

= p®r; ~q®ry for some ry,r, € P (C)
So (a) implies (b). If p®r, ~qg&®ry for some 7,7, € P_(C), then rank(r;) =k and
rank(r,) = [ for some k,l € N, hence by Proposition 3.1.9 (iv), r; ~ I, and ry ~ I, in P__(C),
hence

pOIL, ~pdr, ~q®ry ~qdI.
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So (b) implies (c). Finally, if p® 1, ~q¢& 1, in P (A) for some k,l € N, so 7(p) @ I, ~
7(q) @ I;, and by Proposition 3.1.9 (iv), there is a n € N such that
m(p) ® Iy ~ I, ~ () ® I
So s(p) @1, ~ 1, ~ s(q) &1, by applying A (refer to (2.1)), and hence
pP®s(@) DL, ~pDs(p) B, ~q®s(p) DL,y

thus by our series of equivalences in (3.4), then [p], — [s(P)]o = [d]o — [$(@)]o- So (c) implies
(a).
(iii) As [p]g = [s(p)]o, the rest follows from Construction 3.3.2 and the Structure of K, 3.3.3 (v).
(iv) Follows from (3.3). [
The following lemmas are used to prove the exactness properties of K|, functor.

Lemma 3.4.5. Let ¢ : A — B be a *-homomorphism between C*-algebras A and B. Suppose
g € ker(K,(¢)), then thereisap e P (ﬁi) such that g = [p], — [s(p)], and @(p) ~,, s(@(p)) in
U..(B). Furthermore if ¢ is surjective, then p can be chosen such that @(p) = s(@(p)).

Proof. By Structure of K, 3.4.4 (i), thereisap, € P (/1) such that g = [py]y — [s(p1)]o, hence

0= Ko(p)(g) =[]0 — [s(P(p1))]o i [2(p1)lo = [s(@(p1)]o

so by the Structure of K, 3.3.3 (v), there is a n € N such that @(p;) ®1,, ~ s(@(p;)) & 1,,,
and choose p, = p; @ 1,,, so one has o(p,) = ¢(p1) & 1,, ~ 5(p(p1)) ® 1,, = s((py)), hence by
Diagram 1, there is a n € N such that

P(py) ®0,, w s(@(py)) ®0, in Uy (Mk(B)>

for some k € N being the dimension of @(p,) and s(@(py)). Let p =p, ®0,,, so @(p) ~,, s(@(p)).
As M, (B) is a unital, then by Diagram 1, one has

P(p) ~ s(@(p)) in U (My(B))

hence @(p) ~,, s(@(p)) in U, (B) Now
[plo — [s(P)]o = [p2)o — [s(P2)]o = [P1]o — [s(p1)]o = 9,
hence (i) is shown. Suppose now ¢ is surjective, now by the previous part, there isa n € N, p; €
P, (A) u € U, (B) such that @(p;) = us(@(p;))u* with g = [p;]o — [s(p1)]y- As i is surjective,
then so is @, and hence so is the induced map ¢ : M, (A) — M, ( ) from the Functoriality of
Matrix Algebras 2.5.2. Thus there is a v € U, (A) such that ¢(v) = u @ u* by Lemma 2.6.4 (iii).
Let p = vdiag(p,,0,,)v* € Py, (A) and
?(p) = (u@u)(@(p1) ®0,)(u" ©u) = s(2(p1)) &0, € My, (C)15

so s(p(p)) = @(p). As p; ~p; ®0,, ~ p by Diagram 1, then g = [p], — [s(p)]o, as required.
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Lemma 3.4.6. If one has an exact sequence of C*-algebras:

P P
0 > A © > B » > 0

then one has an exact sequence:

P ~ (idg —s¢) o 9
0 > A S > B » > 0
In particular for each n € N, one has an exact sequence:
_ b ~ (ldg—sc) et
0o —— Mn<A) — Mn(B) —>» M, (C) — 0

Proof. From the Universality of Unitization 2.2.4, @ is an injection, and 4 is a surjection, and as

im(idg —sc) = C, then it follows that im((ids —s¢) o %) = C, so it suffices to prove that im(p) =
ker((idg —s¢) o ).
Lleta+alj; € A, then

((idg —sc) o ¥)(@(a+alz)) = (idg —sc) (¥(e(a) + ale) = (idg —sc)(als) = 0.
Suppose b + 15 € ker((idg —s¢) © ¥), thus

0= (idg —s0) (¥(b) + 1) = %(b) + Blz — (Y(sp(b)) + Blp) = ¥(b)

so b € ker(¢) = im(yp), thus there is a a € A such that ¢(a) = ¢(b), hence ¢(a+ 1 ;) = (b +
Blg). This shows im(@) = ker((ids —s¢) 1), and the rest follows from the Functoriality of Matrix

Algebras 2.5.2. [ |
It follows that K|, has a much stronger functoriality properties than K,. We shall finish this

chapter with the next three theorems.

Theorem 3.4.7. (Half Exactness of K;). An exact sequence of C*-algebras:

@ (G
0 > A © > B » > 0
induces an exact sequence of Abelian groups:
Ko(p) Ko(¥)

Ko(A) — Ky(B) — K,(O).
Proof. By functoriality of K,, one has K (1) K,(p) = Ky(pop)=K,(0) =0, so
im(Ko (1)) C ker(Ko (1)),
Suppose g € ker(K (1)), so by Lemma 3.4.5, there is a p € P (B) such that ¢(p) = s(¢(p)) and
9= [plo — [5(p)]o, so as p € ker((ids —s¢) o %), then by Lemma 3.4.6, there is a g € M, (/i)
such that @(¢) = p, and as @ is injective, then g € P (A) Finally by naturality of the scalar map
(3.3), one has

Ko(p)la = s(@)lo = [plo — [s(p)lo = 9,
hence ker(K, (1)) = im(K,(¢)), as required. [ ]
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Theorem 3.4.8. (Split Exactness of K;). A split-exact sequence of C*-algebras:

@ (G
0 > A < » BT——= C —— 0
A
induces a split-exact sequence of Abelian groups:
Ky(p) Ko ()
0 —— Ky(4) — Ky(B) = K,(C) — 0.
KoM

Proof. By the Half Exactness of K, 3.4.7, we have exactness at K,(B), and as K,(\) is a right-
inverse of K,(1) by functoriality, one has K (1) is surjective, so we have exactness at K,(C). So
it suffices to show that ker(K,(¢)) = 0.

Let g € ker(K,(¢)), so by Lemma 3.4.5, there is a n€N, pe Pn(/i>, and u € Z[n<fi) such
that g = [p]o — [s(p)]o and u@(p)u* = s(@(p)). Let v = (Ao%)(u*)u € U, (B), thus P(v) =1,
so (v) = s('zﬁ(v)) hence by Lemma 3.4.5, there is a w € M, (A) such that @(w) = v, and as @
is injective, then w € U, (A) Note that as 9o ¢ = 0, then m =0 is a scalar map, i.e. 0(a +

al ;) = alg here, so finally,

p(wpw*) = v (p)v* = (Ao ) (u)s(2(p)) (A o ¥)(u)
= (Xo9)(u"s(@(p))u)
= (Ao 9)(@()
= (Ao dop) () = (A=0)(p) = 5(2(p))) = (5(p)),
so wpw* = s(p) by injectivity of . As p ~,, s(p), then g =0, as required. [ |

Theorem 3.4.9. (Additivity of K;). Let A and B be C*-algebras, then K,(A® B) = K,(A) &
K,(B).
Proof. Consider the diagram

e! B
0 — KO(A) - KO(A)EBKO(B) - KO(B) — 0

| o]

0 — Ko(4) —— Ko(A®B) ——— Ko(B) —— 0

Ko(ea) Ko(p)
where
LA:A%AGBB:G’H(G?O)) 7['BZI4GBB—>BZ(Cl,b)l—)b
and

£(g, h) = Ko(ea)(g) + Ko(ep)(h).
This makes the diagram commutative, and the top row is clearly exact following from definition,
and the bottom row is exact as it is induced from the split exact sequence:
La Uy:]
0 > A ¢ » ADB—=2 B —— 0
lp
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which we use the Split Exactness of K|, 3.4.8. Hence by Five Lemma 5.4.5, £ is an isomorphism, as

required. [ ]
3.5 Computation of K,-Groups

We finish off this section by providing some common examples of K,(A). This chapter is rather
independent of the thesis; the only main takeaway is the next example: the K,-groups for finite-
dimensional C*-algebras.

Example 3.5.1. (The K,-group for finite-dimensional a C*-algebra A). If A = M, (C) for some n €
C, then by one has K,(A) = Z by the Structure of K,(B(H))_3.3.9 (ii) since K,(A) = K,,(A)
as A is unital. Now in general, by Theorem 2.1.6, A= M, (C) & - & M, (C) for ny,...,n; €N
and some k € N. By the Additivity of K, 3.4.9, one has that
Ky (A)=2Z® L.
- =

k copies

In particular, K,(C) =2 Z, which gives us the structure of K|, (/i) simply by algebraic arguments.

Lemma 3.5.2. Suppose one has a split-exact sequence of Abelian groups
%) 12

0 » G ¢ » H e—2 K —— 0.
14

Then H=2G® K.

Proof. Define ¢ : G® K — H : (g9,k) — ¢(g) — v(k), which is a homomorphism.
Let (g, k) € ker(v), so ¢(g) = v(k), applying 1, we get that 0 = k. Thus ¢(g) = 0, but ker(yp) =
0, so g = 0. Hence v is injective.
Let h € H, then pu(h —v(u(h))) = pw(h) — u(h) =0, so h —v(u(h)) € ker(pn) = im(yp), so there is
a g € G such that p(g) = h —v(u(h)), hence ¥(g, —p(h)) = h —v(u(h)) + v(u(h)) = h. Thus ¥
is surjective, as required. [ |

Corollary 3.5.3. Let A be a C*-algebra, then K (A4) = K,(A) & Z.
Proof. Note that the split-exact sequence (2.1):

3

L -
0 > A © » AT——=2 C —— 0
A

induces another split-exact sequence by Split Exactness of K, 3.4.8:

K,y(v) Ky ()

0 — Ky(4) — Ky(A) &—= 2z — 0.
Ko(X)

So K, (/i) =~ K,(A) & Z by preceding lemma. [ |

1)  K,-Groups for C(X)

Construction 3.5.4. (The trace map for C(X)). Given a connected locally compact Hausdorff space
X and A = €(X). Then there is an additive map tr : P_(A)/ ~— N such that tr([p]) = tr(p(z))
for a fixed x € X, where tr(p(x)) is the usual trace for matrices as we make the identification
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M, (A) = C(X, M, (C)) for each n € N; see Example 2.5.4 (ii). In particular, one has a homomor-
phism dim : K,(A) — Z defined as dim([p],) = tr(p).

Foreachp € P, (Cy(X)), the map tr(p) : x > tr(p(z)) is in Cy(X,Z); see Proposition 3.1.9 (v). As
X is connected, then tr(p) is a constant map, hence the map tr: P__(Cy(X)) — Z is well-defined.
As for each p,q € P__(A), then p ~ ¢ implies p(x) ~ ¢(z) for all x € X, thus the map [p] — tr(p)
is well-defined on P__(A)/ ~, and similarly, tr is additive. Thus the existence of dim follows from

the Universal Property of K|,,-Groups 3.3.4.

Example 3.5.5. (K,,(Cy(X)) =0 for a connected non-compact locally compact Hausdorff space
X ). From Construction 3.5.4, given p € P__(Cy(X)) the map Tr(p) is in Cy(X,Z).

Note that in general f € Cy(X,Z), as X is non-compact, there is a compact K C X such that
|f(z)| < 35 forallz € X\ K. As fis a constant in Z, then f = 0.

Hence Tr(p) = 0, thus tr(p(z)) = 0 implies p(z) = 0 for all z € X, so p = 0. Thus P, (Cy(X)) =
{0,}, s0 Ky (C(X)) = 0.

Example 3.5.6. (dim is surjective for a connected compact Hausdorff space X ). As 1 € C(X), then
one has dim([1],) = 1, so dim is surjective.

Example 3.5.7. (The map dim is an isomorphism for a contractible compact Hausdorff space X ).
Recall that X being contractible means that there is a continuous map F': X x [0,1] — X and
zy, € X such that F(-,0) =idyx and F(-,1) = z,.

For each t € [0,1], define ¢, : C(X) = C(X) : f = f(F(-,t)), which is a *-homomorphism such
that ¢y (f) = f and ¢, (f) = f(z), and also for each f € C(X), the map t = ¢,(f) is continuous.
Soidy ~}, ¢;. Define p: C(X) - Cas u(f) = f(zg) and v : C — C(X) : a— al, hence pov =
ide and v o u = ¢, ~, id¢, hence

H v
C(X) > C > C(X)
is a homotopy. Recall the isomorphism K(tr) : K,(C) — Z from the Structure of K,,(B(H))_3.3.9.

\ T K, (tr)
n

Ko (C)
where p and K (tr) are isomorphisms by the Homotopy Invariance of K|, 3.4.3, then dim is also an

Thus one has a commutative diagram:

isomorphism.

Proposition 3.5.8. Let X be the disjoint union space of locally compact Hausdorff spaces X; and
X,. Then Gy(X) = Cy(X,) ® Cy(X,)-
Proof. Let A\, : X; — X and A, : X, — X be the canonical inclusion maps. Define
P : Cp(X) = Co(X1) @ Co(Xy) : f = (fodg, fody)
Let f € Cy(X) and € > 0, so there is a compact K C X such that |f(z)| <¢ for all z € X \ K.
Now K, = A\; (K N \;(K)) is compact in X;, and one has |f(\;(z))| < ¢ for x € X, \ K;, so fo
A; € Cy(X;) for each i € {1,2}. Hence ® is a well-defined map. Now it is clear that ® is a *-

A projection matrix with zero eigenvalues must be the zero matrix.
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homomorphism too, and @ is surjective by the universal property of disjoint union spaces. Now ®
is also injective as X = A, (X;) U Ay(X,). Hence @ is an isomorphism. [ ]

Corollary 3.5.9. Let X be a locally connected, locally compact Hausdorff space such that X has
finitely many connected components {C;},,,. Then
K (6(X)) = P Ko (€e(G)
<n
Proof. As X is locally connected, all of its components are clopen, so X is a disjoint union space
of its connected components. The rest follows from Proposition 3.5.8 and the Additivity of K, 3.48.

We now try to compute the K-group for C;(R). Note that the one-point compactification of R
is S, and by Example 2.2.7, the unitization G, (R) is isomorphic to €(S') and one has a split-exact
sequence

0 —— CR) —— €(S') » > 0
and we use the fact that K,(S') = Z by [2, Example 11.3.3] and Corollary 3.5.3 to conclude that

Ky (C(SY)) = Ky(Cy(R)) & Z, hence Ky(Cy(R)) = 0. Let I C R be any interval:

e If I is open, then I is homeomorphic to R, so Cy(I) = C,(R) as C*-algebras, hence K,(C,(I)) = 0.

e If I is closed and bounded, then I is compact, then K,(C(I)) = Z by Example 3.5.7.

o If I is half-closed, i.e. of the form [a, b) or (a, b] (not necessarily bounded), then I is homeomorphic
to a bounded half-closed interval by passing it through arctan. So we assume I is half-closed and
bounded, then the one point-compactification of I is I, hence one has a split-exact sequence

0 — &y(I) — €(T) » > 0

and we know that K, (6’(7)) =~ 7, and by Corollary 3.5.3, one has K, (@(T)) ~ Ky,(C(I)) &
Z, so one has K,(C(I)) = 0.
Using Corollary 3.5.9, we can characterize the K,-group for all finite unions of intervals of R, for

example, given U = (—o0,0) U [1,2] U [3,5) U {37} U (40, 50), one has that
Ko (Co(U)) = Ko (Cy((—00,0))) @ Ko (C([1,2])) ® Ko(Co([3,5)))
® Ko (C({37})) ® Ky (C,((40,50)))
~0QZO0SZLZ B0 =72

2)  K,-Groups for B(H)

Let H be an infinite-dimensional Hilbert space, then Ky,(B(H))=0 by the Structure of
Ky (B(H))_3.3.9, and by Proposition 3.4.1, one has K,(B(H)) = 0 as B(H) is unital. It shall be
shown in Example 4.3.7, if H is separable, then K,(X (H)) = Z.
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4 | Classification of Separable AF-Algebras

We now focus our attention towards classifying C*-algebras via their Kj-groups. It is clear that
with our current tools, just by looking into the K|,-group will not provide enough information to
encapsulate the structure of the C*-algebra. For example, all K;(M,,(C)) = Z for all n € N yet C
is “not similar to” M, (C) at all. However, we can add an ‘order’ structure to our Ky-groups which
in turn gives sufficient condition to classify, in this case, approximately finite-dimensional algebras
or AF-algebras for short.

We begin our first chapter by building up the necessary theory in order to talk about the
‘orderedness’ of our Abelian groups, and how the ‘stability’ of the C*-algebra relates to the ordered
structure of their K,-groups.

The second chapter will focus on inductive limit constructions on both the C*-algebra and the
K-group level, and discuss their properties independently. As all AF-algebras are finite-dimensional
C*-algebras under inductive limits, this chapter will serve as a foundation for all upcoming inductive
limit results such as the Inductive Continuity of K, 4.3.5 and the main theorem, namely Elliott’s
Theorem 4.5.5.

We shall briefly touch on the definition and properties of AF-algebras in the third chapter. There

are a lot more nice properties that AF-algebras possesses; see [7]. However, we shall only focus on
the results relevant to the classification theorem.

Finally in the last chapter, we shall prove the celebrated classification theorem of AF-algebras;
the Elliott's Theorem 4.5.5.

4.1 The (K,, KJ) Functor

We now begin adding more information to our K,-group invariant, more specifically, we will
consider ordered Abelian groups with distinguished order units rather than just Abelian groups. This
allows us to finally make distinctions between certain C*-algebras at the K -group level. Firstly,
we will discuss the finiteness properties of C*-algebras, which are properties observed in the finite-
dimensional case.

Definition 4.1.1. (Stably Finiteness of C*-algebras). Let A be a C*-algebra and p be a projection
on A. We say p is infinite if there is a ¢ € P(A) such that p~ g <p, ie. p~gq, and o(p—q) C
(0, 00). Otherwise, p is said to be finite.
If A is unital, then we say A is finite if 1, is a finite projection, otherwise A is said to be infinite.
We say A is stably finite if M, (A) is finite for all n € N. If A is nonunital, then A is finite (resp.
infinite, or stably finite) if A is finite (resp. infinite, or stably finite).

Note that a € A is an isometry if a*a = 1 if A is unital. Feel free to refer to the Chapter 2.5 on
positive elements as this lemma relies on the observations made there.
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Lemma 4.1.2. Let A be a unital C*-algebra, then the following conditions are equivalent:
(i) Ais finite.

(i) All isometries in A are unitary.

(iii) All projections in A are finite.

(iv) All left-invertible elements in A are invertible.

(v) All right-invertible elements in A are invertible.

Furthermore, if A is nonunital, then (iii) still holds if A is finite.

Proof. (i)=>(ii). Suppose A is finite. If a € A is an isometry, then aa* is a projection with 1 =
a*a ~ aa*, so as 1 is finite, one has aa* > 1. That means o(aa*) — 1 C [0, 00), so o(aa*) = {1} as
o(aa*) C {0,1}. Hence aa* = 1, as required.

(ii)=>(i). Suppose all isometries are unitary. Let p € P(A) such that p ~ 1, then thereisave A
such that p = vv* and 1 = v*v, hence p =1 as v is unitary. Then 1 is a finite projection, so A is
finite.
(ii)=>(iii). Suppose A is finite. Let p,q € P(A) such that p ~ ¢ < p. Now there is a v € A such
that p = v*v and ¢ = vv*, and define w = v + (1 — p). Note that (1 — p)v* =0 = v(1 — p), and by
Lemma 2.3.2, one has pg = qp = q, so

ww=14+v*1—-p)+(1—plv=14+vq(1—p)+(1—p)gv=1

and ww*=q+1—p

thus by (ii), w is unitary, so 1 = ¢+ 1 — p, hence p = q. Thus p is finite.
(iii)==>(i). Suppose all projections are finite, then 1 is finite, so A is finite.
(iv)==>(v). Suppose all left-invertible elements are invertible. Let a € A be right-invertible, then
there is a b € A such that ab = 1, so b is invertible, hence ba = babb™! = b1b~! = 1.
(v)=>(iv). Similar as above.
(iv)=>(ii). Trivial.
(ii)=>(iv). Suppose all isometries are unitary. Let a € A be left-invertible, by Lemma 2.4.6 a*a is
invertible, so let v = a(a*a)_%. Now one has v*v = 1, thus v is unitary hence invertible. Thus a =
v(a*a) is also invertible.
Suppose A is nonunital and is finite, and p,q € P(A) such that p ~ ¢ < p. Then borrowing the
defined notations in the proof of (ii)=>(iii), where w = v+ (15 — p) and we know that w*w =14
and ww* = ¢+ 1; —p. As 1 is finite, then 1; ~ ww* > 14, so o(ww*) —1 C [0,00), it follows
that ww* =14, so p = ¢, as required. [ |

Corollary 4.1.3. Let A and B be finite (resp. stably finite) unital C*-algebras, then A @ B is finite
(resp. stably finite).

Proof. Let (a,b) € A @ B be left-invertible, then a and b are left-invertible in A and B respec-
tively, hence they are invertible, and thus so is (a,b). Therefore by preceding lemma, one has A ®
B is finite. If A and B are stably finite, then by Example 2.5.6, M, (A& B) = M, (A) & M, (B)
is finite for each n € N. Thus A & B are stably finite. [ |

Corollary 4.1.4. A finite-dimensional C*-algebra A is unital and stably finite.

Proof. By Theorem 2.1.6, A is a sum of matrix algebras over C (which are unital), so from
Corollary 4.1.3, it suffices to show that M, (C) is stably finite for each n € N. Let n € N, then by
Lemma 4.1.2, M, (C) is a finite C*-algebra as all left-invertible matrices over C are invertible by

37



Classification of Separable AF-Algebras The (K, K§) Functor

linear algebra. Now for each m € N, one has M,,,(M,,(C)) = M,

mn

(C) is finite, so M, (C) is stably
finite, as required. []

Definition 4.1.5. (Ordered Abelian Groups). The pair (G,G%) is called an ordered Abelian group
if G is an Abelian group and there is a positive cone G* C G, which satisfies

OGl. Gt + G+ C GT;

0G2. Gt N (—G*) =0;

0G3. Gt -G =G.

Hence one can define a relation < on G such that z <y if y —xz € G*. Now OG2 implies that
< is reflexive and antisymmetric, and OG1 implies < is transitive, so < is a partial order on G.
Note that z < y implies z + 2 < y + z for all 2 € G. Note that OG1 implies that G is an Abelian
semigroup.

We say an element u € G to be an order unit if for each g € G, there is a n € N such that —nu <
g < nu. Then the triple (G,G*,u) is an ordered Abelian group with a (distinguished) order
unit. We say (G, G%) is simple if each u € G \ {0} is an order unit.

If an Abelian group G has a partial order < such that z <y implies z + 2 <y + z for all z,y,z €
G. Then the set Gt = {z € G : > 0} satisfies 0G1 and 0G2.

From our definition, it is immediately clear that G = (Z,N,)) is a simple ordered Abelian group
under the usual order. Furthermore, so is G* = (Z* ,N§) for each k € N where we induce the usual
ordering to be component-wise. We see that G is a simple ordered Abelian group, while G* is not
necessarily simple for k > 1.

Definition 4.1.6. (Positive Cones). Given a C*-algebra A, the positive cone of K,(A) is
Ko(A)" ={[plo : » € P (A4)} C Ky(A).
Note that K,(A)* is precisely the image of P_ (A)/ ~ under the Grothendieck map.

Proposition 4.1.7. Let A be a C*-algebra. Then
(i) Ko(A)T + Ko(A)" C Ky(A)".
(i) If A is unital, then K,(A)t — K,(A)T = K,(A).
(iii) If A is stably finite, then K,(A)" N (—K,(A)") = 0.
(iv) If A is unital and stably finite, then (K,(A), K,(A)*,[14],) is an ordered Abelian group with
a distinguished order unit.
Proof.
(i) Given p,q € P_(A), one has p@® q € P__(A), so [p], + [g]o € Ky(A)™, as required.
(ii) Note that K,(A)" is an Abelian semigroup of K,(A), so by the Structure of Grothendieck
Groups 3.2.1 (iv), one has K,y (A) = Ky(A)t — Ky (A)". As Kyy(A) and K, (A) are isomorphic
via the inclusion map (see Proposition 3.4.1), then one has K;(A) = K,(A)* — K,(A)*.
(iii) Suppose g € K(A)™ N (—Ky(A)T), then g = [pl, = —[q]o for p,q € P (A). As [p & q], =
in Ky(A) C Ky, (fi) so by the Structure of K, 3.3.3 (v), thereisa r € P_ (A) such that
p® qdr ~ r. Without loss of generality, suppose p, g,r € P, (co) for some n € N, this can be

achieved by direct summing zero matrices. Let p’ =p @0, ®0,,, ¢ =0, ®g®0,,, and ' =
0,®0, ®r, thenp’q =p'r" =¢'r" =0,,s0p” L ¢ Lr" withp~p’, g~¢q', r~r". Soby
Proposition 3.3.1 (iv), one has p” + ¢’ + 1’ ~ 1/, thus as p’ + ¢’ + ' is a finite projection, one

hasr >p' +q¢" +7,500>p" +¢ . Thusp’ + ¢ =0 as p’ + ¢ is a projection, so p’ = 0 by
multiplying by p’, as hence g = [p], = 0, as required.
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(iv) It suffices to show that [14], is an order unit for K,(A). Let g € K,(A), then as K,(A) =
Ky, (A), by the Structure of K|,, 3.3.3, one has g = [p], — [q], for some p,q € P, (A) and n €
N. We write 1 =14, and note that [1,], = n[l],. Now 1, —p,1,, — ¢ € P,,(A4), and note by
Construction 3.3.2, one has p & (1,, — p) ~ 1,,, so one has

—n[l]o = —[1,]o = —lalo — [1n — dlo < —ldlo < [plo —[dJo =9
< [plo < [plo + [1 —plo = [1,]o = n[l]o.
Hence [1], is an ordered unit for K;(A), as required. [ ]

Defintition 4.1.8. (Positive Group Homomorphisms). Let (G,G") and (H, H') be ordered Abelian
groups, then a group homorphism ¢ : G — H is positive if o(G*T) C H*, and we say ¢ is an order
isomorphism if ¢ is an isomorphism and ¢(G*) = H*.

Suppose g and h are now distinguished order units of G and H respectively, then we say ¢ is (order)

unital if ¢(u) = v, and hence we say (G,G%*,g) and (H,H™", h) are isomorphic (as ordered

Abelian groups with units) or unital order isomorphic if ¢ can be chosen as a unital order

isomorphism.

We now have two new categories:

e The category of ordered Abelian groups, OrdAb, whose objects are ordered Abelian groups
(G,G*), and morphisms are positive group homomorphisms f:(G,G*) — (H,H™') (so
f(GT) C H"). It is clear that positive group homomorphisms are preserved under compositions.

e The category of ordered Abelian groups with distinguished order units, OrdAb,, whose objects
are Abelian groups with distinguished order units (G, G*, u(), and morphisms are unital positive
group homomorphisms f: (G,G",ug) = (H,H",uy) (so f(G*) C H' and f(ug) = ug). It
is clear that unital positive group homomorphisms are preserved under compositions.

It is clear that the categories OrdAb and OrdAb; contains zero objects, namely the trivial group

0 which has the positive cone 0% = {0} and distinguished order unit 0. We also often omit the G*

and ug when stating that f is a unital positive group homomorphism if the context is clear. We

shall also observe that the categories OrdAb and OrdAb, are also closed under finite products, that

is, given triples (G,G",us) and (H,H",uy), we can make a new ordered Abelian group (G x

H,G" x H*) with a distinguished order unit (ug,uy).

Proposition 4.1.9. Let ¢ : A — B be a *-~homomorphism between C*-algebras. Then
(i) Kole) (Ko(A)) C Ko(B)*.
(ii) If A, B and ¢ are unital, then K,(¢) is unital, i.e. K;(¢)[14]o = [15]o-
(iii) If ¢ is a *-isomorphism, then K,(¢)(K,(A)") = K,(B)™".
(iv) If A is unital and ¢ is an *-isomorphism, then K, (¢) is an unital order isomorphism between
(Ko (4), Ko(A)*, [14]o) and (Ko(B), Ko(B)*, [15],).
Proof.
(i) Follows from the definition: K,(¢)[plo = [@(p)]o = [¢(p)]o for p € P (A).
(ii) Indeed, Ko(9)[Lalo = [2(1a)lo = [¢(1a)]o = [18]o-
(iii) Letq € P,,(B) forsomen € N, then thereisap € M, (A) such that p(p) = ¢. Then as p(p)* =
©(p)? = p(p), it follows from injectivity that p € P,,(A), so K,(¢)[plg = [q]o, as required.
(iv) This follows from (i), (ii), and (iii). [
The last statement (statement (iv)) of the preceding proposition states that the triple
(Ky(A), Ko(A)™, [14]0) is indeed an invariant of A. In particular, this triple is sufficient to cover the
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flaws of K,(A), which originally cannot distinguish between finite-dimensional algebras as discussed
initially, but the triple can as per Proposition 4.1.9.

Proposition 4.1.10. Let n,m € N, and A = M,,(C). One has that

(i) K,(tr) is a unital order isomorphism from (K,(A), K,(A)*,[14]y) to (Z,Ny,n).

(ii) Let G, = (Z,Ny,n), then G, is unital order isomorphic to G,, if, and only if, n = m.

(ii) If A= M, (C)® M,,(C), then (Ky(A), Ky(A)T,[14]o) = (Z?, N3, (n,m)).

Proof.

(i) From the Structure of K ,(B(H))_3.3.9, we have the natural isomorphism K,(tr) :
Ky(A) = Z (we make the identification K,(A) = Kyy(A) here), and it is clear that
Ky (tr)(Ky(A)T) =N, and Ky(tr)([14]¢) = n, thus K,(tr) is an unital order isomorphism
from (KO(A)a KO(A)+7 [1A]0) to (Zv NO? n)

(ii) It is clear that if n = m, then we are done. So now suppose there is a unital order isomorphism
¢ from G, to G,,. Note that ¢(r) = ¢(1)r for all r € Z, and since ¢ is surjective, then ¢(1)
must generate Z. The only generators of Z are 41, and as ¢(1) € N, since ¢ is positive, one
has (1) = 1. Now m = ¢(n) = ¢(1)n = n, as required.

(iii) Following from the Additivity of K|, 3.4.9, we have an isomorphism K, (tr) & K, (tr) : K,(A) —
Z? where we make the identification Ky(A) = Ky(M,,(C)) & K,(M,,(C)). The rest follows
similarly as per (i). [

Denote C*-Alg, to be the category of stably finite unital C*-algebras where the morphisms are
unital *-homomorphisms, so C*-Alg is a subcategory of C*-Alg. From the results proven above, we
can define the functor

(Ky, K : C*-Alg, — OrdAb,
which given a unital C*-algebra A, define (K, K )(A) as an ordered Abelian group with a distin-
guished order unit (K,(A), Ky(A)*,[14],)- Given a unital *-homomorphism ¢ : A — B between
unital C*-algebras A and B, then define (K, K; )(¢) as the map K,(¢), which we know K;(¢)
is a positive unital group homomorphism by Proposition 4.1.9. The functoriality is given in the next
proposition.

Proposition 4.1.11. (Functoriality of (K, K{)). Let A, B,C € C*-Alg, and ¢ : A — B, ¢ : B —
C' be unital *-homomorphisms. One has:
(i) (K07K0)+(1/’ °op) = (Ko,Ko*)(@D) ° (KO’KJ)(SO)-
(il) (Ko, Ko) " (id4) = id g, (a), 1y (4)5)-
Proof. This immediate follows from the Functoriality of K|, 3.4.2. [

Proposition 4.1.12. (Additivity of (K,, K;)). Let A and B be C*-algebras, then
Ko(A® B)" = Ko(A)" @ Ko(B)" ={(g9,h) : g € Ko(A)*, h € Ky(B)*}
is the positive cone of K,(A @ B), where the identification is given by & in the Additivity of K|, 3.4.9.
In particular, K,(§) is an order isomorphism. If A and B are unital, then K,(§) is also unital.
Proof. In the notation of the Additivity of K, 3.4.9, one has K,(§) = K,(t4) ® Ky(tp), and it
suffices to show that

Ko(f)(Ko(A)Jr ©® KO(B>+) = KO(A ® B)+'

Let (g,h) € Ko(A) ® Ko(B), and z = (Ky(ta) ® Ko(5))(g,h). As Ky(my) and Ky(rp) are
positive, then g = Ky(m4)(z) € Ky(A)* and h = Ky(7g)(x) € Ky(B)". If g and h are positive,
then as K;(t4) and K,(tp5) are positive maps, then it follows that x = K(t4)(g) + Ky(t5)(h) €
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K,(A@® B)*. So K,(§) is an order isomorphism. Now if the units exists, then it is clear that

Ko (&)[(1a,15)]o = ([Lalo, [158]0)- u
To summarize this section, we see that the functor (K, K,)* when restricted to the subcategory

FinAlg, yields a classification functor, that is, the objects A, B in FinAlg,; are isomorphic if, and
only if, the images (K, K7 )(A) and (K,, K )(B) are isomorphic.

4.2 Inductive Limit Constructions

In this chapter, we first consider the general inductive limit constructions of C*-algebras and
ordered Abelian groups. The main motivation here is that this allows to push our classification
theorem Proposition 4.1.10 of finite-dimensional C*-algebras, to AF-algebras. This gives a larger
class of C*-algebras that can be classified by (K, K7 ). Secondly, we shall show the relevant
properties of C*-algebras that are inherited through taking inductive limits.

1)  Inductive Limit of C*-Algebras

Let I be some index set, and {Aa}ael be a family of C*-algebras. Construct the product C*-
algebra A as follows: we treat elements of A to be functions a : I — (J _, 4, with a, = a(i) €
A, such that

lall = suplaq ., < oo
a€l

Let ||-|| be norm of A as defined above, and we equip addition, scalar multiplication, *-operation,
and multiplication to be pointwise. As it turns out A is a categorical product of the collection
(Aq)aerr and we will write A =[] _ A, in reference to this construction. We need a small lemma

to compute supremums.

Lemma 4.2.1. Let f: [0,00) — R be an increasing continuous map, and A C [0, 00) be nonempty
and bounded. Then f(sup A) = sup f(A).

Proof. Let a =sup A < oo, then f(a) > f(a) for all a € A, so f(a) > sup f(A). Let € >0,
so there is a 6 > 0 such that |f(z) — f(a)| <€ for all z € (&« — J§, + 0), and in particular there
isaa€AN(a—9d,a+46). Thus f(a) < f(a) +e <sup f(A) +e. Taking € L 0 to get f(a) <
sup f(A). Hence f(sup A) = sup f(A), as required. ]

Theorem 4.2.2. The set A =[] _, A, is the categorical product of C*-algebras. Furthermore, if
A_ is unital for each a € I, then A is the categorical product of C*-algebras.

[0

Proof. We first need to show that A is a C*-algebra by showing:
(i) satisfy ||ab| < |al|l|b] for all a,b € A;
(i) satisfies C*-identity;
(iii) completeness;
as it is clear that A is a complex normed space. Let a,b € A. For (i),

labl = sup[ayb, | < supla, |64 ] < [allb]-
acl acl

For (ii), using Lemma 4.2.1:

la*a| = suplat,a,| = supla,[? = |a]?
acl acl

For (iii), let (a("))neN be a Cauchy sequence in A. Fix a € I, and let n,m € N, observe that
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ol = o™ = 1 = )] < = o]
so it follows that (a(a”))neN is a Cauchy sequence in A,, so there is a a, € A, such that

lim,,_,. a™ =a,. Let a = (a,),e;, and we need to show that ||a]| < co and lim a™ = a to

conclude (iii). As Cauchy sequences are bounded, there is a M > 0 such that ||a™|| < M for all
n € N, then fixing a € I, there is a N € N such that HagN) — aaH < M, so one has

laal < [|aq — a7 || + o] < M+ [a™]| < 2M,

n—o0

hence ||la| < 2M, thus a € A.

Let € > 0, so there is a N € N such that ||a(") — a(m)H <eforallm,n> N. Fixn > N, so there
is a a € I such that ||aa - a&")H +¢e > |la—al™||, so for each m > N one has:

o= a1 < Jlaq —a | + & < [laq — o + ol = ag?]| +€ < [|aq — ]| +2e.

Take m — oo to get ||a — a(”)H < 2¢, hence a™ — a, as required.

We now show that A has the universal property. Let 7, : A — A, be the natural projection maps,
and it is clear that they define *-homomorphisms. Let (f, : B — A,),c; be another family of *-
homomorphisms mapping from a C*-algebra B, and define

fiB—= Az (fo2)acr

then it is clear that f is a *~homomorphism and f, =7, o f for all @ € I. Thus A is indeed a

categorical product.

If A, is unital for each v € I, then it is clear that 1, = (1Aa)a61 is the multiplicative identity in

A, and it is clear that 7, are unital homomorphisms for each a € I. [
Suppose I is now a directed set, we define

B:{aeHAa:thereisaﬂEIsuchthataa:0foralli2j},

ael
it is clear that B is a two-sided ideal in Hael A, thus we can define the C*-algebra
Y
acl
which will be called the direct sum of (A,),c;- Note that given a net of real numbers (a,),er
we define

limsup a, = inf supa, = inf{sup{a, : i > j}: B € I},
acl Bel i>;

and lim,; a, or just lim, a, to be usual limits of nets if it exists in the extended reals. Note that

this behaves exactly like the same in the N case, that is,

limsupa, = limsupa, = liérlsup{aa 11> 5}
P>

and if J C I is a cofinal set, then lim;. ; ag = lim,¢; a,. See [8, p. 32| for more details.

Lemma 4.2.3. Let I be a directed set and (A,),c; be a collection of C*-algebras, and = :
I, An = 1o, An/ @D, An be the canonical map. Given a = (aq)aes € II; Aa. then
|7(a)] = lim sup|a,|.
In particular, a € B _; 4, if, and only if, lim|a,| = 0.
Proof. We let B be defined as above. As B is dense in B __; 4, then |n(a)| = inf{]a — b] :
b € B} by continuity of b — |a — b|. Let b = (b,),c; € B, then there is a § € I such that b, =0
for all i > 7, so
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al;

la —b| = sup|a, — b,| > limsup|a, — b, = lim sup|a
acl

hence |7(a)| > lim sup;, |a,|. For each B € I, define bV = (b(of))aef € Bas
b(j) _ {0 if ¢ > 7

@ a, otherwise’

so
|7(a)| < 1nf||a — b9 = 1nfsupH — bfj)H = inf sup|a, | = lim sup|a,,|-
Bel i>j i
Thus |7(a)| = limsup|a,|. Now the last part follows because
a€ EDAQ<:>7r(a):0
ael

< |r(a)] =0

< limsup|a,| =0

< lim|a, | exists andlim|a,| = 0. -

The preceding lemma gives a precise description of the structure of the direct sum, which is
given by

A, = {a € [] Aa : lim]a,| = o}.

acl ael

Theorem 4.2.4. (Inductive Completeness of C*-Algebras). Let I be a directed set and A* =
(Aa, (goaﬁ)) be a collection of C*-algebras indexed by I. Given «, 8 € I, whenever a < (3 does not
hold, then define ¢, 5: A, — Ag to be the zero map.

Then A® has an inductive limit (A, (¥ )aer). Moreover:

() A=U,.

(i) v, (a )|| = l1mﬂH<pa[3 a)| foralla e I and a € A,.
(iii) ker(y,) = {a € A, : limg| ¢, s(a)|| =0} forall a e I.
(iv) If (B (Na)ae]) is another cocone of A® and A\ : A — B is the map obtained by the universal

property, then
(a) ker(y,,) C ker(u,,) for all a € I.
(b) X is injective if, and only if, ker(u,) = ker(¢,,) for all a € I.
(c) Ais surjective if, and only if, B = m
(v) If A, is unital for each a € I, then A is unital.
(vi) Assume (v) and suppose 4 are unital for each a < B in I. Then 1, are unital for each a €
I.If B, and p,, are unital for each o € I, then X is unital.
Proof. Construction of ¢,
Let m: J[ ., Aa = I, c; Ao/ D ; Aa be the canonical map. For each o € I, define
v, A, — HAﬁ ca (op(a))per and h, =mov, : A, — HAQ/@AQ.

Bel acl acl
Note that as ||¢,s(a)|| < |a| for all 8 € I, so v, (a)] < |a] < oo, hence v, is well-defined, and it
is clear that v, defines a *~homomorphism, thus 1, is a *-homomorphism.
Construction of A, and showing cocone and (i)

Let a, 8 € I and suppose a < 3. Let a € A, and consider
Vo (CL) - V,B(Soaﬂ(a)) = (Soa'y(a))'yel - ((pﬁw(soaﬁ(a))'yel‘ (41)
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If v > B, then g, ° 9,5 = P4, 50 (4.1) evaluates to 0 at index k, thus
dja(a) - wﬂ((paﬂ(a)) = ﬂ-(’/a (CL) - V,B((paﬁ(G’))) = 07

hence b, = 15 © @ - In particular, im(¢,,) C im(¢y), so given arbitrary o, f € I and a € im(s),,),
b € im(1pg), then there is a v € I with & < and 3 < , then one has a,b € im(¢);,), so it follows
that A ={J _ im(t,) defines a C*-algebra as a subalgebra of im(mr). We restrict the codomains
of ¢, to A for each o € I, so thus (A, (¥,)qcr) forms a cocone of A®. This shows (i).
Showing (ii)-(iii)
Let o € I and a € A, then by Lemma 4.2.3, one has

[0 (@) = l7(vy(a))] = 1imﬂsup||wa5(a)|| = li}}1||<ﬁa5(a)||,

and the limit exists as for each v>pB32>a, one has ¢, =g, °p,s SO ||<,0a7(a)|| =
@5 (Cap(@)|| < [|€ap(@)]], so (©ap(a))ser is a decreasing net. This proves (i), and (iii) imme-
diate follows.

Universality of (A, (¥,)acr) - Existence of \ and showing (a)

Let (B, (ftq)acr) be another cocone of A*®, and let a € I. Suppose a € ker(y,), then
limg||@ag(a)| = 0, so for each 3 > a, one has

1o (@) = [lns(2ap(@)] < [[eas(a)l]

hence |u, (a)|| = 0 by taking limits, and thus u,(a) =0, so a € ker(u,,), i.e. ker(¢,,) C ker(u,,).
This shows (a). Then by the First Isomorphism Theorem 2.1.5, there is a unique *-homomorphism
Ao 1 im(1p,) = B such that p, = A, cv,. As im(i,) Cim(tpsz), one has Aglim(p,) = Ao by
uniqueness for o < B, and I is a directed set, then using a similar justification for showing that A is a
C*-algebra, one has a *-homomorphism A" : | J__, im(¢,) — B that extends A, for all o € I. Since

A’ is uniformly continuous (norm-decreasing in fact), then one has a unique uniformly continuous
extension A : A — B of X', hence p, = Ao, for each a € I.

Uniqueness of \

Suppose 0 : A — B is another *-homomorphism such that p, = d o9, for all a € I, then it follows
by uniqueness of A, § extends A, for all & € I, hence ¢ extends X', and thus § = A by uniqueness.
Hence (A, (¢,)q4cr) is an inductive limit of A®.

Properties (b) and (c) of A

Let a« € I, as p, = Aoy, for each a € I, then one has ker(u,) = ker(¢,) if A is injective. If
ker(u,,) = ker(¢p,,) for all a € I, then A is injective. Indeed, y = 9, (x) € ker(),), then A, (y) =
po,(z) =0, so z € ker(u,,) = ker(¢,,), so y =, (x) =0, as required. Hence A, is an isometry for
each a € I, thus X', and hence, X are isometries. This proves (b).

Note that as im(),) = im(x,, ), thenim(X) =, _, im(x,), hence im(X) = {J__, im(u,) asim(})
is closed. Thus A is surjective if, and only if, B =J__, im(u,). This proves (c).

Conditions (v) and (vi)

Assume (v), then by Theorem 4.2.2, the product [] _, A, has as natural unit 1, and as  is
surjective, one has a unital C*-algebra [] _, A,/ @D ; Ao with the unit given by (1), hence A
is a unital algebra as a subalgebra of a unital algebra. Assume (vi). Given « € I, then for each 5 >

Vo <1Aa> - <1Aw)'yel

«, then the Bth component of
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is zero, so applying 7w, one obtains wa(lAQ) —m(1) =0, hence 1, are unital and in particular
7(1) € im(vp,). If p,, is unital for each o € I, then A is unital for each oo € I as

Aa(”(l)) = )‘a (wa(lAa)) = :u’a(lAa) = 1B7

thus X, hence A, are unital. [

The preceding theorem proves that the category C*-Alg and C*-Alg; is inductively complete; see
Definition 5.3.3. In fact, the category C*-Alg is actually small complete and small cocomplete; see
[9]. We shall also take liLnA‘ to be the C*-algebra constructed in the above theorem, which will

be the inductive limit. It turns out, the connecting morphisms in the inductive limits of C*-algebras
can be assumed to be injective, in particular, isometries.

)

Proposition 4.2.5. Let I be a directed set and A* = (A
by I. Then there is a diagram B® in C*-Alg indexed by I such that the connecting and boundary

%) e a diagram in C*-Alg indexe
«p)) bead dexed

morphisms of B® are isometries and lim A® = lim B°®. If the connecting morphisms of A* are unital,
— —

then so are the connecting morphisms of B®.

Proof. We consider the setup from Lemma 5.4.7 with B* = (B,, (%,43)). and we have
(B, (Vy)aer) is the inductive limit of B® by the preceding theorem. By (iii) of the theorem, let
a € and z € ker(v,), then |z = limg|z| = limg |4, z5(z)| =0 as 1,5 are isometries as they
are injective. Thus z = 0, hence v, is injective and thus an isometry. So by Lemma 5.4.7 (ii) and
the theorem'’s (iv)(b), the universal map m: A — B is injective, and by the lemma (iii) and the
theorem’s (iv)(c), one has 7 is surjective. So 7 is an isomorphism.

Let o < Bin I, if ¢4 is unital (so the A,'s are unital), then so are ¢, 5 as a composition of unital

mapS 7'(-[.3 o (Paﬁ ]
Furthermore, the converse of the Inductive Completeness of C*-Algebras 4.2.4 (vi) holds, that is,

if the inductive limit is unital, then it can be recognized as an inductive limit in C*-Alg,, i.e. the
connecting morphisms can now be assumed to be unital.

Corollary 4.2.6. Let I be a directed set and A®* = (Aa, (goaﬁ)) be a diagram in C*-Alg indexed by
I, if the inductive limit of A® and (A, (¢,),cr) be the inductive limit of A®. If A is unital, then A
is an inductive limit in C*-Alg;.

Proof. By the preceding proposition, we may assume that the connecting and boundary maps
of A* are isometries. As A ={J _ im(t,), and A has a unit 1,, then thereisaa €I andaz €
A, such that |1, — ¢, (z)| < 1. Let

J={a€l:thereisaz e A, such that |1, — ¢, (z)| <1},

and note that for each a € J and a z € A, such that |14 — ¢, (x)| < 1, then v, (x) is invertible
in A, and by Lemma 2.4.6 (ii), 9, () is invertible in im(¢, ), hence im(¢,) is a unital algebra by
Lemma 2.4.6. As 9, is an isometry, then A_ is unital, and denote its unit as 1. Let 8 > a in I,
then note that

so B € J, hence one has

Vp(Pap(la)) = Ya(la) =14 =15(1p)
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and by injectivity of 5, one has ¢,5(1,) = 14, hence ¢4 is unital. As J is cofinal in I, then by

Lemma 5.4.6, one has that A is an inductive limit of B* = (4,, (goaﬂ))a,/gej, which is a diagram
a<p

in C*-Alg;. [ |

The next proposition provides us a very convenient way of constructing and identifying inductive
limits. This result will especially be useful for identifying X' (H) as an inductive limit for a separable
Hilbert space H.

Proposition 4.2.7. Let B be a C*-algebra, and I be a directed set. Suppose A, C B is a C*-
subalgebra for each o, 3 € I such that A, C A; for each a < Bin I and A, NAgz =0 if a and
B are not comparable. Define ¢, : A, — Ag to be the inclusion map, then A=[J__ A, is an
inductive limit of A* = (A, (¢as))-

Proof. Define 9, : A, — A to be inclusion maps for each aw € I. Let a« < 8 in I, so one has
Vg0 9o = 1, is obvious, hence (A, (1, ),c;) defines a cocone of A®. Let (C, (i1,)4cs) be another
cocone of A*, then define

A U A, = C
acl

as N (z) = p,(z) if z € A,. We claim that X' (z) is independent of the choice of A, so if z €
Ag also, then we have three cases: A, N Ag =0, A, C Ag,or Ay C A, Thecase A,NAz=0is
trivial, so-without loss of generality—suppose A, C Ag. Then pg(z) = pg(@as()) = p1o (), hence
A\ is well-defined.
Clearly X" is a *-homomorphism, so uniformly continuous, and thus we can consider the unique
continuous extension X : A — C of X', which X is still a *-homomorphism. Now X is clearly unique,
as Ao, = p, forall @ € I. Thus (A, (¥, )acr) is universal, as required. [ |

In the case of separable AF-algebras, they can realized as inductive limits of separable C*-algebras
indexed by natural numbers.

Proposition 4.2.8. Let I be a directed set, and A°® be a diagram in C*-Alg indexed by I. Let
(A, (¥4)aecr) be the inductive limit of A. Then A is separable if, and only if, there is an increasing
sequence (o, ),ey N I such that A = UneN im(wan>. In any case, A can be recognized as an
inductive limit of separable C*-algebras where the underlying index set is N.

Proof. Note that we shall use the Inductive Completeness of C*-Algebras 4.2.4 (i) here, and

write A as the inductive limit of A°*, and (¢,),c; be the boundary maps of A, which can be assumed
to be isometries for by Proposition 4.2.5.

“«<=". Suppose the latter holds, then we can assume the objects of A® to be separable and I = N.
Now im(%),,) is separable as 9, is an isometry from a separable space, and as A = Uae[ im(%,,), so
A is the closure of a countable union of separable subspaces. Let D, be a countable dense subset
of im(¢,,) for each a € I, and define D =J__, D, which is countable. Thus'

Uim(,) = JD."" c | JD." < D4,
acl acel a€el
in particular,
ACDA=D

: 2
so A is separable.

'The superscripts refers the space that the closure is taken with respect to.
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“=". Suppose A is separable. Now A’ = Uae] im(¢p,,) is separable as a subspace oi/a separable
metric space, so there is a subset {e, : n € N} of A’ such that A" ={e, : n € N} . For each,
now there is a a; € I such that e; € im(wal), and there is a @’ € I such that e, € im(p,/). So
there is a ay € I such that oy, > oy and ay > o by directedness of I, hence e, € im(gp%). We
can continue this process inductively, to find that for each n € N, there is a o, € I such thate,, €
im(cpan) where a,, < v, ¢, in particular im(goan> C im(goaml). So

A ={e,:ne N}A, C U im((pan)A/ cA
neN

hence

A= U im(gpan).

neN

By Proposition 4.2.7, A is an inductive limit of (im(gpan), (an)) where ¢ : im(cpan) — im((pam)

is the inclusion map for each n < m in N. [ |

Example 4.2.9. (The Space of Compact Operators X (H)). We assume that H is a separable
infinite-dimensional Hilbert space. For each n € N, let A,, = M

z 0
@n:An—>An+1:xl—><0 0).

We shall make the claim here that X (H) can be recognized as an inductive limit of the following

(C) and the *-homomorphisms

diagram:

©1 2 ¥3

More specifically, if we define

Prm—1°Pm—2 0 Py °pp HEm>mn

O+ Ap — A, = q1dy ifm=n

0 ifm<n
then we claim that X'(H) is an inductive limit of the diagram A* = (A,,, (¢,,,,,)) indexed by N.
Let {e,, : » € N} be an orthonormal basis H and let n € N. Let P, : H — E,, be the orthogonal
projection onto E, = span{e, : k < n}, and define B,, = P, B(H)P, as a subalgebra of B(H). For
each a € A, define a’ : H — H as a linear map such that a’[g is a linear map with associated
matrix a with respect to the basis {e; : k < n}, and a’e;, =0 for all £ > n. So o’ € B(H) with
|a’| = ||la| and " = P,a’P,, and

a,: A, =B, :aa.

Clearly a,, is a *-embedding. Let T' € B(H), and let a be the associated matrix of B, TF,|g with
respect the basis {e;, : k < n}, then it is clear that «,,(a) = P,TE,, so «,, is an isomorphism. Note
that P, B, =F, =F,F,,,,s0 B, C B, ., thus one can define inclusion maps ¢,, : B, = B, ,;,
hence one has ¢,, ., o ,, = 0, .1 © ¢,,, thus one has a commutative diagram:

©1 P2 ¥3
&51 l Qg o%:] l
2 by L3
B, > B, > By >

2Without the superscripts, we assume the closure is taken with respect to the whole space A.
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By Proposition 4.2.10, one has that X' (H) = UneN P, B(H)E,. Thus by Proposition 4.2.7, X (H)
is an inductive limit of (B,,, (¢,,,,)), @and by the Elliott’s Intertwining Argument 5.4.8, one has that
A= X(H).

Proposition 4.2.10. Let (T,),,cn be a sequence of bounded operators on a Hilbert space H, and
let S € X (H). Suppose sup,,cy|T,, | < oo, and T,, — idj; pointwise, then the following holds:
(i) T,8 = S (i) ST, — S (iii) T,,ST,, — S.
where the convergence is under the operator norm.
Proof.

(i) As the image of S under the closed unit ball is relatively compact, it is in particular totally
bounded. So given a € > 0, thereisan € N, z4,...,x,, € H with ||z;| <1 for i < n such that
for each y € H with |ly| < 1, thereis a i < n with |Sy — Sz,| <e. As T,,Sz; — Sz, for each
i < n, then thereis a N € N such that |T},Sz; — Sz,| < e forall k > N and i < n. Thus given
a unit vector y € H and k > N, there is a i < n such that | Sy — Sz,| < ¢, so one has

| TSy — Syl < |T3.Sy — TSzl + [T Sz — S| + [ Sz; — Sy
<|T}|e +2e < Me

il

where M = supyen| k]l + 2 < 00. Hence |T,S — S| < Me, thus T;,S — S.
(ii) Let z € H, so
I Tz — 2|” = |T;al® — 2%(Tyi, @) + [«
2
<N l2)? — 2982, T, ) + |2

n—oo . 2
— lidgl"l]? — 2]z + |=[* = 0.

*

Thus T¥ — id}; = idy pointwise, and as * is an isometry, one has that (7}}),cy is also a

uniformly bounded sequence. As S* is also a compact operator, one has that 7,)S* — S* in
the operator norm by part (i). By continuity of *, one has ST, = (T,;S*)* — (S*)* = S.
(iii) Let M = sup,,n|T,,|- For each n € N, observe that
|T.,ST, — S| < |1,,8T,, — T,,S| + |T.,,S — S|
< |TST, — S|+ 7,5 — S|
< M|ST,, — S|+ |T.,,S — S|,

then the rest follows from part (i) and part (ii) by taking n — oco. [ ]

2)  Inductive Limit of Groups

We have a similar result in the category of Grp and OrdAb.

Lemma 4.2.11. Let ¢ : G — H be a group homomorphism between Abelian groups G and H. Let
G* C G. Then one has
(i) If Gt + G C G*, then o(G*1) + p(GT) C o(GY).
(i) If Gt — G* =G, then p(GT) — p(G*) = im(yp).
Proof. Trivial. [ |
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Theorem 4.2.12. (Inductive Completeness of Various Groups). Let I be a directed set, and G* =
(G, (©ag) be a collection of groups indexed by I. Then lim G* = (G, (¥,,) oc1) eXists. Furthermore:
—

(i) G =U,.,im(%s).
(ii) ker(y,) = Uper ker(gp,p) for each a € 1.

B>a
(iii) Let (H, (tq)aer) be another cocone of G* and A\ : G — H is the map obtained by the universal

property, then

(a) ker(¢,,) C ker(u,,) for all a € I.

(b) X is injective if, and only if, ker(u,) = ker(¢,,) for all a € I.
(c) A is surjective if, and only if, H = Uae] im(p,, )

(iv) Suppose for each a € I, G, is now an Abelian group with a positive cone G, and ¢, :
(G,,GF) — (Gﬂ, Gg) are now positive group homomorphism for each a < 8in I. Then G* =
Uae[ ¥, (GY) is a positive cone for G, and 1, are positive group homomorphisms for each
a € I. In particular, ((G,G"), (1y)aer) is the inductive limit of ((G,,GY), (¢,3)) in OrdAb.

Proof. Define P = Hae[ G,, to be the usual products of groups; see Example 5.2.4. Define

Q = {g € P : there is a 8 € I such that a, = 0 for all a > S},

then it is clear that @ is a normal subgroup of P. Consider the canonical map 7 : P — P/Q, and
define ¢4 : G, — Gj to be the zero map whenever a < 3 does not hold for i, 3 € I. For each a €
I, define

Vo : Gy = P:gr (0a5(9))per and ¢, =mov,:G, — P/Q.
Thus 9, are homomorphisms, and observe that for each a < 3, and g € G, one has
Va(9) — Vﬁ(ﬂ%ﬁ(g)) = ((pa'y(g))'yef - (<P5—y (Qoaﬁ(g)))’yel
which evaluates to zero for at index v > 8 as ¢, = pg, © ¢, Hence
Ya(9) = Vp(2ap(9)) = T(val9) — va(Lasl9))) =0,

thus ¢, = 95 0,4 This also shows that im(¢,) C im(1)), hence we can define the subgroup
G=U,.im(,) of P/Q as I is directed. We restrict the codomains of ¢, to G for each v € I,
so we have shown that (G, (¢,,)4cr) forms a cocone of G*. This shows (i).

Let < Bin I, then as 1, =g o ¢4, then it is clear that ker(cpaﬂ) C ker(¢,,). Let = € ker(3p,,),
then 0 = 9, (z) = 7(v,(x)) shows that v,(z) € Q, so there is a 8 > «a such that ¢,4(z) =0, so
z € ker(p,). This shows (ii). From (iii), as p, = p15 © @5, then = € ker(p,,), hence ker(¢,,) C
ker(u,,). This shows (a). By the first isomorphism theorem, it follows we can define a unique
homomorphism X, : im(t,,) — H such that p1, = X, 9, Asim(¢),) C im(1p3), then Aglimyp,) =
A, by uniqueness, thus we can define a homomorphism A : G — H which extends A, for all a € I.
In particular, p, = Ao, for each o € I, and note that A is unique as A, is unique for each a €
I. This shows that (G, (¢,)4er) is indeed an inductive limit of G*.

For (iii)(b). It is clear that if X is injective, then ker(u,) = ker(y,) as p, = Ao, for each a €
I. If ker(p,,) = ker(¢p,,) for each a € I, then A is injective for each o € I see the proof Inductive
Completeness of C*-Algebras 4.2.4 (iv)(b), thus A is also injective.

For (iii)(c). Note that im(},) = im(g,,), thus im(X) = {J__, im(u,). So A is surjective if, and only
if, H=__,im(u,).

For (iv). We first show that G is a positive cone of G. For OG1; see Definition 4.1.5. Let g, h € G,
and by directedness of I, we can assume that g, h € ¥, (G") for some a € I, hence by Lemma 4.2.11
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(i), it follows that g + h € ¢, (G") C G*. This shows OG1.

For OG3. Let z € G, so z = ¢, (g) € im(¢,,) for some « € I, then by Lemma 4.2.11 (ii), ¥,(g9) =
Y, (x) =, (y) € v, (GF) — 9, (GF) C Gt — G for some z,y € G}. This shows OG3.

For OG2. Let z € G N (—G™), so by directedness of I, there is a « € I, and z,y € G such that
Y, () = =, (y) = z. Now (v, (z+y)) =¢,(x+y) =0, so there is a B € I with 8> « such
that for each k > j, one has ¢, (z+y) =0, i.e. 0, (2) = =@, (1). As @, (T), 04, (1Y) € G,
then ¢, (z) € Gf N (—Gy) =0, so 0=, (x). This holds for all k> j, thus 0 = n(v,(z)) =
¥, (x) = z. Hence Gt N (—=G*) = 0. Thus G* is a positive cone.

Then it is clear that ¢, (G) C Gt for each o € I by definition, so v,
((G,G"), (¥4) aer) is now a cocone of ((G,,GY), (¢,s)) in OrdAb. To prove universality, suppose
now H has a positive cone HT, and all of the maps p, are now positive. Let g € G*, so g =
Y, (z) € (GY) for some a €I and z € Gf, thus A\, (g) = A\, (¥, (z)) = p,(z) € H*, hence
Ag) = A (g9) € HT. Thus A(GT) C H*, and the rest follows. ]

are positive. Hence

4.3 Continuity of the K, Functor

We shall prove the inductive continuity of taking matrix algebras and unitizations. Keep in
mind that this proof is possible as per the construction and conclusions laid out by the Inductive
Completeness of C*-Algebras 4.2.4 (iii) and (iv).

Lemma 4.3.1. (Inductive Continuity of Matrix Algebras). Let I be a directed set, and A® =

(Ag, (goaﬁ)) be a diagram in C*-Alg indexed by I. Let n € N, then one has M, (hmA') is an
—

inductive limit of M, (A®).

lim A°, (ua)ad) to be the inductive limit of A°®  then

—

(2, <1£nA'>,(Mn(ua))aeI> is a cocone of M, (A*), which M, (A®) has the inductive limit

(M, (V) qaer), such that v, = vz 0 M, (p,5) for each a < S in I. By universality, there is a unique
*-homomorphism A\ : M — M, <lim A® ) such that M, (p,) = Aoy, for each a € I.
—

As

Proof. Given

z = (z;;) € ker(M,, (1)) = x;; € ker(p,,)

()] =0
(

= ligl”%ﬁ ij

Pap) (@)]| = 0

= z € ker(v,)

n

e limHM
B8

where the third implication comes from Lemma 2.5.3. Thus ker(M,, (u,)) C ker(v,,), hence X is
injective.
Note that lim A* ={J__ im(u,), so given = (z;) € M, <limA'), each z;; can be approxi-

— —
mated by a sequence (:ri?))keN in U, im(p,). Define zk) = <x§f)> € U, o, im(M, (1s)), hence

lim, . 2® =z by Lemma 2.5.3, thus M, (hmA') = U, ;MM (1s)). Hence A is surjective.
— «

Thus X is an isomorphism, as required. [ |

Lemma 4.3.2. (Inductive Continuity of Unitization). Let I be a directed set, and A* = (A, (¢as))
be a diagram in C*-Alg indexed by I. Then (limA')N is an inductive limit of A*® in C*-Alg,.
—
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Proof. Given <1i£1A’,ua> to be the inductive limit of A®, then <<liglA‘>N,(;2;)aeI> is a
cocone of A*, which A* has the inductive limit (B, (v,)aer), such that v, = vz 0@ 5 for each
a < B in I. By universality, there is a unique unital *~homomorphism X\ : B — li_l’I)l A')N such that
foo, = Ao v, for each ac € I.

As
z=a+cl € ker(i,) = a € ker(pu,) and ¢ =0

= lién“waﬁ(a)|‘ =0 and @ 5(%) = p,p(a) VBEI
— timF5(a)]| =0
=z € ker(v,).

Thus ker(,,) C ker(v,,), hence X is injective.
Note that lim A®* =)  im(u,), sogivenz =a+cl € <lim A‘)N, where a can be approximated
— acl @ —

by a sequence (a,,)ney in U, im(u,) and ¢ € C. Let z,, = a,, + c1 for each n € N, so one has a
sequence () ey in U, im(fg) such that z, — =z, thus (li£1A’>N = U, im(fg). Hence A is
surjective. Thus A is an isomorphism, as required. [ ]

We now need a lemma to prove inductive continuity of K|,. First we have a lemma for our lemma.

Lemma 4.3.3. Let A be a C*-algebra.

(i) If a € A be self-adjoint with § = ||a — a?|| < 1/4, then there is a projection p € A with |a —
p|l < 26.

(ii) Let p,q € P(A). If there is a z € A with ||z*z —p|| < 1/2, and |zz* — ¢| < 1/2, then p ~ q.
Proof.

(i) Ift € o(a), thent —t? € o(a — a?) by the Continuous Functional Calculus 2.4.3 (ii), and if |t —
2| <6 <1/4 for t €R, then t € [-26,26] U [1 — 25,1+ 26]; see [2, 6.3.1] for confirmation.
Hence if ||a — a2|| =6 < 1/4, then

o(a) C{teR:|t—1t?| <6} C[-26,26] U [l — 26,1+ 24],

then one can define a continuous map

0 if t € [—25,20)

as the domain is a disjoint union. Hence p = f(a) is a projection as f = f2 = f*, and
la —p| = Hida(a) —f”oo = max{ sup [t|, sup |t— 1|} < 26.
te[-26,26]  te[1-26,1+24]

(ii) Let 6 = 1/2max{|z*z —p|, |zz* — ¢|} so § < 1/4. Let K = o(z*x) U o(zz*), which satisfies
K C[—20,20] U[1 —20,1+26] by Lemma 3.1.6. Define f € C(K) as above, and let p, =
f(z*z) and ¢y = f(za"), now [p —py| <46 <1 and [lg —¢qo| <46 <1, s0 p~p, and g ~
¢o by Diagram 1. Given a polynomial P(z) € C[z], one has zP(z*z)x* = P(zz*)xx* as
z(x*x)"x* = (xx*)"zz* for each n € N and the rest follows from linearity. Thus by Stone-
Weierstrass, zg(z*z)x* = g(zz*)zz* for each g € C(K). Define g € C(K,[0,00)) such that
tg(t)? = f(t) for each t € K, and let v = zg(z*z), so one has

vt = g(z*z)a*zg(z'r) = 2*zg(s*x)g(z"z) = f(z7x) = po
wo* = g(a*a)’a’ = glaw*) e = f(za*) = g,

thus p, ~ gy, hence p ~ q. [ ]
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This technical lemma here, which will be the crux for proving the continuity of K, essentially
states that the elements satisfying the Murray-von Neumann relation ~ in the inductive limit can
be ‘approximated’ by elements in the constituents that makes up the inductive limit.

Lemma 4.3.4. Let I be a directed set, and A® = (4,, ((paﬂ)) be a diagram in C*-Alg indexed by

I, and (A, (¥,)qcr) be the inductive limit of A®. Let n € N. Then one has the following:

(i) If p e P,,(A), then thereisan a € I and a ¢ € P,,(A,) such that ¢, (¢q) ~ p.

(i) Let €1, and p,q € P,,(A,) such that ¥, (p) ~ ¢, (q), then there is a v > « such that
Par(P) ~ oy (@)
Proof. We first assume n = 1. Recall that by the Inductive Completeness of C*-Algebras 4.2.4,

one has A = m and [[¢, ()| = limg||p,4(x)|| for each a € I and z € A,,.

(i) Thereisa o € I and b € A, such that |p —,(b)| < 1/5. Let a, = (b+ b*)/2, so a, is self-
adjoint and so is ag = ¢,4(a,) with

p b p b 1
I = ¥(as)ll = o~ ¥s(eas(eall = lo=valel < [5 = 5 +[5 -5 < 5
for each 8> ain I. Now Lemma 3.1.6 implies
11 46
U(wa(aa)) - [_g’ g:| U |:57 g:|7
so using any graphing calculator, one observes that
(a0 — a2)]| = max{ft — 2] € o(wa(a,)} < >

As Yo ()| = limgl||pys(x)|| for z € A,, there is a 8> a in I such that Haﬁ —a%” <1/4,
so by Lemma 4.3.3 (i), there is a q € Ay such that |lag—¢q| < 1/2. Thus noting that *-
homomorphisms are norm-decreasing, one has

1 1
1vs(a) = pll < l[¥(a —ag) || + l¥s(as) —pll < 5+ <1,

hence 15(q) ~ p by Diagram 1.
(i) Let v € A such that 9, (p) = v*v and 9, (q) = vv*, hence there is a f € I and z € Ag such
that ||v —5(z)|| < & for a fixed € > 0. Choose a 7 > a, 3, then one has

lv =5 (pas @)l = lv = vg(2)]| <e.
Relabel v as 3 and ¢4 () as x, then we can find a 8 > « such that ||v — gz z)|| <e. Now
lv'v =gz || = [|(v" = vp(2) (v — ¥s(@)) + v"Y5(2) + Ps(™)0]
< & 4 2||v g ()]
and similarly,
lov” =g (za®)]| < & + 2[|vis ()]

As the maps (z,y) — z*y and (z,y) — xy* are continuous in a C*-algebra setting, then we
can choose an € > 0 small enough such that

1 1
||¢a(10) - 1/’5(35*33)” < 3 and H@%(‘D - szﬁ(xx*)H < )
for some 3 > avand z € Ag. As ¢, = 95,4, then one has

max{[|vs(Pas(p) — =), [[¥5(¢as(e) —227) ]} < %

52



Classification of Separable AF-Algebras Continuity of the K; Functor

hence there is a v > § such that

max{|[ g, (Pas(p) — 2"z, |95, (ap(e) —22")[|} < 3,

1 1
|0ary(P) — vy < 5 and | 0ary (@) —yy*| < 5

where y = g, (z). Hence by Lemma 4.3.3 (ii), one has that ¢, (p) ~ ¢, (q), as required.

Now assume for any n € N. Note that the contents of the statements (i) and (ii) are exactly when

you replace A to M, (A). By the Inductive Continuity of Matrix Algebras 4.3.1, we can assume
M, (A) is the inductive limit of M, (A*®), thus (i) and (ii) follows. ]

n

Theorem 4.3.5. (Inductive Continuity of K;). Let I be a directed set, and A* = (4,, (¢43))
be a diagram in C*-Alg indexed by I, and (A, (9, )acr) be the inductive limit of A®. Then
(Ky(A), (Ky(1y))aer) is an inductive limit of K,(A*). Moreover:
(i) Ko(A) = U e (Ko (0))-
(i) Ko(A)"=U eIKo Y )(Ko(Aa)+>-
(iii) ker( 0(¥a)) = Uger ker(Ky(¢,p)) for each o € I
Bza
)

(iv) If (KO(A ), Ky(A,) ) is an ordered Abelian group for each « €I, then
(Ko (A), Ko(A)Y), (Ky(1¥,))aer) is an inductive limit of (( 0(A4,), Ky(A,) ),(Ko(goaﬁ)))
in OrdAb.

(v) If A, is wunital with wunit 1 (KO(AQ),KO(AQ)+,[1Q]O) is an ordered Abelian
group with distinguished order wunit for each a €I, and A®* is a diagram in
C*-Alg,. Then ((Ky(A),Ko(A)", [1alo), (Ko(¥o))aca) is an inductive limit of K*® =
((Ko(An), Ko(An) ", [1a]0), Ko(#agp)) in OrdAb;.

Proof. For simplicity of notations, for each o < 3 in I, we shall note that @5 defines the
induced *-homomorphism from M, (.Z;) to M, (21’5) (which is achieved by applying the matrix

!

algebra functor after the unitization functor) for each n € N. We have similar conventions for 1,

and 1, respectively. Thus by the Inductive Continuity of Matrix Algebras 4.3.1 and the Inductive
Continuity of Unitization 4.3.2, one has that (Mn (A), (JQ)QGI) is an inductive limits of M, (Z’)

in C*-Alg; .
(i) Let g € Ky(A), then by Structure of K, 3.4.4, thereisakeNandp e P, (/i) such that g =
[plo — [s(p)]o- By Lemma 4.3.4 (i), thereisaa € I and g € P, (Z;) such that 1, (q) ~ p. So

by Structure of K, 3.4.4 (iv),
g=1[p] = 5o = [Ya(@]o — [s(¥a(a))]o = Ko(va)ldlo € im(Ko(3,))-
Hence (i) is shown.

(i) Note that D is obvious as K (¢,) is positive for each a € I. Let g € K,(A)™", then g = [p], for
some p € P, (A) and n € N. By Lemma 4.3.4 (i), there isa ¢ € P,,(A,) for some a € I such

that 1, (q) ~ p. Thus g = Yo (0)]o = Ko(6) (@) € Ko(tha) (Ko(A,)" ). Hence (i) is shown.
(iii) This part uses the Inductive Completeness of C*-Algebras 4.2.4 (i) and (ii). Let a € I. As

wa = 7/% ° SDDL,B' then KO(wa) = KO (1/’5) ° KO (SDQ,B)' hence ker(K0(¢aﬂ)) - ker(KO(wa)) for
each S > a in I. Thus D is shown. Let g € ker(K,(¢,,)), then there is a n € N such that p €

P, (Z;) such that g = [p]y — [s(p)]o, and so ¥, (p) ~ 2, (s5(p)). By Lemma 4.3.4 (ii), there
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isay>ain I such that ¢,.(p) ~ @, (s(p)) = s(gbow(p)), hence by Structure of K|, 3.4.4
(iv), one has

Ko(Pay)(9) = [Pary (P)] = [5(Pay(p)] = 0

thus g € ker(KO(gpw)), as required.

Continuity of K,

This part uses the Inductive Completeness of Various Groups 4.2.12 (ii), and (iii)(b) and (iii)(c).
Note that K,(A®) is a diagram in Ab indexed by I, thus referring to the Inductive Completeness
of Various Groups 4.2.12, we obtain the inductive limit (G, (1o )qer) of Ko(A®) such that p, =
tig o Ko(pap) forall B> ain I. As (Ky(A), (Ky(1y))acr) is a cocone of Ky(A*), then there is
a unique homomorphism X : G — K,(A) such that K,(1,) = Ao p, for each a € I. By part (i),
we have that X is surjective. By part (iii), one has ker(K,(,,)) = ker(u,,) for each a € I, so A is

injective. Thus X is an isomorphism, as required.
(iv) Note that Gt = U o1 Ha (KO(A )+) so by part (ii), one has

— U (K1) = U Kal) (Kold)*) = Kol

acl acl

thus X is a positive isomorphism, as required.

(v) Firstly, we show that the objects in question are well-defined. By the Inductive Completeness
of C*-Algebras 4.2.4 (v), A is unital, so 1, exists, and v, is unital for each o € I. By
Proposition 4.1.9, K, (S%ﬁ) and K,(1,,) are unital positive homomorphisms, thus the context
of question is well-defined, such as that K*® is indeed a diagram in OrdAb;. It suffices to
show that L = ((K,(A), Ky(A)T, [14]0)s (Ko(¥4))aer) is @ universal cocone of K*, which we
note L is indeed a cocone. Let ((G,G,u), (fty)acr) be @ cocone of K*, and we note that
((G,GT), (la)wer) is a cocone of K* in OrdAb where we identified K* via the forgetful functor
OrdAb; < OrdAb. Thus there is a unique positive homomorphism A : K;(A) — G such that
Wy = Ao Ky(1),,) for each a € I. Fix any a € I, then in particular,

A[Lalo) = AM@a([lalo)) = pa(llalo) = u,

so A is unital. Hence L is universal in OrdAb,, as required. [

The part (v) of the preceding theorem can be rephrased as follows.

Theorem 4.3.6. (Inductive Continuity of (K, K; )). Let I be a directed set, and A® be a diagram
in C*-Alg, indexed by I. Suppose liLnA‘ exists in C*-Alg,, then (KO,KJ)OiLnA') is an inductive
limit of (K, K )(A®).

As a consequence of the continuity of K|,, we can now compute the K|,-group for X' (H) when
H is a separable Hilbert space.
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Example 4.3.7. (K,(X (H))). Recall from Example 4.2.9, X' (H) can realized as the inductive limit

of the sequence:
©1 P2 ¥3
C—— M(C) —— M(C) —— -
where ¢,, : M, (C) — M,,;(C) is defined as ¢, (x) = @ 0;. In particular, one has the following

commutative diagram using K (tr) from the Structure of K,,(B(H))_3.3.9,

Ko(pn)
Ky(M,(C)) — Ky(M,41(C))

n

K,(tr) l l K, (tr)

Z A
where = arrow means the id; map. As K, (tr) is an isomorphism, then on the K,-group level, the

sequence

Ky(p1) Ky (o) Ky(p3) (4.2)
Ky (C) —— Ky(My(C)) —— Ky(M4(C)) —— -

can be realized as the sequence

Z Z Z
which clearly has an inductive limit of Z. Since by the Inductive Continuity of K, 4.3.5, the K-
group for X' (H) is the inductive limit for the sequence (4.2), so K(X(H)) = Z.
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4.4 Approximately Finite-Dimensional Algebras

We shall first introduce the notion of AF-algebras and state the relevant general properties that
they have and inherit from the finite-dimensional case. This will help us to prove the classification
theorem next chapter.

For clarity of the definitions, we define the following categories:

e The category of finite-dimensional C*-algebras, FinC*-Alg, whose objects are finite-dimensional

C*-algebras, and morphisms are *-homomorphisms.

e The category of FinC*-Alg;, whose objects are finite-dimensional C*-algebras, and morphisms are
unital *~homomorphisms.

Both FinC*-Alg and FinC*-Alg, are subcategories of C*-Alg and C*-Alg, respectively, thus given a
diagram in the subcategories, we may identify their inductive limits as objects in the larger categories.

Definition 4.4.1. (AF-Algebras). We say a C*-algebra A is an approximately finite-dimensional
algebra or AF-algebra if A is an inductive limit in C*-Alg of a diagram A*® in FinC*-Alg indexed by
some directed set I.

The next lemma shows that the category of unital AF-algebras AF-Alg as a subcategory of C*-Alg; is
actually a subcategory of unital and stably finite C*-algebras C*-Alg,, which means we can associate
a unital AF-algebra A with its ordered Abelian K-group.

Lemma 4.4.2. An AF-algebra A is stably finite.

Proof. Write A* = (A, (¢,5)) be a diagram in FinC*-Alg, and (A, (¥,)ac;) be an inductive
limit of A°.
Case 1: If A is unital.
Let s € A be an isometry, i.e. s*s =1, then as A = Uae] im(%),,), then thereisaa € I anda x €
A,, such that ||¢,(x) — s| < 1. Thus

[s*% (@) = 1] = " (Yo (z) —5)| < |s*] =1

so by Lemma 3.1.3, s*¢,, () is invertible in A, in particular, ¥, (z) is left-invertible with left-inverse
(s*,(x)) " s*, thus 9, (z)*th, () is invertible in im(t,) by Lemma 2.4.6. As A, is finite-dimen-
sional, then so is im(%,, ), in particular, im(%),,) is finite, thus 1, () is invertible by Lemma 4.1.2.
Thus s* = (s*¢,(x))Y,(x)~! € GL(A), so s* is invertible, and as s is a right-inverse of s*, then s
is the inverse of s*. So ss* =1, i.e. s is unitary, so by Lemma 4.1.2, A is finite.

Case 2: If A is nonunital.

Let n € N, and it suffices to show that M, (A) is finite. By the Inductive Continuity of Matrix
Algebras 4.3.1 and the Inductive Continuity of Unitization 4.3.2, M, (A) can be realized as an
inductive limit of M, (Z’) and as each object in M, (Z’) is finite-dimensional, then M, (A) is a
AF-algebra, thus M, (/i) is finite by Case 1. [ |

Proposition 4.4.3. An AF-algebra A is separable if, and only if, A can be recognized as an inductive
limit of finite-dimensional C*-algebras where the underlying index set is N.
Proof. Follows from Proposition 4.2.8 as each im(,) in the proposition is finite-dimensional,

hence separable. [ |
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4.5 Elliott’s Classification of Separable AF-Algebras

In this chapter, we shall prove the Elliot's classification theorem of AF-algebras. Before we proceed,
we shall make some observations regarding finite-dimensional algebras. We make the remark that

given a sum of matrix algebras

then we have a natural basis for A, which for 1 <r <m and 1 <4,j <n,, we define e;; € M,
such that the (3, j)th-entry of e,; is 1 and 0 everywhere else, and let

et = (0,..,0,¢;,0, ...,0)

IR YE
where the e, is at the rth position. Note that {eij :1<r<m,1<14,j<n,} forms a basis for 4
and we say they are the standard basis for A, and they satisfy the following properties:

MU2. (e @,

ij
MU3. egj) 1<r<m,1<4,j < nr} is a basis for A.

MU1. e(g)e,j? = el; if r=s and j =k, and 0 otherwise.
€

In general, if A is an arbitrary C*-algebra such that there exists a m € N, ny,...,n,, € N, and
eg) € Aforl<r<mandl1l<i,j<mn,, suchthatthecollectlon{ . q <r<m,1<i,5<n }

satisfies MU1 and MU2, to be a collection of matrix units, if MU3 is also satisfied, then we say a
basis of matrix units. This is in our interest as we can make comments about the ‘natural basic’
elements in our C*-algebras which has ‘finite-dimensional’ subalgebras without explicitly stating
their isomorphism to the sum of matirx algebras. For simplification of notation, we shall omit the
inequalities for the indices, and their meaning will be reflected in our definition above if the context
is clear.

Proposition 4.5.1. Let A and B be C*-algebras and < Z; ) and (f ) be collections of matrix

units for A and B respectively where 1 <r <m and 1<i4,5<mn,. Then:

(i) The collection (eE?) is linearly independent if e;; (r) #+ 0 for all 4,7, r

Suppose (eE?) is now a basis of matrix units.

(i) There is a unique *-homomorphism ¢ : A — B such that go(eg)) = fl(;) for all 7, 7, 7.

(iii) If (fj ) is a basis of matrix units. Then ¢ is a *-isomorphism. In particular, (egg)) is a basis
for A, and A is isomorphic to

Mnl C)e-a Mnm (C).
Proof. Let E = {eg) : i,j,r}, and consider

n,.

m
0= Z 2 g)e(? for a( " ecC.
r=11i,j=1
Fix s <m and k,l < ng. Then
(s) (s) (s)
0= 6kkae Z a; ekkez] ey = aksz eksz )

thus a§j) = 0. So E is linearly independent; this shows (i).
Assume (ii). We can define a map ¢ : E — B such that go(egg)) = fi(;) for all 4,3, r, which has a

unique linear onto A-still denoted as ¢. By MU1 and MU2, ¢ is a *-homomorphism. So if (iii) is
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assumed, then ¢ is bijective hence an isomorphism. In particular, we can choose B to be ]V[nl((C) <)
~ @ M, (C) which establishes the isomorphism type of A. [

Lemma 4.5.2. Suppose E = {eg) 1<r<m,1<i< nr} is a set of mutually orthogonal projec-

tions in a C*-algebra A. Suppose
(r) (r) . (r)

€11 ™ €ag Y n

n,n,

for each r. Then E can be extended to a collection of matrix units (eg)) in A.

Proof. Fix r and 4, j, then as e\7 ~ e!”, then there exists a e\’ E A such that e{7*el”) = ¢!7)

and eg:)e(l?* = e( ") Define egj) = 6(1:) elj Now e( = 613)*6(11) = ]Z , so MU2 is satlsfled

Fix s and k, . We note Proposition 3.1.1 (i). If r # s or j # k, then
(r) (s) (M)x (1) o(8)x ,(8) _ J(1)x j(1)x () J(8) _ (1) (r) (r) (5] (5]« (S —0,

1] € = €15 €15€1, €1 T €15 €51 Cp1€1 T €15 €1y e” CrkCik
(r) (s) o .
as e;; e, = 0. Otherwise if 7 = s and j =k, then

r (r)x _(r) _(r)x (7) ) (r) () ) s (T) (r)
egj)ekl elz) 6(1] elg) € = e(lz) 11)617; - e(lz) 617; =€,

so MUL1 is satisfied, as required. [ |

Where 1 <r,s <m, 1<4,j<mn,and 1 <k, I <n,. We now observe that the K -group for A
has the following structure by Proposition 4.2.10:

Ky(A) = Z[6(111)]0 ©® Z[6(121)]0 SZRE Z[e(ﬁl)]o =7
KA =zt [ell |y 0 2¢ [} | @ @ 2* [l |y = (zm)* (43)

[Talo=m [6(111)]0 + Ny [6(121)]0 to g, [6(17?)]0-

where (Z™)* = {(acl, o @ ) ezZ™: x > 0 for all ¢ < m}, and note that e(lrl) ~ eg), which is
given by eh) e(h) = e” and e1Z eh) = e” yand 1, =3"" > ” .

We first prove a very strong lemma, which essentially gives us sufficient conditions on when
homomorphisms « : K;(A) — K,(B) can be lifted to *-homomorphisms ¢ : A — B such that
Ky (p) = a. We shall keep in mind of the structure of K,(A) for a finite-dimensional (4.3). Recall
that C*-algebra A has the cancellation property if [p], = [g], implies p ~ ¢ for each p,q € P__(A).

Lemma 4.5.3. Let A be a finite-dimensional C*-algebra, and B be a unital C*-algebra with the
cancellation property. Then
(i) Given a positive group homomorphism «a : Kj(A) — K, (B) with a([14]y) < [15]o, thereis a *-
homomorphism ¢ : A — B with K,(¢) = a. Furthermore, « is unital if, and only if, ¢ is unital.
(i) Let ¢,7: A — B be *-homomorphisms. Then K,(¢) = K,(¢) if, and only if, 1 = adu o ¢ for
some u € B.
Proof. Claim: If p € P(B), and g € K,(B)" such that g < [15], — [p]o- Then there is a ¢ €
P(B) such that p L ¢ and g = [q],.
Let neN and e, f €P,(B) such that [e], =g and [f], =[1g]o — [P]lo —9- By cancellation
property, [e ® f], = [1g — p]o implies e ® f ~ 15 — p. See proof of Proposition 4.1.7 (iv) for [15 —
plo = [15lo — [Plo- Let v € M 5,(B) such that e® f =v*v and 15 —p = vv*, then ¢ =v(e ®
0,,)v*. Now ¢ = ¢*, and

¢* =v(e®0,)(e® flv" =v(e®0,)v"

So ¢ is a projection, and
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pg=(1g—w)v(e®0,)v" = q—v(ed f)(e®0,)v" =0,
sop L ¢, and finally ¢ ~ e, so [¢], = [e], = ¢, as required.
Claim: If gy, ..., g, € Ky(B)" satisfies Zign 9; < [15]o, then there are mutually orthogonal projec-
tions py, ..., p,, € B such that [p,], = g, for each i <n.
Clearly the statement holds for n = 1, so by induction on n > 1, suppose ¢, ..., g,,_1,9, € Ko(B)"
with Zign—l 9; < [15], with mutually orthogonal projections py, ...,p,_; € B such that [p;], = g;
for i <n—1. By Lemma 2.3.3, g, < [1g]og — [p1 + -+ P,_1], so by preceding claim, there is a
P, € P(B) such that p; +--+p,_4 L p, and [p,]o = g,,- So for each i < n — 1, one has
0< PPy < PPy + -+ PpoaPp =0

so p;p, =0, hence p,, ..., p,, are mutually orthogonal. Hence claim is proven.
(i) Let (eg)) be the standard basis for A for 1<r<m and 1<4,j<mn,, and as 1, =

ngm ZKn . » then by preceding claim, there are mutually orthogonal collection of projec-

tions {fz(z) 1<r<m,1<i<n } in B such that a([egi }0> = [fn' }0 forall1<r<m

and 1 < i < n,. By cancellation property of B, one has
el o) = [el]o = [e]o = [0]o = [£5]o = 2 ~ 1

for each r and i. By Lemma 4.4.2, the collection extends to a collection of matrix units ( 1(; )
A

’L

in B. By Proposition 4.5.1 (ii), there is a *-homomorphism ¢ : A — B such that (,0(
fz(;) for all 4, 7,7, and hence K,(¢) = a as {[eg)]o : i,j,r} generates K,(A).
Suppose a([14]p) = [1g]o- Let p=3_ _ ZKnT fi(;"), which is a projection by Lemma 2.3.3
with ¢(14) = p. Thus

[15 —plo = [15lo — [Plo = a([14lo) — Ko(@)([1a]o) =0
so 15 —p ~ 0 by cancellation property, thus 15 —p = 0. Hence p(1,4) = p = 15. So ¢ is unital.
If ¢ is unital, then K,(¢) = « is automatically unital.

(ii) Suppose Kj(p) = K (1)) As
[<P (e({l))}o = Ky(p) [6(12)]0 = Ky (¢) [@(12)]0 = [7/’(‘3({1)”0
15 —¢(1a)lo = [1plo — Ko(¥)[Lalo = [18lo — Ko(¥)[1Blo = 15 — ¥(14)lo;
U, W € B such that

B
ww=1p—¢(ly), ww' =1g—1p(1,).
Note that w(eg?)vrgo(e(l?) is a partial isometry for each 1 <7 <m and 1 <i <mn,, and

v 3 3 ) o)

r<mi<n

AP IPIECILUCHINCY

r<m i<n,

=w'w + Z Z <e ) Tvrvrgo(e(ll)>

r<mi<n,

s 55 ofe ole) o)

r<mi<n,

then by cancellation properties of B, there are vy, ...
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—wrwt 336l

r<mi<n,

=1l —p(ly) +e(ly) =1p

wu + 3037 (e oo () (vl Jone(er) ) = 15

r<mi<n,.

and similarly,

so by Lemma 2.3.4, the element

u—w+zzw< zl) r¢(611>

r<mi<n,

is unitary. In particular for s <m and k,l < n,, and using w = ww*w to obtain
wp(eld)) = wilp — e(a)e(el) =0 =v(ef )u,
hence
u(eld) = woled) + 2 > oo )vrp(ellels) = v(eld Juae(el?)
(el ) = 9o ().

Thus ¥ = adu o ¢ as they agree on the basis of A.

and similarly

Suppose ¢ = adu o ¢ for some u € U(A), and since Kj(adu) = idg (4 as adu(z) ~,, = for all
z € A, then
Ko (¢) = Ko(adu) o Ko(p) = Ko(),

as required. ]

Lemma 4.5.4. Let I =N, and A°* = (4,,, (¢,,,,)) be a diagram in FinC*-Alg indexed by I, and
(A, (¢¥,,)ner) be the inductive limit of A®. Let B be a finite-dimensional C*-algebra, and suppose
there is a m € I, such that there are positive group homomorphisms f: K,(A, ) = Ky(B), and
g: Ky(B) — Ky(A) with go f = K,(1,,). Then there is a m >n in I, and a positive group
homomorphism h : K,(B) — K,(A,,) making the diagram

KO((pnm) KO(wm)
) — Ky(4,,) — Ky(4)

A

K,(B
commutative. Furthermore, if the connecting ma(;))(s o)f A* are unital and f is unital, then so is h.
Proof. Let (eg)) be the standard basis for B with » <m and i,j <mn,, and let y, =
g([e(ﬂ)]o) € Ky(A)* for all » < m. From Inductive Continuity of K 4.3.5, one has K,(A)* =
U.. L Ko(¥ )(KO A) ) and so there is a ke I with k>n with z, € K,(A;)" such that
Ko (9
(

w)(z,) for all »<m. Note that K,(B) is the free Abelian group generated by
(1)
(]

611>J0
that h’([ ]) =z, for each r < m. Given g € K,(B)", one has

n

ey [6(11)]0: and so there is a unique homomorphism A’ : K,(B) — K,(A;,) such
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g= Z i, {e(ﬂ)]o for i, € Ny

r<m

hence
W(g) = iz, € Ky(B)*
r<m

thus A’ is a positive. Since
(Ko(g) o h') [6(171)]0 = Ko(Yp)z, =y, = g( [6(171)]0)

then K,(¢) o h' = g. Let {g4, ..., g5} be a set of generators of a finitely generated Abelian group
K,(A,,), and observe that as

Ko(hg) o (B o f — Ko@) = go f — Ko(h,) =0
then (h' o f — Ky(¢,,1))(g;) is in the set
ker(Ky () = U ker (Ko (¢xm))

m>k
for each ¢ < s, so there is a m > k such that

(W o f — Ko(,))(g5) € kex(py,,) forall i <.
Let h = Ky(¢pm) o R, so
(ho f = Ko(0nm))(9:) = (Ko(¢pm) o (B o f = Ko(pnr)))(9:) = 0
for each i <'s, thus ho f = Ky(¢,,,). Furthermore,
9=Ko(¥y) o ' = K (1hy,) © Ko(ppm) o b’ = Ko (¥y,) ©

so the diagram is commutative. Finally, the last statement follows from the commutativity of the
diagram. [ |

Theorem 4.5.5. (Elliott). The unital separable AF-algebras A and B are isomorphic if, and only
if, the triples (K, (A), Ko(A)™, [14]y) and (Ky(B), Ky(B)",[15],) are isomorphic. In particular, if
there is an isomorphism f: (K;(A), Ko(A)1, [14]0) — (Ky(B), Ky(B)*,[15]o). then there is an *-
isomorphism ¢ : A — B with K,(¢) = f.

Proof. By Proposition 4.1.9, if A and B are isomorphic, then so are (K,(A), Ky(A)",[14]0)
and (K, (B), Ko(B)", [15]o)-
So now we suppose there is an isomorphism f : K,(A) — K,(B) with f(K,(A)*) = K,(B)* and
f([14lo) = [15]o- By Corollary 4.2.6 and Proposition 4.4.3, we may assume I = N such that A and
B are inductive limits of diagrams A* = (4,,, (¢,,,,)) and B* = (B,,, (¥,,,,,)) in FinC*-Alg; indexed
by I, also let p,, : A, — A and v,, : B, — B be boundary maps of A and B respectively for each

n € N. Let B, = C, so one has a *-homomorphism ¢’ : By — A; given by ¢’()A) = Al, , similarly,
one has unique *-homomorphisms v, : By — B;, and v, : By, — B. Let 5, = K,(¢’), and note
that (f o Ky(uq)) o By = Ky(vy), so by Lemma 4.5.4, there is a m; € N and a unital positive group
homomorphism «; : A; — B,, such that one has a commutative diagram:

K0<¢0m1> KO(le)
Ko(By) — KO(Bml) — Ky(B)

kal i %KO(:UQ)

Ko(Ay)
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where the existence of a; is guaranteed by Lemma 4.5.4. Note that

(ffl ° Ko(le)) oay = f1o(foKy(u)) = Ko(p)
so by Lemma 4.5.4, there is a n, > 1, and a unital positive group homomorphism 3, : K, (Bml) —
K, (An2) such that one has the following commutative diagram:

Ko(%z) Ky ('u%)
Ky(4y) — Ko(A,,) — K,(A)

\ B
231

|

|

|

|
Ky(B,,,)
We play the same game to obtain a m, > m, and a unital positive group homomorphism a :
K, (A

f_l OKO(le)

) — K, (BmQ) such that one has a commutative diagram:

KO(SOmlmQ) KO (:u'mz)
) — Ko(Bp,) — K(B)

A
|
|
|
|
|

Ny

K,y(B

my

Qo
’81 fOKO (‘un2>
Ky (4,,)
Hence continuing this process inductively, we obtain strictly increasing sequences of natural numbers
(ng)gen (where ny = 1) and (mk)keN such that one has a commutative diagram

- .
n KO Mt - KO

WA N L

B, 1 . Ko w = Ky(B

for each k € N. By Lemma 5.4.6, A and B are |nduct|ve limits of the diagrams (Ank, (gonknk+1))
and ( - (wmkmk+1)) indexed by k£ € N, then we may assume that n;, = m; =k for each k €
N. By Lemma 4.5.3 (i), we can find unital *-homomorphisms ¢}, : A;, — By, and n}._; : B,_; — A,

such that K,(e},) = o, and Ky(n,_1) = Bj_, for each k € N. As
Ko(pr) = Br o aj, = Koy, © €1,)
Ko(¥r) = apyy 0 By, = Ko(€sr © k)
where ;. = @ ;1 and Y, = Py 4. Note that ny" : By — Ay, so my" = ¢, and one has 1y = €] o

n6, and choose e, = €]. As K,(p;) = Ky(n7 o €}), then by Lemma 4.5.3 (ii), there is a u; € U(A,)
such that

p1 = aduy o7 0 €]
and hence choose 7; = adu; o7, so one has ¢; =n; cey. As Ky(n7) = Ky(ny), so Ky(¢,) =
K,(g5omy), then by Lemma 4.5.3 (ii), there is a v, € U(B,) such that
Py = advy o) omy
then choose ¢4 = adv, o €5. Continuing this applying Lemma 4.5.3 (ii) inductively, there are v, €
U(By) (with vy =15 ), and uy, € U(A;) such that
given 1, =adugon; and ¢, =advy,oey,
one has ¢, =mn, e, and Y =g, 10N

So one has a commutative diagram
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A ——— 4y — - — A
& A

9 —
V\/ g
N
BO

> B » .. — B

where the universal *-isomorphism ¢ : A — B is exists by Elliott's Intertwining Argument 5.4.8, and

K,(g,) = Ky(e},) = .. Hence A and B are isomorphic AF-algebras. Note that the two diagrams

Ko () Ko ()

KO(Ak) EE— KO(A) KO(Ak) B KO(A)

oy, = Ky (g) l l Ky(p) ay, l l f
Ky (vy,) Ky (vy,)

KO(Bk) EE— KO(B) KO(Bk) EE— KO(B)

are commutative, so one has Ko (9)|im(rk, () = flim(k,(u,)) for each k € N. By Inductive Continuity
of (Ky, K ) 4.3.6, as

Ky(A) = | im(Ky (i)
keN

then K,(p) = f, as required. [ ]

By the classification theorem, we have that the functor (K|, K) when restricted to the subcat-
egory of unital separable AF-algebras (with morphisms being unital *-homomorphisms), is also a
classification functor. We also have a similar proof for the classification of nonunital AF-algebras,
which relies on a different, but similar, variant called the dimension range. To be precise, if A is a
C*-algebra, then the dimension range of A is the set

D(A) =A{[plo : »p € P(A)} C K((A)
and one can consider the following invariant
(Ko(A4), D(A))

of A called scaled (pre)ordered (Abelian) groups." A homomorphism f between scaled (pre)or-
dered groups (G,G", Ds) and (H, H*, Dy;) is a group homomorphism that satisfies «(G*) C H*
and a(Dg) C Dy.

Theorem 4.5.6. Let A and B be AF-algebras. If there is an isomorphism o : K,(A) — K,(B)
of scaled ordered groups, i.e. a is a group isomorphism such that a(K,(A)") = K,(B)* and
a(D(A)) = D(B), then there is a *-isomorphism ¢ : A — B such that K,(¢) = a.
Proof. See [5, Theorem 7.3.2]. [
It turns out Elliott's Theorem 4.5.5 does not hold with nonseparable AF-algebras; see [10]. One of

the immediate applications of Elliott's classification theorem is allowing us to easily classify UHF-
algebras, which are AF-algebras that are countable inductive limits of simple C*-algebras in FinAlg;.

Definition 4.5.7. A uniformly hyperfinite algebra (UHF) A is an inductive limit of sequences of
the form

M. (C) =5 M, (C) = M, (C) — - (4.4)

where kq, k,,... € N and ¢, ¢,, ... are unital *-homomorphisms.

"The pre-prefix in preordered refers to to how the pair (Ky(A), Ky(A)T) does not actually have a partial order.
We we know it will when A is unital and stably finite.
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We can associate each UHF-algebra A with a supernatural number. Let {p;,ps,ps,...} be an
increasing sequence of all prime numbers, and for each i,k € N, define ord,, (k) to be a number
m € Ny such that p™ | k but p[**! } k. Now given the sequence of numbers (k;);cy from (4.4),
define n; = sup{ordpi (k;):je N} € Ny U {00}, and the set n = {n, },oy is called a supernatural
number associated to the UHF-algebra A. Define Q(n) C Q to be the set of rational numbers =
such that z € Z, and y = Hi>1p;ni for 0 < m; < mn; + 1 where the number i such that m; > 0 is
finite, then by [2, Lemma 7.4.4], one has that

(o) [Laly) 2 @) = | 2
i>

In particular, one has the following classification theorem.

Theorem 4.5.8. Let A and B be UHF-algebras with associated supernatural numbers n, and ng
respectively. Then the following are equivalent:
(i) A and B are isomorphic.
(i) ny =ng.
(iii) There is an isomorphism ¢ : K;(A) — Ky(A”) such that ¢([14]) = [14/]o-
(iv) There is a unital order isomorphism ¢ : (K,(A), Ky(A)T, [14]0) — (KO(A’), Ko(A)T, [1A,]0).
Furthermore, for each supernatural number n, there is a UHF-algebra A whose associated super-
natural number n.

For the details of the theorem, refer to [2, Theorem 7.4.5]. One example of the theorem that
consider the UHF-algebra A, which is an inductive limit of the sequence:

#1 ') P3 P4
C —— My(C) —— My(C) —— M(C) —— -

where @, : Myi-1(C) = My:(C) defined as p(z) = x @ x. One has that K,(A) is isomorphic to
the group of dyadic rationals. We can also admit a UHF-algebra A such that K,(A4) =~ Q. Consider
(4.4) where we choose k; =1i! for each i €N, so the map ¢; : M}, (C) = M, (C) defined as
o(x) =z @ - @z is unital. Let n be the associated supernatural number to A, so we know that
= -

1+1 times

Ky(A) =2 Q(n) = %Z.
i>1
Now given any y € N, then 1/y = (y — 1)!/y! € Q(n), so it follows that Q(n) contains every rational
number, hence K(A) = Q. This shows that the K|-groups for separable C*-algebras need not be
finitely-generated.

This is only the beginning of Elliott’s classification program, as much more research was done to
classify other classes of C*-algebras with a much more richer invariant involving K;-groups. Where
we associate each C*-algebra A with a sextuple (K,(A), K,(A)*,D(A), K;(A),T*(A),p4) called
the Elliot invariant and the question asks if the invariant is sufficient to classify separable amenable
C*-algebras. The details will not be discussed here, see [11] for the recent survey of the program as

of 2023.
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5 | Appendix: Category Theory

5.1 Category and Functors

We will give a soft introduction towards category theory. The aim is to build up terminologies and
tools relevant to this paper, so we only shift our attention towards locally small categories as one
might find greater comfort with the axioms that shall be introduced below. Though do note that
all results and definitions mentioned will hold in general categories unless stated otherwise, and we
shall only state the definitions and results required for our thesis.

Definition 5.1.1. (Category). A (locally small) category o consists a class' of objects Obj(<) and
a class of morphisms Mor(&/). Such that for each A, B € Obj(&/), one has a set of morphisms
Mor 4 (A, B), which satisfies the following:
C1. There is an associative binary operator, called the composition,
o : Mor (B, C) x Mor (A, B) = Morg(A,C).
That means, for f € Mor (A, B), g € Mor(B,C), and h € Mor o (C, D), one has
(hog)ef=ho(gef)
C2. For each A € Obj(), there is an identity id 4 € Mor (A, A) such that
feidy=f and idyeg=g
for all f € Mor (B, A) and g € Mor (A, B).
It is common to notate f: A — B to infer that f € Mor (A, B).
Given two categories & and 9%, we say that o/ is a subcategory of & if Obj(&f) C Obj(%) and
for each A, B € Obj(&), one has Mor (A, B) C Mor (A, B).

Definition 5.1.2. (Morphisms). Let f: A — B be a morphism in some category &/. We say f
is a split-monic (resp. split-epic) if f has a left-inverse (resp. right-inverse), that is, there is
a morphism g : B — A such that go f =id, (resp. fog=1idg). Finally, we say that f is an
isomorphism if f has a left-inverse and a right-inverse, which is readily verified to be the same
morphism and is unique.

We say that A is the domain of f and B is the codomain of f.

Example 5.1.3. We have some examples of categories we are interested in:

e The category of sets, Set, where the objects are sets and the morphisms are functions.

e The category of groups, Grp, where the objects are groups and the morphisms are group
homomorphisms.

e The category of Abelian groups, where the objects are Abelian groups and the morphisms are
group homomorphisms. As it turns out, Ab is a full subcategory of Grp; refer to Definition 5.1.4
below.

e The category of C*-algebras, C*-Alg, where the objects are C*-algebras and the morphisms
are *-homomorphisms. When discussing about the category of unital C*-algebras, C*-Alg,, the
morphisms are now unital.

1See Wikipedia for definition of class.
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Definition 5.1.4. (Functors). Given categories & and 2, a covariant functor F' is a well-defined
mapping from the objects and morphisms of & into the objects and morphisms of 9 such that the
following are satisfied:
F1. F(A) € Obj(AB) for all A € Obj().
F2. F(id,) = idp4) for each A € Obj(d).
F3. For each f € Mor (A, B), one has F(f) € Morg(F(A), F(B)).
FA4. F(go f)=F(g)o F(f)for f:A— Bandg: B— Cin .
We write F': o — 3B to infer that F' is a functor.

We say F' is faithful (resp. full) if F' is an injection (resp. surjection) from Mor (A, B) into
Mor gz (F(A), F(B)) for each A, B € Obj(«f). If F is faithful and full, we say that Fis fully faithful
and that & is a full subcategory of &.

Example 5.1.5. (The Identity Functor). Every category & has a covariant functor from & to itself,
namely the identity functor idy : & — & which does the following:

e idg(A) = A for all A € Obj(«).

e idgy(f) = f for all f € Mor().

It is clear that id o is a fully faithful functor.

Definition 5.1.6. Given a category o/, we say an object A of o is initial (resp. final) if for all B €
Obj(&), the set Mor(A, B) (resp. Mor(B, A)) only has 1 element. We say A is a zero object if A
is both initial and final. Which we denote A as 0.

Now note that give objects A and B, one can construct a unique zero morphism 0: A — B by
considering the composition A — 0 — B.

Proposition 5.1.7. Given a category &, then if A € Obj(&/) is initial (resp. final), then all initial
(resp. final) objects in & are isomorphic to A

Proof. Note that this proof works regardless if A is initial or final. Let B € Obj(&f) be another
initial object, then one obtains f € Mor(A, B) and g € Mor(B, A). Thus fog € Mor(B,B) =
{idg} and go f € Mor(A, A) = {id4}, thus f and g are isomorphisms, as required. [ |

5.2 Universal Constructions

We begin with an example. Let N be a normal subgroup of a group G, then one has a canonical
map 7 : G — G/N. Then one has the following property regarding this construction:

For any homomorphism f: G — K to another group K, if N C ker(f), then there is a unique
homomorphism g : G/N — K such that f = gom, i.e. one has the following commutative diagram:

We say such a pair (G/N, ) is a universal construction. In particular, consider the category &
where the objects are all homomorphisms f with domain G such that N C ker(f), and given f:
G — H and g: G — K being objects in &, then a morphism p € Mor (f, g) is a homomorphism
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from H to K such that g = p o f. We shall observe that & forms a category with composition in a
natural way; see Construction 5.2.1 where F' = idg,,.

Observe that 7 is an initial object in &/. Thus by Proposition 5.1.7, if there is another group
@ and a homomorphism 7: G — @ (with N C ker(7)) such that 7 is initial in &, then there are
morphisms f € Mor(G/N,Q) and g € Mor(Q,G/N) such that fog=id, =idg and go f =

id, =idg/y, and m = go7 and 7 = f om. Observe that f and g are isomorphisms, so G/N and Q

are isomoprhic groups, and 7 and 7 are related by an isomorphism.
This inspires us with the following construction and definition.

Construction 5.2.1. (Comma Categories). Let F' be a covariant functor between categories &/ and

%, and B € Obj(%). Define the comma category B | F as follows:

e The objects of B | F' are morphisms of the form B — F(A) in B where A € Obj().

e Given objects f: B — F(A) and f': B— F(A’) where A, A’ € Obj(<f), a morphism g: f —
fin B | Fis a morphism g € Mor (A, A’) such that f' = F(g) o f.

The composition in B | F'is given as follows:

Suppose f: B — F(A), f': B— F(A’), f”: B— F(A”) are morphisms in % where A, A", A” €

Obj(«f) with morphisms g: A — A" and ¢’ : A” — A” in & such that f" =g’ o f" and f' =go

f. Then define the composition in B | F' as the composition g’ o g: A — A” given in o, so f” =

(g’ 2 g) o f. Thus one has the following commutative diagram:

F(A) A
/ Fo) |
f’ N2 +
B — F(A) A
N s
F(A//) A//

Hence one has a category B | F.

Similarly, one can define the comma category F' | B as follows:

e The objects of F' | B are morphisms of the form F(A) — B in & where A € Obj().

e Given objects f: F(A) — B and f': F(A") — B where A, A’ € Obj(<f), a morphism g: f —
fin F'| Bis a morphism g € Mor (A, A’) such that f" = fog.

The composition is given a natural way similarly as above.

Definition 5.2.2. (Universal Constructions). Let F be a covariant functor between categories & and
2. Given an object A € Obj(&f) and B € Obj(%B), and a morphism f: B — F(A) in 9B. We say
the pair (F'(A), f) is a universal construction if f is an initial or final object in a subcategory 2 of
the comma category B | F'. Assuming the pair is initial, then the pair (F'(A4), f) has the following
universal property:

Let A" € Obj(«f) and suppose ' : B — F(A’) is a morphism in & and an object in 2, then there
is a unique moprhism g : A — A’ in & such that f' = F(g) o f. We say g and F(g) to be universal.
In general, a universal construction would be a suitable pair (F'(A), f) that is an initial or final
object in a subcategory of any of the comma categories.

Note that by Proposition 5.1.7, universal constructions are unique up to isomorphism, that is for
example if (F'(A), f) and (F(A’), f’) are both initial objects in B | F, then there is an isomorphism
g:A— A’ such that f" = F(g) o f. So we say (F(A), f) and (F(A’), f’) are isomorphic, and
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note that it is insufficient to have that an isomorphism g from A to A’ to conclude that A and A’
are isomorphic as universal constructions, as we also require that f* = F(g) o f. Hence (F(A), f)
and (F'(A"), f’) are isomorphic if the associated universal morphism is an isomorphism.

The product (e.g. product of groups) is perhaps one of the most common universal constructions.
To realize the product in the categorical setting, we first need to consider the following category.
Let of be a category and I be a nonempty set, define the category HI o as follows:

e Let the objects of [] o/ be tuples of the form (4;);c; such that A; € Obj(«/) for each i € I.
e A morphism f in [] & from (4;);c; to (B;);cr is a collection of moprhisms (f;);c; such that

fi € Mor g (A;, B;) for each i € I.

e Given morphisms f = (f;);c; and g = (g;);e; such that the codomain of f is the domain of g,
define g o f as the morphism (g; o f;);cr-

The category HI 4 is called a product category. We also have a diagonal functor A/ : of —
[1, & which maps objects A to the tuple (A);c; and morphisms f: A — B to (f);c;. Note that

Ay defines a faithful covariant functor.

Definition 5.2.3. (Categorical Product). Given a nonempty set I and a category o/, and suppose
(A;);er is a collection of objects in &. Then given a object P € & and morphisms 7, : P — A, in
o, we say the pair (P, (m;);c;) is the (categorical) product of (A;);c; if (7;),cr is final in the
category Ay | (A;);cr- That means, given P’ € Obj(«f) and morphisms f; : P* — A;, so (f;)scr
is an object in [], &, there is a unique morphism g : P* — P such that (f;);c; = (7;);c; © Ag(9)-
Thatis, f; = m, o g for all i € I. We typically denote the object of the categorical product as HZ,E] A;.
We say the category &/ have categorical products if a categorical product exists for any collection
(A;);er for any index set I.

Example 5.2.4. (Product of Groups). In the category of groups, Grp, it has a categorical products.
Indeed, let I be any index set and (G;);c;, and define the usual product group:

HGZ.:{f:I—>UGZ-:f(i)eGiforallieI},

el el
and define canonical projection maps m; : G — G; as m;(f) = f(i), which are homomorphisms for
each i € I. Thus for any group P such that one has homomorphisms f; : P — G, for each i € I.
Then one can define the homomorphism
g:P=J[G :pr (i fi(p)
iel

which satisfies f; = m; o g for each i € I. So indeed [[._, G; is the categorical product.
5.3 Categorical Limits

Categorical limits are one of the most important universal constructions in category theory, which
even generalizes the categorical product. However, we shall be interested in inductive limits in
categories as that is the only main categorical concept mentioned in our classification theorem.
Some other definitions are introduced for the sake of completeness.

Let I be a small category, that is, Obj(I) is a set, and given a category </, we define the functor
category &/’ as follows:

e The objects of o’ are covariant functors from I to .
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e The morphisms between objects F',G : I — of are natural transformations n: F' — G, that is,
for each i € I, there is a morphism n(i) : F/(i) — F(j), such that for each morphism m :i — j
in I, one has n(j) e F(m) = G(m) o n(i), i.e. one has the commutative diagram:

F(i) —— F(j)

n(i) l l n(7)
G(m)

G(i) — G()

e Given two natural transformations n: F' — G and € : G — H, we define the composition €0
such that (¢ on)(i) = €(4) o n(¢) for each i € I, which is indeed a natural transformation from F'
to H.

In this case, we say I is an index category as we only care about the objects and the morphisms
between them rather then their intrinsic properties. Hence if I is a small index category, then I
admits a natural preordering < (transitive and reflexive) such that ¢ < j if, and only if, there is a
morphism i — 7, and we shall realize this as the canonical ordering on I. Hence we realize small
index categories are just preordered sets.

Note that any partially ordered set (I, <) can be realized as a small index category in a natural way:
e Let the objects of I to be the elements of I.

e Given i,j € I, we have a morphism i — j if i < j.

e Given morphisms i — j and j — k, we have a morphism i — k by transitivity of <.

In particular, we are interested in a type of ordering called directed ordering, that is:

e < is a partial ordering on I.

e Foreachi,je I, thereisa k € I such thati <k and j <k.

Given any small index category I and a covariant functor F': I — of, we say the collection A®* =
(4;, (fij)me]) is a diagram indexed by F' if A, = F(i) for each i € I, and given ¢,j € I such
that i < j, then f;; = F'(i — j).1 In general, we say A* is a diagram indexed by I in &. We say
the morphisms f;. are connecting morphisms (or connecting maps) of A°®.

If one has an object A € & and morphisms ¢, : A — A, for each i € I such that for all 4,5 € I
with @ — j, then @; = f;. o, i.e. one has the commutative diagram:?

2
A — A

lfij
¥

A.

J
Then we say the collection (A, (¢;);cr) is a cone of A®. Note that (g,);c; defines a natural

transformation from the constant functor ¢4 to F' since we have a commutative diagram:3

'We write i — j to mean a morphism m : i — j in I. However, if there are two distinct morphisms m,m’ : i — j,
then there will be two distinct corresponding f;;'s, we shall make this distinction if necessary.
’To be more specific, if m : i — j is a morphism in I, then p;=F(m)ogp,.

*That is for each 4,j € I, one has ¢4 (i) = A and ¢, (i — j) = id,,.
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id
A —

A
A
P l lgoj
fij

A, — A
If one has morphisms ¢, : A, — A for each i € I instead, such that for all 4,j € I with i — j,
then o, = ¢, o f;;, i.e. one has the commutative diagram:

Pi
A — A

Then we say the collection (A, (¢;);c;) is a cocone of A®, and hence (y;);c; defines a natural
transformation from F' to c,.

Suppose (A, (¢;);cr) is a cone (resp. cocone), then we say the pair is universal if (¢,);c; it is
final (resp. initial) in the category Ay | F' (resp. F' | Ag) where Ay of — A" is the diagonal
functor which for each A € Obj(), one has A (A) = c4. So if (A, (¢;);er) is a universal cone,
then for each cone (B, (v;);c;) of A®, there is a unique morphism p : B — A such that ¢, = ¢, o
. Diagrammatically speaking:

Similarly, if (A, ¢;);cr is a universal cocone of A®, then for any cocone (B, (9;);cr)- there is
a unique morphism p: A — B such that 9, = o ¢,. We say the morphisms ¢, are boundary
morphisms (or boundary maps) of A°.

Definition 5.3.1. (Categorical Limits). Given a small index category I, and a category &. Let A°®
be a diagram indexed by I in &, then we say a cone (resp. cocone) (A, (¢;)icr) is a limit (resp.
colimit) of A if (A, (¢;);cr) is universal, and we write (A, (¢;);cr) = lién A* (resp. (A, (¢;)icr) =
h_H)lA.). We say the limit is inductive if I is directed and (A, (¢, );c;) is a colimit.

Note that =2 is used instead of =, since limits are universal constructions and thus they are all
isomorphic to each other, we shall use = if there is a canonical construction of the limits.

Observe that the categorical product of two objects is just the limit of the diagram:
[ [ ]

Hence categorical products are just limits of small index categories I where the only morphisms
in I are identity morphisms. Note that we are particularly interested in inductive limits in this paper,
thus the other definitions need not matter too much.
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Definition 5.3.2. (Continuity of Functors). Given a covariant functor F': o — 9B between cate-

gories &/ to 9B, and an index category I. We say F' is I-continuous (resp. I-cocountinuous)

if for all diagrams A*® indexed by I such that the limit (resp. colimit) of A® exists, then one has

F(limA') =~ lim F'(A®) (resp. F(limA') = lim F'(A*)) where F'(A*®) is a diagram in & indexed
— — — —

by the composition of I and F'. We say F' is inductively continuous if F' is I-cocontinuous for

every directed set I.

Definition 5.3.3. (Complete Categories). Given an index category I, we say a category & is I-

complete (resp. I-cocomplete) if all diagrams in & indexed by I has a limit (resp. colimit). We

say A is:

e Inductive complete if & is I-cocomplete for all directed sets I.

e Small complete (resp. small cocompelete) if of is I-complete (resp. I-cocomplete) for all small
index category I.

5.4 Diagram Chasing Lemmas

The purpose of this chapter is to produce general diagram-related lemmas that will be used in this
paper. As we are working with groups and C*-algebras, we shall give a definition that encapsulates
the properties of those categories which is sufficient for our lemmas.

Definition 5.4.1. (Algebraic Categories). We say a category o is algebraic if the following condition

holds:

AC1. o has a zero object, which we denote as 0.

AC2. For each A € Obj(«), A is a set equipped with a binary operation +: A x A — A that
satisfies the group axioms.

AC3. For each f € Mor(A, B), f is a map from A to B that preserves the +, i.e. f(z +y) =
f(z) + f(y) for each z,y € A.

AC4. For each f € Mor (A, B), the sets ker(f) := {x € A: f(z) = 0} and im(f) := {f(z) : x €
A} are in Obj(o).

AC5. If a map f € Morg(A, B) is bijective, then it is an isomorphism.

AC6. For each f € Mory(A,B), the set A/ker(f):={z+ker(f):x € A} is in o, where
x +ker(f):={x+y:yecker(f)} for each x € A. Furthermore, there is a map w €
Mor (A, A/ ker(f)) defined as 7(x) = x + ker(f) such that for each g € Mor (A, B) with
ker(f) C ker(g), there is a unique h € Mor g (A/ker(f), B) such that g = ho.

To elaborate on AC2, we mean that + is associative; there isa 0 € A suchthat z +0=0+2x =

z forall z € A; foreach z € A, thereisay € Asuchthatz +y=y+z =0.

It is clear that the categories, such as Grp, and Ab are algebraic by our definition. Fortunately,
the category of C*-algebras, both C*-Alg and C*-Alg,, are also algebraic; see Chapter 2.1. It should
be no surprise that a map f: A — B in an algebraic category is injective if, and only if, ker(f) =
0, and f is surjective if, and only if, im(f) = B.

Definition 5.4.2. (Exact Sequences). Let of be an algebraic category. Let A,B,C € o, and f:
A — B, and g : B — C be morphisms. We denote this relation as a sequence:

f g
A > B y C
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to which we say this sequence is exact at B if im(f) = ker(g). In particular, we say the sequence

f 9 (5.1)
0 y A > B y C > 0

is exact if it is exact at A, B, and C. We say such sequences are exact sequences. We shall use the

arrow < if the corresponding morphism is an injection, and — if the corresponding morphism is a
surjection. We say (5.1) is split-exact if there is a h : C' — B that is the right-inverse of g such
that one has the sequence:
f g
0 y A » B——= C —— 0
h

We shall also use the arrow = between two of the same objects A to mean the underlying morphism

isid 4.
1)  Five Lemma

From here on out, we assume that & is always an algebraic category.

Lemma5.4.3. et A, B,C, D, A’, B’, C’, D’, be objects in &, and suppose one has a commutative
diagram:

f g h
A > B > C > D
ll ml nl o)
i J k
A’ > B’ > y D’

If the rows are exact, m and o are injective, and [ is surjective, then n is injective.
Proof. Let ¢ € ker(n), we shall argue that ¢ = 0 to conclude the proof.
e As (oo h)(c) = (kon)(c) = k(0) =0, then h(c) € ker(o).
e As ker(o) =0, then h(c) =0, so c € ker(h).
e Asim(g) = ker(h), there is a b € B such that g(b) = c.
e As (jom)(b) = (nog)(b) =n(c) =0, so m(b) € ker(j).
e Asim(i) = ker(j), there is a a’ € A’ such that i(a’) = m(b).
e Asim(l) = A’, there is a a € A such that l(a) = a’.
e As (mo f)(a) = (iol)(a) =i(a’) = m(b) and ker(m) = 0, then f(w) = b.
e Asim(f) = ker(g), then b € ker(g), so ¢ = g(b) = 0, as required. [

Lemmab5.4.4.Llet A, B,C, D, A’, B’, C’, D, be objects in &, and suppose one has a commutative
diagram:

/ g h

A s B s O > D
i J k

A’ > B’ > C’ y D’

If the rows are exact, [ and n are surjective, and o is injective, then m is surjective.
Proof. Let ' € B’, we shall argue that b’ € im(m) to conclude the proof.

e Asim(j) = ker(k), then j(b") € ker(k).

e Asim(n) = C’, then there is a ¢ € C such that n(c) = j(b").
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e As (oo h)(c) = (kon)(c) =k(j(b")) =0, then h(c) € ker(o).
e As ker(o) =0, then h(c) =0, so ¢ € ker(h).
. As im(g) = ker(h), then there is a b € B such that g(b) =
o As (jom)(b) = (neg)(b) =n(c) = j(b'), hence j(b" —m(b)) = 0, so b" —m(b) € ker(j).
oAsun()zk r(j), there is a a” € A’ such that i(a’) = b — m(b).
e Asim(l) = A’, there is a a € A such that l(a) = a’.
e Asand (mo f)(a) = (iol)(a) =i(a’) = b — m(b), one has
m(f(a) +b) =b" —m(b) + m(b) =,

as required. [ |

Lemma 5.4.5. (Five). Let A, B, C, D, E, A’, B’, C’, D', E’ be objects in &, and suppose one
has a commutative diagram:

f g h i

A > B >y C > > B
J k l

A/ ) B/ ) C/ \ D/ E/

If the rows are exact, o and g are isomorphisms, n is surjective, r is injective, then p is an isomorphism.
Proof. By viewing p as n in Lemma 5.4.3, we see that p is injective. By viewing p as m in
Lemma 5.4.4, we see that p is an surjective. So p is bijective, hence an isomorphism. [ |

2)  Lemmas on Inductive Limits

We say a directed set J is cofinal in a directed set I if there is a mapping f: J — I such that
(i) Forallz,y € J,if x <yin J, then f(z) < f(y) in I.
(ii) For each y € I, there is a ¢ € J such that f(z) >y in I.

We say such a map f to be a cofinal map. Given a diagram A® = (Aa, (goaﬂ)) indexed by I in
a category . Denote A7(*) to a diagram (Af(a), (wf(a)f(ﬁ))) be a diagram in & indexed by J.

Lemma 5.4.6. Let o be an inductively complete category. Let I be a directed set, and A* =
(A, ((paﬁ)) be a diagram in & indexed by I with inductive limit (A, (1o )aer)- If f:J — I be a
cofinal map, then A can be recognized as an inductive limit of Af(*). That is, (A, (uf(a))aeJ) is a
universal cocone of A7(*).

Proof. Let (Af, (Vf(a)>aej) be an inductive limit of A7(*), as (A, (;Lf(a)>aej) is a cocone of
A7) then there is a morphism ® : Ay — A such that @ ovp,) = pyo foreach a € J. Let a €
I, then there is a g(a) € J such that f(g(a)) > a, and we define €., = V¢(y(a)) © Paf(g(a)) SUPPOSE
there is another 5 € J such that f(5) > «, and so there is a v € J such that v > 8 and v > g(a),
then one has

€a = Vf(g(a)) © Paf(g(e) ) = Vi) © Prla(e)f(y) © Paf(gla))
= Vi) ©Pafty) T Vi) CPrBF() ° %f B) = V1(8) ° Paf(B)
so ¢, does not depend on the choice of g(a), i.e. €, is well-defined. In particular, if & € J, then we
can choose g(a) = @, S0 €(4) = Vf(a) © Pf(a)f(a) = Vf(a)- Now for each a < B in I, one has
€ °Pap = Vi(B) ° PBf(B) ° PaB = V§(B) ° Paf(B) = ViPB) ° PH)f(B) ° Paf(e) = Vf(a) ® Paf(a) = €as
50 (Af, (4)acr) is a cocone of A®, thus there is a morphism W : A — A, such that Wop, =¢
for each a € I. Let a € J, one has

(e}
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Wodoviy =Velia) = Efa) = Vi(a)
so by uniqueness, one has ¥ o ® = idy . Let a €1, one has
PoWop, =Poe, =PoVpga) ° Pafigla) = Hfgla) © Pafgla) = Has

so by uniqueness, one has ® o ¥ = id 4. Hence @ is a universal isomorphism, thus (A, (uf(a))ael)
is an inductive limit of Af(*). [ ]

Lemma 5.4.7. Let I be a directed set, and A* = (A,, (¢,p)) be a diagram in o indexed by I
and suppose A°® has an inductive limit (A, (i, )qer). For each o € I, define B, = A,/ ker(u,,),
and let 7, : A, — B, be the canonical map identified in AC6. Then there are injective maps 1,5 :
B, — B for each a < fin I such that mg 0 5 = 1h,5 ° m,. Let B* = (B,, (1,5)) be a diagram
indexed by I, and suppose (B, (v,)4cr) is an inductive limit of B®. Then there is a map 7: A —
B, such that the following diagram commutes

(paﬁ
A, — Ag > » A
ﬂ'a J/T('B J{ﬂ'
,(/}aﬁ
Ba >Bﬁ > .. > B

Where the --- — arrows refers to the p,, and v, morphisms respectively. Moreover, if we define
Vo =Vy oTy : A, — B for each a € I, then:
(i) 7 is the universal map induced by the cocone (B, (7, )qcr) Of A°.
(ii) If v, is injective, then ker(vy, ) = ker(u,,) for each a € I.
(i) im(vy,) = im(v,) for each a € I.

Proof. Let « < fin I, and define ¢35 = m5 0,5 : A, — By, then given = € ker(u,,), one has
0= po(x) = pp(0aps(®)), s0 paz(x) € ker(pug), so $op(x) = 0. Thus ker(u, ) C ker(@,p), hence
by ACG, there is a unique map v, 45 : B, — Bg such that ¢, 5 = 1,5 0 m,, in particular,

¢aﬂ Oy = gbaﬁ = Trﬁ ° Soaﬁ

o’

Let 7, (z) € ker(1,4), s
0= 1s(m (%)) = T5(ap(2))

thus @, 5(z) € ker(pg), s0 pi, () = pg(pas(x)) = 0, hence x € ker(p,,), thus 7, (x) = 0. So 1,
is injective.
Suppose B* has an inductive limit given in the statement. Let a € I, and define v, = v, o7, :
A, — B, and observe that if 8 > «, then

75°¢aﬁzyﬁowﬁ°¢aﬂ :Vﬁol/)a,@oﬂ-a =Va°To = Ya
so (B, (7,)acr) defines a cocone of A*, hence by universality, there is a unique map 7: A — B
such that y, = 7o p,,. This shows (i).

For (ii). Let o € I. It is clear that ker(u,,) C ker(y,) as v, = mo p,,. Let z € ker(vy,,), so 7, (z) €
ker(v, ). If v, is injective, then 7 (z) =0, so x € ker(u, ). Hence ker(u,,) = ker(y,,).

For (iii). As ,, is surjective, then im(vy,) = im(v,) follows. ]
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Appendix: Category Theory Diagram Chasing Lemmas

Lemma 5.4.8. (Elliott’s Intertwining Argument). Let I be a directed set, and A* = (4;, (f;;)) and
B* = (B;,(g,;)) be diagrams in any category & indexed by I. Suppose:

e There is a mapping i = k; from I to I such that k; > i and k; >k, for all j > in I.

e For each i € I, there are morphisms «; : A; — B; morphisms §; : B; — A such that one has a

commutative diagram:

If (A, (¢;)icr) and (B, (¢;);cp) are inductive limits of A* and B*® respectively, then there are
isomorphisms o : A — B and 3: B — A with o' = 8 such that one has a commutative diagram:

Pi
A, — A

o]
B, —— B
Y;

for each i € I.

Proof. Let i,j € I with ¢ < j. Define v, =9, o ; : A; — B, and observe that

'yjofijzzpjoajo ij:wjogijoaizwioai:7iv
so (B, (7;)scr) is a cocone of A*. Thus by universality of lim A® there is a morphism a: A — B
4)

such that 7, = a0 p, for all i € I.
Define 0, = ¢, o B, : B, — A, and observe that

5j ©9ij = Pk, °Bj °9ij = Pk, ° fkikj °of3; = Pk, °© B; =6,
so (A4, (4;),er) is a cocone of B*. Thus by universality of lim B® there is a morphism : B — A
—

such that §; = S o 1), for each i € I.
Now observe that

(/3°a)°90i:ﬁ°’)’i:5°¢i°ai:5i°ai:Soki°/3i°ai:¢ki°fiki:Soi,
so by uniqueness, it follows that S o a =id,. Also
(a°5)°¢i:a°5¢:04°80k,.°ﬂi:7ki°5i=¢ki°aki°/3i=¢ki°9iki =1,

so by uniqueness, it follows that oo 8 = idz. Thus ! = 8 and the rest follows. [ |

75



6 | References

[1]

2]

[3]

[4]
[5]

[6]
[7]
[8]
[9]

[10]

[11]

G. A. Elliott, “On the classification of inductive limits of sequences of semisimple finite-
dimensional algebras,” Journal of Algebra, vol. 38, no. 1, pp. 29-44, Jan. 1976, doi:
10.1016/0021-8693(76)90242-8.

M. Rgrdam, F. Larsen, and N. J. Laustsen, An introduction to K-theory for C*-algebras,
Transferred to digital print., no. 49. in London Mathematical Society student texts. Cambridge:
Cambridge Univ. Press, 2007.

B. Blackadar, Operator algebras: theory of C*-algebras and von Neumann algebras, no. v.
122. 3. in Encyclopaedia of mathematical sciences, Operator algebras and non-commutative
geometry. Berlin ; New York: Springer, 2006.

M. Takesaki, Ed., Theory of Operator Algebras I. New York, NY: Springer New York, 1979.
doi: 10.1007/978-1-4612-6188-9.

B. Blackadar, K-Theory for Operator Algebras, vol. 5. in Mathematical Sciences Re-
search Institute Publications, vol. 5. New York, NY: Springer New York, 1986. doi:
10.1007/978-1-4613-9572-0.

S. Lang, Algebra, vol. 211. in Graduate Texts in Mathematics, vol. 211. New York, NY: Springer
New York, 2002. doi: 10.1007/978-1-4613-0041-0.

H. O. Milhgj, “AF-algebras and their invariants,” Department of Mathemaical Sciences,
University of Copenhagen, 2018.

Infinite  Dimensional ~ Analysis.  Berlin/Heidelberg: ~ Springer-Verlag, = 2006.  doi:
10.1007/3-540-29587-9.

M. Khoshkam and J. Tavakoli, “Categorical constructions in C *-algebra theory,” Journal of
the Australian Mathematical Society, vol. 73, no. 1, pp. 97-114, Aug. 2002, doi: 10.1017/
S1446788700008491.

T. Katsura, “Non-Separable AF-Algebras,” Operator Algebras. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 165-173, 2006. doi: 10.1007/978-3-540-34197-0 9.

G. Gong, H. Lin, and Z. Niu, “A review of the Elliott program of classification of simple
amenable C*-algebras.” Accessed: Nov. 16, 2025. [Online]. Available: https://arxiv.org/abs/
2311.14238

76


https://doi.org/10.1016/0021-8693(76)90242-8
https://doi.org/10.1007/978-1-4612-6188-9
https://doi.org/10.1007/978-1-4613-9572-0
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/3-540-29587-9
https://doi.org/10.1017/S1446788700008491
https://doi.org/10.1017/S1446788700008491
https://doi.org/10.1007/978-3-540-34197-0_9
https://arxiv.org/abs/2311.14238
https://arxiv.org/abs/2311.14238

	1 Introduction
	2 Fundamentals on C∗-Algebras
	1 C∗-Algebras
	2 Unitization
	3 Spectral Theory
	4 Continuous Functional Calculus
	5 Matrix Algebras
	6 The Unitary Group of C∗-Algebras

	3 The K0-Theory for C∗-algebras
	1 Equivalence Relations on Projections
	2 Grothendieck Groups
	3 The K00-Group Construction
	4 The K0-Group Construction
	5 Computation of K0-Groups
	51 K0-Groups for C(X)
	52 K0-Groups for B(H)


	4 Classification of Separable AF-Algebras
	1 The (K0, K+0) Functor
	2 Inductive Limit Constructions
	21 Inductive Limit of C∗-Algebras
	22 Inductive Limit of Groups

	3 Continuity of the K0 Functor
	4 Approximately Finite-Dimensional Algebras
	5 Elliott's Classification of Separable AF-Algebras

	5 Appendix: Category Theory
	1 Category and Functors
	2 Universal Constructions
	3 Categorical Limits
	4 Diagram Chasing Lemmas
	41 Five Lemma
	42 Lemmas on Inductive Limits


	6 References

