
Classification of Separable 

Approximately Finite-Dimensional 𝐶∗-

Algebras

Sean Yang

Department of Mathematics

The University of Auckland

Supervisor: Dr Pedram Hekmati

A Honours thesis of 2025 submitted to fulfill the requirements of the degree BAdvSci(Hons) in 

Mathematics at the University of Auckland



i



Abstract

We shall prove the celebrated Elliott’s classification theorem [1] of separable approximately 

finite-dimensional 𝐶∗-algebras using the techniques of 𝐾-theory, and provide a more categorical 

interpretation of the main theorem and the results leading up to it. The methodology involved 

will follow closely to the 𝐾-Theory textbook by M. Rørdam [2] alongside further elaboration of 

techniques involved in certain technical results for the sake of clarity. We shall also generalize the 

intermediary results involving inductive limits to be inductive limits indexed by directed sets, this 

includes the continuity of the 𝐾0 functor.
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1 | Introduction

The theory of 𝐶∗-algebras had never been more fundamental and quintessential in the development 

of operator theory and related functional analysis topics. Elliott’s classification program is one of 

the ongoing research program in an attempt to classify those 𝐶∗-algebras given sufficiently nice 

conditions. One of the famous, and perhaps the first, classification result of 𝐶∗-algebras was provided 

by G.A. Elliott in his paper in 1976 [1]. Which specifically classifies separable approximately finite-

dimensional algebras using the tools of 𝐾-theory.

The general process goes as follows, for a unital 𝐶∗-algebra 𝐴, we consider the set of all possible 

projection matrices (matrices 𝑝 satisfying 𝑝 = 𝑝2 = 𝑝∗) with entries of 𝐴, P∞(𝐴), identified by 

Murray-von Neumann equivalence ∼. In the case of 𝐴 = ℂ, the equivalence relation ∼ identifies 

complex orthogonal projection matrices with their ranks. We consider the set of equivalence classes, 

P∞(𝐴)/ ∼, identified by thre relation ∼, and endow it with an Abelian semigroup structure by 

equipping it with the direct sum operation ⊕. The ⊕ operation behaves in a natual way and is 

compitable with the ∼ relation, for example,

( 2
−1

𝑖
3) ⊕ (0

0
1
0) =

(




2
−1
0
0

𝑖
3
0
0

0
0
0
0

0
0
1
0)




.

The Abelian semigroup (P∞(𝐴)/ ∼, ⊕) can be extended further to a more natural structure of 

Abelian groups by taking the Grothendieck completion, this process introduces inverses from existing 

elements which results in an Abelian group that is typically considered the smallest Abelian group 

containing (P∞(𝐴)/ ∼, ⊕), or the Abelian group closure of (P∞(𝐴)/ ∼, ⊕) if you will. This grants 

us the 𝐾0-group for 𝐴 which is an invariant of 𝐴, and in fact, we obtain a functor 𝐾0 from the 

category of unital 𝐶∗-algebras C*-Alg1 to the category of Abelian groups Ab. For example, the 𝐶∗

-algebra of complex numbers ℂ associates to the Abelian group ℤ as one identifies 𝐾0(ℂ) ≅ ℤ. 

For the process of a nonunital 𝐶∗-algebra 𝐴, we initiate the construction from its unitization 𝐴, 

then the 𝐾0-group for 𝐴 with be the kernel of 𝐾0(𝜋) where 𝜋 : 𝐴 → ℂ is the natural projection 

map. Hence one has a functor from the category of 𝐶∗-algebras C*-Alg to Ab. This process will be 

described in Chapter 3.

Unforunately, the invariant 𝐾0 is not enough to distinguish even finite-dimensional 𝐶∗-algebras, 

thus we shall enrich the structure of 𝐾0(𝐴) by giving a ‘natural’ ordering, making it into an 

ordered Abelian group with a distinguished order unit (𝐾0(𝐴), 𝐾0(𝐴+), [1𝐴]0). For example, the 

matrix algebras ℳ︀2(ℂ) and ℳ︀3(ℂ) associates to the triples (ℤ, ℤ+, 2), and (ℤ, ℤ+, 3), which have 

different order units, namely 2 and 3 respectively. Hence one has a stronger invariant, and as it turns 

out, this invariant is sufficient to classify approximately finite-dimensional algebras, which is the 

celebrated Elliott’s Theorem 4.5.5 and will be proven using Elliott’s Intertwining Argument 5.4.8. 

The classification theorem shall be the main result of Chapter 4 and this thesis.

The concepts and results introduced will be done as generally as possible despite the main result 

not requiring the full generality. We will also have extra emphasis on category theory, as we can 

package the results more neatly in categorical terms. The reader should be familiar with the language 

of basic category theory; see Appendix 5.1 to 5.3.
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2 | Fundamentals on 𝐶∗-Algebras

We shall formalize the definitions and fundamental results from 𝐶∗-algebras with an extra emphasis 

on category theory. While most of the results introduced should be well-known, we will also shed 

light on more specific results that will be used later in the thesis. Most of the well-known results 

will be cited from the B. Blackadar [3] and M. Takesaki [4] operator theory textbooks.

2.1 𝐶∗-Algebras

Definition 2.1.1. (𝐶∗-Algebra). A 𝐶∗-algebra is a complex Banach space (𝐴, ‖⋅‖) with:

• A multiplication operation 𝐴 × 𝐴 → 𝐴 that is an associative bilinear map, and satisfies ‖𝑎𝑏‖ ≤
‖𝑎‖‖𝑏‖ for all 𝑎, 𝑏 ∈ 𝐴.

• An involution operation 𝐴 → 𝐴, typically denoted as *, that satisfies
‣ (𝑎 + 𝑏)∗ = 𝑎∗ + 𝑏∗;
‣ (𝜆𝑎)∗ = 𝜆𝑎∗;
‣ (𝑎∗)∗ = 𝑎;
‣ (𝐶∗-identity). ‖𝑎∗𝑎‖ = ‖𝑎‖2;

for all 𝑎, 𝑏 ∈ 𝐴 and 𝜆 ∈ ℂ.

We say 𝐴 is unital if it has a multiplicative identity, which we denote as 1 or 1𝐴 depending on the 

context, and note that we require that ‖1𝐴‖ = 1. We say a 𝐴 is a *-algebra if 𝐴 is not necessarily 

complete. In general, we denote ‖⋅‖𝐴 to be the norm of 𝐴, and the subscripts is omitted if the 

context clear. We say an element 𝑎 ∈ 𝐴 is:

• Normal if 𝑎𝑎∗ = 𝑎∗𝑎.

• Self-adjoint (or Hermitian) if 𝑎 = 𝑎∗, and denote H(𝐴) to be the set of self-adjoints elements 

of 𝐴.

• Projection if 𝑎 = 𝑎∗ = 𝑎2, and denote P(𝐴) to be the set of projections of 𝐴.

Assume 𝐴 is unital.

• Unitary if 𝑎𝑎∗ = 𝑎∗𝑎 = 1𝐴, and denote 𝒰︀(𝐴) to be the set of unitary elements of 𝐴.

• Invertible in 𝐴 if there is a 𝑏 ∈ 𝐴 such that 𝑎𝑏 = 𝑏𝑎 = 1𝐴, and we write 𝑎−1 = 𝑏, and denote 

GL(𝐴) to be the set of all invertible elements of 𝐴.

Given a subset 𝑆 ⊆ 𝐴, denote 𝐴⟨𝑆⟩ to be the smallest not necessarily unital 𝐶∗-subalgebra of 

𝐴 that contains 𝑆, if 𝑆 = {𝑎1, …, 𝑎𝑛}, then write 𝐴⟨𝑆⟩ = 𝐴⟨𝑎1, …, 𝑎𝑛⟩. A linear map 𝜑 : 𝐴 →
𝐵 between 𝐶∗-algebra is a homomorphism if 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) for all 𝑎, 𝑏 ∈ 𝐴, and we add the 

prefix * if furthermore 𝜑(𝑎∗) = 𝜑(𝑎)∗ for 𝑎 ∈ 𝐴. We note that *-homomorphisms are automatically 

Lipschitz continuous with Lipschitz constant 1, i.e. 𝜑 is norm-decreasing; see [3, II.1.6.6]. If 𝐴 and 

𝐵 are unital, then we say 𝜑 is unital if 𝜑(1𝐴) = 1𝐵.

One of the crucial results of 𝐶∗-algebra is that if one has a *-homomorphism 𝜑 : 𝐴 → 𝐵, then 𝜑 

is an isometry if, and only if, 𝜑 is injective; see [3, II.2.2.9]. We say such 𝜑 to be *-embeddings. We 

say 𝐴 is embedded in 𝐵 if there is an injective *-homomorphism from 𝐴 to 𝐵, and we say they are 

isomorphic if the aforementioned *-homomorphism is also surjective, i.e. a *-isomorphism. The * 

prefix will be omitted if the context is clear.

Thus in the category of 𝐶∗-algebras, denoted as C*-Alg, the morphisms are *-homomorphisms. 

We observe that ℂ is the most trivial nonzero 𝐶∗-algebra. We shall also denote C*-Alg1 to be the 

category of unital 𝐶∗-algebra where the morphisms are unital *-homomorphisms. Here are some 

common examples of 𝐶∗-algebras.
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Fundamentals on 𝐶∗-Algebras 𝐶∗-Algebras

Example 2.1.2. (Space of Bounded Operators). Given Banach spaces 𝑋 and 𝑌 , we denote ℬ︀(𝑋, 𝑌 ) 
to be the set of all bounded linear operators from 𝑋 to 𝑌 , and ℬ︀(𝑋) = ℬ︀(𝑋, 𝑋). We note that 

ℬ︀(𝑋) is a unital Banach algebra. If furthermore 𝑋 is a Hilbert space, then ℬ︀(𝑋) is a unital 𝐶∗

-algebra under the Hermitian adjoint. The restriction to compact operators 𝒦︀(𝑋) is a nonunital 

𝐶∗-algebra unless 𝑋 is finite-dimensional. Thus in particular, spaces like ℓ2(ℕ), or 𝑛 × 𝑛 complex 

matrices ℳ︀𝑛(ℂ) under the conjugate-adjoint are 𝐶∗-algebras.

Example 2.1.3. (Space of Continuous Maps). Given topological spaces 𝑋 and 𝑌 , we denote 𝒞︀(𝑋, 𝑌 ) 
to be the space of continuous maps from 𝑋 to 𝑌 . If 𝑌  is normed, we denote 𝒞︀0(𝑋, 𝑌 ) to be the 

space of continuous maps that vanishes at infinity, i.e. 𝑓 ∈ 𝒞︀0(𝑋, 𝑌 ) if, and only if, 𝑓 : 𝑋 → 𝑌  is 

continuous and for each 𝜀 > 0, there is a compact 𝐾 ⊆ 𝑋 such that for all 𝑥 ∈ 𝑋 \ 𝐾, one has 

‖𝑓(𝑥)‖ ≤ 𝜀. We note that if 𝑌  is normed (resp. a Banach algebra, or 𝐶∗-algebra), then 𝒞︀0(𝑋, 𝑌 ) 
forms a normed space (resp. a Banach algebra, or 𝐶∗-algebra), and if 𝑋 is compact, then 𝒞︀(𝑋, 𝑌 ) =
𝒞︀0(𝑋, 𝑌 ) also satisfies those respective properties. In those cases, we can equip those spaces with 

the supremum norm and pointwise operations. Note that if 𝑌  is a commutative 𝐶∗-algebra, then 𝑋 

can be assumed to be locally compact Hausdorff (resp. compact Hausdorff) and 𝑌  can be assumed 

to be ℂ in the case of 𝒞︀0(𝑋, 𝑌 ) (resp. 𝒞︀(𝑋, 𝑌 )) by Commutative Gelfand-Naimark 2.4.1. We denote 

𝒞︀(𝑋) ≔ 𝒞︀(𝑋, ℂ) and 𝒞︀0(𝑋) ≔ 𝒞︀0(𝑋, ℂ), where the former is a unital 𝐶∗-algebra while the latter 

is nonunital if 𝑋 is noncompact.

The most natural way of constructing new 𝐶∗-algebras from old ones is by taking direct sums.

Example 2.1.4. (Sum of 𝐶∗-algebras). Given 𝐶∗-algebras 𝐴 and 𝐵, we can define the direct sum 

𝐴 ⊕ 𝐵 of 𝐶∗-algebras 𝐴 and 𝐵 with elements as (𝑎, 𝑏) for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, and equip 𝐴 ⊕ 𝐵 with 

pointwise operations, and the norm ‖(𝑎, 𝑏)‖ = max{‖𝑎‖, ‖𝑏‖}. Then 𝐴 ⊕ 𝐵 is indeed a 𝐶∗-algebra.

The ideals of 𝐶∗-algebras are have elegant properties. Given a two-sided ideal 𝐼 ⊆ 𝐴, which means 

that 𝐼 is a subspace such that 𝑟𝐼 ⊆ 𝐼 for all 𝑟 ∈ 𝐴 (note that we do not require 𝐼 to be a *-algebra). 

Then if 𝐼 is closed, it follows that 𝐼 is now a *-algebra, hence a 𝐶∗-algebra, furthermore, one has a 

quotient 𝐶∗-algebra 𝐴/𝐼 with a canonical *-homomorphism 𝜋 : 𝐴 → 𝐴/𝐼 where the set and norm 

of 𝐴/𝐼 is defined in the context of quotient Banach spaces; see [3, II.5.1.1]. We obtain a following 

variant of the first isomorphism theorem which will be used in Chapter 4.

Theorem 2.1.5. (First Isomorphism). Let 𝜑 : 𝐴 → 𝐵 be a *-homomorphism between 𝐶∗-algebras 

𝐴 and 𝐵, then im(𝜑) is a 𝐶∗-algebra. If 𝜓 : 𝐴 → 𝐶 is a *-homomorphism into a 𝐶∗-algebra 𝐶, and 

ker(𝜑) ⊆ ker(𝜓), then there is a unique *-homomorphism 𝜇 : im(𝜑) → 𝐶 such that 𝜓 = 𝜇 ∘ 𝜑.

 Proof. As 𝐼 = ker(𝜑) is a closed two-sided ideal of 𝐴, then 𝐴/𝐼 is a quotient 𝐶∗-algebra. Define 

𝜈(𝑎 + 𝐼) = 𝜑(𝑎), then it follows that 𝜈 is a well-defined map, in particular 𝜈 is a *-embedding, so 

im(𝜑) = im(𝜈) is a 𝐶∗-algebra as 𝜈 is an isometry. Now define 𝜇 : im(𝜑) → 𝐶 as 𝜇(𝜑(𝑎)) = 𝜓(𝑎), 
which again is a well-defined map as ker(𝜑) ⊆ ker(𝜓), and it follows that 𝜇 is a *-homomorphism. 

Thus 𝜓 = 𝜇 ∘ 𝜑 and uniqueness is apparent. ∎
It is well-known that all finite-dimensional 𝐶∗-algebras are just direct sums of ℳ︀𝑛(ℂ). The result 

is stated below, and we shall assume this fact.
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Fundamentals on 𝐶∗-Algebras 𝐶∗-Algebras

Theorem 2.1.6. Let 𝐴 be a finite-dimensional 𝐶∗-algebra, then there exists 𝑛1, …, 𝑛𝑚 ∈ ℕ for some 

𝑚 ∈ ℕ such that

𝐴 ≅ ℳ︀𝑛1
(ℂ) ⊕ ⋯ ⊕ ℳ︀𝑛𝑚

(ℂ).

 Proof. See [2, Theorem 7.1.5]. ∎

2.2 Unitization

One of the most important concepts is making our algebras unital. This process of unitization is 

extremely relevant in our study of 𝐾-theory, so this chapter aims to provide a careful treatment of 

understanding the structure of unitization and its various functorial properties.

Construction 2.2.1. (Unitization of 𝐶∗-algebras). For any 𝐶∗-algebra 𝐴, we can embed 𝐴 into a 

unital 𝐶∗-algebra, which we denote as 𝐴, such that 𝐴 is a maximal ideal in 𝐴.

Let 1𝐴̃ be some symbol, and consider the direct sum of vector spaces:

𝐴 = 𝐴 ⊕ ℂ1𝐴̃ = {𝑎 + 𝛼1𝐴̃ : 𝛼 ∈ ℂ}.
Define mulitiplication in a natural way such that 1𝐴̃𝑎 = 𝑎1𝐴̃ = 𝑎 for all 𝑎 ∈ 𝐴, i.e.

(𝑎 + 𝛼1𝐴̃)(𝑏 + 𝛽1𝐴̃) = 𝑎𝑏 + 𝛼𝑏 + 𝛽𝑎 + 𝛼𝛽1𝐴̃

and also (𝑎 + 𝛼1𝐴̃)∗ = 𝑎∗ + 𝛼1𝐴̃ for all 𝑎, 𝑏 ∈ 𝐴 and 𝛼, 𝛽 ∈ ℂ. Thus it clear that ∼ is indeed a *-

algebra. The norm and the embedding will be briefly established in the next proposition; refer to [4, 

p. 3] and [4, Proposition 1.5] for details.

We shall provide a proof sketch on why the unitization is indeed a 𝐶∗-algebra, though the norm 

structure of our unitization will not be relevant to our thesis.

Proposition 2.2.2. The unital algebra 𝐴 is indeed a 𝐶∗-algebra such that 𝐴 is embedded into 𝐴 

as a maximal ideal.

 Proof Sketch. For each 𝑎 ∈ 𝐴, denote 𝐿𝑎(𝑥) = 𝑎𝑥 for each 𝑥 ∈ 𝐴, and by our definition, 𝐿𝑎 is 

a linear map from 𝐴 to 𝐴. If 𝑎 ∈ 𝐴, it is clear that ‖𝐿𝑎‖ ≤ ‖𝑎‖ (given the operator norm), and

‖𝐿𝑎𝑎∗‖ = ‖𝑎‖2

so ‖𝐿𝑎‖ ≥ ‖𝑎‖, hence ‖𝐿𝑎‖ = ‖𝑎‖. Thus 𝑇 : 𝑎 ↦ 𝐿𝑎 is an injective *-homomorphism from 𝐴 to 

ℬ︀(𝐴), hence 𝑇 (𝐴) is a 𝐶∗-algebra. Define 𝑆 : 𝐴 → 𝑇(𝐴) ⊕ ℂ : 𝑎 ↦ 𝐿𝑎, which is a bijective *-

homomorphism, and for each 𝑎 ∈ 𝐴, denote ‖𝑎‖ = ‖𝑆(𝑎)‖, which makes 𝐴 a 𝐶∗-algebra. The 

embedding of 𝐴 as a maximal ideal into 𝐴 is now clear. ∎
We denote 𝐴 to be a unitization 𝐴. Though as the construction may suggest, it is not true that 

𝐴 ≅ 𝐴 ⊕ ℂ (as 𝐶∗-algebras) in general as the former is unital while the latter may not be. In the 

case of unital 𝐶∗-algebra, we can consider the element 1𝐴̃ − 1𝐴 which acts an indicator for elements 

in 𝐴. And as it turns out: 𝐴 is unital if, and only if, 𝐴 ≅ 𝐴 ⊕ ℂ; see next lemma.

Lemma 2.2.3. Let 𝐴 be a unital 𝐶∗-algebra, and 𝑝 = 1𝐴̃ − 1𝐴. Then

(i) 𝑝 is a projection with 𝑎𝑝 = 𝑝𝑎 = 0 for all 𝑎 ∈ 𝐴.

(ii) 𝐴 = 𝐴 ⊕ ℂ𝑝 as vector spaces.

(iii) The map 𝜑 : 𝐴 ⊕ ℂ → 𝐴 given by 𝜑(𝑎, 𝛼) = 𝑎 + 𝛼𝑝 is an isomorphism.

In particular 𝐴 ≅ 𝐴 ⊕ ℂ if, and only if, 𝐴 is unital.

 Proof. As 1𝐴̃𝑎 = 1𝐴𝑎 = 𝑎 for all 𝑎 ∈ 𝐴, then (i) follows. For each 𝑎 + 𝛼1𝐴̃ ∈ 𝐴, one has

𝑎 + 𝛼1𝐴̃ = 𝑎 − 𝛼1𝐴 + 𝛼𝑝 ∈ 𝐴 + ℂ𝑝,
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and if 𝑧 ∈ 𝐴 ∩ ℂ𝑝, then 𝑧 = 𝛼1𝐴̃ − 𝛼1𝐴 = 𝑎 for some 𝑎 ∈ 𝐴 and 𝛼 ∈ ℂ. In particular, 𝑎 + 𝛼1𝐴 =
𝛼1𝐴̃, then by definition of formal sums, one has 𝛼 = 0, and 𝑎 + 𝛼1𝐴 = 0, hence 𝑎 = 0, so 𝑧 = 0. 

Thus 𝐴 ∩ ℂ𝑝 = 0, and the sum is direct; this proves (ii).

It is clear that 𝜑 is linear, hence by (ii), 𝜑 is bijective. By (i) 𝜑 is a *-homomorphism, so this 

proves (iii). ∎
In any case, one induces a split-exact sequence1

𝜄𝐴 𝜋𝐴

𝜆𝐴

0 𝐴 𝐴 ℂ 0 (2.1)

where 𝜄 : 𝐴 → 𝐴 : 𝑎 ↦ 𝑎, 𝜋 : 𝐴 → ℂ : 𝑎 + 𝛼1𝐴̃ ↦ 𝛼, and 𝜆 : ℂ ↦ 𝐴 : 𝛼 ↦ 𝛼1𝐴̃. It will be under

stood that the arrows refer to 𝜄, 𝜋, and 𝜆 whenever we are presented with the diagram (2.1). 

The unitization has a nice universal and functorial property, which we can then say that 𝐴 is the 

unitization of 𝐴 up to isomorphism by universality, see Appendix 5.2 for a precise definition.

Theorem 2.2.4. (Universality of Unitization). Let 𝜑 be a *-homomorphism between 𝐶∗ algebras 𝐴 

and 𝐵, then there is a unique unital *-homomorphism 𝜑̃ : 𝐴 → 𝐵̃ such that 𝜑̃ ∘ 𝜄𝐴 = 𝜄𝐵 ∘ 𝜑. Even 

more, one has the commutative diagram:

𝜄𝐴 𝜋𝐴

𝜑 𝜑̃
𝜄𝐵 𝜋

𝐴 𝐴 ℂ

𝐵 𝐵̃ ℂ

(2.2)

Moreover,

(i) 𝜑 is injective if, and only if, 𝜑̃ is injective.

(ii) 𝜑 is surjective if, and only if, 𝜑̃ is surjective.

 Proof. Define 𝜑̃(𝑎 + 𝛼1𝐴̃) = 𝜑(𝑎) + 𝛼1𝐵̃, then it is clear that 𝜑̃ is a *-homomorphism such 

that 𝜑̃ ∘ 𝜄𝐴 = 𝜄𝐵 ∘ 𝜑, and the diagram (2.2) commutes. Suppose 𝜑′ : 𝐴 → 𝐵̃ is another unital *-

homomorphism such that 𝜑′ ∘ 𝜄𝐴 = 𝜄𝐵 ∘ 𝜑, then given 𝑎 + 𝛼1𝐴̃ ∈ 𝐴, one has

𝜑′(𝑎 + 𝛼1𝐴̃) = 𝜑′(𝑎) + 𝛼1𝐵̃ = 𝜑(𝑎) + 𝛼1𝐵̃ = 𝜑̃(𝑎 + 𝛼1𝐴̃),

which shows uniqueness. As 𝜑̃ = 𝜑 ⊕ 𝛾 : 𝐴 ⊕ ℂ1𝐴̃ → 𝐵 ⊕ ℂ1𝐵̃ where 𝛾 : ℂ1𝐴̃ → ℂ1𝐵̃ : 𝛼1𝐴̃ →
𝛼1𝐵̃ is an isomorphism, then (i) and (ii) follows. ∎

Theorem 2.2.5. (Functoriality of Unitization). The unitization operator ̃⋅ defines a faithful functor 

from C*-Alg to the category of C*-Alg1. This means that, given 𝐶∗-algebras 𝐴, 𝐵, 𝐶, and *-

homomorphisms 𝜑 : 𝐴 → 𝐵 and 𝜓 : 𝐵 → 𝐶, one has:

(i) 𝜓 ∘ 𝜑 = 𝜓 ∘ 𝜑̃.

(ii) ĩd𝐴 = id𝐴̃.

(iii) (Faithfulness). Suppose 𝜑, 𝜓 : 𝐴 → 𝐵 are *-homomorphisms. If 𝜑̃ = 𝜓, then 𝜑 = 𝜓.

 Proof. Let 𝑎 + 𝛼1𝐴̃ ∈ 𝐴, one has

̃(𝜓 ∘ 𝜑)(𝑎 + 𝛼1𝐴̃) = 𝜓(𝜑(𝑎)) + 𝛼1𝐶 = 𝜓(𝜑(𝑎) + 𝛼1𝐵̃) = 𝜓(𝜑̃(𝑎 + 𝛼1𝐴̃))

so 𝜓 ∘ 𝜑 = 𝜓 ∘ 𝜑̃. Also

ĩd𝐴(𝑎 + 𝛼1𝐴̃) = id𝐴(𝑎) + 𝛼1𝐴̃ = 𝑎 + 𝛼1𝐴̃

1Refer to Definition 5.4.2 for the definition and notation of arrows.
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so ĩd𝐴 = id𝐴̃. Hence (i) and (ii) are shown.

In the case of (iii), by Universality of Unitization 2.2.4, one has 𝜄𝐵 ∘ 𝜑 = 𝜄𝐵 ∘ 𝜓, so 𝜑 = 𝜓 as 𝜄𝐵 is 

injective. ∎

Example 2.2.6. (The trivial unitization). Note that if 0 is the trivial 𝐶∗-algebra, then 0̃ = ℂ, and 

if 0 : 𝐴 → 𝐵 is the zero map, then 0̃ = 𝜆𝐵 ∘ 𝜋𝐴. Which funnily enough, 0 : 0 → 0 gives 0̃ = idℂ.

Example 2.2.7. Given a locally compact Hausdorff space 𝑋, the unitization of 𝒞︀0(𝑋) is isomorphic 

to 𝒞︀(𝑋′) where 𝑋′ is the Alexandroff one-point compacitification of 𝑋; refer to [3, II.1.2.2]. In 

particular, one has the following corresponding: let ∞ be the point at infinity of 𝑋′, then one has 

the *-isomorphism 𝜑 : 𝒞︀0(𝑋) → 𝒞︀(𝑋) defined as

𝜑(𝑓 + 𝛼1𝒞︀0(𝑋))(𝑡) = {𝑓(𝑡)  if 𝑡 ∈ 𝑋
𝛼  if 𝑡 = ∞.

Hence one has the cooresponding split-exact sequence

𝜄 𝜋

𝜆
0 𝒞︀0(𝑋) 𝒞︀(𝑋′) ℂ 0

where 𝜄(𝑓) = 𝜑(𝑓), 𝜋(𝑓) = 𝑓(∞), and 𝜆(𝛼) = 𝜑(0 + 𝛼1𝒞︀0(𝑋)).

2.3 Spectral Theory

The spectral theory of 𝐶∗-algebras is elegant and is what makes 𝐶∗-algebra standout from other 

algebraic normed structures as it leads onto continuous functional calculus seen in the next chapter. 

We shall briefly introduce the concept of spectrum and some relevant results following from it. In 

this chapter, let 𝐴1 = 𝐴 if 𝐴 is unital, otherwise, let 𝐴1 = 𝐴 if 𝐴 is nonunital and we denote 1 to 

be the unit in 𝐴1. We denote the spectrum of 𝑎 ∈ 𝐴 to be

𝜎𝐴(𝑎) = {𝜆 ∈ ℂ : 𝑎 − 𝜆1 is not invertible in 𝐴1},
which is always a nonempty compact subset of ℂ. In particular, if 𝑎 ∈ 𝐴, then 0 ∈ 𝜎𝐴̃(𝑎); see [5, 

II.1.4.1 and II.1.4.2]. We may omit the subscript 𝐴 if the context clear.

Lemma 2.3.1. Let 𝑎, 𝑏 be elements of some 𝐶∗-algebra 𝐴. Then:

(i) 𝜎𝐴(𝑎𝑏) \ {0} = 𝜎𝐴(𝑏𝑎) \ {0}.

(ii) If 𝑓 ∈ ℂ[𝑧, 𝑧] (𝑓 is a complex polynomial), then 𝜎𝐴̃(𝑓(𝑎)) = 𝑓(𝜎𝐴(𝑎)) = {𝑓(𝜆) : 𝜆 ∈ 𝜎𝐴(𝑎)}.

(iii) If 𝐵 is a 𝐶∗-subalgebra of 𝐴, then 𝜎𝐵(𝑎) = 𝜎𝐴(𝑎).
(iv) If 𝜑 : 𝐴 → 𝐵 is a *-homomorphism, then 𝜎𝐵(𝜑(𝑎)) ⊆ 𝜎𝐴(𝑎). If 𝜑 is injective, then 𝜎𝐵(𝜑(𝑎)) =

𝜎𝐴(𝑎).
 Proof. See [3, II.1.4.2] for (i) to (ii), [4, Proposition 4.8] for (iii) [3, II.1.6.7] for (iv). The rest 

are easy, with last part of (iv) follows from (iii). ∎
Define the spectral radius 𝑟(𝑎) = max

𝜆∈𝜎(𝑎)
|𝜆|, and if 𝑎 is a normal element, then 𝑟(𝑎) = ‖𝑎‖; see 

[3, II.1.6.3]. So in particular, ‖𝑎‖ = √𝑟(𝑎∗𝑎), and note that by Lemma 2.3.1 (iii), the spectral radius 

is independent of the spectrum that the element resides in.

We say an element 𝑎 is positive if 𝑎 is normal with 𝜎(𝑎) ⊆ [0, ∞). It turns out, 𝑎 is positive if, 

and only if, 𝑎 = 𝑥∗𝑥 for some 𝑥 ∈ 𝐴. We define 𝐴+ to be the set of positive elements of 𝐴. Given 

𝑎, 𝑏 ∈ H(𝐴), define 𝑏 ≥ 𝑎 if 𝜎𝐴(𝑏 − 𝑎) ⊆ [0, ∞), thus it follows that (H(𝐴), ≥) forms an ordered 
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vector space over ℝ where the relation ≥ is a partial order, i.e. the addition on 𝐴+ and scalar 

multiplication over [0, ∞) preserves the ≥. See [4, Theorem 6.1, p. 23] for the details.

Let 𝑎 ∈ 𝐴1, and note that 𝑎 ≥ 𝜆 and 𝑎 ∈ 𝐴+ for some 𝜆 > 0 implies 𝑎 is invertible in 𝐴1 as 0 ∉
𝜎(𝑎). Also given a 𝑎 ∈ H(𝐴), one has 𝑎 ≤ ‖𝑎‖1𝐴̃ as 𝜎(𝑎) is bounded by ‖𝑎‖.

Now given 𝑏 ∈ 𝐴, then 𝑏𝑎𝑏∗ ≥ 0 if 𝑎 ≥ 0, as 𝑎 = 𝑥∗𝑥 for some 𝑥 ∈ 𝐴, hence

𝑏𝑎𝑏∗ = 𝑏𝑥∗𝑥𝑏∗ = (𝑥𝑏∗)∗(𝑥𝑏∗)
shows that 𝑏𝑎𝑏∗ is positive. It turns out the product of positive elements are also positive: take 𝑎, 𝑏 ∈
𝐴+, then following from Lemma 2.3.1 (i) and Example 2.4.7: 𝜎(𝑎𝑏) ∪ {0} = 𝜎(𝑎𝑏1

2 𝑏1
2 ) ∪ {0} =

𝜎(𝑏1
2 𝑎𝑏1

2 ) ∪ {0} and as 𝑏1
2 𝑎𝑏1

2 ≥ 0, thus 𝑎𝑏 is positive.

The following lemma is used in Chapter 4 and is especially prominent in Lemma 4.1.2.

Lemma 2.3.2. Let 𝑝, 𝑞 be projection elements of a 𝐶∗-algebra. Then the following are equivalent:

(i) 𝑞 ≤ 𝑝.

(ii) 𝑞 = 𝑞𝑝𝑞.
(iii) 𝑞𝑝 = 𝑞.
(iv) 𝑝𝑞 = 𝑞.

 Proof. Write 1 = 1𝐴̃. (i)⟹(ii). One has that 𝑞2 = 𝑞𝑞𝑞∗ ≤ 𝑞𝑝𝑞∗, so 𝑞(1 − 𝑝)𝑞 ≤ 0, hence 𝑞(1 −
𝑝)𝑞 = 0 as 𝑞(1 − 𝑝)𝑞∗ is positive. So 𝑞 = 𝑞𝑝𝑞.
(ii)⟹(iii). As

0 = 𝑞 − 𝑞𝑝𝑞 = 𝑞(1 − 𝑝)𝑞 = (𝑞(1 − 𝑝))((1 − 𝑝)𝑞)∗,

thus 0 = 𝑞(1 − 𝑝) by 𝐶∗-identity, so 𝑞𝑝 = 𝑞.
(iii)⟹(iv). As

((1 − 𝑝)𝑞)((1 − 𝑝)𝑞)∗ = (1 − 𝑝)𝑞(1 − 𝑝) = (1 − 𝑝)(𝑞 − 𝑞𝑝) = 0

thus (1 − 𝑝)𝑞 = 0 by 𝐶∗-identity, so 𝑞 = 𝑝𝑞.
(iv)⟹(i). As 𝑝(1 − 𝑞) ≥ 0 (product of two projections, hence positive elements), one has 𝑝 ≥
𝑝𝑞 = 𝑞. ∎

We say two elements 𝑎, 𝑏 ∈ H(𝐴) are orthogonal if 𝑎𝑏 = 0, and we write 𝑎 ⟂ 𝑏. Note that 𝑎𝑏 =
0 if, and only if, 𝑏𝑎 = 0 as the elements are self-adjoint. We also say that two *-homomorphisms 

𝜑, 𝜓 : 𝐴 → 𝐵 between 𝐶∗-algebras are orthogonal if 𝜑(𝑎)𝜓(𝑏) = 0 for all 𝑎, 𝑏 ∈ 𝐴, note that this 

implies 𝜓(𝑎)𝜑(𝑏) = 0 for all 𝑎, 𝑏 ∈ 𝐴 as given 𝑎, 𝑏 ∈ 𝐴, one has

𝜓(𝑎)𝜑(𝑏) = (𝜑(𝑏∗)𝜓(𝑎∗))∗ = 0∗ = 0.
The following lemmas are crucial in lifting our morphisms identified by the 𝐾0 functor; these results 

are exclusively used in Lemma 4.5.3.

Lemma 2.3.3. Let 𝑛 ∈ ℕ and 𝑝1, …, 𝑝𝑛 be projections of a 𝐶∗-algebra. Then the following are 

equivalent:

(i) 𝑝1, …, 𝑝𝑛 are mutually orthogonal.

(ii) 𝑝1 + … + 𝑝𝑛 is a projection.

(iii) 𝑝1 + … + 𝑝𝑛 ≤ 1.

 Proof. (i)⟹(ii). If 𝑝𝑖𝑝𝑗 = 0 for distinct 𝑖, 𝑗 ≤ 𝑛, then one has

(∑
𝑖≤𝑛

𝑝𝑖)
2

= ∑
𝑖,𝑗≤𝑛

𝑝𝑖𝑝𝑗 = ∑
𝑖≤𝑛

𝑝2
𝑖 = ∑

𝑖≤𝑛
𝑝𝑖

7



Fundamentals on 𝐶∗-Algebras Spectral Theory

shows that 𝑝1 + … + 𝑝𝑛 is a projection.

(ii)⟹(iii). Trivial as 𝜎(𝑝1 + … + 𝑝𝑛) ⊆ {0, 1}.

(iii)⟹(i). Let 𝑖, 𝑗 ≤ 𝑛 be distinct. Then

𝑝𝑖 + 𝑝𝑗 ≤ 𝑝1 + … + 𝑝𝑛 ≤ 1

⟹ 𝑝𝑖(𝑝𝑖 + 𝑝𝑗)𝑝∗
𝑖 ≤ 𝑝∗

𝑖𝑝𝑖

⟹ 𝑝𝑖 + 𝑝𝑖𝑝𝑗𝑝𝑖 ≤ 𝑝𝑖

⟹ 𝑝𝑖𝑝𝑗𝑝𝑖 ≤ 0
⟹ 𝑝𝑖𝑝𝑗𝑝𝑖 = 0

where the last equality holds because 𝑝𝑖𝑝𝑗𝑝𝑖 is positive. Now

‖𝑝𝑗𝑝𝑖‖
2 = ‖(𝑝𝑗𝑝𝑖)

∗(𝑝𝑗𝑝𝑖)‖ = ‖𝑝𝑖𝑝𝑗𝑝𝑗𝑝𝑖‖ = ‖𝑝𝑖𝑝𝑗𝑝𝑖‖ = 0

so 𝑝𝑗𝑝𝑖 = 0. This shows (i). ∎
We say an element 𝑣 ∈ 𝐴 to be a partial isometry if 𝑣∗𝑣 is a projection. In that case, as 𝜎(𝑣𝑣∗) ∪

{0} = 𝜎(𝑣∗𝑣) ∪ {0} ⊆ {0, 1} and 𝑣𝑣∗ is normal, then 𝑣𝑣∗ is also a projection by Corollary 2.4.4 and 

hence 𝑣∗ is a partial isometry. We shall borrow the relation 𝑣𝑣∗𝑣 = 𝑣 in Proposition 3.1.1.

Lemma 2.3.4. Let 𝑣1, …, 𝑣𝑛 be partial isometries of a unital 𝐶∗-algebra, and suppose

∑
𝑖≤𝑛

𝑣∗
𝑖𝑣𝑖 = 1 = ∑

𝑖≤𝑛
𝑣𝑖𝑣∗

𝑖 .

Then ∑𝑛
𝑖=1 𝑣𝑖 is unitary.

 Proof. By preceding lemma, as 𝑣1𝑣∗
1 + … + 𝑣𝑛𝑣∗

𝑛 = 1 is a projection, then 𝑣1𝑣∗
1, …, 𝑣𝑛𝑣∗

𝑛 are 

mutually orthogonal. Let 𝑖, 𝑗 ≤ 𝑛 be distinct, so

𝑣∗
𝑖𝑣𝑗 = 𝑣∗

𝑖𝑣𝑖𝑣∗
𝑖𝑣𝑗𝑣∗

𝑗𝑣𝑗 = 𝑣∗
𝑖0𝑣𝑗 = 0.

So one has,

(∑
𝑖≤𝑛

𝑣𝑖)∗(∑
𝑖≤𝑛

𝑣𝑖) = ∑
𝑖,𝑗≤𝑛

𝑣∗
𝑖𝑣𝑗 = ∑

𝑖≤𝑛
𝑣∗

𝑖𝑣𝑖 = 1

and similarly (∑𝑖≤𝑛 𝑣𝑖)(∑𝑖≤𝑛 𝑣𝑖)∗ = 1. Thus ∑𝑖≤𝑛 𝑣𝑖 is unitary. ∎

2.4 Continuous Functional Calculus

It turns out every 𝐶∗-algebra 𝐴 has the following identifications.

Theorem 2.4.1. (Commutative Gelfand-Naimark). Let 𝐴 be a commutative 𝐶∗-algebra, then there 

is a locally compact Hausdorff space 𝑋 such that 𝐴 is isomorphic to 𝒞︀0(𝑋). If 𝐴 is unital, then 𝑋 

can be chosen as compact Hausdorff, i.e. 𝐴 ≅ 𝒞︀(𝑋).
 Proof. See [3, II.2.2.4]. ∎

Theorem 2.4.2. (Gelfand-Naimark-Segal). Let 𝐴 be a 𝐶∗-algebra, then 𝐴 is embedded in ℬ︀(𝐻) 
for some Hilbert space 𝐻. If 𝐴 is separable, then 𝐻 can be chosen to be separable.

 Proof. See [3, II.6.4.10]. ∎
Following from Commutative Gelfand-Naimark 2.4.1, we achieve the following result to obtain an 

effective way of constructing 𝐶∗-algebra elements; this is the strength and elegance of 𝐶∗-algebras.
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Theorem 2.4.3. (Continuous Functional Calculus). Let 𝑎 be a normal element of a 𝐶∗-algebra 𝐴. 

Then one has a *-isomorphism:

𝒞︀(𝜎𝐴(𝑎)) → 𝐴⟨𝑎, 1𝐴̃⟩ : 𝑓 ↦ 𝑓(𝑎)
where if 𝑝(𝑧) = ∑𝑖,𝑗≤𝑛 𝑐𝑖,𝑗𝑧𝑖𝑧𝑗 ∈ ℂ[𝑧, 𝑧], then 𝑝(𝑎) = ∑𝑖,𝑗≤𝑛 𝑐𝑖,𝑗𝑎𝑖(𝑎∗)𝑗, and if (𝑝𝑛)𝑛∈ℕ is a 

sequence of polynomials that converges uniformly to a 𝑓 ∈ 𝒞︀(𝜎(𝑎)), then 𝑓(𝑎) = lim𝑛→∞ 𝑝𝑛(𝑎). 
Furthermore, given 𝑎 ∈ 𝐴 and 𝑓 ∈ 𝒞︀(𝜎(𝑎)):
(i) If 𝑓(0) = 0, then 𝑓(𝑎) ∈ 𝐴⟨𝑎⟩.
(ii) One has im(𝑓) = 𝑓(𝜎(𝑎)) = 𝜎(𝑓(𝑎)).
(iii) If 𝐵 is a 𝐶∗-algebra and 𝜑 : 𝐴 → 𝐵 is a *-homomorphism, then 𝜑(𝑓(𝑎)) = 𝑓(𝜑(𝑎)).

 Proof. See [3, II.2.3.1 and II.2.3.2]. ∎
For example, this gives us a convenient way of generating unitary elements out of self-adjoint 

elements. Let 𝑎 ∈ 𝐴 be a self-adjoint element, then 𝜎(𝑎) ⊆ ℝ. Define 𝑓(𝑡) = 𝑒𝑖𝑡 on 𝜎(𝑎), then 𝑓 

is unitary and 𝑓 ∈ 𝒞︀(𝜎(𝑎)), thus 𝑓(𝑎) = 𝑒𝑖𝑎 is a unitary element. In fact, one has an immediate 

corollary of identifying self-adjoint, unitary, and projection elements.

Corollary 2.4.4. Let 𝑎 ∈ 𝐴 be normal. Then the following holds:

(i) 𝑎 is a self-adjoint if, and only if, 𝜎𝐴(𝑎) ⊆ ℝ.

(ii) 𝑎 is a projection if, and only if, 𝜎𝐴(𝑎) ⊆ {0, 1}.

(iii) If 𝐴 is unital, then 𝑎 is unitary if, and only if, 𝜎𝐴(𝑎) ⊆ 𝕊1 ≔ {𝑧 ∈ ℂ : |𝑧| = 1}.

 Proof. See [3, II.2.3.4]. ∎
This next lemma gives a sufficient condition on when the map 𝑎 ↦ 𝑓(𝑎) is continuous given 

normal elements 𝑎 ∈ 𝐴.

Lemma 2.4.5. Let 𝐾 ⊆ ℂ be a nonempty compact set, and denote Ω to be the set of all normal 

elements with spectrum contained in 𝐾 from a 𝐶∗-algebra 𝐴. Given 𝑓 ∈ 𝒞︀(𝐾), then the induced 

map 𝑎 ↦ 𝑓(𝑎) from Ω, is continuous.

 Proof. Let 𝜀 > 0 and by Stone-Weierstrass theorem, there is a polynomial 𝑝 ∈ ℂ[𝑧, 𝑧] such that 

‖𝑓 − 𝑝‖∞ < 𝜀. It is clear that 𝑝 is continuous from Ω to 𝐴 by 𝑎 ↦ 𝑝(𝑎), so given 𝑎 ∈ 𝐴, there is a 

𝛿 > 0 such that for all 𝑏 ∈ 𝐴 with ‖𝑎 − 𝑏‖ < 𝛿, one has ‖𝑝(𝑎) − 𝑝(𝑏)‖ < 𝜀. In particular,

‖𝑓(𝑎) − 𝑓(𝑏)‖ ≤ ‖𝑓(𝑎) − 𝑝(𝑎)‖ + ‖𝑝(𝑎) − 𝑝(𝑏)‖ + ‖𝑝(𝑏) − 𝑓(𝑏)‖ < 3𝜀,

hence 𝑓 is continuous from Ω. ∎
Using the theory of positive elements and continuous functional calculus, we also have a lemma 

regarding the invertibility of elements and the unitalizability of our 𝐶∗-subalgebras. This lemma will 

in Chapter 4.

Lemma 2.4.6. Let 𝐵 be a 𝐶∗-subalgebra of a unital 𝐶∗-algebra 𝐴. Let 𝑎 ∈ 𝐵, then one has

(i) Suppose 𝐵 is unital. Then 𝑎 is left-invertible in 𝐵 if, and only if, 𝑎∗𝑎 is invertible in 𝐵.

(ii) If 𝑎 is invertible in 𝐴, then 𝐵 is unital and 𝑎 is invertible in 𝐵.

 Proof.

(i) Suppose 𝑎 is left-invertible. Let 𝑏 be the left-inverse of 𝑎 and note that ‖𝑏‖ ≠ 0. As 𝑏∗𝑏 ≤ ‖𝑏‖21, 

then 1 = (𝑏𝑎)∗(𝑏𝑎) = 𝑎∗𝑏∗𝑏𝑎 ≤ 𝑎∗‖𝑏‖21𝑎 = ‖𝑏‖2𝑎∗𝑎, so 0 < ‖𝑏‖−2 ≤ 𝑎∗𝑎. Thus 𝑎∗𝑎 is invertible. 

If 𝑎∗𝑎 is invertible, then (𝑎∗𝑎)−1𝑎∗ is a left-inverse of 𝑎.

(ii) As 𝑎 is invertible, then so are 𝑎∗𝑎 and 𝑎𝑎∗. As 0 ∉ 𝐾 = 𝜎𝐴(𝑎𝑎∗) ∪ 𝜎𝐴(𝑎∗𝑎), and as 𝐾 is 

compact, then we can define a continuous function 𝑓 ∈ 𝒞︀(ℂ) such that
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𝑓(𝑧) = {
0  if 𝑧 ∉ 𝐾
1
𝑧  if 𝑧 ∈ 𝐾.

By the Continuous Functional Calculus 2.4.3 (i), as 𝑓(0) = 0, one has that 𝑓(𝑎𝑎∗) = (𝑎𝑎∗)−1 ∈
𝐴⟨𝑎𝑎∗⟩ and 𝑓(𝑎∗𝑎) = (𝑎∗𝑎)−1 ∈ 𝐴⟨𝑎∗𝑎⟩. In particular, (𝑎∗𝑎)−1, (𝑎𝑎∗)−1 ∈ 𝐴⟨𝑎⟩ ⊆ 𝐵, now 𝑎 

has a left-inverse (𝑎∗𝑎)−1𝑎∗ in 𝐵 and a right-inverse 𝑎∗(𝑎𝑎∗)−1 in 𝐵, so 𝑎 is invertible in 𝐵. In 

particular 1 = 𝑎−1𝑎 ∈ 𝐵, so 𝐵 is unital. ∎
Here are some common constructions of new elements via continuous functional calculus, which 

are analogous to the modulus and argument of complex numbers.

Example 2.4.7. (Absolute Value). Let 𝑎 ∈ 𝐴 be an element, then 𝑎∗𝑎 is positive, so 𝜎(𝑎∗𝑎) ⊆
[0, ∞), thus the map 𝑓(𝑡) = 𝑡 1

𝑛  is in 𝐶(𝜎(𝑎∗𝑎)). Hence we can define 𝑓(𝑎∗𝑎) = (𝑎∗𝑎)
1
𝑛 ∈ 𝐴⟨𝑎∗𝑎⟩ as 

𝑓(0) = 0 such that 𝑓(𝑎∗𝑎)𝑛 = 𝑎∗𝑎. Define the absolute value of 𝑎 to be |𝑎| ≔ (𝑎∗𝑎)
1
2 , so it follows 

that |𝑎|2 = 𝑎∗𝑎, and |𝑎| is invertible if 𝑎 is, with |𝑎|−1 = |𝑎−1|.
Now for each bounded set 𝐵 ⊆ 𝐴+, then 𝑅 = sup{‖𝑎‖ : 𝑎 ∈ 𝐵} is finite, in particular, 𝐵 ⊆ {𝑎 ∈
𝐴 : 𝜎(𝑎) ⊆ [0, 𝑅]} as the norm and spectral radius are equivalent for normal elements, hence by 

Lemma 2.4.5, the map 𝑥 ↦ 𝑥1
2  on 𝐵 is continuous. Thus the square root map on 𝐴+ is continuous 

as it is continuous on each bounded subset, thus the absolute value map on 𝐴 is continuous as a 

composition of continuous maps.

Example 2.4.8. (Polarization). Let 𝑎 be an invertible element of a unital 𝐶∗-algebra 𝐴. Then one 

can define 𝜔(𝑎) ≔ 𝑎|𝑎|−1, and note that

𝜔(𝑎)∗𝜔(𝑎) = |𝑎|−1𝑎∗𝑎|𝑎|−1 = |𝑎|−1|𝑎|2|𝑎|−1 = 1
and

𝜔(𝑎)𝜔(𝑎)∗ = 𝑎|𝑎|−1|𝑎|−1𝑎∗ = 𝑎|𝑎−1|2𝑎∗ = 𝑎(𝑎∗𝑎)−1𝑎∗ = 1

hence 𝜔(𝑎) is unitary, and we say 𝜔(𝑎) is the polarization of 𝑎. Thus 𝜔 is a continuous map from 

GL(𝐴) to 𝒰︀(𝐴) as a composition of continuous maps. Furthermore, 𝜔|𝒰︀(𝐴) = id𝒰︀(𝒜︀).

2.5 Matrix Algebras

Given a 𝐶∗-algebra 𝐴, and 𝑚, 𝑛.𝑝, 𝑞 ∈ ℕ, we can construct matrices with entries from 𝐴 equipped 

with the natural matrix operations. That is, denote ℳ︀𝑚,𝑛(𝐴) to be the set of all tuples (𝑎𝑖𝑗)𝑖≤𝑛
𝑗≤𝑚

 

where 𝑎𝑖𝑗 ∈ 𝐴 for all 𝑖 ≤ 𝑚 and 𝑗 ≤ 𝑛, we shall omit the indexing subscripts if the context is clear. 

Define (𝑎𝑖𝑗)∗ = (𝑎𝑗𝑖
∗) ∈ ℳ︀𝑛,𝑚(𝐴). Denote the space of square matrices to be ℳ︀𝑛(𝐴) = ℳ︀𝑛,𝑛(𝐴), 

which is called a matrix algebra of 𝐴.

We denote 0𝑚,𝑛 or 0𝑛 to be the zero matrices of ℳ︀𝑚,𝑛(𝐴) and ℳ︀𝑛(𝐴) respectively. Similarly, 

let 1𝑛 be the identity matrix of ℳ︀𝑛(𝐴). In general, given 𝑎 ∈ ℳ︀𝑚,𝑛(𝐴) and 𝑏 ∈ ℳ︀𝑝,𝑞(𝐴), define

𝑎 ⊕ 𝑏 = diag(𝑎, 𝑏) = (
𝑎

0𝑝,𝑛

0𝑚,𝑞
𝑏 ) ∈ ℳ︀𝑚+𝑝,𝑛+𝑞(𝐴).

Construction 2.5.1. (Induced map between matrix algebras). Given a map 𝜑 between 𝐶∗-algebras 

𝐴 to 𝐵, we denote the induced map 𝜑𝑛 : ℳ︀𝑛(𝐴) → ℳ︀𝑛(𝐵) defined as 𝜑𝑛((𝑎𝑖𝑗)) = (𝜑(𝑎𝑖𝑗)). In 

any case, we will just write 𝜑 instead of 𝜑𝑛 if the context is clear, and note that if 𝜑 is a *-

homomorphism, then so is 𝜑𝑛.
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Let 𝑎 = (𝑎𝑖𝑗) ∈ ℳ︀𝑛(𝐴), define the norm ‖𝑎‖ = ‖𝜑𝑛(𝑎)‖, where 𝜑 is an *-embedding 𝜑 : 𝐴 →
ℬ︀(𝐻) for some Hilbert space 𝐻, which exists by Gelfand-Naimark-Segal 2.4.2, and we have the 

induced map 𝜑𝑛 : ℳ︀𝑛(𝐴) → ℬ︀(𝐻𝑛) given by

𝜑𝑛(𝑎)ℎ =
(

𝜑(𝑎11)

⋮
𝜑(𝑎𝑛1)

⋯
⋱
⋯

𝜑(𝑎1𝑛)
⋮

𝜑(𝑎𝑛𝑛))



(

ℎ1

⋮
ℎ𝑛)


 =

(

𝜑(𝑎11)ℎ1 + ⋯ + 𝜑(𝑎𝑛1)ℎ𝑛

⋮
𝜑(𝑎𝑛1)ℎ1 + ⋯ + 𝜑(𝑎𝑛𝑛)ℎ𝑛)


.

Thus ℳ︀𝑛(𝐴) also forms a 𝐶∗-algebra under the usual matrix operations; see [2, 1.3] for more details. 

Given 𝑎 ∈ ℳ︀𝑛(𝐴), one must have ‖𝑎‖ = √𝑟(𝑎∗𝑎), thus the choice of the norm is independent of 

the embedding. Note that ℳ︀𝑛 has a natural functorial property shown in the next lemma.

Lemma 2.5.2. (Functoriality of Matrix Algebras). Let 𝑛 ∈ ℕ, then ℳ︀𝑛 defines a covariant faithful 

exact functor that preserves zero. That is, give 𝐶∗-algebras 𝐴, 𝐵, 𝐶, and *-homomorphisms 𝜑 :
𝐴 → 𝐵, 𝜓 : 𝐵 → 𝐶, one has the following:

(i) (𝜓 ∘ 𝜑)𝑛 = 𝜓𝑛 ∘ 𝜑𝑛.

(ii) (id𝐴)𝑛 = idℳ︀𝑛(𝐴).

(iii) If 0 is the trivial 𝐶∗-algebra, then so is ℳ︀𝑛(0).
(iv) If 0 : 𝐴 → 𝐵 is the trivial map, then so is 0𝑛.

(v) If one has an exact sequence:

𝜑 𝜓
0 𝐴 𝐵 𝐶 0

then one induces an exact sequence:

𝜑𝑛 𝜓𝑛
0 ℳ︀𝑛(𝐴) ℳ︀𝑛(𝐵) ℳ︀𝑛(𝐶) 0

(vi) Suppose 𝜑, 𝜓 : 𝐴 → 𝐵 are *-homomorphisms. If ℳ︀𝑛(𝜑) = ℳ︀𝑛(𝜓), then 𝜑 = 𝜓.

 Proof. Statements (i) to (iv), and (vi) should be obvious. For (v), claim that im(𝜑𝑛) = ker(𝜓𝑛). 
Given 𝑎 ∈ ℳ︀𝑛(𝐴), then 𝜑(𝑎𝑖𝑗) ∈ ker(𝜓), so 𝜓(𝜑(𝑎𝑖𝑗)) = 0 for all 𝑖, 𝑗 ≤ 𝑛, hence 𝜓(𝜑(𝑎)) = 0, 

thus im(𝜑𝑛) ⊆ ker(𝜓𝑛). Given 𝑏 ∈ ker(𝜓𝑛), then 𝜓(𝑏) = 0 implies 𝑏𝑖𝑗 ∈ ker(𝜓), so there is a 𝑎𝑖𝑗 ∈
𝐴 such that 𝜑(𝑎𝑖𝑗) = 𝑏𝑖𝑗 for each 𝑖, 𝑗 ≤ 𝑛. Define 𝑎 = (𝑎𝑖𝑗) ∈ ℳ︀𝑛(𝐴), then 𝜑(𝑎) = 𝑏 is obvious, 

so im(𝜑𝑛) = ker(𝜓𝑛). As the claim does not rely on the fact that 𝜑 is injective and 𝜓 is surjective, 

then following from the claim, one has ker(𝜑𝑛) = 0 and im(𝜓𝑛) = ℳ︀𝑛(𝐶), as required. ∎
The next lemma provides a natural bound on the norm on the of matrices. In particular, we have 

convergence in matrices if, and only if, we have convergence between matrix elements.

Lemma 2.5.3. Let 𝐴 be a 𝐶∗-algebra and 𝑛 ∈ ℕ. Then given 𝑎 = (𝑎𝑖𝑗) ∈ ℳ︀𝑛(𝐴), one has

max
𝑖,𝑗≤𝑛

‖𝑎𝑖𝑗‖ ≤ ‖𝑎‖ ≤ ∑
𝑖,𝑗≤𝑛

‖𝑎𝑖𝑗‖.

In particular, for each 𝑘 ∈ ℕ and 𝑎(𝑘) = (𝑎(𝑘)
𝑖𝑗 ) ∈ ℳ︀𝑛(𝐴), the sequence (𝑎(𝑘))𝑘∈ℕ converges to 𝑎 =

(𝑎𝑖𝑗) ∈ ℳ︀𝑛(𝐴) if, and only if, lim𝑘→∞ 𝑎(𝑘)
𝑖𝑗 = 𝑎𝑖𝑗 for each 𝑖, 𝑗 ≤ 𝑛.

 Proof. Fix 𝑖, 𝑗 ≤ 𝑛 and let 𝑒(𝑖𝑗) be a matrix such that its (𝑖, 𝑗)-entry is 𝑎𝑖𝑗 and zero everywhere 

else. Then for any ℎ ∈ 𝐻𝑛, one has

‖𝜑𝑛(𝑒(𝑖𝑗))ℎ‖ = ‖𝜑(𝑎𝑖𝑗)ℎ𝑗‖ ≤ ‖𝜑(𝑎𝑖𝑗)‖‖ℎ𝑗‖ ≤ ‖𝜑(𝑎𝑖𝑗)‖‖ℎ‖,

so taking the supremum over ‖ℎ‖ = 1 one obtains, ‖𝜑𝑛(𝑒(𝑖𝑗))‖ ≤ ‖𝜑(𝑎𝑖𝑗)‖. Similarly, for each ℎ ∈
𝐻, one can define ℎ′ = (0, …, ℎ, …, 0) ∈ 𝐻𝑛 where ℎ is in the 𝑗th entry, so

‖𝜑(𝑎𝑖𝑗)ℎ‖ = ‖𝜑𝑛(𝑒)ℎ′‖ ≤ ‖𝜑𝑛(𝑒)‖‖ℎ′‖ = ‖𝜑𝑛(𝑒)‖‖ℎ‖
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and taking the supremum over ‖ℎ‖ = 1, one obtains ‖𝜑(𝑎𝑖𝑗)‖ ≤ ‖𝜑𝑛(𝑒(𝑖𝑗))‖. Hence

‖𝑒(𝑖𝑗)‖ = ‖𝜑𝑛(𝑒(𝑖𝑗))‖ = ‖𝜑(𝑎𝑖𝑗)‖ = ‖𝑎𝑖𝑗‖.

Thus

‖𝑎‖ = ‖ ∑
𝑖,𝑗≤𝑛

𝑒(𝑖𝑗)‖ ≤ ∑
𝑖,𝑗≤𝑛

‖𝑒(𝑖𝑗)‖ = ∑
𝑖,𝑗≤𝑛

‖𝑎𝑖𝑗‖.

Given a ℎ ∈ 𝐻𝑛 and 𝑖, 𝑗 ≤ 𝑛, let ℎ′ = (0, …, ℎ𝑗, …, 0) ∈ 𝐻𝑛 where ℎ𝑗 is in the 𝑗th entry, so one has

‖𝜑𝑛(𝑒(𝑖𝑗))ℎ‖ = ‖𝜑(𝑎𝑖𝑗)ℎ𝑗‖ ≤ √∑
𝑖≤𝑛

‖𝜑(𝑎𝑖𝑗)ℎ𝑗‖
2 = ‖𝜑𝑛(𝑎)ℎ′‖ ≤ ‖𝜑𝑛(𝑎)‖‖ℎ‖

so taking the supremum over ‖ℎ‖ = 1, one obtains ‖𝑎𝑖𝑗‖ ≤ ‖𝑎‖, hence max𝑖,𝑗≤𝑛‖𝑎𝑖𝑗‖ ≤ ‖𝑎‖. The 

rest follows. ∎
We shall see how matrix algebras pair with common 𝐶∗-algebras and their natural constructions.

Example 2.5.4. (Some common matrix algebras). Let 𝐴 be a 𝐶∗-algebra, 𝑋 be a locally compact 

Hausdorff space, 𝐻 be a Hilbert space, and 𝑛, 𝑚 ∈ ℕ. Then:

(i) One has the obvious identification: ℳ︀𝑛(ℳ︀𝑚(𝐴)) ≅ ℳ︀𝑛𝑚(𝐴).
(ii) One has the obvious identification ℳ︀𝑛(𝒞︀0(𝑋, 𝐴)) ≅ 𝒞︀0(𝑋, ℳ︀𝑛(𝐴)). This is given by Φ :

ℳ︀𝑛(𝒞︀0(𝑋, 𝐴)) → 𝒞︀0(𝑋, ℳ︀𝑛(𝐴)) where given 𝑓 = (𝑓𝑖𝑗) ∈ ℳ︀𝑛(𝒞︀0(𝑋, 𝐴)), define (Φ(𝑓))𝑖𝑗 ∈
𝒞︀0(𝑋, 𝐴) as [(Φ(𝑓))𝑖𝑗](𝑥) = 𝑓𝑖𝑗(𝑥) for all 𝑥 ∈ 𝑋 and 𝑖, 𝑗 ≤ 𝑛. It follows that Φ is a well-

defined *-isomorphism by Lemma 2.5.3.

(iii) One has the identification ℳ︀𝑛(ℬ︀(𝐻)) ≅ ℬ︀(𝐻𝑛). Let 𝑖 ≤ 𝑛, define 𝜋𝑖 : 𝐻𝑛 → 𝐻 as the 𝑖th 

coordinate projection map, and 𝜆𝑖 : 𝐻 → 𝐻𝑛 as the 𝑖th coordinate inclusion map, so one 

defines

Φ : ℬ︀(𝐻𝑛) → ℳ︀𝑛(ℬ︀(𝐻)) : 𝑇 ↦ (𝜋𝑖 ∘ 𝑇 ∘ 𝜆𝑗)𝑖,𝑗≤𝑛.

This map is clearly linear, and as 𝜆𝑖 ∘ 𝜋𝑗 = 𝛿𝑖𝑗 where 𝛿𝑖𝑗 = id𝐻𝑛 whenever 𝑖 = 𝑗 and 0 otherwise, 

then given 𝑆, 𝑇 ∈ ℬ︀(𝐻𝑛), one has

Φ(𝑆)Φ(𝑇 ) = (𝜋𝑖 ∘ 𝑆 ∘ 𝜆𝑗)(𝜋𝑖 ∘ 𝑇 ∘ 𝜆𝑗) = Φ(𝑆𝑇 )

by direct computation. Given 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐻𝑛, one has ⟨𝜆𝑖𝑥, 𝑦⟩ = ⟨𝑥, 𝑦𝑖⟩ = ⟨𝑥, 𝜋𝑖𝑦⟩, so 

𝜆∗
𝑖 = 𝜋𝑖, thus Φ(𝑇 ∗) = (𝜋𝑗 ∘ 𝑇 ∗ ∘ 𝜆𝑖) = Φ(𝑇 )∗. So Φ is a *-homomorphism.

If Φ(𝑇 ) = 0, then given 𝑥 ∈ 𝐻𝑛, one has (𝑇𝜆𝑖𝑥𝑖)𝑗 = 0 for each 𝑖, 𝑗 ≤ 𝑛, thus 𝑇𝜆𝑖𝑥𝑖 = 0, and as 

𝑥 = ∑𝑖≤𝑛 𝜆𝑖𝑥𝑖, one has 𝑇𝑥 = 0. Hence 𝑇 = 0, and thus Φ is injective, hence an isomorphism.

Example 2.5.5. (Unitization of matrix algebras). Let 𝐴 be a 𝐶∗-algebra, then it is not true in 

general that ℳ︀𝑛(𝐴) ≅ ℳ︀𝑛(𝐴). Indeed, referring to Example 2.2.6, one has

ℳ︀𝑛(0) ≅ 0̃ ≅ ℂ ≇ ℳ︀𝑛(ℂ) ≅ ℳ︀𝑛(0̃)

unless 𝑛 = 1. It is clear that ℳ︀𝑛(𝐴) is usually much larger than ℳ︀𝑛(𝐴), e.g. dim(ℳ︀2(ℂ̃)) = 8 

and dim(ℳ︀2(ℂ)) = 5.1

Let 𝐼 be the unit of ℳ︀𝑛(𝐴) and 1 = diag(1𝐴̃, …, 1𝐴̃⏟
𝑛 times

). Let 𝑀𝑛 = ℳ︀𝑛(𝐴) + ℂ1, this is a closed 

subspace as a sum of a closed subspace and a finite-dimensional subspace, and hence it is clear that 

this is a unital 𝐶∗-algebra. As ℳ︀𝑛(𝐴) ∩ ℂ1 = 0, then we can view the sum as a vector space direct 

sum, then one has the *-isomorphism

1By Lemma 2.2.3, ℂ̃ ≅ ℂ ⊕ ℂ and ℳ︀2(ℂ) ≅ ℳ︀2(ℂ) ⊕ ℂ as they are unital algebras.
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Φ : 𝑀𝑛 → ℳ︀𝑛(𝐴) : 𝑎 + 𝛼1 ↦ 𝑎 + 𝛼𝐼.
Thus one can identify ℳ︀𝑛(𝐴) as a 𝐶∗-subalgebra of ℳ︀𝑛(𝐴) given by 𝑀𝑛. Define Ψ : ℳ︀𝑛(𝐴) →
ℳ︀𝑛(𝐴) given by Ψ(𝑎) = Φ−1(𝑎), so one has a commutative diagram with exact rows (by Functo

riality of Matrix Algebras 2.5.2),

𝜄𝐴 𝜋𝐴

𝜄ℳ︀𝑛(𝐴) 𝜋ℳ︀𝑛(ℂ)

Ψ 𝑗

0 ℳ︀𝑛(𝐴) ℳ︀𝑛(𝐴) ℳ︀𝑛(ℂ) 0

0 ℳ︀𝑛(𝐴) ℳ︀𝑛(𝐴) ℂ 0
where 𝑗 : ℂ → ℳ︀𝑛(ℂ) : 𝛼 → 𝛼𝐼 . Hence ℳ︀𝑛(𝐴) ≅ ℳ︀𝑛(𝐴) if, and only if, 𝑗 is an isomorphism by 

Five Lemma 5.4.5, which only holds if, and only if, 𝑛 = 1.

Example 2.5.6. (Matrix algebra of direct sums). Let 𝐴 and 𝐵 be 𝐶∗-algebras and 𝑛 ∈ ℕ, then 

ℳ︀𝑛(𝐴 ⊕ 𝐵) ≅ ℳ︀𝑛(𝐴) ⊕ ℳ︀𝑛(𝐵). Note that given 𝐴1 = (𝑎(1)
𝑖𝑗 ), 𝐴2 = (𝑎(2)

𝑖𝑗 ) ∈ ℳ︀𝑛(𝐴) and 𝐵1 =
(𝑏(1)

𝑖𝑗 ), 𝐵2 = (𝑏(2)
𝑖𝑗 ) ∈ ℳ︀𝑛(𝐵), then (using Einstein summation notation)

ℳ︀𝑛(𝐴 ⊕ 𝐵) ∋ ((𝑎(1)
𝑖𝑗 , 𝑏(1)

𝑖𝑗 ))((𝑎(2)
𝑖𝑗 , 𝑏(2)

𝑖𝑗 )) = ((𝑎(1)
𝑘𝑗 𝑎(2)

𝑖𝑘 , 𝑏(1)
𝑘𝑗 𝑏(2)

𝑖𝑘 ))

↔ ((𝑎(1)
𝑘𝑗 𝑎(2)

𝑖𝑘 ), (𝑏(1)
𝑘𝑗 𝑏(2)

𝑖𝑘 )) = (𝐴1𝐴2, 𝐵1𝐵2) = (𝐴1, 𝐵1)(𝐴2, 𝐵2) ∈ ℳ︀𝑛(𝐴) ⊕ ℳ︀𝑛(𝐵)

shows our equivalence. We shall make use of this identification going forward.

2.6 The Unitary Group of 𝐶∗-Algebras

We shall dedicate this chapter to discuss the structure of 𝒰︀(𝐴), which will be relevant in proving 

the split-exactness of the 𝐾0 functor; see Lemma 3.4.5. Note that 𝒰︀(𝐴) forms a group under the 

usual multiplication. Let

𝒰︀𝑛(𝐴) = 𝒰︀(ℳ︀𝑛(𝐴))
for each 𝑛 ∈ ℕ. Given 𝑢 ∈ 𝒰︀(𝐴), define ad𝑢 : 𝐴 → 𝐴 as (ad𝑢)(𝑎) = 𝑢∗𝑎𝑢, then it follows that ad𝑢 

is a *-isomorphism. Indeed, it should go without saying that ad𝑢 is a *-homomorphism, so note that:

𝑢∗𝑎𝑢 = 𝑢∗𝑏𝑢 ⟹ 𝑎 = 𝑏
(ad𝑢)(𝑢𝑎𝑢∗) = 𝑎

shows injectivity and surjectivity respectively. Note that for 𝑢 ∈ 𝒰︀(𝐴), one has ‖𝑢‖2 = ‖𝑢∗𝑢‖ =
‖1‖ = 1, hence ‖𝑢‖ = 1.

Given 𝑎, 𝑏 ∈ 𝐴, and a subset 𝐵 ⊆ 𝐴, we write 𝑎 ∼ℎ 𝑏 in 𝐵 if there is a continuous map, called 

a path, 𝛾 : [0, 1] → 𝐵 (𝐵 has the subspace topology) such that 𝛾(0) = 𝑎 and 𝛾(1) = 𝑏. It is clear 
that ∼ℎ defines an equivalence relation, and we denote

𝒰︀0(𝐴) ≔ {𝑢 ∈ 𝒰︀(𝐴) : 𝑢 ∼
ℎ

1 in 𝒰︀(𝐴)},

𝒰︀0
𝑛(𝐴) ≔ 𝒰︀0(ℳ︀𝑛(𝐴)).

We first prove a nice structural identification of 𝒰︀0(𝐴).

Lemma 2.6.1. Let 𝑢, 𝑣 be unitary elements of a unital 𝐶∗-algebra A. Then:

(i) If 𝜎(𝑢) ⊊ 𝕊1, then 𝑢 ∈ 𝒰︀0(𝐴). In particular, 𝑢 = 𝑒𝑖ℎ for some self-adjoint ℎ ∈ 𝐴.

(ii) ‖𝑢 − 𝑣‖ ≤ 2 always, and if ‖𝑢 − 𝑣‖ < 2, then 𝑢 ∼ℎ 𝑣 in 𝒰︀(𝐴).
 Proof.
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(i) If 𝜎(𝑢) ⊊ 𝕊1, then there is a 𝜃 ∈ (−𝜋, 𝜋] such that 𝑒𝑖𝜃 ∉ 𝜎(𝑢). Consider the argument map 

arg : 𝕊1 \ {𝑒𝑖𝜃} → (𝜃, 𝜃 + 2𝜋), which is continuous, and observe that 𝑒𝑖 arg(𝑢) = 𝑢 and arg(𝑢) 
is self-adjoint. Thus 𝑡 arg(𝑢) is self-adjoint for all 𝑡 ∈ [0, 1], and the map 𝑡 ↦ 𝑒𝑖𝑡 arg(𝑢) shows 

that 1𝐴 ∼ℎ 𝑒𝑖 arg(𝑢) = 𝑢. Hence 𝑢 ∈ 𝒰︀0(𝐴).
(ii) Clearly ‖𝑢 − 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖ = 2. Observe that ‖𝑢∗𝑣 − 1‖ = ‖𝑢∗(𝑣 − 𝑢)‖ ≤ ‖𝑣 − 𝑢‖ < 2, so −2 ∉

𝜎(𝑢∗𝑣 − 1) so −1 ∉ 𝜎(𝑢∗𝑣). As 𝑢∗𝑣 is unitary, then by part (i), 𝑢∗𝑣 ∼ℎ 1, so 𝑢 ∼ℎ 𝑣 by left 
mulitiplication of 𝑢. ∎

Proposition 2.6.2. (Structure of 𝒰︀0(𝐴)). Let 𝐴 be a unital 𝐶∗-algebra. Then

(i) 𝒰︀0(𝐴) is a normal subgroup of 𝒰︀(𝐴).
(ii) 𝒰︀0(𝐴) is the path-connected and a clopen subspace of 𝒰︀(𝐴).
(iii) An element 𝑎 is in 𝒰︀0(𝐴) if, and only if,

𝑎 = exp(𝑖ℎ1)⋯ exp(𝑖ℎ𝑘)
for some self-adjoint elements ℎ1, …, ℎ𝑘 ∈ 𝐴 with 𝑘 ∈ ℕ.

 Proof. Note that 𝒰︀0(𝐴) is path-connected from definition. Define

𝐺 = {exp(𝑖ℎ1)⋯ exp(𝑖ℎ𝑘) : ℎ1, …, ℎ𝑘 ∈ H(𝐴) for 𝑘 ∈ ℕ}.

Note that if ℎ is self-adjoint, then exp(𝑖ℎ) is unitary; see discussion in Chapter 2.4. In particular, 

note that given 𝑡 ∈ [0, 1], 𝑡ℎ is self-adjoint, and hence exp(𝑖𝑡ℎ) ∈ 𝒰︀(𝐴). By Lemma 2.4.5 the map 

𝑓 : Ω → 𝐴 defined as 𝑓(𝑥) = exp(𝑖𝑥) is continuous where Ω is from the lemma defined by 𝐾 =
[−‖ℎ‖, ‖ℎ‖]. As 𝜎(𝑡ℎ) ⊆ 𝐾 for each 𝑡 ∈ [0, 1], then 𝑡 ↦ exp(𝑖𝑡ℎ) is continuous as a composition 

of continuous map of 𝑓 and 𝑡 ↦ 𝑡ℎ. Thus one has exp(𝑖ℎ) ∼ℎ exp(𝑖0) = 1 in 𝒰︀(𝐴), so exp(𝑖ℎ) ∈
𝒰︀0(𝐴). As 𝒰︀(𝐴) is closed under multiplication, and multiplication preserves ∼ℎ, then it follows that 

𝐺 ⊆ 𝒰︀0(𝐴).
It is clear that 𝐺 is a subgroup of 𝒰︀(𝐴) by observing that exp(−𝑖ℎ) = exp(𝑖ℎ)−1.

Let 𝑢 ∈ 𝒰︀(𝐴) and 𝑣 ∈ 𝐺 with ‖𝑢 − 𝑣‖ < 2, then ‖1 − 𝑢𝑣∗‖ = ‖(𝑣 − 𝑢)𝑣∗‖ ≤ ‖𝑣 − 𝑢‖ < 2, then 

following from the proof of Lemma 2.6.1 (ii) and the conclusion of Lemma 2.6.1 (i), we observe 

that 𝑢𝑣∗ = 𝑒𝑖ℎ for some self-adjoint ℎ ∈ 𝐴, hence 𝑢 = 𝑒𝑖ℎ𝑣 ∈ 𝐺, so 𝐺 is open in 𝒰︀(𝐴).
As 𝐺 is an open subgroup, we observe that 𝐺 is also closed in 𝒰︀(𝐴), as 𝒰︀(𝐴) \ 𝐺 is a union of the 

cosets of 𝐺, which are homeomorphic to 𝐺.

As 𝐺 is a nonempty clopen set in 𝒰︀(𝐴) and is a subset of a connected set 𝒰︀0(𝐴), then 𝐺 = 𝒰︀0(𝐴). 
So it suffices to show that 𝒰︀0(𝐴) is normal. Indeed, given 𝑢 ∈ 𝒰︀0(𝐴) and 𝑣 ∈ 𝒰︀(𝐴), note that one 

has a continuous map 𝑡 ↦ 𝑢𝑡 in 𝒰︀(𝐴) with 𝑢0 = 𝑢 and 𝑢1 = 1, so 𝑡 ↦ 𝑣∗𝑢𝑡𝑣 is a continuous map 

then in 𝒰︀(𝐴) with 𝑣∗𝑢𝑣 = 𝑣∗𝑢1𝑣 ∼ℎ 𝑣∗𝑢0𝑣 = 1, hence 𝑣∗𝑢𝑣 ∈ 𝒰︀0(𝐴), as required. ∎
The following lemmas gives sufficient conditions on when unitary elements in 𝐵 can be identified 

as lifted unitary elements from 𝐴. They are used for showing Half Exactness of 𝐾0 3.4.7 in Chapter 3.

Lemma 2.6.3. (Whitehead). Let 𝑢, 𝑣 be unitary elements of a unital 𝐶∗-algebra 𝐴. then

(𝑢
0

0
𝑣) ∼

ℎ
(𝑢𝑣

0
0
1) ∼

ℎ
(𝑣𝑢

0
0
1) ∼

ℎ
(𝑣

0
0
𝑣) in 𝒰︀2(𝐴).

In particular, 𝑢 ⊕ 𝑢∗ ∼ℎ 12.

 Proof. Let 𝑤 = (0
1

1
0). As −1 ∉ 𝜎(𝑤), and the matrix is unitary, then 𝑤 ∼ℎ 12 by preceding 

lemma. Hence as

(𝑢
0

0
𝑣) = (𝑢

0
0
1)𝑤(𝑣

0
0
1)𝑤
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by replacing the second instance of 𝑤 with 12 to get

(𝑢
0

0
𝑣) ∼

ℎ
(𝑣

0
0
𝑢).

Replacing both instances of 𝑤 with 12 to get

(𝑢
0

0
𝑣) ∼

ℎ
(𝑢𝑣

0
0
1).

The rest follows. ∎

Lemma 2.6.4. Let 𝐴 and 𝐵 be unital 𝐶∗-algebras and let 𝜑 : 𝐴 → 𝐵 be a surjective *-homomor

phism.

(i) 𝜑(𝒰︀0(𝐴)) = 𝒰︀0(𝐵).
(ii) If 𝑢 ∈ 𝒰︀(𝐵) and suppose there is a 𝑣 ∈ 𝐴 such that 𝑢 ∼ℎ 𝜑(𝑣) in 𝒰︀(𝐵), then 𝑢 ∈ 𝜑(𝒰︀(𝐴)).
(iii) For 𝑢 ∈ 𝒰︀(𝐵), there is a 𝑣 ∈ 𝒰︀0

2 (𝐴) such that 𝜑(𝑣) = 𝑢 ⊕ 𝑢∗ where 𝜑 : ℳ︀2(𝐴) → ℳ︀2(𝐵) is 
the induced matrix map.

 Proof.

(i) As 𝜑 is surjective, then 𝜑 is unital, hence by continuity, one has 𝜑(𝒰︀0(𝐴)) ⊆ 𝒰︀0(𝐵). Note 

that by Structure of 𝒰︀0(𝐴) 2.6.2, elements of 𝒰︀0(𝐵) is a exp(𝑖ℎ) where ℎ is self-adjoint in 𝐵, 

and note that by Continuous Functional Calculus 2.4.3 (iii), one has 𝜑(exp(𝑖𝑥)) = exp(𝑖𝜑(𝑥)) 
for 𝑥 ∈ 𝐴. With that in mind, let ℎ ∈ 𝐵 be self-adjoint, then there is a 𝑥 ∈ 𝐴 such that 

𝜑(𝑥) = ℎ. Now 𝑘 = (𝑥 + 𝑥∗)/2 is self-adjoint in 𝐴 and 𝜑(𝑘) = ℎ, then exp(𝑖𝑘) ∈ 𝒰︀0(𝐴), and 

𝜑(exp(𝑖𝑘)) = exp(𝑖ℎ), hence it follows that 𝜑(𝒰︀0(𝐴)) = 𝒰︀0(𝐵).
(ii) As 1 ∼ℎ 𝜑(𝑣)∗𝑢, then 𝑢𝜑(𝑣)∗ ∈ 𝒰︀0(𝐵), then by part (i), there is a 𝑤 ∈ 𝒰︀0(𝐴) such that 𝜑(𝑤) =

𝑢𝜑(𝑣)∗, in particular, 𝜑(𝑤𝑣) = 𝑢. Hence 𝑢 ∈ 𝜑(𝒰︀(𝐴)).
(iii) By Whitehead 2.6.3, one has 𝑢 ⊕ 𝑢∗ ∼ℎ 12 in 𝒰︀2(𝐴), and as the induced map 𝜑 : ℳ︀2(𝐴) →

ℳ︀2(𝐵) is a surjective *-homomorphism, then by the rest follows from part (ii). ∎
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3 | The 𝐾0-Theory for 𝐶∗-algebras

We proceed to construct our first 𝐾0-group for 𝐶∗-algebras. The general idea is that given a 

𝐶∗-algebra 𝐴, we identify projection matrices of 𝐴 by the Murray-von Neumann relation, which 

is compatible with the direct sum operation. Hence we obtain an Abelian semigroup structure by 

quotienting out the relation, and take the Grothendieck completion to obtain the associated Abelian 

groups called the 𝐾0-groups.

The first chapter is to discover the relationship between the various relations on our projection 

matrices. The two main relations we are interested in are the Murray-von Neumann relation–where 

we identify projections by partial isometries–and the homotopic relation ∼ℎ. It will be shown that the 

Murray-von Neumann relation is equivalent to identifying bounded operators on Hilbert spaces by 

the same rank, the Murray-von Neumann relation provides an algebraic relation between projections, 

which allows algebraic approach to compute the 𝐾0-groups. The homotopic relation allows a more 

topological approach, and in fact identifications on the 𝐾0-group level.

The second chapter will be a brief construction of Grothendieck groups, where we essentially 

‘generate’ Abelian groups from Abelian semigroups by introducing inverses. As it will be shown later 

that we obtain an Abelian semigroup, in fact a monoid, through quotienting out the Murray-von 

Neumann relation on the space of projection matrices.

The third chapter will bring the first two chapters together in order to finally establish the 𝐾0
-group for 𝐶∗-algebras. We discuss the immediate consequences, and the functoriality property of 

such constructions.

3.1 Equivalence Relations on Projections

Let 𝑛 ∈ ℕ. Denote P𝑛(𝐴) be the set of all 𝑛 × 𝑛 projection matrices 𝑎 ∈ ℳ︀𝑛(𝐴), and let 

P∞(𝐴) = ⋃𝑘∈ℕ P𝑘(𝐴).
Assuming 𝐴 is unital.

Let 𝒰︀∞(𝐴) = ⋃𝑘∈ℕ 𝒰︀𝑘(𝐴).
Denote GL𝑛(𝐴) to be the set of all 𝑛 × 𝑛 invertible matrices 𝑎 ∈ ℳ︀𝑛(𝐴).
Given 𝑎, 𝑏 ∈ 𝐴, we say they are:

• Similar if there is a 𝑔 ∈ GL(𝐴) such that 𝑎 = 𝑔−1𝑏𝑔, and we write 𝑎 ∼𝑠 𝑏.
• Unitarily equivalent if there is a 𝑢 ∈ 𝒰︀(𝐴) such that 𝑎 = 𝑢𝑏𝑢∗, and we write 𝑎 ∼𝑢 𝑏. If 𝑢 ∈

𝒰︀(𝐴), we say 𝑎 ∼𝑢 𝑏 in 𝒰︀(𝐴).
• Murray-von Neumann equivalent if there is a 𝑣 ∈ 𝐴 such that 𝑎 = 𝑣∗𝑣, and 𝑏 = 𝑣∗𝑣, and we 

write 𝑎 ∼0 𝑏.
We denote GL0

𝑘(𝐴) ≔ {𝑔 ∈ GL𝑘(𝐴) : 𝑔 ∼ℎ 1𝑘 in GL(𝐴)} with GL0(𝐴) ≔ GL0
1(𝐴).

Given two continuous maps 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝐵 between topological spaces 𝐴 and 𝐵, then 

they are pointwise homotopic in 𝐵 if there is a map 𝐹 : [0, 1] × 𝐴 → 𝐵 such that 𝐹(0, 𝑎) =
𝑓(𝑎) and 𝐹(1, 𝑎) = 𝑔(𝑎) for all 𝑎 ∈ 𝐴, and 𝑡 ↦ 𝐹(𝑡, 𝑎) is continuous for each 𝑎 ∈ 𝐴, and we write 

𝑓 ∼ℎ 𝑔, in particular, one has 𝑓(𝑎) ∼ℎ 𝑔(𝑎) for each 𝑎 ∈ 𝐴. We omit the prefix pointwise if 𝐹  is 

continuous, which automatically implies pointwise homotopy.

It is clear that ∼ℎ, ∼𝑢, and ∼𝑠 are equivalent relations, and it turns out ∼0 is an equivalent 

relation on P(𝐴). We will show that in a more general setting: given 𝑝 ∈ P𝑛(𝐴) and 𝑞 ∈ P𝑚(𝐴), 
then we write 𝑝 ∼ 𝑞 is there is a 𝑣 ∈ ℳ︀𝑚,𝑛(𝐴) such that 𝑝 = 𝑣∗𝑣 and 𝑞 = 𝑣𝑣∗, and note that 𝑣 are 
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partial isometries.1

Proposition 3.1.1. The relation ∼ on P∞(𝐴) is an equivalence relation. Furthemore:

(i) If 𝑣 ∈ ℳ︀𝑚,𝑛(𝐴) is a partial isometry, then 𝑣𝑣∗𝑣 = 𝑣.
(ii) If 𝜑 : 𝐴 → 𝐵 is a *-homomorphism to a 𝐶∗-algebra 𝐵, then 𝑝 ∼ 𝑞 implies 𝜑(𝑝) ∼ 𝜑(𝑞) for all 

𝑝, 𝑞 ∈ P∞(𝐴).
 Proof. Let 𝑝 ∈ P𝑘(𝐴), 𝑞 ∈ P𝑚(𝐴), and 𝑟 ∈ P𝑛(𝐴). It is clear that 𝑝 = 𝑝∗𝑝 and 𝑝 = 𝑝𝑝∗, so ∼ 

is reflexive.

Given 𝑣 ∈ ℳ︀𝑚,𝑛(𝐴) such that 𝑝 = 𝑣∗𝑣 and 𝑞 = 𝑣𝑣∗, then replacing 𝑣 with 𝑣∗ to get 𝑞 ∼ 𝑝, so ∼ is 

symmetric. Assume 𝑚 ≥ 𝑛, and let 𝑧 = (𝑣 − 𝑣𝑣∗𝑣) ⊕ 01,𝑚−𝑛+1 ∈ ℳ︀𝑚+1,𝑚+1(𝐴), so
𝑧∗𝑧 = ((𝑣∗ − 𝑣∗𝑣𝑣∗) ⊕ 0𝑚−𝑛+1,1)((𝑣 − 𝑣𝑣∗𝑣) ⊕ 01,𝑚−𝑛+1)

= (𝑣∗𝑣 − (𝑣∗𝑣)2 − (𝑣∗𝑣)2 + (𝑣∗𝑣)3) ⊕ 0𝑚−𝑛+1,𝑚−𝑛+1 = 0,

hence ‖𝑧‖2 = ‖𝑧∗𝑧‖ = 0, thus 𝑧 = 0, i.e. 𝑣 = 𝑣𝑣∗𝑣. Thus 𝑣∗ = 𝑣∗𝑣𝑣∗, in particular, 𝑣𝑣∗ = 𝑣𝑣∗𝑣𝑣∗ =
(𝑣𝑣∗)2, and as 𝑣𝑣∗ is self-adjoint, then 𝑣∗ is also a partial isometry. This shows (i).

Suppose 𝑝 ∼ 𝑞 and 𝑞 ∼ 𝑟, so there is a 𝑣 ∈ ℳ︀𝑘,𝑚(𝐴), and 𝑤 ∈ ℳ︀𝑚,𝑛(𝐴) such that 𝑝 = 𝑣∗𝑣, 𝑞 =
𝑣𝑣∗ = 𝑤∗𝑤, and 𝑟 = 𝑤𝑤∗, then

(𝑤𝑣)∗(𝑤𝑣) = 𝑣∗𝑤∗𝑤𝑣 = 𝑣∗𝑞𝑣 = (𝑣∗𝑣)2 = 𝑝,

and

(𝑤𝑣)(𝑤𝑣)∗ = 𝑤𝑣𝑣∗𝑤∗ = 𝑤𝑞𝑤∗ = (𝑤𝑤∗)2 = 𝑟,

so 𝑝 ∼ 𝑟. Hence ∼ is transitive, thus ∼ is an equivalence relation.

Let 𝑝, 𝑞 ∈ P∞(𝐴) with 𝑝 ∼ 𝑞, then 𝑝 = 𝑣𝑣∗ and 𝑞 = 𝑣∗𝑣 for some 𝑣 ∈ ℳ︀𝑚,𝑛(𝐴) and 𝑚, 𝑛 ∈ ℕ, thus 

𝜑(𝑝) = 𝜑(𝑣)𝜑(𝑣)∗ and 𝜑(𝑞) = 𝜑(𝑣)∗𝜑(𝑣), so 𝜑(𝑝) ∼ 𝜑(𝑞). This shows (ii). ∎
The next propositions tells us how the relations are related to each other.

Proposition 3.1.2. Let 𝑝, 𝑞 be projections of a unital 𝐶∗-algebra 𝐴. Then the following are 

equivalent:

(i) 𝑝 ∼𝑢 𝑞 in 𝒰︀(𝐴);

(ii) 𝑝 ∼𝑢 𝑞 in 𝒰︀(𝐴);
(iii) 𝑝 ∼ 𝑞 and 1𝐴 − 𝑝 ∼ 1𝐴 − 𝑞.
Note that if 𝐴 is nonunital, then 𝑝 ∼ 𝑞 is now implied by 𝑝 ∼𝑢 𝑞.

 Proof. Let 𝑝 = 1𝐴̃ − 1𝐴, so 𝐴 = 𝐴 + ℂ𝑓 . Note that 𝑎𝑓 = 𝑓𝑎 = 0 for all 𝑎 ∈ 𝐴.

(i)⟹(ii). If 𝑝 ∼𝑢 𝑞, then there is a 𝑧 ∈ 𝒰︀(𝐴) and 𝜆 ∈ ℂ such that 𝑝 = 𝑧𝑞𝑧∗. Now there is a 𝑢 ∈
𝐴 such that 𝑧 = 𝑢 + 𝜆𝑓 , now observe that

1𝐴̃ = 𝑧∗𝑧 = 𝑢∗𝑢 + |𝜆|2𝑓 = 𝑢∗𝑢 − |𝜆|21𝐴 + |𝜆|21𝐴̃

so |𝜆|2 = 1 by comparing 1𝐴̃, and 𝑢∗𝑢 − |𝜆|21𝐴 = 0 by comparing elements in 𝐴, hence 𝑢∗𝑢 = 1𝐴. 

Similarly, 𝑢𝑢∗ = 1𝐴 by looking at 𝑧𝑧∗ = 1𝐴̃, thus 𝑢 ∈ 𝒰︀(𝐴). Now observe that

𝑞 = 𝑧∗𝑝𝑧 = (𝑢∗ + 𝜆𝑓)𝑝(𝑢 + 𝜆𝑓) = 𝑢∗𝑝𝑢,

as required.

(ii)⟹(iii). Suppose 𝑞 = 𝑢𝑝𝑢∗ for some 𝑢 ∈ 𝒰︀(𝐴), and let 𝑣 = 𝑢𝑝 and 𝑤 = 𝑢(1𝐴 − 𝑝). Now one has

1Recall that 𝑣 is a partial isometry if 𝑣∗𝑣 is a projection; see discussion after Lemma 2.3.3.
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𝑣∗𝑣 = 𝑝𝑢∗𝑢𝑝∗ = 𝑝 and 𝑣𝑣∗ = 𝑢𝑝𝑝∗𝑢∗ = 𝑞,
similarly 𝑤∗𝑤 = 1𝐴 − 𝑝 and 𝑤𝑤∗ = 1𝐴 − 𝑞.

(3.1)

(iii)⟹(i). Suppose there are 𝑣, 𝑤 ∈ 𝐴 such that (3.1) is satisfied. Let 𝑧 = 𝑣 + 𝑤 + 𝑓 , then

𝑧∗𝑧 = (𝑣∗ + 𝑤∗ + 𝑓)(𝑣 + 𝑤 + 𝑓) = 𝑝 + 𝑣∗𝑤 + 𝑤∗𝑣 + (1𝐴 − 𝑝) + 𝑓
= 1𝐴̃ + (𝑣∗𝑤 + 𝑤∗𝑣)

and similarly

𝑧𝑧∗ = 1𝐴̃ + (𝑣𝑤∗ + 𝑤𝑣∗).

Now

𝑣∗𝑤 = (𝑣∗𝑞)((1𝐴 − 𝑞)𝑤) = 𝑣∗(𝑞(1𝐴 − 𝑞))𝑤 = 0

similarly 𝑤∗𝑣 = 𝑣𝑤∗ = 𝑤𝑣∗ = 0, hence 𝑧 ∈ 𝒰︀(𝐴). Finally,

𝑧𝑝𝑧∗ = (𝑣 + 𝑤 + 𝑓)𝑝(𝑣∗ + 𝑤∗ + 𝑓) = 𝑣𝑝𝑣∗ + 𝑤𝑝𝑤∗ + 𝑣𝑝𝑤∗ + 𝑤𝑝𝑣∗

= 𝑞2 + 0 + 0 + 0 = 𝑞. ∎

Lemma 3.1.3. Let 𝑎, 𝑏 be elements of a unital 𝐶∗-algebra 𝐴. If 𝑎 ∈ GL(𝐴) and ‖𝑎 − 𝑏‖ ≤ ‖𝑎−1‖−1, 

then 𝑏 ∈ GL(𝐴) and 𝑎 ∼ℎ 𝑏 in GL(𝐴). In particular, if ‖𝑎‖ < 𝜆 for some 𝜆 > 0, then ±𝜆 ∉ 𝜎(𝑎).
 Proof. The inverse of 𝑏 is given by the series

1
𝑏

= 1
𝑎 − (𝑎 − 𝑏)

= 𝑎−1

1 − 𝑎−1(𝑎 − 𝑏)
= 𝑎−1 ∑

𝑛≥0
(𝑎−1(𝑎 − 𝑏))𝑛

which exists as ‖𝑎 − 𝑏‖ ≤ ‖𝑎−1‖−1. Define 𝑐𝑡 = 𝑡𝑏 + (1 − 𝑡)𝑎 for 𝑡 ∈ [0, 1], thus

‖𝑎 − 𝑐𝑡‖ = ‖𝑎 − 𝑡𝑏 − 𝑎 + 𝑡𝑎‖ ≤ 𝑡‖𝑎 − 𝑏‖ ≤ ‖𝑎−1‖−1,

hence 𝑐𝑡 ∈ GL(𝐴), thus 𝑎 = 𝑐0 ∼ℎ 𝑐1 = 𝑏 as 𝑡 ↦ 𝑐𝑡 is continuous.

If ‖𝑎‖ < 𝜆 for some 𝜆 > 0, then

1
𝑎 ± 𝜆1

= ±𝜆−1

1 ± 𝜆−1𝑎
= ±𝜆−1 ∑

𝑛≥0
(∓𝜆−1𝑎)𝑛

which exists as ‖𝑎/𝜆‖ < 1. Hence 𝑎 ± 𝜆1 is invertible, so ±𝜆 ∉ 𝜎(𝑎). ∎

Lemma 3.1.4. Let 𝑎, 𝑏 be self-adjoint elements in a unital 𝐶∗-algebra 𝐴 such that 𝑏 = 𝑧𝑎𝑧−1 for 

some 𝑧 ∈ GL(𝐴), then 𝑏 = 𝜔(𝑧)𝑎𝜔(𝑧)∗. Hence, 𝑎 ∼𝑠 𝑏 implies 𝑎 ∼𝑢 𝑏 in 𝒰︀(𝐴).
 Proof. Note that 𝑏𝑧 = 𝑧𝑎 implies 𝑧∗𝑏 = 𝑎𝑧∗, hence

|𝑧|2𝑎 = (𝑧∗𝑧)𝑎 = 𝑧∗(𝑏𝑧) = (𝑎𝑧∗)𝑧 = 𝑎|𝑧|2.

Thus 𝑎 commutes with |𝑧|2, hence everything in 𝐴⟨1, |𝑧|2⟩. By considering the map 𝑓 : 𝑡 ↦ 𝑡−1
2  on 

𝜎(|𝑧|2), one has |𝑧| = 𝑓(|𝑧|2) ∈ 𝐴⟨1, |𝑧|2⟩, so 𝑎 commutes with |𝑧|. Now

𝜔(𝑧)𝑎𝜔(𝑧)∗ = 𝑧|𝑧|−1𝑎|𝑧|−1𝑧∗ = 𝑧𝑎(𝑧∗𝑧)−1𝑧∗ = 𝑏. ∎

Proposition 3.1.5. Let 𝑝, 𝑞 be projections of a 𝐶∗-algebra 𝐴. Then 𝑝 ∼ℎ 𝑞 in P(𝐴) if, and only if, 

there is a 𝑢 ∈ 𝒰︀0(𝐴) such that 𝑞 = 𝑢𝑝𝑢∗.

 Proof. “⟸”. Suppose 𝑞 = 𝑢𝑝𝑢∗ for some 𝑢 ∈ 𝒰︀0(𝐴), then 𝑢 ∼ℎ 1𝐴̃, in particular 𝑞 ∼ℎ 1𝐴̃𝑝1𝐴̃ =
𝑝.

“⟹”. Suppose 𝑝 ∼ℎ 𝑞 in P(𝐴), then by compactness, there is a 𝑛 ∈ ℕ and 𝑝1, …, 𝑝𝑛 ∈ P(𝐴) 
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such that 𝑝 = 𝑝1 ∼ℎ 𝑝2 ∼ℎ … ∼ℎ 𝑝𝑛 = 𝑞 with ‖𝑝𝑖 − 𝑝𝑖+1‖ < 1/2 for each 1 ≤ 𝑖 ≤ 𝑛 − 1. So by 

transitivity of ∼𝑢, we may assume ‖𝑝 − 𝑞‖ < 1/2. Write 1 =̃
𝐴

, and define

𝑧 = 𝑝𝑞 + (1 − 𝑝)(1 − 𝑞) ∈ 𝐴

now one has

‖𝑧 − 1‖ = ‖𝑝𝑞 + 1 − 𝑝 − 𝑞 + 𝑝𝑞 − 1‖
= ‖𝑝𝑞 − 𝑝2 + 𝑝𝑞 − 𝑞2‖
= ‖𝑝(𝑞 − 𝑝) + (𝑝 − 𝑞)𝑞‖
= (‖𝑝‖ + ‖𝑞‖)‖𝑝 − 𝑞‖
≤ 2‖𝑝 − 𝑞‖ < 1,

hence 𝑧 ∈ GL(𝐴) and 𝑧 ∼ℎ 1 in GL(𝐴) by Lemma 3.1.3.

Thus 𝑢 ≔ 𝜔(𝑧) ∼ℎ 𝜔(1) = 1 in 𝒰︀(𝐴) (see Example 2.4.8), so 𝑢 ∈ 𝒰︀0(𝐴). As 𝑝𝑧 = 𝑝𝑞 = 𝑧𝑞, hence 

𝑞 = 𝑧−1𝑝𝑧, hence by Lemma 3.1.4, one has 𝑞 = 𝑢∗𝑝𝑢, as required. ∎

Lemma 3.1.6. Let 𝑝 be a projection in a 𝐶∗-algebra 𝐴, and 𝑎 ∈ 𝐴 be self-adjoint. Let 𝛿 = ‖𝑎 −
𝑝‖, then 𝜎(𝑎) ⊆ [−𝛿, 𝛿] ∪ [1 − 𝛿, 1 + 𝛿].

 Proof. Let 𝑡 ∈ ℝ \ ([−𝛿, 𝛿] ∪ [1 − 𝛿, 1 + 𝛿]) and 𝑑 > 𝛿 be the distance of 𝑡 to {0, 1}. Now 𝑝 −
𝑡1 is invertible in 𝐴, so

‖(𝑝 − 𝑡1)−1‖ = 𝑟((𝑝 − 𝑡1)−1) = max{|−𝑡|−1, |1 − 𝑡|−1} = 𝑑−1

as 𝜎((𝑝 − 𝑡1)−1) = {−𝑡−1, (1 − 𝑡)−1} by Continuous Functional Calculus 2.4.3 (ii). Thus

‖1 − (𝑝 − 𝑡1)−1(𝑎 − 𝑡1)‖ = ‖(𝑝 − 𝑡1)−1(𝑝 − 𝑡1 − 𝑎 + 𝑡1)‖

≤ ‖(𝑝 − 𝑡1)−1‖‖𝑝 − 𝑎‖ < 𝑑−1𝛿 < 1,

hence (𝑝 − 𝑡1)−1(𝑎 − 𝑡1) is invertible, hence so is 𝑎 − 𝑡1, thus 1 ∉ 𝜎(𝑎), as required. ∎

Proposition 3.1.7. Let 𝑝, 𝑞 be projections on a 𝐶∗-algebra 𝐴. Then ‖𝑝 − 𝑞‖ ≤ 1 always, and if ‖𝑝 −
𝑞‖ < 1, then 𝑝 ∼ℎ 𝑞 in P(𝐴).

 Proof. Let 𝑢 = 1 − 2𝑝 ∈ 𝐴, then 𝑢∗ = 𝑢, and 𝑢∗𝑢 = (1 − 2𝑝)2 = 1, so 𝑢 ∈ 𝒰︀(𝐴), hence ‖𝑢‖ =
1. In particular, ‖𝑝 − 𝑞‖ ≤ ‖1

2 ⋅ 1 − 𝑝‖ + ‖1
2 ⋅ 1 − 𝑞‖ ≤ 1. Now suppose ‖𝑝 − 𝑞‖ < 1.

Let 𝑎𝑡 = (1 − 𝑡)𝑝 + 𝑡𝑞, so 𝑡 ↦ 𝑎𝑡 is continuous on 𝑡 ∈ [0, 1] and 𝑝 = 𝑎0 ∼ℎ 𝑎1 = 𝑞 in 𝐴. Let 𝑡 ∈
[0, 1], and it suffices to show 𝑎𝑡 ∈ 𝑃(𝐴). Now one has

min{‖𝑎𝑡 − 𝑝‖, ‖𝑎𝑡 − 𝑞‖} = min{𝑡‖𝑝 − 𝑞‖, (1 − 𝑡)‖𝑝 − 𝑞‖} ≤ 1
2
‖𝑝 − 𝑞‖ < 1

2
.

Let 𝛿 = ‖𝑝−𝑞‖
2  and Ω = {𝑎 ∈ 𝐴 : 𝜎(𝑎) ⊆ [−𝛿, 𝛿] ∪ [1 − 𝛿, 1 + 𝛿]}, thus by Lemma 3.1.6, one has 𝑎𝑡 ∈

Ω. As 𝛿 < 1
2 , then define 𝑓 ∈ 𝒞︀([−𝛿, 𝛿] ∪ [1 − 𝛿, 1 + 𝛿]) by 𝑓|[−𝛿,𝛿] = 0 and 𝑓|[1−𝛿,1+𝛿] = 1, thus 

𝑓(𝑎𝑡) ∈ P(𝐴).
As 𝑎𝑡 is self-adjoint, then by Lemma 2.4.5, the map 𝑡 ↦ 𝑓(𝑎𝑡) is continuous, so

𝑝 = id𝜎(𝑝)(𝑝) = 𝑓(𝑝) = 𝑓(𝑎0) ∼
ℎ

𝑓(𝑎1) = 𝑞 in P(𝐴). ∎
It turns out, these relations are rather ‘equivalent’ when lifted into matrices.

Proposition 3.1.8. Let 𝑝, 𝑞 be projections in a 𝐶∗-algebra 𝐴. Then

(i) If 𝑝 ∼ 𝑞, then 𝑝 ⊕ 01 ∼𝑢 𝑞 ⊕ 01 in ℳ︀2(𝐴).
(ii) If 𝑝 ∼𝑢 𝑞, then 𝑝 ⊕ 01 ∼ℎ 𝑞 ⊕ 01 in ℳ︀2(𝐴).

19



The 𝐾0-Theory for 𝐶∗-algebras Equivalence Relations on Projections

 Proof.

(i) Suppose there is a 𝑣 ∈ 𝐴 such that 𝑝 = 𝑣∗𝑣 and 𝑞 = 𝑣𝑣∗. Note 1 = 1𝐴̃ here. Define:

𝑢 = ( 𝑣
1 − 𝑝

1 − 𝑞
𝑣∗ ) and 𝑤 = ( 𝑞

1 − 𝑞
1 − 𝑞

𝑞 ).

Using the fact that 1 − 𝑝 is also a projection, and 𝑣𝑝 = 𝑣 = 𝑞𝑣, one can conclude that 𝑢, 𝑤 ∈
𝒰︀2(𝐴). Now

𝑤𝑢(𝑝
0

0
0)𝑢∗𝑤∗ = 𝑤(𝑞

0
0
0)𝑤∗ = (𝑞

0
0
0)

and

𝑤𝑢 = (𝑞𝑣 + (1 − 𝑞)(1 − 𝑝)
(1 − 𝑞)𝑣 + 𝑞(1 − 𝑝)

(1 − 𝑞)𝑣∗

(1 − 𝑞) + 𝑞𝑣∗) = (𝑣 − 𝑝 − 𝑞 + 𝑞𝑝
𝑞 − 𝑞𝑝

𝑣∗ − 𝑞𝑣∗

𝑞𝑣∗ − 𝑞 ) + (1
0

0
1) ∈ 𝒰︀2(𝐴).

As (1
0

0
1) is the identity in ℳ︀2(𝐴), then 𝑤𝑢 ∈ 𝒰︀(𝑀2(𝐴)) by the identification made in 

Example 2.5.5. So 𝑝 ⊕ 01 ∼𝑢 𝑞 ⊕ 01.

(ii) Suppose there is a 𝑢 ∈ 𝒰︀(𝐴) such that 𝑞 = 𝑢𝑝𝑢∗. By Whitehead 2.6.3, there is a path 𝑡 ↦ 𝑤𝑡 

in 𝒰︀2(𝐴) on 𝑡 ∈ [0, 1] such that 𝑤0 = 12 and 𝑤1 = 𝑢 ⊕ 𝑢∗. Thus it is clear that 𝑡 ↦ 𝑤𝑡(𝑝 ⊕
01)𝑤∗

𝑡  is a path on [0, 1] from 𝑝 ⊕ 01 to 𝑞 ⊕ 01. ∎
Thus one has current the roadmap of relations as shown in Diagram 1.

3.1.7

3.1.5 3.1.2

3.1.2

3.1.2

3.1.4
3.1.8

3.1.8

𝑝 ∼ℎ 𝑞 in P(𝐴) 𝑝 ∼𝑢 𝑞 in 𝒰︀0(𝐴) 𝑝 ∼𝑢 𝑞 in 𝒰︀(𝐴) 𝑝 ∼𝑢 𝑞 in 𝒰︀(𝐴)

𝑝 ∼𝑠 𝑞

𝑝 ∼ 𝑞 1𝐴 − 𝑝 ∼ 1𝐴 − 𝑞

‖𝑝 − 𝑞‖ < 1 𝑝 ⊕ 01 ∼ℎ 𝑞 ⊕ 01 in P2(𝐴)

𝑝 ⊕ 01 ∼𝑢 𝑞 ⊕ 01

in 𝒰︀2(𝐴)

Diagram 1: The roadmap of relations given projection elements 𝑝 and 𝑞 in a 𝐶∗-algebra 𝐴, where 

↝ means that the underlying 𝐶∗-algebra is unital.

Here is the promised result where the ∼ identifies bounded operators on Hilbert spaces by its 

rank. Furthermore, in the finite-dimensional case, one has that ∼ and ∼𝑢 are equivalent. Note that 

given a bounded operator 𝑇  on a Hilbert space 𝐻, we define rank(𝑇 ) = dim(im(𝑇 )) where the 

dimension is the cardinality of Schauder (orthonormal) basis of the underlying Hilbert space.

Proposition 3.1.9. Let 𝐻 be a Hilbert space, and 𝑝, 𝑞 ∈ P∞(ℬ︀(𝐻)). Then

(i) One has 𝑝 ∼ 𝑞 if, and only if, rank(𝑝) = rank(𝑞).
(ii) One has 𝑝 ∼𝑢 𝑞 if, and only if, rank(𝑝) = rank(𝑞) and dim(ker(𝑝)) = dim(ker(𝑞)).
(iii) One has rank(𝑝 ⊕ 𝑞) = rank(𝑝) + rank(𝑞) as cardinal numbers (or infinities).

Assume 𝐻 is finite-dimensional.

(iii) One has 𝑝 ∼ 𝑞 if, and only if, 𝑝 ∼𝑢 𝑞.
(iv) One has tr(𝑝) = rank(𝑝), where 𝑝 is identified as a matrix. In particular, if rank(𝑝) = 𝑘, then 

𝑝 ∼ 𝐼𝑘.

 Proof. Assume 𝑝 ∈ P𝑛(ℬ︀(𝐻)) and 𝑞 ∈ P𝑚(ℬ︀(𝐻)) for some 𝑛, 𝑚 ∈ ℕ, and we make the 

identification ℳ︀𝑛(ℬ︀(𝐻)) ≅ ℬ︀(𝐻𝑛), see Example 2.5.4.
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(i) Suppose 𝑝 ∼ 𝑞, then then there is a 𝑣 ∈ ℬ︀(𝐻𝑛, 𝐻𝑚) such that 𝑝 = 𝑣∗𝑣 and 𝑞 = 𝑣𝑣∗. By 

Proposition 3.1.1, one has 𝑣 = 𝑞𝑣 = 𝑣𝑝, so we can consider 𝑣 as a map from im(𝑝) to im(𝑞), 
which are Hilbert spaces as im(𝑝) = ker(id𝐻 −𝑝) is closed and similarly for im(𝑞). Let 𝑥 ∈
𝐻𝑚, as 𝑞 = 𝑞𝑞 = 𝑣𝑝𝑣∗, then 𝑣(𝑝𝑣∗𝑥) = 𝑞𝑥 shows that 𝑣 is surjective. Let 𝑥, 𝑦 ∈ 𝐻𝑛, so as

⟨𝑣𝑝𝑥, 𝑣𝑝𝑦⟩𝐻 = ⟨𝑝𝑥, 𝑣∗𝑣𝑝𝑦⟩𝐻 = ⟨𝑝𝑥, 𝑝𝑝𝑦⟩𝐻 = ⟨𝑝𝑥, 𝑝𝑦⟩𝐻 ,

so 𝑣 is an isometry. Thus im(𝑝) ≅ im(𝑞) as Hilbert spaces, hence rank(𝑝) = rank(𝑞). If 

rank(𝑝) = rank(𝑞), then there is a surjective linear isometry 𝑣 : im(𝑝) → im(𝑞). Let 𝑥, 𝑦 ∈ 𝐻𝑛, 

one has that

⟨𝑣∗𝑣𝑝𝑥, 𝑝𝑦⟩im(𝑝) = ⟨𝑣𝑝𝑥, 𝑣𝑝𝑦⟩im(𝑞) = ⟨𝑝𝑥, 𝑝𝑦⟩im(𝑝) = ⟨𝑝𝑝𝑥, 𝑝𝑦⟩im(𝑝),

thus the maps 𝑣∗𝑣 and 𝑝 agree on the inner product of im(𝑝), hence 𝑣∗𝑣 = 𝑝|im(𝑝). Similarly, 

𝑣∗ : im(𝑞) → im(𝑝) defines a linear isometry, and by similar argument, one has 𝑣𝑣∗ = 𝑞|im(𝑞), so 

𝑣 = 𝑣𝑝|im(𝑝) = 𝑞𝑣. Define 𝑤 : 𝐻𝑛 → 𝐻𝑚 as 𝑤𝑥 = 𝑣𝑝𝑥 for 𝑥 ∈ 𝐻𝑛, so 𝑤∗𝑤 = 𝑝∗𝑣∗𝑣𝑝 = 𝑝𝑝𝑝 =
𝑝 and 𝑤𝑤∗ = 𝑣𝑝𝑝∗𝑣∗ = 𝑣𝑝𝑣∗ = 𝑞𝑣𝑣∗ = 𝑞𝑞 = 𝑞, so 𝑝 ∼ 𝑞, as required.

(ii) By Diagram 1, part (i), and the fact that ker(𝑝) = im(1𝐴 − 𝑝), one has

𝑝 ∼𝑢 𝑞 ⟺ 𝑝 ∼ 𝑞 and 1𝐴 − 𝑝 ∼ 1𝐴 − 𝑞

⟺ rank(𝑝) = rank(𝑞) and dim(ker(𝑝)) = dim(ker(𝑞)).
(iii) Note that one has the map 𝑝 ⊕ 𝑞 : 𝐻𝑛 ⊕ 𝐻𝑚 → 𝐻𝑛 ⊕ 𝐻𝑚, hence im(𝑝 ⊕ 𝑞) ≅ im(𝑝) ⊕ im(𝑞), 

then the statement follows.

(iv) If 𝐻 if finite-dimensional, then by rank-nullity theorem, one has rank(𝑝) = rank(𝑞) if, and only 

if, dim(ker(𝑝)) = dim(ker(𝑞)), the rest follows from (ii).

(v) Choose a basis 𝐵 for 𝐻, and denote [𝑝]𝐵 to be the matrix of 𝑝 with rest to the basis 𝐵. Note 

that by the cyclic property of trace, tr(𝑝) = tr([𝑝]𝐵) is independent of the basis 𝐵. Since tr(𝑝) 
is the sum of eigenvalues of 𝑝, and the only eigenvalues of 𝑝 are 0 and 1, then it follows that 

tr(𝑝) = dim(ker(𝑝 − id𝐻)) = dim(im(𝑝)) = rank(𝑝), as required. ∎

3.2 Grothendieck Groups

The purpose of this section is to provide a careful treatment of extending Abelian semigroups into 

full on Abelian groups, which will be the last ingredient we need to construct our 𝐾0-groups.

Recall that a semigroup (𝑆, +) is a nonempty set 𝑆 equipped with a binary operation + : 𝑆 ×
𝑆 → 𝑆 that is only needed to be associative. We say the semigroup (𝑆, +) is Abelian if + is 

furthermore commutative, and we say (𝑆, +) is a monoid if there exists an additive identity 0 such 

that 𝑠 + 0 = 0 + 𝑠 = 𝑠 for all 𝑠 ∈ 𝑆. We will be mainly interested in Abelian semigroups, so assume 

(𝑆, +) as such. We say 𝑆 has the cancellation property if for each 𝑥, 𝑦, 𝑧 ∈ 𝑆, 𝑥 + 𝑧 = 𝑦 + 𝑧 
implies 𝑥 = 𝑦.

Define a relation ∼ on 𝑆 × 𝑆 as such:

(𝑥1, 𝑦1) ∼ (𝑥2, 𝑦2) if, and only if, there is a 𝑧 ∈ 𝑆 such that 𝑥1 + 𝑦2 + 𝑧 = 𝑥2 + 𝑦1 + 𝑧.
Note that this relation is clearly reflexive as 𝑆 ≠ ∅ and symmetric, and further work can show that 

this relation is transitive. Define 𝔾(𝑆) = 𝑆 × 𝑆/ ∼, and define ⟨𝑥, 𝑦⟩ to be an equivalence class of 

(𝑥, 𝑦) ∈ 𝑆 × 𝑆 under ∼. Define the operation + on 𝐺(𝑆) by
⟨𝑥1, 𝑦1⟩ + ⟨𝑥2, 𝑦2⟩ = ⟨𝑥1 + 𝑥2, 𝑦1 + 𝑦2⟩.

It follows that (𝔾(𝑆), +) is an Abelian group with additive identity given by 0 = ⟨𝑥, 𝑥⟩, and additive 

inverses given by −⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩ for all 𝑥, 𝑦 ∈ 𝑆; for details, refer to [6, p. 39]. We say 𝔾(𝑆) is 

21



The 𝐾0-Theory for 𝐶∗-algebras Grothendieck Groups

the Grothendieck group or Grothendieck completion of 𝑆, and we also have a canonical map 

or Grothendieck map 𝛾𝑆 : 𝑆 → 𝔾(𝑆) given by 𝛾𝑆(𝑥) = ⟨𝑥 + 𝑦, 𝑦⟩ for a fixed 𝑦 ∈ 𝑆, note that 𝛾𝑆 is 

well-defined and is independent of the choice of 𝑦 ∈ 𝑆.

We have some nice properties of Grothendieck groups in general, in particularly, (iv) in the next 

proposition tells us that Grothendieck completions of Abelian semigroups with the cancellation 

property are precisely the smallest Abelian group that is generated by the semigroup.

Proposition 3.2.1. (Structure of Grothendieck Groups). Let 𝑆 be an Abelian semigroup.

(i) 𝔾(𝑆) = 𝛾𝑆(𝑆) − 𝛾𝑆(𝑆).
(ii) Given 𝑥, 𝑦 ∈ 𝑆, one has 𝛾𝑆(𝑥) = 𝛾𝑆(𝑦) if, and only if, 𝑥 + 𝑧 = 𝑦 + 𝑧 for some 𝑧 ∈ 𝑆.

(iii) 𝛾𝑆 is injective if, and only if, 𝑆 has the cancellation property.

(iv) Let 𝐻 be an Abelian group, and suppose 𝑆 is an Abelian semisubgroup of 𝐻. Then 𝑆 has the 

cancellation property and 𝔾(𝑆) ≅ ⟨𝑆⟩ = 𝑆 − 𝑆.

 Proof.

(i) Clearly 𝛾𝑆(𝑆) − 𝛾𝑆(𝑆) ⊆ 𝔾(𝑆). Now given ⟨𝑥, 𝑦⟩ ∈ 𝔾(𝑆), one has

⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑦⟩ + 2⟨𝑦, 𝑦⟩ = ⟨𝑥 + 2𝑦, 3𝑦⟩ = ⟨𝑥 + 𝑦, 𝑦⟩ − ⟨𝑦 + 𝑦, 𝑦⟩ = 𝛾𝑆(𝑥) − 𝛾𝑆(𝑦),

so 𝔾(𝑆) = 𝛾𝑆(𝑆) − 𝛾𝑆(𝑆).
(ii) Suppose 𝛾𝑆(𝑥) = 𝛾𝑆(𝑦), so ⟨𝑥 + 𝑦, 𝑦⟩ = ⟨𝑦 + 𝑥, 𝑥⟩. Then there is a 𝑤 ∈ 𝑆 such that

𝑥 + 𝑦 + 𝑥 + 𝑤 = 𝑦 + 𝑦 + 𝑥 + 𝑤,

choose 𝑧 = 𝑦 + 𝑥 + 𝑤, and we are done. Conversely, suppose 𝑥 + 𝑧 = 𝑦 + 𝑧 for some 𝑧 ∈ 𝑆, 

then

𝛾𝑆(𝑥) = ⟨𝑥 + 𝑧, 𝑧⟩ = ⟨𝑦 + 𝑧, 𝑧⟩ = 𝛾𝑆(𝑦).
(iii) This follows from (ii).

(iv) It is clear that 𝑆 − 𝑆 ⊆ ⟨𝑆⟩ (the smallest subgroup of 𝐻 containing 𝑆), and 𝑆 − 𝑆 is a subgroup 

of 𝐻, so ⟨𝑆⟩ ⊆ 𝑆 − 𝑆. Hence ⟨𝑆⟩ = 𝑆 − 𝑆. It is clear that 𝑆 has the cancellation property, 

thus 𝛾𝑆 is injective, so it follows that 𝔾(𝑆) = 𝛾𝑆(𝑆) − 𝛾𝑆(𝑆) ≅ 𝑆 − 𝑆 = ⟨𝑆⟩, as required. ∎
Thus by part (iv) of the preceding proposition, given an Abelian group 𝐻, we may assume that 

𝔾(𝐻) is 𝐻. Immediately, we have the universality and functoriality properties of the Grothendieck 

completion 𝔾.

Theorem 3.2.2. (Universality of Grothendieck Completion). If 𝜑 : 𝑆 → 𝐻 is an additive map 

between an Abelian semigroup 𝑆 and an Abelian group 𝐻. Then there is a unique homomorphism 

𝜓 : 𝔾(𝑆) → 𝐻 such that 𝜓 ∘ 𝛾𝑆 = 𝜑.

 Proof. Define 𝜓 : 𝔾(𝑆) → 𝐻 : ⟨𝑥, 𝑦⟩ ↦ 𝜑(𝑥) − 𝜑(𝑦). Suppose ⟨𝑥, 𝑦⟩ = ⟨𝑥′, 𝑦′⟩ for 𝑥, 𝑥′, 𝑦, 𝑦′ ∈
𝑆, then there is a 𝑧 ∈ 𝑆 such that 𝑥 + 𝑦′ + 𝑧 = 𝑥′ + 𝑦 + 𝑧, and one has

𝜓(⟨𝑥, 𝑦⟩) − 𝜓(⟨𝑥′, 𝑦′⟩) = 𝜑(𝑥) − 𝜑(𝑦) − 𝜑(𝑥′) + 𝜑(𝑦′) = 𝜑(𝑥 + 𝑦′ + 𝑧) − 𝜑(𝑥′ + 𝑦 + 𝑧) = 0,

so 𝜓 is well-defined. It is clear that 𝜓 ∘ 𝛾𝑆 = 𝜑 and 𝜓 is a homomorphism. Thus existence is shown.

Suppose there is another homomorphism 𝜓′ : 𝔾(𝑆) → 𝐻 such that 𝜓′ ∘ 𝛾𝑆 = 𝜑. Given ⟨𝑥, 𝑦⟩ ∈
𝔾(𝑆), by Structure of Grothendieck Groups  3.2.1 (i), there are 𝑥′, 𝑦′ ∈ 𝑆 such that ⟨𝑥, 𝑦⟩ =
𝛾𝑆(𝑥′) − 𝛾𝑆(𝑦′), thus one has

𝜓′(⟨𝑥, 𝑦⟩) = 𝜓′(𝛾𝑆(𝑥′) − 𝛾𝑆(𝑦′)) = (𝜓′ ∘ 𝛾𝑆)(𝑥′) − (𝜓′ ∘ 𝛾𝑆)(𝑦′) = 𝜑(𝑥) − 𝜑(𝑦) = 𝜓(⟨𝑥, 𝑦⟩),

shows 𝜓 = 𝜓′, as required. ∎
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Theorem 3.2.3. (Functoriality of Grothendieck Completion). If 𝜑 : 𝑆 → 𝑇  is an additive map 

between Abelian semigroups 𝑆 and 𝑇 . Then there is a unique homomorphism 𝔾(𝜑) : 𝔾(𝑆) → 𝔾(𝑇 ) 
such that 𝛾𝑇 ∘ 𝜑 = 𝔾(𝜑) ∘ 𝛾𝑆.

 Proof. Define 𝔾(𝜑) : 𝔾(𝑆) → 𝔾(𝑇 ) : ⟨𝑥, 𝑦⟩ ↦ ⟨𝜑(𝑥), 𝜑(𝑦)⟩. Suppose ⟨𝑥, 𝑦⟩ = ⟨𝑥′, 𝑦′⟩ for 

𝑥, 𝑥′, 𝑦, 𝑦′ ∈ 𝑆, then there is a 𝑧 ∈ 𝑆 such that 𝑥 + 𝑦′ + 𝑧 = 𝑥′ + 𝑦 + 𝑧, and one has

𝔾(𝜑)(⟨𝑥, 𝑦⟩) − 𝔾(𝜑)(⟨𝑥′, 𝑦′⟩) = ⟨𝜑(𝑥), 𝜑(𝑦)⟩ + ⟨𝜑(𝑦′), 𝜑(𝑥′)⟩
= ⟨𝜑(𝑥 + 𝑦′), 𝜑(𝑦 + 𝑥′)⟩ + ⟨𝜑(𝑧), 𝜑(𝑧)⟩
= ⟨𝜑(𝑥 + 𝑦′ + 𝑧), 𝜑(𝑦 + 𝑥′ + 𝑧)⟩
= 0,

so 𝔾(𝜑) is well-defined. It is clear that 𝔾(𝜑) ∘ 𝛾𝑆 = 𝛾𝑇 ∘ 𝜑, and 𝔾(𝜑) is a homomorphism. Thus 

existence is shown.

Suppose there is another homomorphism 𝜑′ : 𝔾(𝑆) → 𝔾(𝑇 ) such that 𝜑′ ∘ 𝛾𝑆 = 𝛾𝑇 ∘ 𝜑. Given 

⟨𝑥, 𝑦⟩ ∈ 𝔾(𝑆), by Structure of Grothendieck Groups 3.2.1 (i), there are 𝑥′, 𝑦′ ∈ 𝑆 such that ⟨𝑥, 𝑦⟩ =
𝛾𝑆(𝑥′) − 𝛾𝑆(𝑦′), thus one has

𝜑′(⟨𝑥, 𝑦⟩) = (𝜑′ ∘ 𝛾𝑆)(𝑥′) − (𝜑′ ∘ 𝛾𝑆)(𝑦′) = (𝔾(𝜑) ∘ 𝛾𝑆)(𝑥′) − (𝔾(𝜑) ∘ 𝛾𝑆)(𝑦′) = 𝔾(𝜑)(⟨𝑥, 𝑦⟩),

so 𝜑′ = 𝔾(𝜑), as required. ∎
Here are some immediate examples of Grothendieck completions. Note that the second example 

is rather nondegenerate despite having seemingly more structure than the first.

Example 3.2.4.

• We note that ℕ = {1, 2, …} under usual addition + forms an Abelian semigroup with the cancel

lation property. As ℕ is identified as a subgroup of ℤ, in particular, ℕ − ℕ = ℤ, then 𝔾(ℕ) ≅ ℤ.

• If consider ℕ ∪ {∞} where ∞ + 𝑥 = ∞ for all 𝑥 ∈ ℕ, then (ℕ ∪ {∞}, +) is an Abelian semigroup 

with no cancellation property, in particular, one observes that 𝔾(ℕ ∪ {∞}) = 0 as ⟨𝑥, 𝑦⟩ =
⟨∞, ∞⟩ for all 𝑥, 𝑦 ∈ ℕ ∪ {∞}.

3.3 The 𝐾00-Group Construction

In this chapter, we aim to build our first 𝐾00-group, which will serve as our foundation for the 

𝐾0-groups. In the preceding section, we have established the Murray-von Neumann relation ∼ on 

P∞(𝐴) is an equivalence relation, so we denote the equivalence classes of ∼ by [⋅]. We now establish 

that ∼ is a relation that is compatible with the ⊕ operation. With this, one can construct an Abelian 

semigroup (P∞(𝐴)/ ∼, +).

Proposition 3.3.1. Let 𝐴 be a 𝐶∗-algebra, and 𝑝, 𝑞, 𝑟, 𝑠 ∈ P∞(𝐴). Then:

(i) 𝑝 ∼ 𝑝 ⊕ 0𝑛 for each 𝑛 ∈ ℕ.

(ii) If 𝑝 ∼ 𝑞 and 𝑟 ∼ 𝑠, then 𝑝 ⊕ 𝑟 ∼ 𝑞 ⊕ 𝑠.
(iii) 𝑝 ⊕ 𝑞 ∼ 𝑞 ⊕ 𝑝.

(iv) Let 𝑛 ∈ ℕ, if 𝑝, 𝑞 ∈ P𝑛(𝐴) and 𝑝 ⟂ 𝑞, then 𝑝 + 𝑞 ∼ 𝑝 ⊕ 𝑞.
(v) (𝑝 ⊕ 𝑞) ⊕ 𝑟 = 𝑝 ⊕ (𝑞 ⊕ 𝑟)

 Proof. Let 𝑚, 𝑛 ∈ ℕ.

(i) Suppose 𝑝 ∈ P𝑚(𝐴), and let 𝑣 = ( 𝑝
0𝑛,𝑚

) ∈ 𝑀𝑚+𝑛,𝑛(𝐴), so 𝑝 = 𝑣∗𝑣 ∼ 𝑣𝑣∗ = 𝑝 ⊕ 0𝑛.
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(ii) There are matrices 𝑣 and 𝑤 such that 𝑝 = 𝑣∗𝑣, 𝑞 = 𝑣𝑣∗, 𝑟 = 𝑤∗𝑤, and 𝑠 = 𝑤𝑤∗. Define 𝑢 =
𝑣 ⊕ 𝑤, then 𝑢∗𝑢 = 𝑝 ⊕ 𝑟 ∼ 𝑢𝑢∗ = 𝑞 ⊕ 𝑠.

(iii) Let 𝑢 = (0𝑚,𝑛
𝑝

𝑞
0𝑛,𝑚

) ∈ ℳ︀𝑛+𝑚(𝐴), then 𝑢∗𝑢 = 𝑝 ⊕ 𝑞 ∼ 𝑢𝑢∗ = 𝑞 ⊕ 𝑝.

(iv) Suppose 𝑝𝑞 = 0, then 𝑞𝑝 = 0. Define 𝑢 = (𝑝
𝑞) ∈ ℳ︀2𝑛,𝑛(𝐴), then 𝑢∗𝑢 = 𝑝 + 𝑞 ∼ 𝑢𝑢∗ = 𝑝 ⊕ 𝑞.

(v) Trivial. ∎
We define a binary operation + on P∞(𝐴)/ ∼ by

[𝑝] + [𝑞] = [𝑝 ⊕ 𝑞].
By Proposition 3.3.1 (ii) and (v), + is well-defined and associative, by (i), 0 = [0𝑛] is the additive 

identity for each 𝑛 ∈ ℕ, and finally by (iii), + is commutative. Thus (P∞(𝐴)/ ∼, +) is an Abelian 

monoid.

Given a 𝐶∗-algebra 𝐴, by Grothendieck completion, one has an Abelian group, called the 𝐾00-

group for 𝐴 defined as

𝐾00(𝐴) ≔ 𝔾(P∞(𝐴)/ ∼, +).
We denote the classes of 𝐾00(𝐴) to be [𝑝]0 where [⋅]0 : P∞(𝐴) → 𝐾00(𝐴) is a composition of the 

class map [⋅] under the relation ∼, and the Grothendieck map 𝛾𝐴 : P∞(𝐴)/ ∼→ 𝐾00(𝐴). Thus 

we immediately note that 𝐾00(𝐴) = {[𝑝]0 − [𝑞]0 : 𝑝, 𝑞 ∈ P∞(𝐴)}. We say that 𝐾00(𝐴) has the 

cancellation property if the underlying Abelian semigroup P∞(𝐴)/ ∼ has the cancellation property, 

which is equivalent to [𝑝]0 = [𝑞]0 if, and only if, 𝑝 ∼ 𝑞 for all 𝑝, 𝑞 ∈ P∞(𝐴) by the Structure of 

Grothendieck Groups 3.2.1 (iii). We shall consider another relation called the stable equivalence 

which allows us to identify when [𝑝]0 = [𝑞]0.

Construction 3.3.2. (Stable Equivalence). We define the stable equivalence relation ∼𝑠 on 

P∞(𝐴) where 𝐴 is any 𝐶∗-algebra such that for any 𝑝, 𝑞 ∈ P𝑛(𝐴) for some 𝑛 ∈ ℕ, we write 𝑝 ∼𝑠 𝑞 
if there is a 𝑟 ∈ P𝑛(𝐴) such that 𝑝 ⊕ 𝑟 ∼ 𝑞 ⊕ 𝑟. It can be easily verified that this relation is reflexive 

and symmetric, to show transitivity, observe that 𝑝 ⊕ 𝑎 ∼ 𝑞 ⊕ 𝑎 and 𝑞 ⊕ 𝑏 ∼ 𝑟 ⊕ 𝑏, then as 𝑎 ⊕ 𝑏 ∼
𝑏 ⊕ 𝑎, one has

𝑝 ⊕ (𝑎 ⊕ 𝑏) ∼ 𝑞 ⊕ (𝑎 ⊕ 𝑏) ∼ 𝑟 ⊕ (𝑎 ⊕ 𝑏)
shows 𝑝 ∼𝑠 𝑟, if 𝑝 ∼𝑠 𝑞 and 𝑞 ∼𝑠 𝑟. The reason we introduce this relation is that it can be used 

to show that it is equivalent to the [⋅]0 relation for 𝐾00-groups. If 𝐴 is furthermore unital, then it 

can be shown that 𝑝 ∼𝑠 𝑞 if, and only if, 𝑝 ⊕ 1𝑛 ∼ 𝑞 ⊕ 1𝑛 for some 𝑛 ∈ ℕ. Indeed, given any 𝑟 ∈
P𝑛(𝐴), let 𝑣 = (𝑟 1𝑛−𝑟), one has 𝑣∗𝑣 = 𝑟 ⊕ (1𝑛 − 𝑟) and 𝑣𝑣∗ = 1𝑛, so 𝑟 ⊕ (1𝑛 − 𝑟) ∼ 1𝑛, hence

𝑝 ⊕ 1𝑛 ∼ 𝑝 ⊕ 𝑟 ⊕ (1𝑛 − 𝑟).
So if 𝑝 ∼𝑠 𝑞, then 𝑝 ⊕ 1𝑛 ∼ 𝑞 ⊕ 1𝑛 for all 𝑛 ∈ ℕ, and if 𝑝 ⊕ 1𝑛 ∼ 𝑞 ⊕ 1𝑛 for some 𝑛 ∈ ℕ, then 

𝑝 ∼𝑠 𝑞.

Proposition 3.3.3. (Structure of 𝐾00). Let 𝐴 be a unital 𝐶∗-algebra, then

(i) [𝑝 ⊕ 𝑞]0 = [𝑝]0 + [𝑞]0 for all 𝑝, 𝑞 ∈ P∞(𝐴).
(ii) [0𝑛]0 = 0 for all 𝑛 ∈ ℕ.

(iii) If 𝑝, 𝑞 ∈ P𝑛(𝐴) and 𝑝 ∼ℎ 𝑞, then [𝑝]0 = [𝑞]0.
(iv) If 𝑝, 𝑞 ∈ P𝑛(𝐴) and 𝑝 ⟂ 𝑞, then [𝑝 + 𝑞]0 = [𝑝]0 + [𝑞]0.
(v) One has [𝑝]0 = [𝑞]0 if, and only if, 𝑝 ∼𝑠 𝑞 for all 𝑝, 𝑞 ∈ P∞(𝐴).
(vi) 𝐾00(𝐴) = {[𝑝]0 − [𝑞]0 : 𝑝, 𝑞 ∈ P𝑛(𝐴), 𝑛 ∈ ℕ}.

 Proof. For (i), observe that

[𝑝 ⊕ 𝑞]0 = 𝛾𝐴([𝑝 ⊕ 𝑞]) = 𝛾𝐴([𝑝] + [𝑞]) = 𝛾𝐴([𝑝]) + 𝛾𝐴([𝑞]) = [𝑝]0 + [𝑞]0,
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so [𝑝]0 + [0𝑛]0 = 𝛾𝐴([𝑝 ⊕ 0𝑛]) = 𝛾𝐴([𝑝]) = [𝑝]0, thus [0𝑛]0 = 0 hence (ii) is proven. For (iii), note 

that 𝑝 ∼ℎ 𝑞 implies 𝑝 ∼ 𝑞, so one has [𝑝] = [𝑞], hence [𝑝]0 = [𝑞]0. For (iv), if 𝑝 ⟂ 𝑞, then by 

Proposition 3.3.1 (iv):

[𝑝 + 𝑞]0 = 𝛾𝐴([𝑝] + [𝑞]) = [𝑝]0 + [𝑞]0.

For (v), [𝑝]0 = [𝑞]0 means that there is a 𝑟 ∈ P𝑛(𝐴) such that [𝑝] + [𝑟] = [𝑞] + [𝑟], in particular, 

𝑝 ⊕ 𝑟 ∼ 𝑞 ⊕ 𝑟, so 𝑝 ∼𝑠 𝑞. Similarly, if 𝑝 ∼𝑠 𝑞, then there is a 𝑟 ∈ P𝑛(𝐴) such that 𝑝 ⊕ 𝑟 ∼ 𝑞 ⊕ 𝑟, 
hence [𝑝] + [𝑟] = [𝑞] + [𝑟], thus [𝑝]0 = [𝑞]0.
For (vi), it is clear that {[𝑝]0 − [𝑞]0 : 𝑝, 𝑞 ∈ P𝑛(𝐴), 𝑛 ∈ ℕ} ⊆ 𝐾00(𝐴). Now given 𝑝 ∈ P𝑛(𝐴) and 

𝑞 ∈ P𝑚(𝐴), and suppose 𝑚 ≥ 𝑛, then 𝑝 ⊕ 0𝑚−𝑛 ∈ P𝑚(𝐴) and [𝑝 ⊕ 0𝑚−𝑛]00 − [𝑞]0 ∈ 𝐾00(𝐴) by 
(ii), so it follows that 𝐾00(𝐴) = {[𝑝]0 − [𝑞]0 : 𝑝, 𝑞 ∈ P𝑛(𝐴), 𝑛 ∈ ℕ}. ∎

Theorem 3.3.4. (Universal Property of 𝐾00-Groups). Let 𝐴 be a 𝐶∗-algebra, let 𝑆 be an Abelian 

semigroup, and suppose that 𝜇 : P∞(𝐴) → 𝑆 is a map such that

(i) 𝜇(𝑝 ⊕ 𝑞) = 𝜇(𝑝) + 𝜇(𝑞) for all 𝑝, 𝑞 ∈ P∞(𝐴).
(ii) If 𝑝, 𝑞 ∈ P∞(𝐴) satisifies 𝑝 ∼ 𝑞, then 𝜇(𝑝) = 𝜇(𝑞).
Then there is a unique homomorphism 𝜈 : 𝐾00(𝐴) → 𝔾(𝑆) such that 𝜈 ∘ [⋅]0 = 𝛾𝑆 ∘ 𝜇. Furthermore:

(a) If 𝜇̂ is injective and 𝑆 has cancellation property, then 𝜈 is injective.

(b) If 𝜇 is surjective, then 𝜈 is surjective.

 Proof. Note that by (ii) one has a map 𝜇̂ : P∞(𝐴)/ ∼→ 𝑆 such that 𝜇 = 𝜇̂ ∘ [⋅], and 𝜇̂ is an 

additive map by (i). Hence we can define 𝜈′ : P∞(𝐴)/ ∼→ 𝔾(𝑆) as 𝜈([𝑝]) = 𝛾𝑆(𝜇̂([𝑝])), which is an 

additive map, thus by the Universality of Grothendieck Completion 3.2.2, one has a homomorphism 

𝜈 : 𝐾00(𝐴) → 𝔾(𝑆) such that 𝜈 ∘ [⋅]0 = 𝜈′, the uniqueness 𝜈 follows.

For (a), if 𝜇̂ is injective and 𝑆 has the the cancellation property, then 𝛾𝑆 has the cancellation 

property by theStructure of Grothendieck Groups 3.2.1 (iii), 𝛾𝑆 is injective, hence 𝜈 is injective as 

a composition of injective maps.

For (b), if 𝜇 is surjective, then 𝜇̂ is surjective as [⋅] is surjective. Let 𝑧 ∈ 𝔾(𝑆), then by the 

Structure of Grothendieck Groups 3.2.1 (i), one has 𝑧 = 𝛾𝑆(𝑥) − 𝛾𝑆(𝑦) for 𝑥, 𝑦 ∈ 𝑆, hence there are 

𝑥′, 𝑦′ ∈ P∞(𝐴)/ ∼ such that 𝜇̂([𝑥′]) = 𝑥 and 𝜇̂([𝑦′]) = 𝑦. Thus 𝜈([𝑥′]0 − [𝑦′]0) = 𝑧, shows that 

𝜈 is surjective. ∎
Given a *-homomorphism 𝜑 : 𝐴 → 𝐵 between 𝐶∗-algebras, this induces a natural *-homomor

phism betweem between matrix algebras ℳ︀𝑛(𝐴) to ℳ︀𝑛(𝐵) by Construction 2.5.1. As *-homomor

phisms preserves projections, then we can induce a map 𝜑 : P∞(𝐴) → P∞(𝐵). Consider the 

following composition 𝜇 = [⋅]0 ∘ 𝜑 : P∞(𝐴) → 𝐾00(𝐵), then as 𝜑 preserves the ∼ relation, then 𝜇 

is invariant under the ∼ relation, i.e. it satisfies (iii) of the Universal Property of 𝐾00-Groups 3.3.4. 

As (i) and (ii) of the Universal Property of 𝐾00-Groups 3.3.4 is also satisfied, then there is a unique 

homomorphism 𝐾00(𝜑) : 𝐾00(𝐴) → 𝐾00(𝐵) such that [⋅]0 ∘ 𝐾00(𝜑) = 𝜇, in particular, one has the 

commutative diagram:

[⋅]0

𝜑

[⋅]0

𝐾00(𝜑)

P∞(𝐴) P∞(𝐵)

𝐾00(𝐴) 𝐾00(𝐵)

Given this construction from *-homomorphisms between 𝐶∗-algebras to group homormophisms 

between 𝐾00-groups, one has that 𝐾00 defines a functor that preserves the zero objects.
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Theorem 3.3.5. (Functoriality of 𝐾00). Let 𝐴, 𝐵, 𝐶 be 𝐶∗-algebras and 𝜑 : 𝐴 → 𝐵, 𝜓 : 𝐵 → 𝐶 be 

*-homomorphisms. One has:

(i) 𝐾00(id𝐴) = id𝐾00(𝐴).

(ii) 𝐾00(𝜓 ∘ 𝜑) = 𝐾00(𝜓) ∘ 𝐾00(𝜑).
(iii) The 𝐾00 preserves the zero map 0 : 𝐴 → 𝐵, so 𝐾00(0) : 𝐾00(𝐴) → 𝐾00(𝐵) is the trivial 

homomorphism.

(iv) If 0 is the trivial 𝐶∗-algebra, then 𝐾00(0) is the trivial group.

 Proof. Trivial. ∎

Lemma 3.3.6. If 𝐴 and 𝐵 are 𝐶∗-algebras and 𝜑, 𝜓 : 𝐴 → 𝐵 are orthogonal *-homomorphisms, 

then 𝜑 + 𝜓 : 𝐴 → 𝐵 is a *-homomorphism, and 𝐾00(𝜑 + 𝜓) = 𝐾00(𝜑) + 𝐾00(𝜓).
 Proof. Note 𝜑 + 𝜓 is a *-homomorphism is trivially proven. For all 𝑝 ∈ P∞(𝐴), one has 𝜑(𝑝) ⟂

𝜓(𝑝), hence by the Structure of 𝐾00 3.3.3 (iv), one has

𝐾00(𝜑 + 𝜓)[𝑝]0 = [(𝜑 + 𝜓)(𝑝)]0 = [𝜑(𝑝) + 𝜓(𝑝)]0 = [𝜑(𝑝)]0 + [𝜓(𝑝)]0 = 𝐾00(𝜑)[𝑝]0 + 𝐾00(𝜓)[𝑝]0,

so 𝐾00(𝜑 + 𝜓) = 𝐾00(𝜑) + 𝐾00(𝜓). ∎
We say two 𝐶∗-algebras 𝐴 and 𝐵 are homotopic if there are *-homomorphisms 𝜑 : 𝐴 → 𝐵 and 

𝜓 : 𝐵 → 𝐴 such that 𝜑 ∘ 𝜓 ∼ℎ id𝐵 (pointwise homotopy) and 𝜓 ∘ 𝜑 ∼ℎ id𝐴.

Theorem 3.3.7. (Homotopy Invariance of 𝐾00). Let 𝐴 and 𝐵 be 𝐶∗-algebras. If 𝐴 and 𝐵 are 

homotopic, then 𝐾00(𝐴) ≅ 𝐾00(𝐵).
 Proof. Let 𝜑 : 𝐴 → 𝐵 and 𝜓 : 𝐵 → 𝐴 be the associated *-homomorphisms. So for each 𝑡 ∈

[0, 1], there is a *-homomorphism ℎ𝑡 : 𝐴 → 𝐴 with ℎ0 = 𝜓 ∘ 𝜑 and ℎ1 = id𝐴, such that for each 

𝑎 ∈ 𝐴, the map 𝑡 ↦ ℎ𝑡(𝑎) is continuous. So given 𝑝 ∈ P∞(𝐴), one has that (𝜓 ∘ 𝜑)(𝑝) ∼ℎ 𝑝, thus

[𝑝]0 = [(𝜓 ∘ 𝜑)(𝑝)]0 = 𝐾00(𝜓 ∘ 𝜑)[𝑝]0 = (𝐾00(𝜓) ∘ 𝐾00(𝜑))[𝑝]0
so 𝐾00(𝜓) ∘ 𝐾00(𝜑) = id𝐾00(𝐴). Similarly, 𝐾00(𝜑) ∘ 𝐾00(𝜓) = id𝐾00(𝐵). Thus 𝐾00(𝐴) ≅ 𝐾00(𝐵).∎

Proposition 3.3.8. Let 𝐴 be a unital 𝐶∗-algebra, then the split-exact sequence

𝜄 𝜋

𝜆
0 𝐴 𝐴 ℂ 0

induces a split-exact sequence of groups

𝐾00(𝜄) 𝐾00(𝜋)

𝐾00(𝜆)
0 𝐾00(𝐴) 𝐾00(𝐴) 𝐾00(ℂ) 0 (3.2)

 Proof. Let 𝑞 = 1𝐴̃ − 1𝐴, and by Lemma 2.2.3, 𝐴 = 𝐴 ⊕ ℂ𝑞, and define

𝜇 : 𝐴 → 𝐴 : 𝑎 + 𝛼𝑞 ↦ 𝑎 and 𝜈 : ℂ → 𝐴 : 𝛼 ↦ 𝑎𝑞.

Note that

id𝐴 = 𝜇 ∘ 𝜄, id𝐴̃ = 𝜄 ∘ 𝜇 + 𝜈 ∘ 𝜋, 𝜋 ∘ 𝜄 = 0, 𝜋 ∘ 𝜆 = idℂ,

thus by functoriality of 𝐾00 and Lemma 3.3.6, one has

id𝐾00(𝐴) = 𝐾00(𝜇) ∘ 𝐾00(𝜄)

𝐾00(𝜋) ∘ 𝐾00(𝜆) = id𝐾00(ℂ)

𝐾00(𝜋) ∘ 𝐾00(𝜄) = 0
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id𝐾00(𝐴̃) = 𝐾00(𝜄) ∘ 𝐾00(𝜇) + 𝐾00(𝜈) ∘ 𝐾00(𝜋).

It suffices to show ker(𝐾00(𝜄)) = 0, im(𝐾00(𝜋)) = 𝐾00(ℂ), im(𝐾00(𝜄)) = ker(𝐾00(𝜋)), and 

𝐾00(𝜋) ∘ 𝐾00(𝜆) = id𝐾00(ℂ), which the last identity is already shown.

By first identity: ker(𝐾00(𝜄)) ⊆ ker(𝐾00(𝜇) ∘ 𝐾00(𝜄)) = ker(id𝐾00(𝐴)) = 0.

By second identity: 𝐾00(ℂ) = im(id𝐾00(ℂ)) = im(𝐾00(𝜋) ∘ 𝐾00(𝜆)) ⊆ im(𝐾00(𝜋)).
By third identity: im(𝐾00(𝜄)) ⊆ ker(𝐾00(𝜋)). Now given [𝑝]0 ∈ ker(𝐾00(𝜋)), one has [𝑝]0 =
𝐾00(𝜄)(𝐾00(𝜇)[𝑝]0) by the fourth identity, so ker(𝐾00(𝜋)) ⊆ im(𝐾00(𝜄)). ∎

Proposition 3.3.9. (Structure of 𝐾00(ℬ︀(𝐻))). Let 𝐻 be a Hilbert space, then the rank map 

rank : P∞(ℬ︀(𝐻)) → ℕ0 ∪ {∞} satisfies the conditions of Universal Property of 𝐾00-Groups 3.3.4. 

Furthermore:

(i) If 𝐻 is infinite-dimensional, then 𝐾00(ℬ︀(𝐻)) = 0.

(ii) If 𝐻 is finite-dimensional, then 𝐾0(tr) : 𝐾00(ℬ︀(𝐻)) → ℤ defined as 𝐾0(tr)([𝑝]0) = tr(𝑝) 
defines an isomorphism, and 𝐾00(ℬ︀(𝐻)) has the cancellation property.

 Proof. Note that by Proposition 3.1.9, the map rank satisfies the conditions of Universal Property 

of 𝐾00-Groups 3.3.4, and rank is injective on P∞(ℬ︀(𝐻))/ ∼.

(i) If 𝐻 is infinite-dimensional, then rank(id𝐻) = ∞, then rank : P∞(ℬ︀(𝐻)) → ℕ0 ∪ {∞} is 

surjective, thus by Universal Property of 𝐾00-Groups  3.3.4, there is an isomorphism from 

𝐾00(ℬ︀(𝐻)) to 𝔾(ℕ0 ∪ {0}), which we note 𝔾(ℕ0 ∪ {∞}) = 0 by Example 3.2.4.

(ii) If 𝐻 is finite-dimensional, then rank surjects onto ℕ0, thus P∞(𝐴)/ ∼ has the cancellation 

property as it embeds into ℕ0 as Abelian semigroups. By Proposition 3.1.9, one has rank =
tr, thus by Universal Property of 𝐾00-Groups 3.3.4, the 𝐾0(tr) : 𝐾00(ℬ︀(𝐻)) → ℤ (we identify 

𝔾(ℕ0) ≅ ℤ) defined as 𝐾0(tr)([𝑝]0) = tr(𝑝) is an isomorphism. ∎

3.4 The 𝐾0-Group Construction

Unfortunately, the 𝐾00 functor does not have nice properties such as preserving some variations 

of exactness or being additive, thus we introduce a slightly more complicated structure than 𝐾00, 

which does indeed have those nice properties. Hence the aim of this section is to properly introduce 

the 𝐾0-group for 𝐶∗-algebras, and prove the nice functorial properties of 𝐾0 which 𝐾00 lacks. Given 

a 𝐶∗-algebra 𝐴, we define the 𝐾0-group for 𝐴 to be

𝐾0(𝐴) ≔ ker(𝐾00(𝜋))
where 𝜋 : 𝐴 → ℂ is the natural projection map. Note that we see 𝐾0 immediately generalizes 𝐾00 

in the unital case.

Proposition 3.4.1. If 𝐴 is a unital 𝐶∗-algebra, then 𝐾0(𝐴) ≅ 𝐾00(𝐴).
 Proof. By Proposition 3.3.8, we see that 𝐾0(𝐴) = im(𝐾00(𝜄)) ≅ 𝐾00(𝐴) if 𝐴 is unital as 𝐾00(𝜄) 

is now injective. ∎
We may identify 𝐾0(𝐴) as 𝐾00(𝐴) if 𝐴 is unital. Note that for [𝑝]0 ∈ 𝐾0(𝐴), then [𝜋(𝑝)]0 = 0, 

which means that 𝜋(𝑝) is a zero matrix, so 𝑝 ∈ P∞(𝐴). The functoriality of 𝐾0 actually carries over 

pretty well. Given a *-homomorphism 𝜑 : 𝐴 → 𝐵 between 𝐶∗-algebras 𝐴 and 𝐵, by the Functoriality 

of Unitization 2.2.5, one induces a commutative diagram:
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𝜄 𝜋𝐴

𝜑 𝜑̃
𝜄 𝜋𝐵

𝐴 𝐴 ℂ

𝐵 𝐵̃ ℂ
Then funtoriality of 𝐾00, one induces a commutative diagram

𝐾00(𝜄) 𝐾00(𝜋𝐴)

𝐾00(𝜑) 𝐾00(𝜑̃)

𝐾00(𝜄) 𝐾00(𝜋𝐵)

𝐾00(𝐴) 𝐾00(𝐴) 𝐾00(ℂ)

𝐾00(𝐵) 𝐾00(𝐵̃) 𝐾00(ℂ)

Where 𝐾00(𝜑) and 𝐾00(𝜑̃) are uniquely determined, and define 𝐾0(𝜑) : 𝐾0(𝐴) → 𝐾0(𝐵) as 
𝐾00(𝜑̃)|𝐾0(𝐴). We first need to verify that 𝐾0(𝜑) actually maps into 𝐾0(𝐵), so given [𝑝]0 ∈ 𝐾0(𝐴), 
one has

𝐾00(𝜋𝐵)(𝐾0(𝜑)[𝑝]0) = 𝐾00(𝜋𝐴)[𝑝]0 = 0
so 𝐾0(𝜑) is a well-defined map. Finally, just like 𝐾00, we see that 𝐾0 shares many similar properties.

Theorem 3.4.2. (Functoriality of 𝐾0). Let 𝐴, 𝐵, 𝐶 be 𝐶∗-algebras, and 𝜑 : 𝐴 → 𝐵 and 𝜓 : 𝐵 →
𝐶 be *-homomorphisms. Then

(i) 𝐾0(id𝐴) = id𝐾0(𝐴).

(ii) 𝐾0(𝜓 ∘ 𝜑) = 𝐾0(𝜓) ∘ 𝐾0(𝜑).
(iii) If 0 is the trivial 𝐶∗-algebra, then 𝐾0(0) is the trivial group.

(iv) If 0 : 𝐴 → 𝐵 is the zero map, then 𝐾0(0) : 𝐾0(𝐴) → 𝐾0(𝐵) is the trivial homomorphism.

 Proof.

(i) Note that ĩd𝐴 = id𝐴̃, thus given [𝑝]0 ∈ 𝐾0(𝐴), one has

𝐾0(id𝐴)[𝑝]0 = 𝐾00(ĩd𝐴)[𝑝]0 = [ĩd𝐴(𝑝)]0 = [𝑝]0

so 𝐾0(id𝐴) = id𝐾0(𝐴).

(ii) Note that 𝜓 ∘ 𝜑 = 𝜓 ∘ 𝜑̃, so one has

𝐾0(𝜓 ∘ 𝜑) = 𝐾00(𝜓 ∘ 𝜑)|𝐾0(𝐴) = 𝐾00(𝜓) ∘ 𝐾00(𝜑̃)|𝐾0(𝐴) = 𝐾0(𝜓) ∘ 𝐾0(𝜑).

(iii) Note that 0̃ = ℂ, so as the projection map 𝜋 : 0̃ → ℂ is the identity map, then 𝐾0(0) =
ker(𝜋) = 0.

(iv) The zero map is a composition of the sequence

𝐴 → 0 → 𝐵
so then by (ii) and (iii), one the 𝐾0(0) is the composition of the sequence

𝐾0(𝐴) → 0 → 𝐾0(𝐵)
which is the trivial homomorphism. ∎

Proposition 3.4.3. (Homotopy Invariance of 𝐾0). Let 𝐴, 𝐵 be 𝐶∗-algebras and 𝜑, 𝜓 : 𝐴 → 𝐵 be 

*-homomorphisms. Then

(i) If 𝜑 ∼ℎ 𝜓, then 𝐾0(𝜑) = 𝐾0(𝜓).
(ii) If 𝐴 and 𝐵 are homotopic with maps 𝜑 : 𝐴 → 𝐵 and 𝜓 : 𝐵 → 𝐴, then 𝐾0(𝐴) ≅ 𝐾0(𝐵) where 

𝐾0(𝜑) = 𝐾0(𝜓)−1.
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 Proof. If 𝜑 ∼ℎ 𝜓, then so is 𝜑̃ ∼ℎ 𝜓, then 𝐾0(𝜑) = 𝐾0(𝜓) from the Homotopy Invariance of 

𝐾00 3.3.7, which adapting its proof and using (i), (ii) follows. ∎
To further investigate the property of 𝐾0(𝐴) groups, we define the scalar map 𝑠𝐴 : 𝜆𝐴 ∘ 𝜋𝐴 :

𝐴 → 𝐴, so 𝑠𝐴(𝑎 + 𝛼1𝐴̃) = 𝛼1𝐴̃. Note that 𝜋𝐴 ∘ 𝑠𝐴 = 𝜋𝐴 and id𝐴̃ −𝑠𝐴 maps into 𝐴. Let 𝑠𝑛 :
ℳ︀𝑛(𝐴) → ℳ︀𝑛(𝐴) be the induced map via Construction 2.5.1, and we say 𝑎 ∈ ℳ︀𝑛(𝐴) ∪ 𝐴 is 

scalar if 𝑠(𝑎) = 𝑎. The scalar mapping has the following natural property: given a *-homomorphism 

𝜑 : 𝐴 → 𝐵 between 𝐶∗-algebras 𝐴 and 𝐵, then one has the commutative diagram:

𝜑̃

𝜑̃
𝑠𝐴 𝑠𝐵

𝐴 𝐵̃

𝐴 𝐵̃

(3.3)

Proposition 3.4.4. (Structure of 𝐾0). Let 𝐴 be a 𝐶∗-algebra, then:

(i) 𝐾0(𝐴) = {[𝑝]0 − [𝑠(𝑝)]0 : 𝑝 ∈ P𝑛(𝐴) for 𝑛 ∈ ℕ}.

(ii) For each 𝑝, 𝑞 ∈ P∞(𝐴), the following are equivalent:

(a) [𝑝]0 − [𝑠(𝑝)]0 = [𝑞]0 − [𝑠(𝑞)]0.
(b) There are 𝑟1, 𝑟2 ∈ P∞(ℂ) such that 𝑝 ⊕ 𝑟1 ∼ 𝑞 ⊕ 𝑟2.

(c) There are 𝑘, 𝑙 ∈ ℕ such that 𝑝 ⊕ 1𝑘 ∼ 𝑞 ⊕ 1𝑙 in P∞(𝐴).

(iii) If 𝑝 ∈ P∞(𝐴) satisfies [𝑝]0 = [𝑠(𝑝)]0, then 𝑝 ⊕ 1𝑘 ∼ 𝑠(𝑝) ⊕ 1𝑘 in P∞(𝐴) for some 𝑘 ∈ ℕ.

(iv) If 𝜑 : 𝐴 → 𝐵 is a *-homomorphism, then

𝐾0(𝜑)([𝑝]0 − [𝑠(𝑝)]0) = [𝜑̃(𝑝)]0 − [𝑠(𝜑̃(𝑝))]0
for each 𝑝 ∈ P∞(𝐴).

 Proof.

(i) Let 𝑝 ∈ P∞(𝐴), then as 𝜋 ∘ 𝑠 = 𝜋, so

𝐾00(𝜋)([𝑝]0 − [𝑠(𝑝)]0) = [𝜋(𝑝)]0 − [𝜋(𝑠(𝑝))]0 = 0

hence [𝑝]0 − [𝑠(𝑝)]0 ∈ 𝐾0(𝐴). Let 𝑔 ∈ 𝐾0(𝐴), then there is a 𝑛 ∈ ℕ and 𝑢, 𝑣 ∈ P𝑛(𝐴) such 

that 𝑔 = [𝑢]0 − [𝑣]0 by the Structure of 𝐾00 3.3.3 (vi), and let

𝑝 = 𝑢 ⊕ 1𝑛 − 𝑣 and 𝑞 = 0𝑛 ⊕ 1𝑛

so [𝑝]0 − [𝑞]0 = [𝑢]0 − [𝑣]0 = 𝑔. As 𝑠(𝑞) = 𝑞 and 𝐾00(𝜋)(𝑔) = 0, then

[𝑠(𝑝)]0 − [𝑞]0 = 𝐾00(𝑠)([𝑝]0 − [𝑞]0) = (𝐾00(𝜆) ∘ 𝐾00(𝜋))(𝑔) = 0

so [𝑠(𝑝)]0 = [𝑞]0. Thus 𝑔 = [𝑝]0 − [𝑠(𝑝)]0, hence (i) is shown.

(ii) Note that 𝐼𝑛 is the identity matrix in ℳ︀𝑛(ℂ). Let 𝑝, 𝑞 ∈ P∞(𝐴), and using the stable 

equivalence ∼𝑠 (see Construction 3.3.2), one has

[𝑝]0 − [𝑠(𝑝)]0 = [𝑞]0 − [𝑠(𝑞)]0 ⟺ [𝑝 ⊕ 𝑠(𝑞)]0 = [𝑞 ⊕ 𝑠(𝑝)]0
⟺ 𝑝 ⊕ 𝑠(𝑞) ∼𝑠 𝑞 ⊕ 𝑠(𝑝)

⟺ 𝑝 ⊕ 𝑠(𝑞) ⊕ 𝐼𝑛 ∼ 𝑞 ⊕ 𝑠(𝑝) ⊕ 𝐼𝑛 for any 𝑛 ∈ ℕ
⟹ 𝑝 ⊕ 𝑟1 ∼ 𝑞 ⊕ 𝑟2 for some 𝑟1, 𝑟2 ∈ P∞(ℂ)

(3.4)

So (a) implies (b). If 𝑝 ⊕ 𝑟1 ∼ 𝑞 ⊕ 𝑟2 for some 𝑟1, 𝑟2 ∈ P∞(ℂ), then rank(𝑟1) = 𝑘 and 

rank(𝑟2) = 𝑙 for some 𝑘, 𝑙 ∈ ℕ, hence by Proposition 3.1.9 (iv), 𝑟1 ∼ 𝐼𝑘 and 𝑟2 ∼ 𝐼𝑙 in P∞(ℂ), 
hence

𝑝 ⊕ 𝐼𝑘 ∼ 𝑝 ⊕ 𝑟1 ∼ 𝑞 ⊕ 𝑟2 ∼ 𝑞 ⊕ 𝐼𝑙.
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So (b) implies (c). Finally, if 𝑝 ⊕ 1𝑘 ∼ 𝑞 ⊕ 1𝑙 in P∞(𝐴) for some 𝑘, 𝑙 ∈ ℕ, so 𝜋(𝑝) ⊕ 𝐼𝑘 ∼
𝜋(𝑞) ⊕ 𝐼𝑙, and by Proposition 3.1.9 (iv), there is a 𝑛 ∈ ℕ such that

𝜋(𝑝) ⊕ 𝐼𝑘 ∼ 𝐼𝑛 ∼ 𝜋(𝑞) ⊕ 𝐼𝑙

So 𝑠(𝑝) ⊕ 1𝑘 ∼ 1𝑛 ∼ 𝑠(𝑞) ⊕ 1𝑙 by applying 𝜆 (refer to (2.1)), and hence

𝑝 ⊕ 𝑠(𝑞) ⊕ 1𝑛+𝑙 ∼ 𝑝 ⊕ 𝑠(𝑝) ⊕ 1𝑛+𝑘 ∼ 𝑞 ⊕ 𝑠(𝑝) ⊕ 1𝑛+𝑙

thus by our series of equivalences in (3.4), then [𝑝]0 − [𝑠(𝑝)]0 = [𝑞]0 − [𝑠(𝑞)]0. So (c) implies 

(a).

(iii) As [𝑝]0 = [𝑠(𝑝)]0, the rest follows from Construction 3.3.2 and the Structure of 𝐾00 3.3.3 (v).

(iv) Follows from (3.3). ∎
The following lemmas are used to prove the exactness properties of 𝐾0 functor.

Lemma 3.4.5. Let 𝜑 : 𝐴 → 𝐵 be a *-homomorphism between 𝐶∗-algebras 𝐴 and 𝐵. Suppose 

𝑔 ∈ ker(𝐾0(𝜑)), then there is a 𝑝 ∈ P∞(𝐴) such that 𝑔 = [𝑝]0 − [𝑠(𝑝)]0 and 𝜑̃(𝑝) ∼𝑢 𝑠(𝜑̃(𝑝)) in 

𝒰︀∞(𝐵̃). Furthermore if 𝜑 is surjective, then 𝑝 can be chosen such that 𝜑̃(𝑝) = 𝑠(𝜑̃(𝑝)).
 Proof. By Structure of 𝐾0 3.4.4 (i), there is a 𝑝1 ∈ P∞(𝐴) such that 𝑔 = [𝑝1]0 − [𝑠(𝑝1)]0, hence

0 = 𝐾0(𝜑)(𝑔) = [𝜑̃(𝑝1)]0 − [𝑠(𝜑̃(𝑝1))]0 i.e. [𝜑̃(𝑝1)]0 = [𝑠(𝜑̃(𝑝1))]0
so by the Structure of 𝐾00  3.3.3 (v), there is a 𝑛 ∈ ℕ such that 𝜑̃(𝑝1) ⊕ 1𝑛 ∼ 𝑠(𝜑̃(𝑝1)) ⊕ 1𝑛, 

and choose 𝑝2 = 𝑝1 ⊕ 1𝑛, so one has 𝜑̃(𝑝2) = 𝜑̃(𝑝1) ⊕ 1𝑛 ∼ 𝑠(𝜑̃(𝑝1)) ⊕ 1𝑛 = 𝑠(𝜑̃(𝑝2)), hence by 

Diagram 1, there is a 𝑛 ∈ ℕ such that

𝜑̃(𝑝2) ⊕ 0𝑛 ∼𝑢 𝑠(𝜑̃(𝑝2)) ⊕ 0𝑛 in 𝒰︀∞(ℳ︀𝑘(𝐵̃))

for some 𝑘 ∈ ℕ being the dimension of 𝜑̃(𝑝2) and 𝑠(𝜑̃(𝑝2)). Let 𝑝 = 𝑝2 ⊕ 0𝑛, so 𝜑̃(𝑝) ∼𝑢 𝑠(𝜑̃(𝑝)). 
As ℳ︀𝑘(𝐵̃) is a unital, then by Diagram 1, one has

𝜑̃(𝑝) ∼𝑢 𝑠(𝜑̃(𝑝)) in 𝒰︀∞(ℳ︀𝑘(𝐵̃))

hence 𝜑̃(𝑝) ∼𝑢 𝑠(𝜑̃(𝑝)) in 𝒰︀∞(𝐵̃). Now

[𝑝]0 − [𝑠(𝑝)]0 = [𝑝2]0 − [𝑠(𝑝2)]0 = [𝑝1]0 − [𝑠(𝑝1)]0 = 𝑔,

hence (i) is shown. Suppose now 𝜑 is surjective, now by the previous part, there is a 𝑛 ∈ ℕ, 𝑝1 ∈
P𝑛(𝐴), 𝑢 ∈ 𝒰︀𝑛(𝐵̃) such that 𝜑̃(𝑝1) = 𝑢𝑠(𝜑̃(𝑝1))𝑢∗ with 𝑔 = [𝑝1]0 − [𝑠(𝑝1)]0. As 𝜑 is surjective, 

then so is 𝜑̃, and hence so is the induced map 𝜑̃ : ℳ︀𝑛(𝐴) → ℳ︀𝑛(𝐵̃) from the Functoriality of 

Matrix Algebras 2.5.2. Thus there is a 𝑣 ∈ 𝒰︀2𝑛(𝐴) such that 𝜑̃(𝑣) = 𝑢 ⊕ 𝑢∗ by Lemma 2.6.4 (iii). 

Let 𝑝 = 𝑣diag(𝑝1, 0𝑛)𝑣∗ ∈ P2𝑛(𝐴), and

𝜑̃(𝑝) = (𝑢 ⊕ 𝑢∗)(𝜑̃(𝑝1) ⊕ 0𝑛)(𝑢∗ ⊕ 𝑢) = 𝑠(𝜑̃(𝑝1)) ⊕ 0𝑛 ∈ ℳ︀2𝑛(ℂ)1𝐵̃

so 𝑠(𝜑̃(𝑝)) = 𝜑̃(𝑝). As 𝑝1 ∼ 𝑝1 ⊕ 0𝑛 ∼ 𝑝 by Diagram 1, then 𝑔 = [𝑝]0 − [𝑠(𝑝)]0, as required. ∎

30



The 𝐾0-Theory for 𝐶∗-algebras The 𝐾0-Group Construction

Lemma 3.4.6. If one has an exact sequence of 𝐶∗-algebras:

𝜑 𝜓
0 𝐴 𝐵 𝐶 0

then one has an exact sequence:

𝜑̃ (id𝐶 −𝑠𝐶) ∘ 𝜓
0 𝐴 𝐵̃ 𝐶 0

In particular for each 𝑛 ∈ ℕ, one has an exact sequence:

𝜑̃ (id𝐶 −𝑠𝐶) ∘ 𝜓
0 ℳ︀𝑛(𝐴) ℳ︀𝑛(𝐵̃) ℳ︀𝑛(𝐶) 0

 Proof. From the Universality of Unitization 2.2.4, 𝜑̃ is an injection, and 𝜓 is a surjection, and as 

im(id𝐶 −𝑠𝐶) = 𝐶, then it follows that im((id𝐶 −𝑠𝐶) ∘ 𝜓) = 𝐶, so it suffices to prove that im(𝜑̃) =
ker((id𝐶 −𝑠𝐶) ∘ 𝜓).
Let 𝑎 + 𝛼1𝐴̃ ∈ 𝐴, then

((id𝐶 −𝑠𝐶) ∘ 𝜓)(𝜑̃(𝑎 + 𝛼1𝐴̃)) = (id𝐶 −𝑠𝐶)(𝜓(𝜑(𝑎)) + 𝛼1𝐶) = (id𝐶 −𝑠𝐶)(𝛼1𝐶) = 0.

Suppose 𝑏 + 𝛽1𝐵̃ ∈ ker((id𝐶 −𝑠𝐶) ∘ 𝜓), thus

0 = (id𝐶 −𝑠𝐶)(𝜓(𝑏) + 𝛽1𝐵̃) = 𝜓(𝑏) + 𝛽1𝐵̃ − (𝜓(𝑠𝐵(𝑏)) + 𝛽1𝐵̃) = 𝜓(𝑏)

so 𝑏 ∈ ker(𝜓) = im(𝜑), thus there is a 𝑎 ∈ 𝐴 such that 𝜑(𝑎) = 𝜓(𝑏), hence 𝜑̃(𝑎 + 𝛽1𝐴̃) = 𝜓(𝑏 +
𝛽1𝐵̃). This shows im(𝜑̃) = ker((id𝐶 −𝑠𝐶) ∘ 𝜓), and the rest follows from the Functoriality of Matrix 

Algebras 2.5.2. ∎
It follows that 𝐾0 has a much stronger functoriality properties than 𝐾00. We shall finish this 

chapter with the next three theorems.

Theorem 3.4.7. (Half Exactness of 𝐾0). An exact sequence of 𝐶∗-algebras:

𝜑 𝜓
0 𝐴 𝐵 𝐶 0

induces an exact sequence of Abelian groups:

𝐾0(𝜑) 𝐾0(𝜓)
𝐾0(𝐴) 𝐾0(𝐵) 𝐾0(𝐶).

 Proof. By functoriality of 𝐾0, one has 𝐾0(𝜓) ∘ 𝐾0(𝜑) = 𝐾0(𝜓 ∘ 𝜑) = 𝐾0(0) = 0, so 

im(𝐾0(𝜑)) ⊆ ker(𝐾0(𝜓)).
Suppose 𝑔 ∈ ker(𝐾0(𝜓)), so by Lemma 3.4.5, there is a 𝑝 ∈ P∞(𝐵̃) such that 𝜓(𝑝) = 𝑠(𝜓(𝑝)) and 

𝑔 = [𝑝]0 − [𝑠(𝑝)]0, so as 𝑝 ∈ ker((id𝐶 −𝑠𝐶) ∘ 𝜓), then by Lemma 3.4.6, there is a 𝑞 ∈ ℳ︀∞(𝐴) 

such that 𝜑̃(𝑞) = 𝑝, and as 𝜑̃ is injective, then 𝑞 ∈ P∞(𝐴). Finally by naturality of the scalar map 

(3.3), one has

𝐾0(𝜑)[𝑞 − 𝑠(𝑞)]0 = [𝑝]0 − [𝑠(𝑝)]0 = 𝑔,

hence ker(𝐾0(𝜓)) = im(𝐾0(𝜑)), as required. ∎
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Theorem 3.4.8. (Split Exactness of 𝐾0). A split-exact sequence of 𝐶∗-algebras:

𝜑 𝜓

𝜆
0 𝐴 𝐵 𝐶 0

induces a split-exact sequence of Abelian groups:

𝐾0(𝜑) 𝐾0(𝜓)

𝐾0(𝜆)
0 𝐾0(𝐴) 𝐾0(𝐵) 𝐾0(𝐶) 0.

 Proof. By the Half Exactness of 𝐾0 3.4.7, we have exactness at 𝐾0(𝐵), and as 𝐾0(𝜆) is a right-

inverse of 𝐾0(𝜓) by functoriality, one has 𝐾0(𝜓) is surjective, so we have exactness at 𝐾0(𝐶). So 

it suffices to show that ker(𝐾0(𝜑)) = 0.

Let 𝑔 ∈ ker(𝐾0(𝜑)), so by Lemma  3.4.5, there is a 𝑛 ∈ ℕ, 𝑝 ∈ P𝑛(𝐴), and 𝑢 ∈ 𝒰︀𝑛(𝐴) such 

that 𝑔 = [𝑝]0 − [𝑠(𝑝)]0 and 𝑢𝜑̃(𝑝)𝑢∗ = 𝑠(𝜑̃(𝑝)). Let 𝑣 = (𝜆̃ ∘ 𝜓)(𝑢∗)𝑢 ∈ 𝒰︀𝑛(𝐵̃), thus 𝜓(𝑣) = 1𝑛, 

so 𝜓(𝑣) = 𝑠(𝜓(𝑣)), hence by Lemma 3.4.5, there is a 𝑤 ∈ ℳ︀𝑛(𝐴) such that 𝜑̃(𝑤) = 𝑣, and as 𝜑̃ 

is injective, then 𝑤 ∈ 𝒰︀𝑛(𝐴). Note that as 𝜓 ∘ 𝜑 = 0, then 𝜓 ∘ 𝜑 = 0̃ is a scalar map, i.e. 0̃(𝑎 +
𝛼1𝐴̃) = 𝛼1𝐵̃ here, so finally,

𝜑̃(𝑤𝑝𝑤∗) = 𝑣𝜑̃(𝑝)𝑣∗ = (𝜆̃ ∘ 𝜓)(𝑢∗)𝑠(𝜑̃(𝑝))(𝜆̃ ∘ 𝜓)(𝑢)

= (𝜆̃ ∘ 𝜓)(𝑢∗𝑠(𝜑̃(𝑝))𝑢)

= (𝜆̃ ∘ 𝜓)(𝜑̃(𝑝))

= (𝜆̃ ∘ 𝜓 ∘ 𝜑)(𝑝) = (𝜆̃ ∘ 0̃)(𝑝) = 𝑠(𝜑̃(𝑝))) = 𝜑̃(𝑠(𝑝)),

so 𝑤𝑝𝑤∗ = 𝑠(𝑝) by injectivity of 𝜑̃. As 𝑝 ∼𝑢 𝑠(𝑝), then 𝑔 = 0, as required. ∎

Theorem 3.4.9. (Additivity of 𝐾0). Let 𝐴 and 𝐵 be 𝐶∗-algebras, then 𝐾0(𝐴 ⊕ 𝐵) ≅ 𝐾0(𝐴) ⊕
𝐾0(𝐵).

 Proof. Consider the diagram

𝜉

𝛼 𝛽

𝐾0(𝜄𝐴) 𝐾0(𝜋𝐵)

0 𝐾0(𝐴) 𝐾0(𝐴) ⊕ 𝐾0(𝐵) 𝐾0(𝐵) 0

0 𝐾0(𝐴) 𝐾0(𝐴 ⊕ 𝐵) 𝐾0(𝐵) 0

where

𝛼(𝑔) = (𝑔, 0), 𝛽(𝑔, ℎ) = ℎ
𝜄𝐴 : 𝐴 → 𝐴 ⊕ 𝐵 : 𝑎 ↦ (𝑎, 0), 𝜋𝐵 : 𝐴 ⊕ 𝐵 → 𝐵 : (𝑎, 𝑏) ↦ 𝑏

and

𝜉(𝑔, ℎ) = 𝐾0(𝜄𝐴)(𝑔) + 𝐾0(𝜄𝐵)(ℎ).

This makes the diagram commutative, and the top row is clearly exact following from definition, 

and the bottom row is exact as it is induced from the split exact sequence:

𝜄𝐴 𝜋𝐵

𝜄𝐵
0 𝐴 𝐴 ⊕ 𝐵 𝐵 0
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which we use the Split Exactness of 𝐾0 3.4.8. Hence by Five Lemma 5.4.5, 𝜉 is an isomorphism, as 

required. ∎

3.5 Computation of 𝐾0-Groups

We finish off this section by providing some common examples of 𝐾0(𝐴). This chapter is rather 

independent of the thesis; the only main takeaway is the next example: the 𝐾0-groups for finite-

dimensional 𝐶∗-algebras.

Example 3.5.1. (The 𝐾0-group for finite-dimensional a 𝐶∗-algebra 𝐴). If 𝐴 = ℳ︀𝑛(ℂ) for some 𝑛 ∈
ℂ, then by one has 𝐾0(𝐴) ≅ ℤ by the Structure of 𝐾00(ℬ︀(𝐻)) 3.3.9 (ii) since 𝐾0(𝐴) ≅ 𝐾00(𝐴) 
as 𝐴 is unital. Now in general, by Theorem 2.1.6, 𝐴 ≅ ℳ︀𝑛1

(ℂ) ⊕ ⋯ ⊕ ℳ︀𝑛𝑘
(ℂ) for 𝑛1, …, 𝑛𝑘 ∈ ℕ 

and some 𝑘 ∈ ℕ. By the Additivity of 𝐾0 3.4.9, one has that

𝐾0(𝐴) ≅ ℤ ⊕ ⋯ ⊕ ℤ⏟
𝑘 copies

.

In particular, 𝐾0(ℂ) ≅ ℤ, which gives us the structure of 𝐾0(𝐴) simply by algebraic arguments.

Lemma 3.5.2. Suppose one has a split-exact sequence of Abelian groups

𝜑 𝜇

𝜈
0 𝐺 𝐻 𝐾 0.

Then 𝐻 ≅ 𝐺 ⊕ 𝐾.

 Proof. Define 𝜓 : 𝐺 ⊕ 𝐾 → 𝐻 : (𝑔, 𝑘) ↦ 𝜑(𝑔) − 𝜈(𝑘), which is a homomorphism.

Let (𝑔, 𝑘) ∈ ker(𝜓), so 𝜑(𝑔) = 𝜈(𝑘), applying 𝜇, we get that 0 = 𝑘. Thus 𝜑(𝑔) = 0, but ker(𝜑) =
0, so 𝑔 = 0. Hence 𝜓 is injective.

Let ℎ ∈ 𝐻, then 𝜇(ℎ − 𝜈(𝜇(ℎ))) = 𝜇(ℎ) − 𝜇(ℎ) = 0, so ℎ − 𝜈(𝜇(ℎ)) ∈ ker(𝜇) = im(𝜑), so there is 

a 𝑔 ∈ 𝐺 such that 𝜑(𝑔) = ℎ − 𝜈(𝜇(ℎ)), hence 𝜓(𝑔, −𝜇(ℎ)) = ℎ − 𝜈(𝜇(ℎ)) + 𝜈(𝜇(ℎ)) = ℎ. Thus 𝜓 

is surjective, as required. ∎

Corollary 3.5.3. Let 𝐴 be a 𝐶∗-algebra, then 𝐾0(𝐴) ≅ 𝐾0(𝐴) ⊕ ℤ.

 Proof. Note that the split-exact sequence (2.1):

𝜄 𝜋

𝜆
0 𝐴 𝐴 ℂ 0

induces another split-exact sequence by Split Exactness of 𝐾0 3.4.8:

𝐾0(𝜄) 𝐾0(𝜋)

𝐾0(𝜆)
0 𝐾0(𝐴) 𝐾0(𝐴) ℤ 0.

So 𝐾0(𝐴) ≅ 𝐾0(𝐴) ⊕ ℤ by preceding lemma. ∎

1⟩  𝐾0-Groups for 𝒞︀(𝑋)

Construction 3.5.4. (The trace map for 𝒞︀(𝑋)). Given a connected locally compact Hausdorff space 

𝑋 and 𝐴 = 𝒞︀(𝑋). Then there is an additive map tr : P∞(𝐴)/ ∼→ ℕ0 such that tr([𝑝]) = tr(𝑝(𝑥)) 
for a fixed 𝑥 ∈ 𝑋, where tr(𝑝(𝑥)) is the usual trace for matrices as we make the identification 

33



The 𝐾0-Theory for 𝐶∗-algebras Computation of 𝐾0-Groups

ℳ︀𝑛(𝐴) ≅ 𝒞︀(𝑋, ℳ︀𝑛(ℂ)) for each 𝑛 ∈ ℕ; see Example 2.5.4 (ii). In particular, one has a homomor

phism dim : 𝐾0(𝐴) → ℤ defined as dim([𝑝]0) = tr(𝑝).
For each 𝑝 ∈ P𝑛(𝒞︀0(𝑋)), the map tr(𝑝) : 𝑥 ↦ tr(𝑝(𝑥)) is in 𝒞︀0(𝑋, ℤ); see Proposition 3.1.9 (v). As 

𝑋 is connected, then tr(𝑝) is a constant map, hence the map tr : P∞(𝒞︀0(𝑋)) → ℤ is well-defined. 

As for each 𝑝, 𝑞 ∈ P∞(𝐴), then 𝑝 ∼ 𝑞 implies 𝑝(𝑥) ∼ 𝑞(𝑥) for all 𝑥 ∈ 𝑋, thus the map [𝑝] ↦ tr(𝑝) 
is well-defined on P∞(𝐴)/ ∼, and similarly, tr is additive. Thus the existence of dim follows from 

the Universal Property of 𝐾00-Groups 3.3.4.

Example 3.5.5. (𝐾00(𝒞︀0(𝑋)) = 0 for a connected non-compact locally compact Hausdorff space 

𝑋). From Construction 3.5.4, given 𝑝 ∈ P∞(𝒞︀0(𝑋)) the map Tr(𝑝) is in 𝒞︀0(𝑋, ℤ).
Note that in general 𝑓 ∈ 𝒞︀0(𝑋, ℤ), as 𝑋 is non-compact, there is a compact 𝐾 ⊊ 𝑋 such that 

|𝑓(𝑥)| < 1
2  for all 𝑥 ∈ 𝑋 \ 𝐾. As 𝑓 is a constant in ℤ, then 𝑓 = 0.

Hence Tr(𝑝) = 0, thus tr(𝑝(𝑥)) = 0 implies 𝑝(𝑥) = 0 for all 𝑥 ∈ 𝑋, so 𝑝 = 0.1 Thus P𝑛(𝒞︀0(𝑋)) =
{0𝑛}, so 𝐾00(𝒞︀0(𝑋)) = 0.

Example 3.5.6. (dim is surjective for a connected compact Hausdorff space 𝑋). As 1 ∈ 𝒞︀(𝑋), then 

one has dim([1]0) = 1, so dim is surjective.

Example 3.5.7. (The map dim is an isomorphism for a contractible compact Hausdorff space 𝑋). 

Recall that 𝑋 being contractible means that there is a continuous map 𝐹 : 𝑋 × [0, 1] → 𝑋 and 

𝑥0 ∈ 𝑋 such that 𝐹(⋅, 0) = id𝑋 and 𝐹(⋅, 1) = 𝑥0.

For each 𝑡 ∈ [0, 1], define 𝜑𝑡 : 𝒞︀(𝑋) → 𝒞︀(𝑋) : 𝑓 ↦ 𝑓(𝐹(⋅, 𝑡)), which is a *-homomorphism such 

that 𝜑0(𝑓) = 𝑓 and 𝜑1(𝑓) = 𝑓(𝑥0), and also for each 𝑓 ∈ 𝒞︀(𝑋), the map 𝑡 ↦ 𝜑𝑡(𝑓) is continuous. 

So id𝑋 ∼ℎ 𝜑1. Define 𝜇 : 𝒞︀(𝑋) → ℂ as 𝜇(𝑓) = 𝑓(𝑥0) and 𝜈 : ℂ → 𝒞︀(𝑋) : 𝛼 ↦ 𝛼1, hence 𝜇 ∘ 𝜈 =
idℂ and 𝜈 ∘ 𝜇 = 𝜑1 ∼ℎ idℂ, hence

𝜇 𝜈
𝒞︀(𝑋) ℂ 𝒞︀(𝑋)

is a homotopy. Recall the isomorphism 𝐾0(tr) : 𝐾0(ℂ) → ℤ from the Structure of 𝐾00(ℬ︀(𝐻)) 3.3.9. 

Thus one has a commutative diagram:

dim

𝜇
𝐾0(tr)

𝐾0(𝒞︀(𝑋)) ℤ

𝐾0(ℂ)
where 𝜇 and 𝐾0(tr) are isomorphisms by the Homotopy Invariance of 𝐾0 3.4.3, then dim is also an 

isomorphism.

Proposition 3.5.8. Let 𝑋 be the disjoint union space of locally compact Hausdorff spaces 𝑋1 and 

𝑋2. Then 𝒞︀0(𝑋) ≅ 𝒞︀0(𝑋1) ⊕ 𝒞︀0(𝑋2).
 Proof. Let 𝜆1 : 𝑋1 → 𝑋 and 𝜆2 : 𝑋2 → 𝑋 be the canonical inclusion maps. Define

Φ : 𝒞︀0(𝑋) → 𝒞︀0(𝑋1) ⊕ 𝒞︀0(𝑋2) : 𝑓 ↦ (𝑓 ∘ 𝜆1, 𝑓 ∘ 𝜆2).

Let 𝑓 ∈ 𝒞︀0(𝑋) and 𝜀 > 0, so there is a compact 𝐾 ⊆ 𝑋 such that |𝑓(𝑥)| < 𝜀 for all 𝑥 ∈ 𝑋 \ 𝐾. 

Now 𝐾𝑖 = 𝜆−1
𝑖 (𝐾 ∩ 𝜆𝑖(𝐾)) is compact in 𝑋𝑖, and one has |𝑓(𝜆𝑖(𝑥))| < 𝜀 for 𝑥 ∈ 𝑋𝑖 \ 𝐾𝑖, so 𝑓 ∘

𝜆𝑖 ∈ 𝒞︀0(𝑋𝑖) for each 𝑖 ∈ {1, 2}. Hence Φ is a well-defined map. Now it is clear that Φ is a *-

1A projection matrix with zero eigenvalues must be the zero matrix.
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homomorphism too, and Φ is surjective by the universal property of disjoint union spaces. Now Φ 

is also injective as 𝑋 = 𝜆1(𝑋1) ∪ 𝜆2(𝑋2). Hence Φ is an isomorphism. ∎

Corollary 3.5.9. Let 𝑋 be a locally connected, locally compact Hausdorff space such that 𝑋 has 

finitely many connected components {𝐶𝑖}𝑖≤𝑛. Then

𝐾0(𝒞︀(𝑋)) ≅ ⨁
𝑖≤𝑛

𝐾0(𝒞︀(𝐶𝑖))

 Proof. As 𝑋 is locally connected, all of its components are clopen, so 𝑋 is a disjoint union space 

of its connected components. The rest follows from Proposition 3.5.8 and the Additivity of 𝐾0 3.4.9.∎
We now try to compute the 𝐾0-group for 𝒞︀0(ℝ). Note that the one-point compactification of ℝ 

is 𝕊1, and by Example 2.2.7, the unitization 𝒞︀0(ℝ) is isomorphic to 𝒞︀(𝕊1) and one has a split-exact 

sequence

0 𝒞︀0(ℝ) 𝒞︀(𝕊1) ℂ 0
and we use the fact that 𝐾0(𝕊1) ≅ ℤ by [2, Example 11.3.3] and Corollary 3.5.3 to conclude that 

𝐾0(𝒞︀(𝕊1)) ≅ 𝐾0(𝒞︀0(ℝ)) ⊕ ℤ, hence 𝐾0(𝒞︀0(ℝ)) = 0. Let 𝐼 ⊆ ℝ be any interval:

• If 𝐼 is open, then 𝐼 is homeomorphic to ℝ, so 𝒞︀0(𝐼) ≅ 𝒞︀0(ℝ) as 𝐶∗-algebras, hence 𝐾0(𝒞︀0(𝐼)) = 0.

• If 𝐼 is closed and bounded, then 𝐼 is compact, then 𝐾0(𝒞︀(𝐼)) ≅ ℤ by Example 3.5.7.

• If 𝐼 is half-closed, i.e. of the form [𝑎, 𝑏) or (𝑎, 𝑏] (not necessarily bounded), then 𝐼 is homeomorphic 

to a bounded half-closed interval by passing it through arctan. So we assume 𝐼 is half-closed and 

bounded, then the one point-compactification of 𝐼 is 𝐼 , hence one has a split-exact sequence

0 𝒞︀0(𝐼) 𝒞︀(𝐼) ℂ 0
and we know that 𝐾0(𝒞︀(𝐼)) ≅ ℤ, and by Corollary 3.5.3, one has 𝐾0(𝒞︀(𝐼)) ≅ 𝐾0(𝒞︀(𝐼)) ⊕

ℤ, so one has 𝐾0(𝒞︀(𝐼)) = 0.

Using Corollary 3.5.9, we can characterize the 𝐾0-group for all finite unions of intervals of ℝ, for 

example, given 𝑈 = (−∞, 0) ∪ [1, 2] ∪ [3, 5) ∪ {37} ∪ (40, 50), one has that

𝐾0(𝒞︀0(𝑈)) ≅ 𝐾0(𝒞︀0((−∞, 0))) ⊕ 𝐾0(𝒞︀([1, 2])) ⊕ 𝐾0(𝒞︀0([3, 5)))
⊕ 𝐾0(𝒞︀({37})) ⊕ 𝐾0(𝒞︀0((40, 50)))

≅ 0 ⊕ ℤ ⊕ 0 ⊕ ℤ ⊕ 0 ≅ ℤ2.

2⟩  𝐾0-Groups for ℬ︀(𝐻)

Let 𝐻 be an infinite-dimensional Hilbert space, then 𝐾00(ℬ︀(𝐻)) = 0 by the Structure of 

𝐾00(ℬ︀(𝐻)) 3.3.9, and by Proposition 3.4.1, one has 𝐾0(ℬ︀(𝐻)) = 0 as ℬ︀(𝐻) is unital. It shall be 

shown in Example 4.3.7, if 𝐻 is separable, then 𝐾0(𝒦︀(𝐻)) ≅ ℤ.
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We now focus our attention towards classifying 𝐶∗-algebras via their 𝐾0-groups. It is clear that 

with our current tools, just by looking into the 𝐾0-group will not provide enough information to 

encapsulate the structure of the 𝐶∗-algebra. For example, all 𝐾0(ℳ︀𝑛(ℂ)) = ℤ for all 𝑛 ∈ ℕ yet ℂ 

is “not similar to” ℳ︀2(ℂ) at all. However, we can add an ‘order’ structure to our 𝐾0-groups which 

in turn gives sufficient condition to classify, in this case, approximately finite-dimensional algebras 

or AF-algebras for short.

We begin our first chapter by building up the necessary theory in order to talk about the 

‘orderedness’ of our Abelian groups, and how the ‘stability’ of the 𝐶∗-algebra relates to the ordered 

structure of their 𝐾0-groups.

The second chapter will focus on inductive limit constructions on both the 𝐶∗-algebra and the 

𝐾0-group level, and discuss their properties independently. As all AF-algebras are finite-dimensional 

𝐶∗-algebras under inductive limits, this chapter will serve as a foundation for all upcoming inductive 

limit results such as the Inductive Continuity of 𝐾0 4.3.5 and the main theorem, namely Elliott’s 

Theorem 4.5.5.

We shall briefly touch on the definition and properties of AF-algebras in the third chapter. There 

are a lot more nice properties that AF-algebras possesses; see [7]. However, we shall only focus on 

the results relevant to the classification theorem.

Finally in the last chapter, we shall prove the celebrated classification theorem of AF-algebras; 

the Elliott’s Theorem 4.5.5.

4.1 The (𝐾0, 𝐾+
0 ) Functor

We now begin adding more information to our 𝐾0-group invariant, more specifically, we will 

consider ordered Abelian groups with distinguished order units rather than just Abelian groups. This 

allows us to finally make distinctions between certain 𝐶∗-algebras at the 𝐾0-group level. Firstly, 

we will discuss the finiteness properties of 𝐶∗-algebras, which are properties observed in the finite-

dimensional case.

Definition 4.1.1. (Stably Finiteness of 𝐶∗-algebras). Let 𝐴 be a 𝐶∗-algebra and 𝑝 be a projection 

on 𝐴. We say 𝑝 is infinite if there is a 𝑞 ∈ P(𝐴) such that 𝑝 ∼ 𝑞 < 𝑝, i.e. 𝑝 ∼ 𝑞, and 𝜎(𝑝 − 𝑞) ⊆
(0, ∞). Otherwise, 𝑝 is said to be finite.

If 𝐴 is unital, then we say 𝐴 is finite if 1𝐴 is a finite projection, otherwise 𝐴 is said to be infinite. 

We say 𝐴 is stably finite if ℳ︀𝑛(𝐴) is finite for all 𝑛 ∈ ℕ. If 𝐴 is nonunital, then 𝐴 is finite (resp. 

infinite, or stably finite) if 𝐴 is finite (resp. infinite, or stably finite).

Note that 𝑎 ∈ 𝐴 is an isometry if 𝑎∗𝑎 = 1 if 𝐴 is unital. Feel free to refer to the Chapter 2.5 on 

positive elements as this lemma relies on the observations made there.
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Lemma 4.1.2. Let 𝐴 be a unital 𝐶∗-algebra, then the following conditions are equivalent:

(i) 𝐴 is finite.

(ii) All isometries in 𝐴 are unitary.

(iii) All projections in 𝐴 are finite.

(iv) All left-invertible elements in 𝐴 are invertible.

(v) All right-invertible elements in 𝐴 are invertible.

Furthermore, if 𝐴 is nonunital, then (iii) still holds if 𝐴 is finite.

 Proof. (i)⟹(ii). Suppose 𝐴 is finite. If 𝑎 ∈ 𝐴 is an isometry, then 𝑎𝑎∗ is a projection with 1 =
𝑎∗𝑎 ∼ 𝑎𝑎∗, so as 1 is finite, one has 𝑎𝑎∗ ≥ 1. That means 𝜎(𝑎𝑎∗) − 1 ⊆ [0, ∞), so 𝜎(𝑎𝑎∗) = {1} as 

𝜎(𝑎𝑎∗) ⊆ {0, 1}. Hence 𝑎𝑎∗ = 1, as required.

(ii)⟹(i). Suppose all isometries are unitary. Let 𝑝 ∈ P(𝐴) such that 𝑝 ∼ 1, then there is a 𝑣 ∈ 𝐴 

such that 𝑝 = 𝑣𝑣∗ and 1 = 𝑣∗𝑣, hence 𝑝 = 1 as 𝑣 is unitary. Then 1 is a finite projection, so 𝐴 is 

finite.

(ii)⟹(iii). Suppose 𝐴 is finite. Let 𝑝, 𝑞 ∈ P(𝐴) such that 𝑝 ∼ 𝑞 ≤ 𝑝. Now there is a 𝑣 ∈ 𝐴 such 

that 𝑝 = 𝑣∗𝑣 and 𝑞 = 𝑣𝑣∗, and define 𝑤 = 𝑣 + (1 − 𝑝). Note that (1 − 𝑝)𝑣∗ = 0 = 𝑣(1 − 𝑝), and by 

Lemma 2.3.2, one has 𝑝𝑞 = 𝑞𝑝 = 𝑞, so
𝑤∗𝑤 = 1 + 𝑣∗(1 − 𝑝) + (1 − 𝑝)𝑣 = 1 + 𝑣∗𝑞(1 − 𝑝) + (1 − 𝑝)𝑞𝑣 = 1

and 𝑤𝑤∗ = 𝑞 + 1 − 𝑝

thus by (ii), 𝑤 is unitary, so 1 = 𝑞 + 1 − 𝑝, hence 𝑝 = 𝑞. Thus 𝑝 is finite.

(iii)⟹(i). Suppose all projections are finite, then 1 is finite, so 𝐴 is finite.

(iv)⟹(v). Suppose all left-invertible elements are invertible. Let 𝑎 ∈ 𝐴 be right-invertible, then 

there is a 𝑏 ∈ 𝐴 such that 𝑎𝑏 = 1, so 𝑏 is invertible, hence 𝑏𝑎 = 𝑏𝑎𝑏𝑏−1 = 𝑏1𝑏−1 = 1.

(v)⟹(iv). Similar as above.

(iv)⟹(ii). Trivial.

(ii)⟹(iv). Suppose all isometries are unitary. Let 𝑎 ∈ 𝐴 be left-invertible, by Lemma 2.4.6 𝑎∗𝑎 is 

invertible, so let 𝑣 = 𝑎(𝑎∗𝑎)−1
2 . Now one has 𝑣∗𝑣 = 1, thus 𝑣 is unitary hence invertible. Thus 𝑎 =

𝑣(𝑎∗𝑎) is also invertible.

Suppose 𝐴 is nonunital and is finite, and 𝑝, 𝑞 ∈ P(𝐴) such that 𝑝 ∼ 𝑞 ≤ 𝑝. Then borrowing the 

defined notations in the proof of (ii)⟹(iii), where 𝑤 = 𝑣 + (1𝐴̃ − 𝑝) and we know that 𝑤∗𝑤 = 1𝐴̃ 

and 𝑤𝑤∗ = 𝑞 + 1𝐴̃ − 𝑝. As 1𝐴̃ is finite, then 1𝐴̃ ∼ 𝑤𝑤∗ ≥ 1𝐴̃, so 𝜎(𝑤𝑤∗) − 1 ⊆ [0, ∞), it follows 

that 𝑤𝑤∗ = 1𝐴̃, so 𝑝 = 𝑞, as required. ∎

Corollary 4.1.3. Let 𝐴 and 𝐵 be finite (resp. stably finite) unital 𝐶∗-algebras, then 𝐴 ⊕ 𝐵 is finite 

(resp. stably finite).

 Proof. Let (𝑎, 𝑏) ∈ 𝐴 ⊕ 𝐵 be left-invertible, then 𝑎 and 𝑏 are left-invertible in 𝐴 and 𝐵 respec

tively, hence they are invertible, and thus so is (𝑎, 𝑏). Therefore by preceding lemma, one has 𝐴 ⊕
𝐵 is finite. If 𝐴 and 𝐵 are stably finite, then by Example 2.5.6, ℳ︀𝑛(𝐴 ⊕ 𝐵) ≅ ℳ︀𝑛(𝐴) ⊕ ℳ︀𝑛(𝐵) 
is finite for each 𝑛 ∈ ℕ. Thus 𝐴 ⊕ 𝐵 are stably finite. ∎

Corollary 4.1.4. A finite-dimensional 𝐶∗-algebra 𝐴 is unital and stably finite.

 Proof. By Theorem 2.1.6, 𝐴 is a sum of matrix algebras over ℂ (which are unital), so from 

Corollary 4.1.3, it suffices to show that ℳ︀𝑛(ℂ) is stably finite for each 𝑛 ∈ ℕ. Let 𝑛 ∈ ℕ, then by 

Lemma 4.1.2, ℳ︀𝑛(ℂ) is a finite 𝐶∗-algebra as all left-invertible matrices over ℂ are invertible by 

37



Classification of Separable AF-Algebras The (𝐾0, 𝐾+
0 ) Functor

linear algebra. Now for each 𝑚 ∈ ℕ, one has ℳ︀𝑚(ℳ︀𝑛(ℂ)) ≅ ℳ︀𝑚𝑛(ℂ) is finite, so ℳ︀𝑛(ℂ) is stably 

finite, as required. ∎

Definition 4.1.5. (Ordered Abelian Groups). The pair (𝐺, 𝐺+) is called an ordered Abelian group 

if 𝐺 is an Abelian group and there is a positive cone 𝐺+ ⊆ 𝐺, which satisfies

OG1. 𝐺+ + 𝐺+ ⊆ 𝐺+;

OG2. 𝐺+ ∩ (−𝐺+) = 0;

OG3. 𝐺+ − 𝐺+ = 𝐺.

Hence one can define a relation ≤ on 𝐺 such that 𝑥 ≤ 𝑦 if 𝑦 − 𝑥 ∈ 𝐺+. Now OG2 implies that 

≤ is reflexive and antisymmetric, and OG1 implies ≤ is transitive, so ≤ is a partial order on 𝐺. 

Note that 𝑥 ≤ 𝑦 implies 𝑥 + 𝑧 ≤ 𝑦 + 𝑧 for all 𝑧 ∈ 𝐺. Note that OG1 implies that 𝐺+ is an Abelian 

semigroup.

We say an element 𝑢 ∈ 𝐺+ to be an order unit if for each 𝑔 ∈ 𝐺, there is a 𝑛 ∈ ℕ such that −𝑛𝑢 ≤
𝑔 ≤ 𝑛𝑢. Then the triple (𝐺, 𝐺+, 𝑢) is an ordered Abelian group with a (distinguished) order 

unit. We say (𝐺, 𝐺+) is simple if each 𝑢 ∈ 𝐺+ \ {0} is an order unit.

If an Abelian group 𝐺 has a partial order ≤ such that 𝑥 ≤ 𝑦 implies 𝑥 + 𝑧 ≤ 𝑦 + 𝑧 for all 𝑥, 𝑦, 𝑧 ∈
𝐺. Then the set 𝐺+ = {𝑥 ∈ 𝐺 : 𝑥 ≥ 0} satisfies OG1 and OG2.

From our definition, it is immediately clear that 𝐺 = (ℤ, ℕ0) is a simple ordered Abelian group 

under the usual order. Furthermore, so is 𝐺𝑘 = (ℤ𝑘, ℕ𝑘
0) for each 𝑘 ∈ ℕ where we induce the usual 

ordering to be component-wise. We see that 𝐺 is a simple ordered Abelian group, while 𝐺𝑘 is not 

necessarily simple for 𝑘 > 1.

Definition 4.1.6. (Positive Cones). Given a 𝐶∗-algebra 𝐴, the positive cone of 𝐾0(𝐴) is
𝐾0(𝐴)+ = {[𝑝]0 : 𝑝 ∈ P∞(𝐴)} ⊆ 𝐾0(𝐴).

Note that 𝐾0(𝐴)+ is precisely the image of P∞(𝐴)/ ∼ under the Grothendieck map.

Proposition 4.1.7. Let 𝐴 be a 𝐶∗-algebra. Then

(i) 𝐾0(𝐴)+ + 𝐾0(𝐴)+ ⊆ 𝐾0(𝐴)+.

(ii) If 𝐴 is unital, then 𝐾0(𝐴)+ − 𝐾0(𝐴)+ = 𝐾0(𝐴).
(iii) If 𝐴 is stably finite, then 𝐾0(𝐴)+ ∩ (−𝐾0(𝐴)+) = 0.

(iv) If 𝐴 is unital and stably finite, then (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0) is an ordered Abelian group with 

a distinguished order unit.

 Proof.

(i) Given 𝑝, 𝑞 ∈ P∞(𝐴), one has 𝑝 ⊕ 𝑞 ∈ P∞(𝐴), so [𝑝]0 + [𝑞]0 ∈ 𝐾0(𝐴)+, as required.

(ii) Note that 𝐾0(𝐴)+ is an Abelian semigroup of 𝐾00(𝐴), so by the Structure of Grothendieck 

Groups 3.2.1 (iv), one has 𝐾00(𝐴) = 𝐾0(𝐴)+ − 𝐾0(𝐴)+. As 𝐾00(𝐴) and 𝐾0(𝐴) are isomorphic 

via the inclusion map (see Proposition 3.4.1), then one has 𝐾0(𝐴) = 𝐾0(𝐴)+ − 𝐾0(𝐴)+.

(iii) Suppose 𝑔 ∈ 𝐾0(𝐴)+ ∩ (−𝐾0(𝐴)+), then 𝑔 = [𝑝]0 = −[𝑞]0 for 𝑝, 𝑞 ∈ P∞(𝐴). As [𝑝 ⊕ 𝑞]0 = 0 

in 𝐾0(𝐴) ⊆ 𝐾00(𝐴), so by the Structure of 𝐾00 3.3.3 (v), there is a 𝑟 ∈ P∞(𝐴) such that 

𝑝 ⊕ 𝑞 ⊕ 𝑟 ∼ 𝑟. Without loss of generality, suppose 𝑝, 𝑞, 𝑟 ∈ P𝑛(∞) for some 𝑛 ∈ ℕ, this can be 

achieved by direct summing zero matrices. Let 𝑝′ = 𝑝 ⊕ 0𝑛 ⊕ 0𝑛, 𝑞′ = 0𝑛 ⊕ 𝑞 ⊕ 0𝑛, and 𝑟′ =
0𝑛 ⊕ 0𝑛 ⊕ 𝑟, then 𝑝′𝑞′ = 𝑝′𝑟′ = 𝑞′𝑟′ = 03𝑛, so 𝑝′ ⟂ 𝑞′ ⟂ 𝑟′ with 𝑝 ∼ 𝑝′, 𝑞 ∼ 𝑞′, 𝑟 ∼ 𝑟′. So by 

Proposition 3.3.1 (iv), one has 𝑝′ + 𝑞′ + 𝑟′ ∼ 𝑟′, thus as 𝑝′ + 𝑞′ + 𝑟′ is a finite projection, one 

has 𝑟′ ≥ 𝑝′ + 𝑞′ + 𝑟′, so 0 ≥ 𝑝′ + 𝑞′. Thus 𝑝′ + 𝑞′ = 0 as 𝑝′ + 𝑞′ is a projection, so 𝑝′ = 0 by 

multiplying by 𝑝′, as hence 𝑔 = [𝑝]0 = 0, as required.
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(iv) It suffices to show that [1𝐴]0 is an order unit for 𝐾0(𝐴). Let 𝑔 ∈ 𝐾0(𝐴), then as 𝐾0(𝐴) ≅
𝐾00(𝐴), by the Structure of 𝐾00 3.3.3, one has 𝑔 = [𝑝]0 − [𝑞]0 for some 𝑝, 𝑞 ∈ P𝑛(𝐴) and 𝑛 ∈
ℕ. We write 1 = 1𝐴, and note that [1𝑛]0 = 𝑛[1]0. Now 1𝑛 − 𝑝, 1𝑛 − 𝑞 ∈ P𝑛(𝐴), and note by 

Construction 3.3.2, one has 𝑝 ⊕ (1𝑛 − 𝑝) ∼ 1𝑛, so one has

−𝑛[1]0 = −[1𝑛]0 = −[𝑞]0 − [1𝑛 − 𝑞]0 ≤ −[𝑞]0 ≤ [𝑝]0 − [𝑞]0 = 𝑔
≤ [𝑝]0 ≤ [𝑝]0 + [1 − 𝑝]0 = [1𝑛]0 = 𝑛[1]0.

Hence [1]0 is an ordered unit for 𝐾0(𝐴), as required. ∎

Defintition 4.1.8. (Positive Group Homomorphisms). Let (𝐺, 𝐺+) and (𝐻, 𝐻+) be ordered Abelian 

groups, then a group homorphism 𝜑 : 𝐺 → 𝐻 is positive if 𝜑(𝐺+) ⊆ 𝐻+, and we say 𝜑 is an order 

isomorphism if 𝜑 is an isomorphism and 𝜑(𝐺+) = 𝐻+.

Suppose 𝑔 and ℎ are now distinguished order units of 𝐺 and 𝐻 respectively, then we say 𝜑 is (order) 

unital if 𝜑(𝑢) = 𝑣, and hence we say (𝐺, 𝐺+, 𝑔) and (𝐻, 𝐻+, ℎ) are isomorphic (as ordered 

Abelian groups with units) or unital order isomorphic if 𝜑 can be chosen as a unital order 

isomorphism.

We now have two new categories:

• The category of ordered Abelian groups, OrdAb, whose objects are ordered Abelian groups 

(𝐺, 𝐺+), and morphisms are positive group homomorphisms 𝑓 : (𝐺, 𝐺+) → (𝐻, 𝐻+) (so 

𝑓(𝐺+) ⊆ 𝐻+). It is clear that positive group homomorphisms are preserved under compositions.

• The category of ordered Abelian groups with distinguished order units, OrdAb1, whose objects 

are Abelian groups with distinguished order units (𝐺, 𝐺+, 𝑢𝐺), and morphisms are unital positive 

group homomorphisms 𝑓 : (𝐺, 𝐺+, 𝑢𝐺) → (𝐻, 𝐻+, 𝑢𝐻) (so 𝑓(𝐺+) ⊆ 𝐻+ and 𝑓(𝑢𝐺) = 𝑢𝐻). It 

is clear that unital positive group homomorphisms are preserved under compositions.

It is clear that the categories OrdAb and OrdAb1 contains zero objects, namely the trivial group 

0 which has the positive cone 0+ = {0} and distinguished order unit 0. We also often omit the 𝐺+ 

and 𝑢𝐺 when stating that 𝑓 is a unital positive group homomorphism if the context is clear. We 

shall also observe that the categories OrdAb and OrdAb1 are also closed under finite products, that 

is, given triples (𝐺, 𝐺+, 𝑢𝐺) and (𝐻, 𝐻+, 𝑢𝐻), we can make a new ordered Abelian group (𝐺 ×
𝐻, 𝐺+ × 𝐻+) with a distinguished order unit (𝑢𝐺, 𝑢𝐻).

Proposition 4.1.9. Let 𝜑 : 𝐴 → 𝐵 be a *-homomorphism between 𝐶∗-algebras. Then

(i) 𝐾0(𝜑)(𝐾0(𝐴)+) ⊆ 𝐾0(𝐵)+.

(ii) If 𝐴, 𝐵 and 𝜑 are unital, then 𝐾0(𝜑) is unital, i.e. 𝐾0(𝜑)[1𝐴]0 = [1𝐵]0.
(iii) If 𝜑 is a *-isomorphism, then 𝐾0(𝜑)(𝐾0(𝐴)+) = 𝐾0(𝐵)+.

(iv) If 𝐴 is unital and 𝜑 is an *-isomorphism, then 𝐾0(𝜑) is an unital order isomorphism between 

(𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0) and (𝐾0(𝐵), 𝐾0(𝐵)+, [1𝐵]0).
 Proof.

(i) Follows from the definition: 𝐾0(𝜑)[𝑝]0 = [𝜑̃(𝑝)]0 = [𝜑(𝑝)]0 for 𝑝 ∈ P∞(𝐴).
(ii) Indeed, 𝐾0(𝜑)[1𝐴]0 = [𝜑̃(1𝐴)]0 = [𝜑(1𝐴)]0 = [1𝐵]0.
(iii) Let 𝑞 ∈ P𝑛(𝐵) for some 𝑛 ∈ ℕ, then there is a 𝑝 ∈ ℳ︀𝑛(𝐴) such that 𝜑(𝑝) = 𝑞. Then as 𝜑(𝑝)∗ =

𝜑(𝑝)2 = 𝜑(𝑝), it follows from injectivity that 𝑝 ∈ P𝑛(𝐴), so 𝐾0(𝜑)[𝑝]0 = [𝑞]0, as required.

(iv) This follows from (i), (ii), and (iii). ∎
The last statement (statement (iv)) of the preceding proposition states that the triple 

(𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0) is indeed an invariant of 𝐴. In particular, this triple is sufficient to cover the 
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flaws of 𝐾0(𝐴), which originally cannot distinguish between finite-dimensional algebras as discussed 

initially, but the triple can as per Proposition 4.1.9.

Proposition 4.1.10. Let 𝑛, 𝑚 ∈ ℕ, and 𝐴 = ℳ︀𝑛(ℂ). One has that

(i) 𝐾0(tr) is a unital order isomorphism from (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0) to (ℤ, ℕ0, 𝑛).
(ii) Let 𝐺𝑛 = (ℤ, ℕ0, 𝑛), then 𝐺𝑛 is unital order isomorphic to 𝐺𝑚 if, and only if, 𝑛 = 𝑚.

(iii) If 𝐴 = ℳ︀𝑛(ℂ) ⊕ ℳ︀𝑚(ℂ), then (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0) ≅ (ℤ2, ℕ2
0, (𝑛, 𝑚)).

 Proof.

(i) From the Structure of 𝐾00(ℬ︀(𝐻))  3.3.9, we have the natural isomorphism 𝐾0(tr) :
𝐾0(𝐴) → ℤ (we make the identification 𝐾0(𝐴) = 𝐾00(𝐴) here), and it is clear that 

𝐾0(tr)(𝐾0(𝐴)+) = ℕ0, and 𝐾0(tr)([1𝐴]0) = 𝑛, thus 𝐾0(tr) is an unital order isomorphism 

from (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0) to (ℤ, ℕ0, 𝑛).
(ii) It is clear that if 𝑛 = 𝑚, then we are done. So now suppose there is a unital order isomorphism 

𝜑 from 𝐺𝑛 to 𝐺𝑚. Note that 𝜑(𝑟) = 𝜑(1)𝑟 for all 𝑟 ∈ ℤ, and since 𝜑 is surjective, then 𝜑(1) 
must generate ℤ. The only generators of ℤ are ±1, and as 𝜑(1) ∈ ℕ0 since 𝜑 is positive, one 

has 𝜑(1) = 1. Now 𝑚 = 𝜑(𝑛) = 𝜑(1)𝑛 = 𝑛, as required.

(iii) Following from the Additivity of 𝐾0 3.4.9, we have an isomorphism 𝐾0(tr) ⊕ 𝐾0(tr) : 𝐾0(𝐴) →
ℤ2 where we make the identification 𝐾0(𝐴) = 𝐾0(ℳ︀𝑛(ℂ)) ⊕ 𝐾0(ℳ︀𝑚(ℂ)). The rest follows 

similarly as per (i). ∎
Denote C*-Alg𝑠 to be the category of stably finite unital 𝐶∗-algebras where the morphisms are 

unital *-homomorphisms, so C*-Alg is a subcategory of C*-Alg. From the results proven above, we 

can define the functor

(𝐾0, 𝐾+
0 ) : C*-Alg𝑠 → OrdAb1

which given a unital 𝐶∗-algebra 𝐴, define (𝐾0, 𝐾+
0 )(𝐴) as an ordered Abelian group with a distin

guished order unit (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0). Given a unital *-homomorphism 𝜑 : 𝐴 → 𝐵 between 

unital 𝐶∗-algebras 𝐴 and 𝐵, then define (𝐾0, 𝐾+
0 )(𝜑) as the map 𝐾0(𝜑), which we know 𝐾0(𝜑) 

is a positive unital group homomorphism by Proposition 4.1.9. The functoriality is given in the next 

proposition.

Proposition 4.1.11. (Functoriality of (𝐾0, 𝐾+
0 )). Let 𝐴, 𝐵, 𝐶 ∈ C*-Alg𝑠 and 𝜑 : 𝐴 → 𝐵, 𝜓 : 𝐵 →

𝐶 be unital *-homomorphisms. One has:

(i) (𝐾0, 𝐾0)
+(𝜓 ∘ 𝜑) = (𝐾0, 𝐾+

0 )(𝜓) ∘ (𝐾0, 𝐾+
0 )(𝜑).

(ii) (𝐾0, 𝐾0)
+(id𝐴) = id(𝐾0(𝐴),𝐾0(𝐴)+).

 Proof. This immediate follows from the Functoriality of 𝐾0 3.4.2. ∎

Proposition 4.1.12. (Additivity of (𝐾0, 𝐾+
0 )). Let 𝐴 and 𝐵 be 𝐶∗-algebras, then

𝐾0(𝐴 ⊕ 𝐵)+ = 𝐾0(𝐴)+ ⊕ 𝐾0(𝐵)+ = {(𝑔, ℎ) : 𝑔 ∈ 𝐾0(𝐴)+, ℎ ∈ 𝐾0(𝐵)+}
is the positive cone of 𝐾0(𝐴 ⊕ 𝐵), where the identification is given by 𝜉 in the Additivity of 𝐾0 3.4.9. 

In particular, 𝐾0(𝜉) is an order isomorphism. If 𝐴 and 𝐵 are unital, then 𝐾0(𝜉) is also unital.

 Proof. In the notation of the Additivity of 𝐾0 3.4.9, one has 𝐾0(𝜉) = 𝐾0(𝜄𝐴) ⊕ 𝐾0(𝜄𝐵), and it 

suffices to show that

𝐾0(𝜉)(𝐾0(𝐴)+ ⊕ 𝐾0(𝐵)+) = 𝐾0(𝐴 ⊕ 𝐵)+.

Let (𝑔, ℎ) ∈ 𝐾0(𝐴) ⊕ 𝐾0(𝐵), and 𝑥 = (𝐾0(𝜄𝐴) ⊕ 𝐾0(𝜄𝐵))(𝑔, ℎ). As 𝐾0(𝜋𝐴) and 𝐾0(𝜋𝐵) are 

positive, then 𝑔 = 𝐾0(𝜋𝐴)(𝑥) ∈ 𝐾0(𝐴)+ and ℎ = 𝐾0(𝜋𝐵)(𝑥) ∈ 𝐾0(𝐵)+. If 𝑔 and ℎ are positive, 

then as 𝐾0(𝜄𝐴) and 𝐾0(𝜄𝐵) are positive maps, then it follows that 𝑥 = 𝐾0(𝜄𝐴)(𝑔) + 𝐾0(𝜄𝐵)(ℎ) ∈
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𝐾0(𝐴 ⊕ 𝐵)+. So 𝐾0(𝜉) is an order isomorphism. Now if the units exists, then it is clear that 

𝐾0(𝜉)[(1𝐴, 1𝐵)]0 = ([1𝐴]0, [1𝐵]0). ∎
To summarize this section, we see that the functor (𝐾0, 𝐾0)

+ when restricted to the subcategory 

FinAlg1 yields a classification functor, that is, the objects 𝐴, 𝐵 in FinAlg1 are isomorphic if, and 

only if, the images (𝐾0, 𝐾+
0 )(𝐴) and (𝐾0, 𝐾+

0 )(𝐵) are isomorphic.

4.2 Inductive Limit Constructions

In this chapter, we first consider the general inductive limit constructions of 𝐶∗-algebras and 

ordered Abelian groups. The main motivation here is that this allows to push our classification 

theorem Proposition 4.1.10 of finite-dimensional 𝐶∗-algebras, to AF-algebras. This gives a larger 

class of 𝐶∗-algebras that can be classified by (𝐾0, 𝐾+
0 ). Secondly, we shall show the relevant 

properties of 𝐶∗-algebras that are inherited through taking inductive limits.

1⟩  Inductive Limit of 𝐶∗-Algebras

Let 𝐼 be some index set, and {𝐴𝛼}𝛼∈𝐼 be a family of 𝐶∗-algebras. Construct the product 𝐶∗-

algebra 𝐴 as follows: we treat elements of 𝐴 to be functions 𝑎 : 𝐼 → ⋃𝛼∈𝐼 𝐴𝛼 with 𝑎𝛼 ≔ 𝑎(𝑖) ∈
𝐴𝛼 such that

‖𝑎‖ = sup
𝛼∈𝐼

‖𝑎𝛼‖𝐴𝛼
< ∞.

Let ‖⋅‖ be norm of 𝐴 as defined above, and we equip addition, scalar multiplication, *-operation, 

and multiplication to be pointwise. As it turns out 𝐴 is a categorical product of the collection 

(𝐴𝛼)𝛼∈𝐼 , and we will write 𝐴 = ∏𝛼∈𝐼 𝐴𝛼 in reference to this construction. We need a small lemma 

to compute supremums.

Lemma 4.2.1. Let 𝑓 : [0, ∞) → ℝ be an increasing continuous map, and 𝐴 ⊆ [0, ∞) be nonempty 

and bounded. Then 𝑓(sup 𝐴) = sup 𝑓(𝐴).
 Proof. Let 𝛼 = sup 𝐴 < ∞, then 𝑓(𝛼) ≥ 𝑓(𝑎) for all 𝑎 ∈ 𝐴, so 𝑓(𝛼) ≥ sup 𝑓(𝐴). Let 𝜀 > 0, 

so there is a 𝛿 > 0 such that |𝑓(𝑥) − 𝑓(𝛼)| ≤ 𝜀 for all 𝑥 ∈ (𝛼 − 𝛿, 𝛼 + 𝛿), and in particular there 

is a 𝑎 ∈ 𝐴 ∩ (𝛼 − 𝛿, 𝛼 + 𝛿). Thus 𝑓(𝛼) ≤ 𝑓(𝑎) + 𝜀 ≤ sup 𝑓(𝐴) + 𝜀. Taking 𝜀 ↓ 0 to get 𝑓(𝛼) ≤
sup 𝑓(𝐴). Hence 𝑓(sup 𝐴) = sup 𝑓(𝐴), as required. ∎

Theorem 4.2.2. The set 𝐴 = ∏𝛼∈𝐼 𝐴𝛼 is the categorical product of 𝐶∗-algebras. Furthermore, if 

𝐴𝛼 is unital for each 𝛼 ∈ 𝐼 , then 𝐴 is the categorical product of 𝐶∗-algebras.

 Proof. We first need to show that 𝐴 is a 𝐶∗-algebra by showing:

(i) satisfy ‖𝑎𝑏‖ ≤ ‖𝑎‖‖𝑏‖ for all 𝑎, 𝑏 ∈ 𝐴;

(ii) satisfies 𝐶∗-identity;

(iii) completeness;

as it is clear that 𝐴 is a complex normed space. Let 𝑎, 𝑏 ∈ 𝐴. For (i),

‖𝑎𝑏‖ = sup
𝛼∈𝐼

‖𝑎𝛼𝑏𝛼‖ ≤ sup
𝛼∈𝐼

‖𝑎𝛼‖‖𝑏𝛼‖ ≤ ‖𝑎‖‖𝑏‖.

For (ii), using Lemma 4.2.1:

‖𝑎∗𝑎‖ = sup
𝛼∈𝐼

‖𝑎∗
𝛼𝑎𝛼‖ = sup

𝛼∈𝐼
‖𝑎𝛼‖2 = ‖𝑎‖2

For (iii), let (𝑎(𝑛))𝑛∈ℕ be a Cauchy sequence in 𝐴. Fix 𝛼 ∈ 𝐼 , and let 𝑛, 𝑚 ∈ ℕ, observe that
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‖𝑎(𝑛)
𝛼 − 𝑎(𝑚)

𝛼 ‖ = ‖(𝑎(𝑛) − 𝑎(𝑚))𝛼‖ ≤ ‖𝑎(𝑛) − 𝑎(𝑚)‖

so it follows that (𝑎(𝑛)
𝛼 )𝑛∈ℕ is a Cauchy sequence in 𝐴𝛼, so there is a 𝑎𝛼 ∈ 𝐴𝛼 such that 

lim𝑛→∞ 𝑎(𝑛)
𝛼 = 𝑎𝛼. Let 𝑎 = (𝑎𝛼)𝛼∈𝐼 , and we need to show that ‖𝑎‖ < ∞ and lim𝑛→∞ 𝑎(𝑛) = 𝑎 to 

conclude (iii). As Cauchy sequences are bounded, there is a 𝑀 > 0 such that ‖𝑎(𝑛)‖ ≤ 𝑀  for all 

𝑛 ∈ ℕ, then fixing 𝛼 ∈ 𝐼 , there is a 𝑁 ∈ ℕ such that ‖𝑎(𝑁)
𝛼 − 𝑎𝛼‖ ≤ 𝑀 , so one has

‖𝑎𝛼‖ ≤ ‖𝑎𝛼 − 𝑎(𝑁)
𝛼 ‖ + ‖𝑎(𝑁)

𝛼 ‖ ≤ 𝑀 + ‖𝑎(𝑁)‖ ≤ 2𝑀,

hence ‖𝑎‖ ≤ 2𝑀 , thus 𝑎 ∈ 𝐴.

Let 𝜀 > 0, so there is a 𝑁 ∈ ℕ such that ‖𝑎(𝑛) − 𝑎(𝑚)‖ ≤ 𝜀 for all 𝑚, 𝑛 ≥ 𝑁 . Fix 𝑛 ≥ 𝑁 , so there 

is a 𝛼 ∈ 𝐼 such that ‖𝑎𝛼 − 𝑎(𝑛)
𝛼 ‖ + 𝜀 ≥ ‖𝑎 − 𝑎(𝑛)‖, so for each 𝑚 ≥ 𝑁  one has:

‖𝑎 − 𝑎(𝑛)‖ ≤ ‖𝑎𝛼 − 𝑎(𝑛)
𝛼 ‖ + 𝜀 ≤ ‖𝑎𝛼 − 𝑎(𝑚)

𝛼 ‖ + ‖𝑎(𝑚)
𝛼 − 𝑎(𝑛)

𝛼 ‖ + 𝜀 ≤ ‖𝑎𝛼 − 𝑎(𝑚)
𝛼 ‖ + 2𝜀.

Take 𝑚 → ∞ to get ‖𝑎 − 𝑎(𝑛)‖ ≤ 2𝜀, hence 𝑎(𝑛) → 𝑎, as required.

We now show that 𝐴 has the universal property. Let 𝜋𝛼 : 𝐴 → 𝐴𝛼 be the natural projection maps, 

and it is clear that they define *-homomorphisms. Let (𝑓𝛼 : 𝐵 → 𝐴𝛼)𝛼∈𝐼 be another family of *-

homomorphisms mapping from a 𝐶∗-algebra 𝐵, and define

𝑓 : 𝐵 → 𝐴 : 𝑥 ↦ (𝑓𝛼(𝑥))𝛼∈𝐼

then it is clear that 𝑓 is a *-homomorphism and 𝑓𝛼 = 𝜋𝛼 ∘ 𝑓 for all 𝛼 ∈ 𝐼 . Thus 𝐴 is indeed a 

categorical product.

If 𝐴𝛼 is unital for each 𝛼 ∈ 𝐼 , then it is clear that 1𝐴 = (1𝐴𝛼
)𝛼∈𝐼 is the multiplicative identity in 

𝐴, and it is clear that 𝜋𝛼 are unital homomorphisms for each 𝛼 ∈ 𝐼 . ∎
Suppose 𝐼 is now a directed set, we define

𝐵 = {𝑎 ∈ ∏
𝛼∈𝐼

𝐴𝛼 : there is a 𝛽 ∈ 𝐼 such that 𝑎𝛼 = 0 for all 𝑖 ≥ 𝑗},

it is clear that 𝐵 is a two-sided ideal in ∏𝛼∈𝐼 𝐴𝛼, thus we can define the 𝐶∗-algebra

⨁
𝛼∈𝐼

𝐴𝛼 ≔ 𝐵,

which will be called the direct sum of (𝐴𝛼)𝛼∈𝐼 . Note that given a net of real numbers (𝑎𝛼)𝛼∈𝐼 , 

we define

lim sup
𝛼∈𝐼

𝑎𝛼 = inf
𝛽∈𝐼

sup
𝑖≥𝑗

𝑎𝛼 = inf{sup{𝑎𝛼 : 𝑖 ≥ 𝑗} : 𝛽 ∈ 𝐼},

and lim𝛼∈𝐼 𝑎𝛼 or just lim𝛼 𝑎𝛼 to be usual limits of nets if it exists in the extended reals. Note that 

this behaves exactly like the same in the ℕ case, that is,

lim sup 𝑎𝛼 = lim
𝛽

sup
𝑖≥𝑗

𝑎𝛼 = lim
𝛽

sup{𝑎𝛼 : 𝑖 ≥ 𝑗}

and if 𝐽 ⊆ 𝐼 is a cofinal set, then lim𝑗∈𝐽 𝑎𝛽 = lim𝛼∈𝐼 𝑎𝛼. See [8, p. 32] for more details.

Lemma 4.2.3. Let 𝐼 be a directed set and (𝐴𝛼)𝛼∈𝐼 be a collection of 𝐶∗-algebras, and 𝜋 :
∏𝑛∈ℕ 𝐴𝑛 → ∏𝛼∈𝐼 𝐴𝑛/ ⨁𝛼∈𝐼 𝐴𝑛 be the canonical map. Given 𝑎 = (𝑎𝛼)𝛼∈𝐼 ∈ ∏𝛼∈𝐼 𝐴𝛼, then

‖𝜋(𝑎)‖ = lim sup‖𝑎𝛼‖.
In particular, 𝑎 ∈ ⨁𝛼∈𝐼 𝐴𝛼 if, and only if, lim‖𝑎𝛼‖ = 0.

 Proof. We let 𝐵 be defined as above. As 𝐵 is dense in ⨁𝛼∈𝐼 𝐴𝛼, then ‖𝜋(𝑎)‖ = inf{‖𝑎 − 𝑏‖ :
𝑏 ∈ 𝐵} by continuity of 𝑏 ↦ ‖𝑎 − 𝑏‖. Let 𝑏 = (𝑏𝛼)𝛼∈𝐼 ∈ 𝐵, then there is a 𝛽 ∈ 𝐼 such that 𝑏𝛼 = 0 

for all 𝑖 ≥ 𝑗, so
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‖𝑎 − 𝑏‖ = sup
𝛼∈𝐼

‖𝑎𝛼 − 𝑏𝛼‖ ≥ lim sup‖𝑎𝛼 − 𝑏𝛼‖ = lim sup‖𝑎𝛼‖,

hence ‖𝜋(𝑎)‖ ≥ lim sup𝑖‖𝑎𝛼‖. For each 𝛽 ∈ 𝐼 , define 𝑏(𝑗) = (𝑏(𝑗)
𝛼 )𝛼∈𝐼 ∈ 𝐵 as

𝑏(𝑗)
𝛼 = {0 if 𝑖 > 𝑗

𝑎𝛼 otherwise,

so

‖𝜋(𝑎)‖ ≤ inf
𝛽∈𝐼

‖𝑎 − 𝑏(𝑗)‖ = inf
𝛽∈𝐼

sup
𝛼∈𝐼

‖𝑎𝛼 − 𝑏(𝑗)
𝛼 ‖ = inf

𝛽∈𝐼
sup
𝑖>𝑗

‖𝑎𝛼‖ = lim sup
𝑖

‖𝑎𝛼‖.

Thus ‖𝜋(𝑎)‖ = lim sup‖𝑎𝛼‖. Now the last part follows because

𝑎 ∈ ⨁
𝛼∈𝐼

𝐴𝛼 ⟺ 𝜋(𝑎) = 0

⟺ ‖𝜋(𝑎)‖ = 0
⟺ lim sup‖𝑎𝛼‖ = 0
⟺ lim‖𝑎𝛼‖ exists and lim‖𝑎𝛼‖ = 0. ∎

The preceding lemma gives a precise description of the structure of the direct sum, which is 

given by

⨁
𝛼∈𝐼

𝐴𝛼 = {𝑎 ∈ ∏
𝛼∈𝐼

𝐴𝛼 : lim
𝛼

‖𝑎𝛼‖ = 0}.

Theorem 4.2.4. (Inductive Completeness of 𝐶∗-Algebras). Let 𝐼 be a directed set and 𝐴• =
(𝐴𝛼, (𝜑𝛼𝛽)) be a collection of 𝐶∗-algebras indexed by 𝐼 . Given 𝛼, 𝛽 ∈ 𝐼 , whenever 𝛼 ≤ 𝛽 does not 

hold, then define 𝜑𝛼𝛽 : 𝐴𝛼 → 𝐴𝛽 to be the zero map.

Then 𝐴• has an inductive limit (𝐴, (𝜓𝛼)𝛼∈𝐼). Moreover:

(i) 𝐴 = ⋃𝛼∈𝐼 im(𝜓𝛼).
(ii) ‖𝜓𝛼(𝑎)‖ = lim𝛽‖𝜑𝛼𝛽(𝑎)‖ for all 𝛼 ∈ 𝐼 and 𝑎 ∈ 𝐴𝛼.

(iii) ker(𝜓𝛼) = {𝑎 ∈ 𝐴𝛼 : lim𝛽‖𝜑𝛼𝛽(𝑎)‖ = 0} for all 𝛼 ∈ 𝐼 .

(iv) If (𝐵, (𝜇𝛼)𝛼∈𝐼) is another cocone of 𝐴• and 𝜆 : 𝐴 → 𝐵 is the map obtained by the universal 

property, then

(a) ker(𝜓𝛼) ⊆ ker(𝜇𝛼) for all 𝛼 ∈ 𝐼 .

(b) 𝜆 is injective if, and only if, ker(𝜇𝛼) = ker(𝜓𝛼) for all 𝛼 ∈ 𝐼 .

(c) 𝜆 is surjective if, and only if, 𝐵 = ⋃𝛼∈𝐼 im(𝜇𝛼).
(v) If 𝐴𝛼 is unital for each 𝛼 ∈ 𝐼 , then 𝐴 is unital.

(vi) Assume (v) and suppose 𝜑𝛼𝛽 are unital for each 𝛼 ≤ 𝛽 in 𝐼 . Then 𝜓𝛼 are unital for each 𝛼 ∈
𝐼 . If 𝐵, and 𝜇𝛼 are unital for each 𝛼 ∈ 𝐼 , then 𝜆 is unital.

 Proof. Construction of 𝜓𝛼

Let 𝜋 : ∏𝛼∈𝐼 𝐴𝛼 → ∏𝛼∈𝐼 𝐴𝛼/ ⨁𝛼∈𝐼 𝐴𝛼 be the canonical map. For each 𝛼 ∈ 𝐼 , define

𝜈𝛼 : 𝐴𝛼 → ∏
𝛽∈𝐼

𝐴𝛽 : 𝑎 ↦ (𝜑𝛼𝛽(𝑎))𝛽∈𝐼 and 𝜓𝛼 = 𝜋 ∘ 𝜈𝛼 : 𝐴𝛼 → ∏
𝛼∈𝐼

𝐴𝛼/ ⨁
𝛼∈𝐼

𝐴𝛼.

Note that as ‖𝜑𝛼𝛽(𝑎)‖ ≤ ‖𝑎‖ for all 𝛽 ∈ 𝐼 , so ‖𝜈𝛼(𝑎)‖ ≤ ‖𝑎‖ < ∞, hence 𝜈𝛼 is well-defined, and it 

is clear that 𝜈𝛼 defines a *-homomorphism, thus 𝜓𝛼 is a *-homomorphism.

Construction of 𝐴, and showing cocone and (i)

Let 𝛼, 𝛽 ∈ 𝐼 and suppose 𝛼 ≤ 𝛽. Let 𝑎 ∈ 𝐴𝛼, and consider

𝜈𝛼(𝑎) − 𝜈𝛽(𝜑𝛼𝛽(𝑎)) = (𝜑𝛼𝛾(𝑎))𝛾∈𝐼 − (𝜑𝛽𝛾(𝜑𝛼𝛽(𝑎))𝛾∈𝐼 . (4.1)
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If 𝛾 ≥ 𝛽, then 𝜑𝛽𝛾 ∘ 𝜑𝛼𝛽 = 𝜑𝛼𝛾, so (4.1) evaluates to 0 at index 𝑘, thus

𝜓𝛼(𝑎) − 𝜓𝛽(𝜑𝛼𝛽(𝑎)) = 𝜋(𝜈𝛼(𝑎) − 𝜈𝛽(𝜑𝛼𝛽(𝑎))) = 0,

hence 𝜓𝛼 = 𝜓𝛽 ∘ 𝜑𝛼𝛽. In particular, im(𝜓𝛼) ⊆ im(𝜓𝛽), so given arbitrary 𝛼, 𝛽 ∈ 𝐼 and 𝑎 ∈ im(𝜓𝛼), 
𝑏 ∈ im(𝜓𝛽), then there is a 𝛾 ∈ 𝐼 with 𝛼 ≤ 𝛾 and 𝛽 ≤ 𝛾, then one has 𝑎, 𝑏 ∈ im(𝜓𝑘), so it follows 

that 𝐴 = ⋃𝛼∈𝐼 im(𝜓𝛼) defines a 𝐶∗-algebra as a subalgebra of im(𝜋). We restrict the codomains 

of 𝜓𝛼 to 𝐴 for each 𝛼 ∈ 𝐼 , so thus (𝐴, (𝜓𝛼)𝛼∈𝐼) forms a cocone of 𝐴•. This shows (i).

Showing (ii)-(iii)

Let 𝛼 ∈ 𝐼 and 𝑎 ∈ 𝐴𝛼, then by Lemma 4.2.3, one has

‖𝜓𝛼(𝑎)‖ = ‖𝜋(𝜈𝛼(𝑎))‖ = lim sup
𝛽

‖𝜑𝛼𝛽(𝑎)‖ = lim
𝛽

‖𝜑𝛼𝛽(𝑎)‖,

and the limit exists as for each 𝛾 ≥ 𝛽 ≥ 𝛼, one has 𝜑𝛼𝛾 = 𝜑𝛽𝛾 ∘ 𝜑𝛼𝛽, so ‖𝜑𝛼𝛾(𝑎)‖ =
‖𝜑𝛽𝛾(𝜑𝛼𝛽(𝑎))‖ ≤ ‖𝜑𝛼𝛽(𝑎)‖, so (𝜑𝛼𝛽(𝑎))𝛽∈𝐼 is a decreasing net. This proves (ii), and (iii) imme

diate follows.

Universality of (𝐴, (𝜓𝛼)𝛼∈𝐼) - Existence of 𝜆 and showing (a)

Let (𝐵, (𝜇𝛼)𝛼∈𝐼) be another cocone of 𝐴•, and let 𝛼 ∈ 𝐼 . Suppose 𝑎 ∈ ker(𝜓𝛼), then 

lim𝛽‖𝜑𝛼𝛽(𝑎)‖ = 0, so for each 𝛽 ≥ 𝛼, one has

‖𝜇𝛼(𝑎)‖ = ‖𝜇𝛽(𝜑𝛼𝛽(𝑎))‖ ≤ ‖𝜑𝛼𝛽(𝑎)‖

hence ‖𝜇𝛼(𝑎)‖ = 0 by taking limits, and thus 𝜇𝛼(𝑎) = 0, so 𝑎 ∈ ker(𝜇𝛼), i.e. ker(𝜓𝛼) ⊆ ker(𝜇𝛼). 
This shows (a). Then by the First Isomorphism Theorem 2.1.5, there is a unique *-homomorphism 

𝜆𝛼 : im(𝜓𝛼) → 𝐵 such that 𝜇𝛼 = 𝜆𝛼 ∘ 𝜓𝛼. As im(𝜓𝛼) ⊆ im(𝜓𝛽), one has 𝜆𝛽|im(𝜓𝛼) = 𝜆𝛼 by 

uniqueness for 𝛼 ≤ 𝛽, and 𝐼 is a directed set, then using a similar justification for showing that 𝐴 is a 

𝐶∗-algebra, one has a *-homomorphism 𝜆′ : ⋃𝛼∈𝐼 im(𝜓𝛼) → 𝐵 that extends 𝜆𝛼 for all 𝛼 ∈ 𝐼 . Since 

𝜆′ is uniformly continuous (norm-decreasing in fact), then one has a unique uniformly continuous 

extension 𝜆 : 𝐴 → 𝐵 of 𝜆′, hence 𝜇𝛼 = 𝜆 ∘ 𝜓𝛼 for each 𝛼 ∈ 𝐼 .

Uniqueness of 𝜆
Suppose 𝛿 : 𝐴 → 𝐵 is another *-homomorphism such that 𝜇𝛼 = 𝛿 ∘ 𝜓𝛼 for all 𝛼 ∈ 𝐼 , then it follows 

by uniqueness of 𝜆𝛼, 𝛿 extends 𝜆𝛼 for all 𝛼 ∈ 𝐼 , hence 𝛿 extends 𝜆′, and thus 𝛿 = 𝜆 by uniqueness. 

Hence (𝐴, (𝜓𝛼)𝛼∈𝐼) is an inductive limit of 𝐴•.

Properties (b) and (c) of 𝜆
Let 𝛼 ∈ 𝐼 , as 𝜇𝛼 = 𝜆 ∘ 𝜓𝛼 for each 𝛼 ∈ 𝐼 , then one has ker(𝜇𝛼) = ker(𝜓𝛼) if 𝜆 is injective. If 

ker(𝜇𝛼) = ker(𝜓𝛼) for all 𝛼 ∈ 𝐼 , then 𝜆𝛼 is injective. Indeed, 𝑦 = 𝜓𝛼(𝑥) ∈ ker(𝜆𝛼), then 𝜆𝛼(𝑦) =
𝜇𝛼(𝑥) = 0, so 𝑥 ∈ ker(𝜇𝛼) = ker(𝜓𝛼), so 𝑦 = 𝜓𝛼(𝑥) = 0, as required. Hence 𝜆𝛼 is an isometry for 

each 𝛼 ∈ 𝐼 , thus 𝜆′, and hence, 𝜆 are isometries. This proves (b).

Note that as im(𝜆𝛼) = im(𝜇𝛼), then im(𝜆′) = ⋃𝛼∈𝐼 im(𝜇𝛼), hence im(𝜆) = ⋃𝛼∈𝐼 im(𝜇𝛼) as im(𝜆) 
is closed. Thus 𝜆 is surjective if, and only if, 𝐵 = ⋃𝛼∈𝐼 im(𝜇𝛼). This proves (c).

Conditions (v) and (vi)

Assume (v), then by Theorem  4.2.2, the product ∏𝛼∈𝐼 𝐴𝛼 has as natural unit 1, and as 𝜋 is 

surjective, one has a unital 𝐶∗-algebra ∏𝛼∈𝐼 𝐴𝛼/ ⨁𝛼∈𝐼 𝐴𝛼 with the unit given by 𝜋(1), hence 𝐴 

is a unital algebra as a subalgebra of a unital algebra. Assume (vi). Given 𝛼 ∈ 𝐼 , then for each 𝛽 ≥
𝛼, then the 𝛽th component of

𝜈𝛼(1𝐴𝛼
) − (1𝐴𝛾

)𝛾∈𝐼
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is zero, so applying 𝜋, one obtains 𝜓𝛼(1𝐴𝛼
) − 𝜋(1) = 0, hence 𝜓𝛼 are unital and in particular 

𝜋(1) ∈ im(𝜓𝛼). If 𝜇𝛼 is unital for each 𝛼 ∈ 𝐼 , then 𝜆𝛼 is unital for each 𝛼 ∈ 𝐼 as

𝜆𝛼(𝜋(1)) = 𝜆𝛼(𝜓𝛼(1𝐴𝛼
)) = 𝜇𝛼(1𝐴𝛼

) = 1𝐵,

thus 𝜆′, hence 𝜆, are unital. ∎
The preceding theorem proves that the category C*-Alg and C*-Alg1 is inductively complete; see 

Definition 5.3.3. In fact, the category C*-Alg is actually small complete and small cocomplete; see 

[9]. We shall also take lim
⟶

𝐴• to be the 𝐶∗-algebra constructed in the above theorem, which will 

be the inductive limit. It turns out, the connecting morphisms in the inductive limits of 𝐶∗-algebras 

can be assumed to be injective, in particular, isometries.

Proposition 4.2.5. Let 𝐼 be a directed set and 𝐴• = (𝐴𝛼, (𝜑𝛼𝛽)) be a diagram in C*-Alg indexed 

by 𝐼 . Then there is a diagram 𝐵• in C*-Alg indexed by 𝐼 such that the connecting and boundary 

morphisms of 𝐵• are isometries and lim
⟶

𝐴• ≅ lim
⟶

𝐵•. If the connecting morphisms of 𝐴• are unital, 

then so are the connecting morphisms of 𝐵•.

 Proof. We consider the setup from Lemma  5.4.7 with 𝐵• = (𝐵𝛼, (𝜓𝛼𝛽)), and we have 

(𝐵, (𝜈𝛼)𝛼∈𝐼) is the inductive limit of 𝐵• by the preceding theorem. By (iii) of the theorem, let 

𝛼 ∈ 𝐼 and 𝑥 ∈ ker(𝜈𝛼), then ‖𝑥‖ = lim𝛽‖𝑥‖ = lim𝛽‖𝜓𝛼𝛽(𝑥)‖ = 0 as 𝜓𝛼𝛽 are isometries as they 

are injective. Thus 𝑥 = 0, hence 𝜈𝛼 is injective and thus an isometry. So by Lemma 5.4.7 (ii) and 

the theorem’s (iv)(b), the universal map 𝜋 : 𝐴 → 𝐵 is injective, and by the lemma (iii) and the 

theorem’s (iv)(c), one has 𝜋 is surjective. So 𝜋 is an isomorphism.

Let 𝛼 ≤ 𝛽 in 𝐼 , if 𝜑𝛼𝛽 is unital (so the 𝐴𝛼’s are unital), then so are 𝜓𝛼𝛽 as a composition of unital 

maps 𝜋𝛽 ∘ 𝜑𝛼𝛽. ∎
Furthermore, the converse of the Inductive Completeness of 𝐶∗-Algebras 4.2.4 (vi) holds, that is, 

if the inductive limit is unital, then it can be recognized as an inductive limit in C*-Alg1, i.e. the 

connecting morphisms can now be assumed to be unital.

Corollary 4.2.6. Let 𝐼 be a directed set and 𝐴• = (𝐴𝛼, (𝜑𝛼𝛽)) be a diagram in C*-Alg indexed by 

𝐼 , if the inductive limit of 𝐴• and (𝐴, (𝜓𝛼)𝛼∈𝐼) be the inductive limit of 𝐴•. If 𝐴 is unital, then 𝐴 

is an inductive limit in C*-Alg1.

 Proof. By the preceding proposition, we may assume that the connecting and boundary maps 

of 𝐴• are isometries. As 𝐴 = ⋃𝛼∈𝐼 im(𝜓𝛼), and 𝐴 has a unit 1𝐴, then there is a 𝛼 ∈ 𝐼 and a 𝑥 ∈
𝐴𝛼 such that ‖1𝐴 − 𝜓𝛼(𝑥)‖ < 1. Let

𝐽 = {𝛼 ∈ 𝐼 : there is a 𝑥 ∈ 𝐴𝛼 such that ‖1𝐴 − 𝜓𝛼(𝑥)‖ < 1},

and note that for each 𝛼 ∈ 𝐽  and a 𝑥 ∈ 𝐴𝛼 such that ‖1𝐴 − 𝜓𝛼(𝑥)‖ < 1, then 𝜓𝛼(𝑥) is invertible 

in 𝐴, and by Lemma 2.4.6 (ii), 𝜓𝛼(𝑥) is invertible in im(𝜓𝛼), hence im(𝜓𝛼) is a unital algebra by 

Lemma 2.4.6. As 𝜓𝛼 is an isometry, then 𝐴𝛼 is unital, and denote its unit as 1𝛼. Let 𝛽 ≥ 𝛼 in 𝐼 , 

then note that

‖1𝐴 − 𝜓𝛽(𝜑𝛼𝛽(𝑥))‖ = ‖1𝐴 − 𝜓𝛼(𝑥)‖ < 1

so 𝛽 ∈ 𝐽 , hence one has

𝜓𝛽(𝜑𝛼𝛽(1𝛼)) = 𝜓𝛼(1𝛼) = 1𝐴 = 𝜓𝛽(1𝛽)
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and by injectivity of 𝜓𝛽, one has 𝜑𝛼𝛽(1𝛼) = 1𝛽, hence 𝜑𝛼𝛽 is unital. As 𝐽  is cofinal in 𝐼 , then by 

Lemma 5.4.6, one has that 𝐴 is an inductive limit of 𝐵• = (𝐴𝛼, (𝜑𝛼𝛽))𝛼,𝛽∈𝐽
𝛼≤𝛽

, which is a diagram 

in C*-Alg1. ∎
The next proposition provides us a very convenient way of constructing and identifying inductive 

limits. This result will especially be useful for identifying 𝒦︀(𝐻) as an inductive limit for a separable 

Hilbert space 𝐻.

Proposition 4.2.7. Let 𝐵 be a 𝐶∗-algebra, and 𝐼 be a directed set. Suppose 𝐴𝛼 ⊆ 𝐵 is a 𝐶∗-

subalgebra for each 𝛼, 𝛽 ∈ 𝐼 such that 𝐴𝛼 ⊆ 𝐴𝛽 for each 𝛼 ≤ 𝛽 in 𝐼 and 𝐴𝛼 ∩ 𝐴𝛽 = 0 if 𝛼 and 

𝛽 are not comparable. Define 𝜑𝛼𝛽 : 𝐴𝛼 → 𝐴𝛽 to be the inclusion map, then 𝐴 = ⋃𝛼∈𝐼 𝐴𝛼 is an 

inductive limit of 𝐴• = (𝐴𝛼, (𝜑𝛼𝛽)).
 Proof. Define 𝜓𝛼 : 𝐴𝛼 → 𝐴 to be inclusion maps for each 𝛼 ∈ 𝐼 . Let 𝛼 ≤ 𝛽 in 𝐼 , so one has 

𝜓𝛽 ∘ 𝜑𝛼𝛽 = 𝜓𝛼 is obvious, hence (𝐴, (𝜓𝛼)𝛼∈𝐼) defines a cocone of 𝐴•. Let (𝐶, (𝜇𝛼)𝛼∈𝐼) be another 

cocone of 𝐴•, then define

𝜆′ : ⋃
𝛼∈𝐼

𝐴𝛼 → 𝐶

as 𝜆′(𝑥) = 𝜇𝛼(𝑥) if 𝑥 ∈ 𝐴𝛼. We claim that 𝜆′(𝑥) is independent of the choice of 𝐴𝛼, so if 𝑥 ∈
𝐴𝛽 also, then we have three cases: 𝐴𝛼 ∩ 𝐴𝛽 = 0, 𝐴𝛼 ⊆ 𝐴𝛽, or 𝐴𝛽 ⊆ 𝐴𝛼. The case 𝐴𝛼 ∩ 𝐴𝛽 = 0 is 

trivial, so–without loss of generality–suppose 𝐴𝛼 ⊆ 𝐴𝛽. Then 𝜇𝛽(𝑥) = 𝜇𝛽(𝜑𝛼𝛽(𝑥)) = 𝜇𝛼(𝑥), hence 

𝜆′ is well-defined.

Clearly 𝜆′ is a *-homomorphism, so uniformly continuous, and thus we can consider the unique 

continuous extension 𝜆 : 𝐴 → 𝐶 of 𝜆′, which 𝜆 is still a *-homomorphism. Now 𝜆 is clearly unique, 

as 𝜆 ∘ 𝜓𝛼 = 𝜇𝛼 for all 𝛼 ∈ 𝐼 . Thus (𝐴, (𝜓𝛼)𝛼∈𝐼) is universal, as required. ∎
In the case of separable AF-algebras, they can realized as inductive limits of separable 𝐶∗-algebras 

indexed by natural numbers.

Proposition 4.2.8. Let 𝐼 be a directed set, and 𝐴• be a diagram in C*-Alg indexed by 𝐼 . Let 

(𝐴, (𝜓𝛼)𝛼∈𝐼) be the inductive limit of 𝐴. Then 𝐴 is separable if, and only if, there is an increasing 

sequence (𝛼𝑛)𝑛∈ℕ in 𝐼 such that 𝐴 = ⋃𝑛∈ℕ im(𝜓𝛼𝑛
). In any case, 𝐴 can be recognized as an 

inductive limit of separable 𝐶∗-algebras where the underlying index set is ℕ.

 Proof. Note that we shall use the Inductive Completeness of 𝐶∗-Algebras 4.2.4 (i) here, and 

write 𝐴 as the inductive limit of 𝐴•, and (𝜓𝛼)𝛼∈𝐼 be the boundary maps of 𝐴, which can be assumed 

to be isometries for by Proposition 4.2.5.

“⟸”. Suppose the latter holds, then we can assume the objects of 𝐴• to be separable and 𝐼 = ℕ. 

Now im(𝜓𝛼) is separable as 𝜓𝛼 is an isometry from a separable space, and as 𝐴 = ⋃𝛼∈𝐼 im(𝜓𝛼), so 

𝐴 is the closure of a countable union of separable subspaces. Let 𝐷𝛼 be a countable dense subset 

of im(𝜓𝛼) for each 𝛼 ∈ 𝐼 , and define 𝐷 = ⋃𝛼∈𝐼 𝐷𝛼, which is countable. Thus1

⋃
𝛼∈𝐼

im(𝜓𝛼) = ⋃
𝛼∈𝐼

𝐷𝛼
im(𝜓𝛼) ⊆ ⋃

𝛼∈𝐼
𝐷𝛼

𝐴 ⊆ 𝐷𝐴,

in particular,

𝐴 ⊆ 𝐷𝐴 = 𝐷

so 𝐴 is separable.2

1The superscripts refers the space that the closure is taken with respect to.
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“⟹”. Suppose 𝐴 is separable. Now 𝐴′ = ⋃𝛼∈𝐼 im(𝜑𝛼) is separable as a subspace of a separable 

metric space, so there is a subset {𝑒𝑛 : 𝑛 ∈ ℕ} of 𝐴′ such that 𝐴′ = {𝑒𝑛 : 𝑛 ∈ ℕ}
𝐴′

. For each, 

now there is a 𝛼1 ∈ 𝐼 such that 𝑒1 ∈ im(𝜑𝛼1
), and there is a 𝛼′ ∈ 𝐼 such that 𝑒2 ∈ im(𝜑𝛼′). So 

there is a 𝛼2 ∈ 𝐼 such that 𝛼2 ≥ 𝛼1 and 𝛼2 ≥ 𝛼′ by directedness of 𝐼 , hence 𝑒2 ∈ im(𝜑𝛼2
). We 

can continue this process inductively, to find that for each 𝑛 ∈ ℕ, there is a 𝛼𝑛 ∈ 𝐼 such that 𝑒𝑛 ∈
im(𝜑𝛼𝑛

) where 𝛼𝑛 ≤ 𝛼𝑛+1, in particular im(𝜑𝛼𝑛
) ⊆ im(𝜑𝛼𝑛+1

). So

𝐴′ = {𝑒𝑛 : 𝑛 ∈ ℕ}
𝐴′

⊆ ⋃
𝑛∈ℕ

im(𝜑𝛼𝑛
)

𝐴′

⊆ 𝐴′

hence

𝐴 = ⋃
𝑛∈ℕ

im(𝜑𝛼𝑛
).

By Proposition 4.2.7, 𝐴 is an inductive limit of (im(𝜑𝛼𝑛
), (𝜄𝑛𝑚)) where 𝜄 : im(𝜑𝛼𝑛

) → im(𝜑𝛼𝑚
) 

is the inclusion map for each 𝑛 ≤ 𝑚 in ℕ. ∎

Example 4.2.9. (The Space of Compact Operators 𝒦︀(𝐻)). We assume that 𝐻 is a separable 

infinite-dimensional Hilbert space. For each 𝑛 ∈ ℕ, let 𝐴𝑛 = ℳ︀𝑛(ℂ) and the *-homomorphisms

𝜑𝑛 : 𝐴𝑛 → 𝐴𝑛+1 : 𝑥 ↦ (𝑥
0

0
0).

We shall make the claim here that 𝒦︀(𝐻) can be recognized as an inductive limit of the following 

diagram:

𝜑1 𝜑2 𝜑3
𝐴1 𝐴2 𝐴3 ⋯

More specifically, if we define

𝜑𝑛𝑚 : 𝐴𝑛 → 𝐴𝑚 =

{

𝜑𝑚−1 ∘ 𝜑𝑚−2 ∘ ⋯ ∘ 𝜑𝑛+1 ∘ 𝜑𝑛  if 𝑚 > 𝑛

id𝐴𝑛
 if 𝑚 = 𝑛

0  if 𝑚 < 𝑛

then we claim that 𝒦︀(𝐻) is an inductive limit of the diagram 𝐴• = (𝐴𝑛, (𝜑𝑛𝑚)) indexed by ℕ.

Let {𝑒𝑛 : 𝑛 ∈ ℕ} be an orthonormal basis 𝐻 and let 𝑛 ∈ ℕ. Let 𝑃𝑛 : 𝐻 → 𝐸𝑛 be the orthogonal 

projection onto 𝐸𝑛 = span{𝑒𝑘 : 𝑘 ≤ 𝑛}, and define 𝐵𝑛 = 𝑃𝑛ℬ︀(𝐻)𝑃𝑛 as a subalgebra of ℬ︀(𝐻). For 

each 𝑎 ∈ 𝐴𝑛, define 𝑎′ : 𝐻 → 𝐻 as a linear map such that 𝑎′|𝐸𝑛
 is a linear map with associated 

matrix 𝑎 with respect to the basis {𝑒𝑘 : 𝑘 ≤ 𝑛}, and 𝑎′𝑒𝑘 = 0 for all 𝑘 > 𝑛. So 𝑎′ ∈ ℬ︀(𝐻) with 

‖𝑎′‖ = ‖𝑎‖ and 𝑎′ = 𝑃𝑛𝑎′𝑃𝑛, and

𝛼𝑛 : 𝐴𝑛 → 𝐵𝑛 : 𝑎 ↦ 𝑎′.
Clearly 𝛼𝑛 is a *-embedding. Let 𝑇 ∈ ℬ︀(𝐻), and let 𝑎 be the associated matrix of 𝑃𝑛𝑇𝑃𝑛|𝐸𝑛

 with 

respect the basis {𝑒𝑘 : 𝑘 ≤ 𝑛}, then it is clear that 𝛼𝑛(𝑎) = 𝑃𝑛𝑇𝑃𝑛, so 𝛼𝑛 is an isomorphism. Note 

that 𝑃𝑛+1𝑃𝑛 = 𝑃𝑛 = 𝑃𝑛𝑃𝑛+1, so 𝐵𝑛 ⊆ 𝐵𝑛+1, thus one can define inclusion maps 𝜄𝑛 : 𝐵𝑛 → 𝐵𝑛+1, 

hence one has 𝜄𝑛+1 ∘ 𝛼𝑛 = 𝛼𝑛+1 ∘ 𝜑𝑛, thus one has a commutative diagram:

𝜑1 𝜑2 𝜑3

𝜄1 𝜄2 𝜄3
𝛼1 𝛼2 𝛼3

𝐴1 𝐴2 𝐴3 ⋯

𝐵1 𝐵2 𝐵3 ⋯

2Without the superscripts, we assume the closure is taken with respect to the whole space 𝐴.
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By Proposition 4.2.10, one has that 𝒦︀(𝐻) = ⋃𝑛∈ℕ 𝑃𝑛ℬ︀(𝐻)𝑃𝑛. Thus by Proposition 4.2.7, 𝒦︀(𝐻) 
is an inductive limit of (𝐵𝑛, (𝜄𝑛𝑚)), and by the Elliott’s Intertwining Argument 5.4.8, one has that 

𝐴 ≅ 𝒦︀(𝐻).

Proposition 4.2.10. Let (𝑇𝑛)𝑛∈ℕ be a sequence of bounded operators on a Hilbert space 𝐻, and 

let 𝑆 ∈ 𝒦︀(𝐻). Suppose sup𝑛∈ℕ‖𝑇𝑛‖ < ∞, and 𝑇𝑛 → id𝐻 pointwise, then the following holds:

(i) 𝑇𝑛𝑆 → 𝑆 (ii) 𝑆𝑇𝑛 → 𝑆 (iii) 𝑇𝑛𝑆𝑇𝑛 → 𝑆.

where the convergence is under the operator norm.

 Proof.

(i) As the image of 𝑆 under the closed unit ball is relatively compact, it is in particular totally 

bounded. So given a 𝜀 > 0, there is a 𝑛 ∈ ℕ, 𝑥1, …, 𝑥𝑛 ∈ 𝐻 with ‖𝑥𝑖‖ ≤ 1 for 𝑖 ≤ 𝑛 such that 

for each 𝑦 ∈ 𝐻 with ‖𝑦‖ ≤ 1, there is a 𝑖 ≤ 𝑛 with ‖𝑆𝑦 − 𝑆𝑥𝑖‖ ≤ 𝜀. As 𝑇𝑛𝑆𝑥𝑖 → 𝑆𝑥𝑖 for each 

𝑖 ≤ 𝑛, then there is a 𝑁 ∈ ℕ such that ‖𝑇𝑘𝑆𝑥𝑖 − 𝑆𝑥𝑖‖ ≤ 𝜀 for all 𝑘 ≥ 𝑁  and 𝑖 ≤ 𝑛. Thus given 

a unit vector 𝑦 ∈ 𝐻 and 𝑘 ≥ 𝑁 , there is a 𝑖 ≤ 𝑛 such that ‖𝑆𝑦 − 𝑆𝑥𝑖‖ ≤ 𝜀, so one has

‖𝑇𝑘𝑆𝑦 − 𝑆𝑦‖ ≤ ‖𝑇𝑘𝑆𝑦 − 𝑇𝑘𝑆𝑥𝑖‖ + ‖𝑇𝑘𝑆𝑥𝑖 − 𝑆𝑥𝑖‖ + ‖𝑆𝑥𝑖 − 𝑆𝑦𝑖‖
≤ ‖𝑇𝑘‖𝜀 + 2𝜀 ≤ 𝑀𝜀

where 𝑀 = sup𝑘∈ℕ‖𝑇𝑘‖ + 2 < ∞. Hence ‖𝑇𝑘𝑆 − 𝑆‖ ≤ 𝑀𝜀, thus 𝑇𝑘𝑆 → 𝑆.

(ii) Let 𝑥 ∈ 𝐻, so

‖𝑇 ∗
𝑛𝑥 − 𝑥‖2 = ‖𝑇 ∗

𝑛𝑥‖2 − 2ℜ⟨𝑇 ∗
𝑛𝑥, 𝑥⟩ + ‖𝑥‖2

≤ ‖𝑇𝑛‖2‖𝑥‖2 − 2ℜ⟨𝑥, 𝑇𝑛𝑥⟩ + ‖𝑥‖2

⟶
𝑛→∞

‖id𝐻‖2‖𝑥‖2 − 2‖𝑥‖2 + ‖𝑥‖2 = 0.

Thus 𝑇 ∗
𝑛 → id∗

𝐻 = id𝐻 pointwise, and as * is an isometry, one has that (𝑇 ∗
𝑛)𝑛∈ℕ is also a 

uniformly bounded sequence. As 𝑆∗ is also a compact operator, one has that 𝑇 ∗
𝑛𝑆∗ → 𝑆∗ in 

the operator norm by part (i). By continuity of *, one has 𝑆𝑇𝑛 = (𝑇 ∗
𝑛𝑆∗)∗ → (𝑆∗)∗ = 𝑆.

(iii) Let 𝑀 = sup𝑛∈ℕ‖𝑇𝑛‖. For each 𝑛 ∈ ℕ, observe that

‖𝑇𝑛𝑆𝑇𝑛 − 𝑆‖ ≤ ‖𝑇𝑛𝑆𝑇𝑛 − 𝑇𝑛𝑆‖ + ‖𝑇𝑛𝑆 − 𝑆‖
≤ ‖𝑇𝑛‖‖𝑆𝑇𝑛 − 𝑆‖ + ‖𝑇𝑛𝑆 − 𝑆‖
≤ 𝑀‖𝑆𝑇𝑛 − 𝑆‖ + ‖𝑇𝑛𝑆 − 𝑆‖,

then the rest follows from part (i) and part (ii) by taking 𝑛 → ∞. ∎

2⟩  Inductive Limit of Groups

We have a similar result in the category of Grp and OrdAb.

Lemma 4.2.11. Let 𝜑 : 𝐺 → 𝐻 be a group homomorphism between Abelian groups 𝐺 and 𝐻. Let 

𝐺+ ⊆ 𝐺. Then one has

(i) If 𝐺+ + 𝐺+ ⊆ 𝐺+, then 𝜑(𝐺+) + 𝜑(𝐺+) ⊆ 𝜑(𝐺+).
(ii) If 𝐺+ − 𝐺+ = 𝐺, then 𝜑(𝐺+) − 𝜑(𝐺+) = im(𝜑).

 Proof. Trivial. ∎

48



Classification of Separable AF-Algebras Inductive Limit Constructions

Theorem 4.2.12. (Inductive Completeness of Various Groups). Let 𝐼 be a directed set, and 𝐺• =
(𝐺𝛼, (𝜑𝛼𝛽) be a collection of groups indexed by 𝐼 . Then lim

⟶
𝐺• = (𝐺, (𝜓𝛼)𝛼∈𝐼) exists. Furthermore:

(i) 𝐺 = ⋃𝛼∈𝐼 im(𝜓𝛼).
(ii) ker(𝜓𝛼) = ⋃𝛽∈𝐼

𝛽≥𝛼
ker(𝜑𝛼𝛽) for each 𝛼 ∈ 𝐼 .

(iii) Let (𝐻, (𝜇𝛼)𝛼∈𝐼) be another cocone of 𝐺• and 𝜆 : 𝐺 → 𝐻 is the map obtained by the universal 

property, then

(a) ker(𝜓𝛼) ⊆ ker(𝜇𝛼) for all 𝛼 ∈ 𝐼 .

(b) 𝜆 is injective if, and only if, ker(𝜇𝛼) = ker(𝜓𝛼) for all 𝛼 ∈ 𝐼 .

(c) 𝜆 is surjective if, and only if, 𝐻 = ⋃𝛼∈𝐼 im(𝜇𝛼).
(iv) Suppose for each 𝛼 ∈ 𝐼 , 𝐺𝛼 is now an Abelian group with a positive cone 𝐺+

𝛼 , and 𝜑𝛼𝛽 :
(𝐺𝛼, 𝐺+

𝛼 ) → (𝐺𝛽, 𝐺+
𝛽 ) are now positive group homomorphism for each 𝛼 ≤ 𝛽 in 𝐼 . Then 𝐺+ =

⋃𝛼∈𝐼 𝜓𝛼(𝐺+
𝛼 ) is a positive cone for 𝐺, and 𝜓𝛼 are positive group homomorphisms for each 

𝛼 ∈ 𝐼 . In particular, ((𝐺, 𝐺+), (𝜓𝛼)𝛼∈𝐼) is the inductive limit of ((𝐺𝛼, 𝐺+
𝛼 ), (𝜑𝛼𝛽)) in OrdAb.

 Proof. Define 𝑃 = ∏𝛼∈𝐼 𝐺𝛼 to be the usual products of groups; see Example 5.2.4. Define

𝑄 = {𝑔 ∈ 𝑃 : there is a 𝛽 ∈ 𝐼 such that 𝑎𝛼 = 0 for all 𝛼 ≥ 𝛽},

then it is clear that 𝑄 is a normal subgroup of 𝑃 . Consider the canonical map 𝜋 : 𝑃 → 𝑃/𝑄, and 

define 𝜑𝛼𝛽 : 𝐺𝛼 → 𝐺𝛽 to be the zero map whenever 𝛼 ≤ 𝛽 does not hold for 𝑖, 𝛽 ∈ 𝐼 . For each 𝛼 ∈
𝐼 , define

𝜈𝛼 : 𝐺𝛼 → 𝑃 : 𝑔 ↦ (𝜑𝛼𝛽(𝑔))𝛽∈𝐼 and 𝜓𝛼 = 𝜋 ∘ 𝜈𝛼 : 𝐺𝛼 → 𝑃/𝑄.

Thus 𝜓𝛼 are homomorphisms, and observe that for each 𝛼 ≤ 𝛽, and 𝑔 ∈ 𝐺𝛼, one has

𝜈𝛼(𝑔) − 𝜈𝛽(𝜑𝛼𝛽(𝑔)) = (𝜑𝛼𝛾(𝑔))𝛾∈𝐼 − (𝜑𝛽𝛾(𝜑𝛼𝛽(𝑔)))𝛾∈𝐼

which evaluates to zero for at index 𝛾 ≥ 𝛽 as 𝜑𝛼𝛾 = 𝜑𝛽𝛾 ∘ 𝜑𝛼𝛽. Hence

𝜓𝛼(𝑔) − 𝜓𝛽(𝜑𝛼𝛽(𝑔)) = 𝜋(𝜈𝛼(𝑔) − 𝜈𝛽(𝜑𝛼𝛽(𝑔))) = 0,

thus 𝜓𝛼 = 𝜓𝛽 ∘ 𝜑𝛼𝛽. This also shows that im(𝜓𝛼) ⊆ im(𝜓𝛽), hence we can define the subgroup 

𝐺 = ⋃𝛼∈𝐼 im(𝜓𝛼) of 𝑃/𝑄 as 𝐼 is directed. We restrict the codomains of 𝜓𝛼 to 𝐺 for each 𝛼 ∈ 𝐼 , 

so we have shown that (𝐺, (𝜓𝛼)𝛼∈𝐼) forms a cocone of 𝐺•. This shows (i).

Let 𝛼 ≤ 𝛽 in 𝐼 , then as 𝜓𝛼 = 𝜓𝛽 ∘ 𝜑𝛼𝛽, then it is clear that ker(𝜑𝛼𝛽) ⊆ ker(𝜓𝛼). Let 𝑥 ∈ ker(𝜓𝛼), 
then 0 = 𝜓𝛼(𝑥) = 𝜋(𝜈𝛼(𝑥)) shows that 𝜈𝛼(𝑥) ∈ 𝑄, so there is a 𝛽 ≥ 𝛼 such that 𝜑𝛼𝛽(𝑥) = 0, so 

𝑥 ∈ ker(𝜑𝛼𝛽). This shows (ii). From (iii), as 𝜇𝛼 = 𝜇𝛽 ∘ 𝜑𝛼𝛽, then 𝑥 ∈ ker(𝜇𝛼), hence ker(𝜓𝛼) ⊆
ker(𝜇𝛼). This shows (a). By the first isomorphism theorem, it follows we can define a unique 

homomorphism 𝜆𝛼 : im(𝜓𝛼) → 𝐻 such that 𝜇𝛼 = 𝜆𝛼 ∘ 𝜓𝛼. As im(𝜓𝛼) ⊆ im(𝜓𝛽), then 𝜆𝛽|im(𝜓𝛼) =
𝜆𝛼 by uniqueness, thus we can define a homomorphism 𝜆 : 𝐺 → 𝐻 which extends 𝜆𝛼 for all 𝛼 ∈ 𝐼 . 

In particular, 𝜇𝛼 = 𝜆 ∘ 𝜓𝛼 for each 𝛼 ∈ 𝐼 , and note that 𝜆 is unique as 𝜆𝛼 is unique for each 𝛼 ∈
𝐼 . This shows that (𝐺, (𝜓𝛼)𝛼∈𝐼) is indeed an inductive limit of 𝐺•.

For (iii)(b). It is clear that if 𝜆 is injective, then ker(𝜇𝛼) = ker(𝜓𝛼) as 𝜇𝛼 = 𝜆 ∘ 𝜓𝛼 for each 𝛼 ∈
𝐼 . If ker(𝜇𝛼) = ker(𝜓𝛼) for each 𝛼 ∈ 𝐼 , then 𝜆𝛼 is injective for each 𝛼 ∈ 𝐼 see the proof Inductive 

Completeness of 𝐶∗-Algebras 4.2.4 (iv)(b), thus 𝜆 is also injective.

For (iii)(c). Note that im(𝜆𝛼) = im(𝜇𝛼), thus im(𝜆) = ⋃𝛼∈𝐼 im(𝜇𝛼). So 𝜆 is surjective if, and only 

if, 𝐻 = ⋃𝛼∈𝐼 im(𝜇𝛼).
For (iv). We first show that 𝐺+ is a positive cone of 𝐺. For OG1; see Definition 4.1.5. Let 𝑔, ℎ ∈ 𝐺+, 

and by directedness of 𝐼 , we can assume that 𝑔, ℎ ∈ 𝜓𝛼(𝐺+) for some 𝛼 ∈ 𝐼 , hence by Lemma 4.2.11 
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(i), it follows that 𝑔 + ℎ ∈ 𝜓𝛼(𝐺+) ⊆ 𝐺+. This shows OG1.

For OG3. Let 𝑧 ∈ 𝐺, so 𝑧 = 𝜓𝛼(𝑔) ∈ im(𝜓𝛼) for some 𝛼 ∈ 𝐼 , then by Lemma 4.2.11 (ii), 𝜓𝛼(𝑔) =
𝜓𝛼(𝑥) − 𝜓𝛼(𝑦) ∈ 𝜓𝛼(𝐺+

𝛼 ) − 𝜓𝛼(𝐺+
𝛼 ) ⊆ 𝐺+ − 𝐺+ for some 𝑥, 𝑦 ∈ 𝐺+

𝛼 . This shows OG3.

For OG2. Let 𝑧 ∈ 𝐺+ ∩ (−𝐺+), so by directedness of 𝐼 , there is a 𝛼 ∈ 𝐼 , and 𝑥, 𝑦 ∈ 𝐺+
𝛼  such that 

𝜓𝛼(𝑥) = −𝜓𝛼(𝑦) = 𝑧. Now 𝜋(𝜈𝛼(𝑥 + 𝑦)) = 𝜓𝛼(𝑥 + 𝑦) = 0, so there is a 𝛽 ∈ 𝐼 with 𝛽 ≥ 𝛼 such 

that for each 𝑘 ≥ 𝑗, one has 𝜑𝛼𝛾(𝑥 + 𝑦) = 0, i.e. 𝜑𝛼𝛾(𝑥) = −𝜑𝛼𝛾(𝑦). As 𝜑𝛼𝛾(𝑥), 𝜑𝛼𝛾(𝑦) ∈ 𝐺+
𝑘 , 

then 𝜑𝛼𝛾(𝑥) ∈ 𝐺+
𝑘 ∩ (−𝐺+

𝑘 ) = 0, so 0 = 𝜑𝛼𝛾(𝑥). This holds for all 𝑘 ≥ 𝑗, thus 0 = 𝜋(𝜈𝛼(𝑥)) =
𝜓𝛼(𝑥) = 𝑧. Hence 𝐺+ ∩ (−𝐺+) = 0. Thus 𝐺+ is a positive cone.

Then it is clear that 𝜓𝛼(𝐺+
𝛼 ) ⊆ 𝐺+ for each 𝛼 ∈ 𝐼 by definition, so 𝜓𝛼 are positive. Hence 

((𝐺, 𝐺+), (𝜓𝛼)𝛼∈𝐼) is now a cocone of ((𝐺𝛼, 𝐺+
𝛼 ), (𝜑𝛼𝛽)) in OrdAb. To prove universality, suppose 

now 𝐻 has a positive cone 𝐻+, and all of the maps 𝜇𝛼 are now positive. Let 𝑔 ∈ 𝐺+, so 𝑔 =
𝜓𝛼(𝑥) ∈ 𝜓𝛼(𝐺+

𝛼 ) for some 𝛼 ∈ 𝐼 and 𝑥 ∈ 𝐺+
𝛼 , thus 𝜆𝛼(𝑔) = 𝜆𝛼(𝜓𝛼(𝑥)) = 𝜇𝛼(𝑥) ∈ 𝐻+, hence 

𝜆(𝑔) = 𝜆𝛼(𝑔) ∈ 𝐻+. Thus 𝜆(𝐺+) ⊆ 𝐻+, and the rest follows. ∎

4.3 Continuity of the 𝐾0 Functor

We shall prove the inductive continuity of taking matrix algebras and unitizations. Keep in 

mind that this proof is possible as per the construction and conclusions laid out by the Inductive 

Completeness of 𝐶∗-Algebras 4.2.4 (iii) and (iv).

Lemma 4.3.1. (Inductive Continuity of Matrix Algebras). Let 𝐼 be a directed set, and 𝐴• =
(𝐴𝛼, (𝜑𝛼𝛽)) be a diagram in C*-Alg indexed by 𝐼 . Let 𝑛 ∈ ℕ, then one has ℳ︀𝑛(lim

⟶
𝐴•) is an 

inductive limit of ℳ︀𝑛(𝐴•).
 Proof. Given (lim

⟶
𝐴•, (𝜇𝛼)𝛼∈𝐼) to be the inductive limit of 𝐴•, then 

(ℳ︀𝑛(lim
⟶

𝐴•), (ℳ︀𝑛(𝜇𝛼))𝛼∈𝐼) is a cocone of ℳ︀𝑛(𝐴•), which ℳ︀𝑛(𝐴•) has the inductive limit 

(𝑀, (𝜈𝛼)𝛼∈𝐼), such that 𝜈𝛼 = 𝜈𝛽 ∘ ℳ︀𝑛(𝜑𝛼𝛽) for each 𝛼 ≤ 𝛽 in 𝐼 . By universality, there is a unique 

*-homomorphism 𝜆 : 𝑀 → ℳ︀𝑛(lim
⟶

𝐴•) such that ℳ︀𝑛(𝜇𝛼) = 𝜆 ∘ 𝜈𝛼 for each 𝛼 ∈ 𝐼 .

As

𝑥 = (𝑥𝑖𝑗) ∈ ker(ℳ︀𝑛(𝜇𝛼)) ⟹ 𝑥𝑖𝑗 ∈ ker(𝜇𝛼)

⟹ lim
𝛽

‖𝜑𝛼𝛽(𝑥𝑖𝑗)‖ = 0

⟹ lim
𝛽

‖ℳ︀𝑛(𝜑𝛼𝛽)(𝑥)‖ = 0

⟹ 𝑥 ∈ ker(𝜈𝛼)

where the third implication comes from Lemma 2.5.3. Thus ker(ℳ︀𝑛(𝜇𝛼)) ⊆ ker(𝜈𝛼), hence 𝜆 is 

injective.

Note that lim
⟶

𝐴• = ⋃𝛼∈𝐼 im(𝜇𝛼), so given 𝑥 = (𝑥𝑖𝑗) ∈ ℳ︀𝑛(lim
⟶

𝐴•), each 𝑥𝑖𝑗 can be approxi

mated by a sequence (𝑥(𝑘)
𝑖𝑗 )𝑘∈ℕ in ⋃𝛼∈𝐼 im(𝜇𝛼). Define 𝑥(𝑘) = (𝑥(𝑘)

𝑖𝑗 ) ∈ ⋃𝛼∈𝐼 im(ℳ︀𝑛(𝜇𝛼)), hence 

lim𝑘→∞ 𝑥(𝑘) = 𝑥 by Lemma 2.5.3, thus ℳ︀𝑛(lim
⟶

𝐴•) = ⋃𝛼∈𝐼 im(ℳ︀𝑛(𝜇𝛼)). Hence 𝜆 is surjective. 

Thus 𝜆 is an isomorphism, as required. ∎

Lemma 4.3.2. (Inductive Continuity of Unitization). Let 𝐼 be a directed set, and 𝐴• = (𝐴𝛼, (𝜑𝛼𝛽)) 
be a diagram in C*-Alg indexed by 𝐼 . Then (lim

⟶
𝐴•)∼ is an inductive limit of 𝐴• in C*-Alg1.

50



Classification of Separable AF-Algebras Continuity of the 𝐾0 Functor

 Proof. Given (lim
⟶

𝐴•, 𝜇𝛼) to be the inductive limit of 𝐴•, then ((lim
⟶

𝐴•)∼, (𝜇𝛼)𝛼∈𝐼) is a 

cocone of 𝐴•, which 𝐴• has the inductive limit (𝐵, (𝜈𝛼)𝛼∈𝐼), such that 𝜈𝛼 = 𝜈𝛽 ∘ 𝜑𝛼𝛽 for each 

𝛼 ≤ 𝛽 in 𝐼 . By universality, there is a unique unital *-homomorphism 𝜆 : 𝐵 → (lim
⟶

𝐴•)∼ such that 

𝜇𝛼 = 𝜆 ∘ 𝜈𝛼 for each 𝛼 ∈ 𝐼 .

As

𝑥 = 𝑎 + 𝑐1 ∈ ker(𝜇𝛼) ⟹ 𝑎 ∈ ker(𝜇𝛼) and 𝑐 = 0
⟹ lim

𝛽
‖𝜑𝛼𝛽(𝑎)‖ = 0 and 𝜑𝛼𝛽(𝑥) = 𝜑𝛼𝛽(𝑎) ∀𝛽 ∈ 𝐼

⟹ lim
𝛽

‖𝜑𝛼𝛽(𝑥)‖ = 0

⟹ 𝑥 ∈ ker(𝜈𝛼).

Thus ker(𝜇𝛼) ⊆ ker(𝜈𝛼), hence 𝜆 is injective.

Note that lim
⟶

𝐴• = ⋃𝛼∈𝐼 im(𝜇𝛼), so given 𝑥 = 𝑎 + 𝑐1 ∈ (lim
⟶

𝐴•)∼, where 𝑎 can be approximated 

by a sequence (𝑎𝑛)𝑛∈ℕ in ⋃𝛼∈𝐼 im(𝜇𝛼) and 𝑐 ∈ ℂ. Let 𝑥𝑛 = 𝑎𝑛 + 𝑐1 for each 𝑛 ∈ ℕ, so one has a 

sequence (𝑥𝑛)𝑛∈ℕ in ⋃𝛼∈𝐼 im(𝜇𝛼) such that 𝑥𝑛 → 𝑥, thus (lim
⟶

𝐴•)∼ = ⋃𝛼∈𝐼 im(𝜇𝛼). Hence 𝜆 is 

surjective. Thus 𝜆 is an isomorphism, as required. ∎
We now need a lemma to prove inductive continuity of 𝐾0. First we have a lemma for our lemma.

Lemma 4.3.3. Let 𝐴 be a 𝐶∗-algebra.

(i) If 𝑎 ∈ 𝐴 be self-adjoint with 𝛿 = ‖𝑎 − 𝑎2‖ < 1/4, then there is a projection 𝑝 ∈ 𝐴 with ‖𝑎 −
𝑝‖ ≤ 2𝛿.

(ii) Let 𝑝, 𝑞 ∈ P(𝐴). If there is a 𝑥 ∈ 𝐴 with ‖𝑥∗𝑥 − 𝑝‖ < 1/2, and ‖𝑥𝑥∗ − 𝑞‖ < 1/2, then 𝑝 ∼ 𝑞.
 Proof.

(i) If 𝑡 ∈ 𝜎(𝑎), then 𝑡 − 𝑡2 ∈ 𝜎(𝑎 − 𝑎2) by the Continuous Functional Calculus 2.4.3 (ii), and if |𝑡 −
𝑡2| ≤ 𝛿 < 1/4 for 𝑡 ∈ ℝ, then 𝑡 ∈ [−2𝛿, 2𝛿] ∪ [1 − 2𝛿, 1 + 2𝛿]; see [2, 6.3.1] for confirmation. 

Hence if ‖𝑎 − 𝑎2‖ = 𝛿 < 1/4, then

𝜎(𝑎) ⊆ {𝑡 ∈ ℝ : |𝑡 − 𝑡2| ≤ 𝛿} ⊆ [−2𝛿, 2𝛿] ∪ [1 − 2𝛿, 1 + 2𝛿],

then one can define a continuous map

𝑓 : [−2𝛿, 2𝛿] ∪ [1 − 2𝛿, 1 + 2𝛿] → ℂ : 𝑡 ↦ {0  if 𝑡 ∈ [−2𝛿, 2𝛿]
1  if 𝑡 ∈ [1 − 2𝛿, 1 + 2𝛿]

as the domain is a disjoint union. Hence 𝑝 = 𝑓(𝑎) is a projection as 𝑓 = 𝑓2 = 𝑓∗, and

‖𝑎 − 𝑝‖ = ‖id𝜎(𝑎) −𝑓‖∞ = max{ sup
𝑡∈[−2𝛿,2𝛿]

|𝑡|, sup
𝑡∈[1−2𝛿,1+2𝛿]

|𝑡 − 1|} ≤ 2𝛿.

(ii) Let 𝛿 = 1/2 max{‖𝑥∗𝑥 − 𝑝‖, ‖𝑥𝑥∗ − 𝑞‖}, so 𝛿 < 1/4. Let 𝐾 = 𝜎(𝑥∗𝑥) ∪ 𝜎(𝑥𝑥∗), which satisfies 

𝐾 ⊆ [−2𝛿, 2𝛿] ∪ [1 − 2𝛿, 1 + 2𝛿] by Lemma 3.1.6. Define 𝑓 ∈ 𝒞︀(𝐾) as above, and let 𝑝0 =
𝑓(𝑥∗𝑥) and 𝑞0 = 𝑓(𝑥𝑥∗), now ‖𝑝 − 𝑝0‖ ≤ 4𝛿 < 1 and ‖𝑞 − 𝑞0‖ ≤ 4𝛿 < 1, so 𝑝 ∼ 𝑝0 and 𝑞 ∼
𝑞0 by Diagram  1. Given a polynomial 𝑃(𝑧) ∈ ℂ[𝑧], one has 𝑥𝑃(𝑥∗𝑥)𝑥∗ = 𝑃(𝑥𝑥∗)𝑥𝑥∗ as 

𝑥(𝑥∗𝑥)𝑛𝑥∗ = (𝑥𝑥∗)𝑛𝑥𝑥∗ for each 𝑛 ∈ ℕ and the rest follows from linearity. Thus by Stone-

Weierstrass, 𝑥𝑔(𝑥∗𝑥)𝑥∗ = 𝑔(𝑥𝑥∗)𝑥𝑥∗ for each 𝑔 ∈ 𝒞︀(𝐾). Define 𝑔 ∈ 𝒞︀(𝐾, [0, ∞)) such that 

𝑡𝑔(𝑡)2 = 𝑓(𝑡) for each 𝑡 ∈ 𝐾, and let 𝑣 = 𝑥𝑔(𝑥∗𝑥), so one has

𝑣∗𝑣 = 𝑔(𝑥∗𝑥)𝑥∗𝑥𝑔(𝑥∗𝑥) = 𝑥∗𝑥𝑔(𝑥∗𝑥)𝑔(𝑥∗𝑥) = 𝑓(𝑥∗𝑥) = 𝑝0

𝑣𝑣∗ = 𝑥𝑔(𝑥∗𝑥)2𝑥∗ = 𝑔(𝑥𝑥∗)2𝑥𝑥∗ = 𝑓(𝑥𝑥∗) = 𝑞0,

thus 𝑝0 ∼ 𝑞0, hence 𝑝 ∼ 𝑞. ∎
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This technical lemma here, which will be the crux for proving the continuity of 𝐾0, essentially 

states that the elements satisfying the Murray-von Neumann relation ∼ in the inductive limit can 

be ‘approximated’ by elements in the constituents that makes up the inductive limit.

Lemma 4.3.4. Let 𝐼 be a directed set, and 𝐴• = (𝐴𝛼, (𝜑𝛼𝛽)) be a diagram in C*-Alg indexed by 

𝐼 , and (𝐴, (𝜓𝛼)𝛼∈𝐼) be the inductive limit of 𝐴•. Let 𝑛 ∈ ℕ. Then one has the following:

(i) If 𝑝 ∈ P𝑛(𝐴), then there is an 𝛼 ∈ 𝐼 and a 𝑞 ∈ P𝑛(𝐴𝛼) such that 𝜓𝛼(𝑞) ∼ 𝑝.

(ii) Let 𝛼 ∈ 𝐼 , and 𝑝, 𝑞 ∈ P𝑛(𝐴𝛼) such that 𝜓𝛼(𝑝) ∼ 𝜓𝛼(𝑞), then there is a 𝛾 ≥ 𝛼 such that 

𝜑𝛼𝛾(𝑝) ∼ 𝜑𝛼𝛾(𝑞).
 Proof. We first assume 𝑛 = 1. Recall that by the Inductive Completeness of 𝐶∗-Algebras 4.2.4, 

one has 𝐴 = ⋃𝛼∈𝐼 im(𝜓𝛼), and ‖𝜓𝛼(𝑥)‖ = lim𝛽‖𝜑𝛼𝛽(𝑥)‖ for each 𝛼 ∈ 𝐼 and 𝑥 ∈ 𝐴𝛼.

(i) There is a 𝛼 ∈ 𝐼 and 𝑏 ∈ 𝐴𝛼 such that ‖𝑝 − 𝜓𝛼(𝑏)‖ < 1/5. Let 𝑎𝛼 = (𝑏 + 𝑏∗)/2, so 𝑎𝛼 is self-

adjoint and so is 𝑎𝛽 = 𝜑𝛼𝛽(𝑎𝛼) with

‖𝑝 − 𝜓𝛽(𝑎𝛽)‖ = ‖𝑝 − 𝜓𝛽(𝜑𝛼𝛽(𝑎𝛼))‖ = ‖𝑝 − 𝜓𝛼(𝑎𝛼)‖ ≤ ‖𝑝
2

− 𝑏
2
‖ + ‖𝑝

2
− 𝑏∗

2
‖ < 1

5

for each 𝛽 ≥ 𝛼 in 𝐼 . Now Lemma 3.1.6 implies

𝜎(𝜓𝛼(𝑎𝛼)) ⊆ [−1
5
, 1
5
] ∪ [4

5
, 6
5
],

so using any graphing calculator, one observes that

‖𝜓𝛼(𝑎𝛼 − 𝑎2
𝛼)‖ = max{|𝑡 − 𝑡2| : 𝑡 ∈ 𝜎(𝜓𝛼(𝑎𝛼))} < 1

4
.

As ‖𝜓𝛼(𝑥)‖ = lim𝛽‖𝜑𝛼𝛽(𝑥)‖ for 𝑥 ∈ 𝐴𝛼, there is a 𝛽 ≥ 𝛼 in 𝐼 such that ‖𝑎𝛽 − 𝑎2
𝛽‖ < 1/4, 

so by Lemma  4.3.3 (i), there is a 𝑞 ∈ 𝐴𝛽 such that ‖𝑎𝛽 − 𝑞‖ < 1/2. Thus noting that *-

homomorphisms are norm-decreasing, one has

‖𝜓𝛽(𝑞) − 𝑝‖ ≤ ‖𝜓𝛽(𝑞 − 𝑎𝛽)‖ + ‖𝜓𝛽(𝑎𝛽) − 𝑝‖ ≤ 1
2

+ 1
5

< 1,

hence 𝜓𝛽(𝑞) ∼ 𝑝 by Diagram 1.

(ii) Let 𝑣 ∈ 𝐴 such that 𝜓𝛼(𝑝) = 𝑣∗𝑣 and 𝜓𝛼(𝑞) = 𝑣𝑣∗, hence there is a 𝛽 ∈ 𝐼 and 𝑥 ∈ 𝐴𝛽 such 

that ‖𝑣 − 𝜓𝛽(𝑥)‖ < 𝜀 for a fixed 𝜀 > 0. Choose a 𝛾 ≥ 𝛼, 𝛽, then one has

‖𝑣 − 𝜓𝛾(𝜑𝛽𝛾(𝑥))‖ = ‖𝑣 − 𝜓𝛽(𝑥)‖ < 𝜀.

Relabel 𝛾 as 𝛽 and 𝜑𝛽𝛾(𝑥) as 𝑥, then we can find a 𝛽 ≥ 𝛼 such that ‖𝑣 − 𝜓𝛽(𝑥)‖ < 𝜀. Now

‖𝑣∗𝑣 − 𝜓𝛽(𝑥∗𝑥)‖ = ‖(𝑣∗ − 𝜓𝛽(𝑥∗))(𝑣 − 𝜓𝛽(𝑥)) + 𝑣∗𝜓𝛽(𝑥) + 𝜓𝛽(𝑥∗)𝑣‖

≤ 𝜀2 + 2‖𝑣∗𝜓𝛽(𝑥)‖,

and similarly,

‖𝑣𝑣∗ − 𝜓𝛽(𝑥𝑥∗)‖ ≤ 𝜀2 + 2‖𝑣𝜓𝛽(𝑥)∗‖.

As the maps (𝑥, 𝑦) ↦ 𝑥∗𝑦 and (𝑥, 𝑦) ↦ 𝑥𝑦∗ are continuous in a 𝐶∗-algebra setting, then we 

can choose an 𝜀 > 0 small enough such that

‖𝜓𝛼(𝑝) − 𝜓𝛽(𝑥∗𝑥)‖ < 1
2

and ‖𝜓𝛼(𝑞) − 𝜓𝛽(𝑥𝑥∗)‖ < 1
2

for some 𝛽 ≥ 𝛼 and 𝑥 ∈ 𝐴𝛽. As 𝜓𝛼 = 𝜓𝛽 ∘ 𝜑𝛼𝛽, then one has

max{‖𝜓𝛽(𝜑𝛼𝛽(𝑝) − 𝑥∗𝑥)‖, ‖𝜓𝛽(𝜑𝛼𝛽(𝑞) − 𝑥𝑥∗)‖} < 1
2
,
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hence there is a 𝛾 ≥ 𝛽 such that

max{‖𝜑𝛽𝛾(𝜑𝛼𝛽(𝑝) − 𝑥∗𝑥)‖, ‖𝜑𝛽𝛾(𝜑𝛼𝛽(𝑞) − 𝑥𝑥∗)‖} < 1
2
,

i.e.

‖𝜑𝛼𝛾(𝑝) − 𝑦∗𝑦‖ < 1
2

and ‖𝜑𝛼𝛾(𝑞) − 𝑦𝑦∗‖ < 1
2

where 𝑦 = 𝜑𝛽𝛾(𝑥). Hence by Lemma 4.3.3 (ii), one has that 𝜑𝛼𝛾(𝑝) ∼ 𝜑𝛼𝛾(𝑞), as required.

Now assume for any 𝑛 ∈ ℕ. Note that the contents of the statements (i) and (ii) are exactly when 

you replace 𝐴 to ℳ︀𝑛(𝐴). By the Inductive Continuity of Matrix Algebras 4.3.1, we can assume 

ℳ︀𝑛(𝐴) is the inductive limit of ℳ︀𝑛(𝐴•), thus (i) and (ii) follows. ∎

Theorem 4.3.5. (Inductive Continuity of 𝐾0). Let 𝐼 be a directed set, and 𝐴• = (𝐴𝛼, (𝜑𝛼𝛽)) 
be a diagram in C*-Alg indexed by 𝐼 , and (𝐴, (𝜓𝛼)𝛼∈𝐼) be the inductive limit of 𝐴•. Then 

(𝐾0(𝐴), (𝐾0(𝜓𝛼))𝛼∈𝐼) is an inductive limit of 𝐾0(𝐴•). Moreover:

(i) 𝐾0(𝐴) = ⋃𝛼∈𝐼 im(𝐾0(𝜓𝛼)).
(ii) 𝐾0(𝐴)+ = ⋃𝛼∈𝐼 𝐾0(𝜓𝛼)(𝐾0(𝐴𝛼)+).

(iii) ker(𝐾0(𝜓𝛼)) = ⋃𝛽∈𝐼
𝛽≥𝛼

ker(𝐾0(𝜑𝛼𝛽)) for each 𝛼 ∈ 𝐼 .

(iv) If (𝐾0(𝐴𝛼), 𝐾0(𝐴𝛼)+) is an ordered Abelian group for each 𝛼 ∈ 𝐼 , then 

((𝐾0(𝐴), 𝐾0(𝐴)+), (𝐾0(𝜓𝛼))𝛼∈𝐼) is an inductive limit of ((𝐾0(𝐴𝛼), 𝐾0(𝐴𝛼)+), (𝐾0(𝜑𝛼𝛽))) 

in OrdAb.

(v) If 𝐴𝛼 is unital with unit 1𝛼, (𝐾0(𝐴𝛼), 𝐾0(𝐴𝛼)+, [1𝛼]0) is an ordered Abelian 

group with distinguished order unit for each 𝛼 ∈ 𝐼 , and 𝐴• is a diagram in 

C*-Alg1. Then ((𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0), (𝐾0(𝜓𝛼))𝛼∈𝐴) is an inductive limit of 𝐾• =
((𝐾0(𝐴𝛼), 𝐾0(𝐴𝛼)+, [1𝛼]0), 𝐾0(𝜑𝛼𝛽)) in OrdAb1.

 Proof. For simplicity of notations, for each 𝛼 ≤ 𝛽 in 𝐼 , we shall note that 𝜑̃𝛼𝛽 defines the 

induced *-homomorphism from ℳ︀𝑛(𝐴𝛼) to ℳ︀𝑛(𝐴𝛽) (which is achieved by applying the matrix 

algebra functor after the unitization functor) for each 𝑛 ∈ ℕ. We have similar conventions for 𝜓𝛼 

and 𝜓𝛼 respectively. Thus by the Inductive Continuity of Matrix Algebras 4.3.1 and the Inductive 

Continuity of Unitization 4.3.2, one has that (ℳ︀𝑛(𝐴), (𝜓𝛼)𝛼∈𝐼) is an inductive limits of ℳ︀𝑛(𝐴•) 

in C*-Alg1.

(i) Let 𝑔 ∈ 𝐾0(𝐴), then by Structure of 𝐾0 3.4.4, there is a 𝑘 ∈ ℕ and 𝑝 ∈ P𝑛(𝐴) such that 𝑔 =
[𝑝]0 − [𝑠(𝑝)]0. By Lemma 4.3.4 (i), there is a 𝛼 ∈ 𝐼 and 𝑞 ∈ P𝑛(𝐴𝛼) such that 𝜓𝛼(𝑞) ∼ 𝑝. So 

by Structure of 𝐾0 3.4.4 (iv),

𝑔 = [𝑝] − [𝑠(𝑝)]0 = [𝜓𝛼(𝑞)]0 − [𝑠(𝜓𝛼(𝑞))]0 = 𝐾0(𝜓𝛼)[𝑞]0 ∈ im(𝐾0(𝜓𝛼)).

Hence (i) is shown.

(ii) Note that ⊇ is obvious as 𝐾0(𝜓𝛼) is positive for each 𝛼 ∈ 𝐼 . Let 𝑔 ∈ 𝐾0(𝐴)+, then 𝑔 = [𝑝]0 for 
some 𝑝 ∈ P𝑛(𝐴) and 𝑛 ∈ ℕ. By Lemma 4.3.4 (i), there is a 𝑞 ∈ P𝑛(𝐴𝛼) for some 𝛼 ∈ 𝐼 such 

that 𝜓𝛼(𝑞) ∼ 𝑝. Thus 𝑔 = [𝜓𝛼(𝑞)]0 = 𝐾0(𝜓𝛼)(𝑞) ∈ 𝐾0(𝜓𝛼)(𝐾0(𝐴𝛼)+). Hence (ii) is shown.

(iii) This part uses the Inductive Completeness of 𝐶∗-Algebras 4.2.4 (i) and (ii). Let 𝛼 ∈ 𝐼 . As 

𝜓𝛼 = 𝜓𝛽 ∘ 𝜑𝛼𝛽, then 𝐾0(𝜓𝛼) = 𝐾0(𝜓𝛽) ∘ 𝐾0(𝜑𝛼𝛽), hence ker(𝐾0(𝜑𝛼𝛽)) ⊆ ker(𝐾0(𝜓𝛼)) for 
each 𝛽 ≥ 𝛼 in 𝐼 . Thus ⊇ is shown. Let 𝑔 ∈ ker(𝐾0(𝜓𝛼)), then there is a 𝑛 ∈ ℕ such that 𝑝 ∈
P𝑛(𝐴𝛼) such that 𝑔 = [𝑝]0 − [𝑠(𝑝)]0, and so 𝜓𝛼(𝑝) ∼ 𝜓𝛼(𝑠(𝑝)). By Lemma 4.3.4 (ii), there 
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is a 𝛾 ≥ 𝛼 in 𝐼 such that 𝜑̃𝛼𝛾(𝑝) ∼ 𝜑̃𝛼𝛾(𝑠(𝑝)) = 𝑠(𝜑̃𝛼𝛾(𝑝)), hence by Structure of 𝐾0 3.4.4 

(iv), one has

𝐾0(𝜑𝛼𝛾)(𝑔) = [𝜑̃𝛼𝛾(𝑝)] − [𝑠(𝜑̃𝛼𝛾(𝑝))] = 0

thus 𝑔 ∈ ker(𝐾0(𝜑𝛼𝛾)), as required.

Continuity of 𝐾0

This part uses the Inductive Completeness of Various Groups 4.2.12 (ii), and (iii)(b) and (iii)(c). 

Note that 𝐾0(𝐴•) is a diagram in Ab indexed by 𝐼 , thus referring to the Inductive Completeness 

of Various Groups 4.2.12, we obtain the inductive limit (𝐺, (𝜇𝛼)𝛼∈𝐼) of 𝐾0(𝐴•) such that 𝜇𝛼 =
𝜇𝛽 ∘ 𝐾0(𝜑𝛼𝛽) for all 𝛽 ≥ 𝛼 in 𝐼 . As (𝐾0(𝐴), (𝐾0(𝜓𝛼))𝛼∈𝐼) is a cocone of 𝐾0(𝐴•), then there is 

a unique homomorphism 𝜆 : 𝐺 → 𝐾0(𝐴) such that 𝐾0(𝜓𝛼) = 𝜆 ∘ 𝜇𝛼 for each 𝛼 ∈ 𝐼 . By part (i), 

we have that 𝜆 is surjective. By part (iii), one has ker(𝐾0(𝜓𝛼)) = ker(𝜇𝛼) for each 𝛼 ∈ 𝐼 , so 𝜆 is 

injective. Thus 𝜆 is an isomorphism, as required.

(iv) Note that 𝐺+ = ⋃𝛼∈𝐼 𝜇𝛼(𝐾0(𝐴𝛼)+), so by part (ii), one has

𝜆(𝐺+) = ⋃
𝛼∈𝐼

𝜆(𝜇𝛼(𝐾0(𝐴𝛼)+)) = ⋃
𝛼∈𝐼

𝐾0(𝜓𝛼)(𝐾0(𝐴𝛼)+) = 𝐾0(𝐴)+,

thus 𝜆 is a positive isomorphism, as required.

(v) Firstly, we show that the objects in question are well-defined. By the Inductive Completeness 

of 𝐶∗-Algebras  4.2.4 (v), 𝐴 is unital, so 1𝐴 exists, and 𝜓𝛼 is unital for each 𝛼 ∈ 𝐼 . By 

Proposition 4.1.9, 𝐾0(𝜑𝛼𝛽) and 𝐾0(𝜓𝛼) are unital positive homomorphisms, thus the context 

of question is well-defined, such as that 𝐾• is indeed a diagram in OrdAb1. It suffices to 

show that 𝐿 = ((𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0), (𝐾0(𝜓𝛼))𝛼∈𝐼) is a universal cocone of 𝐾•, which we 

note 𝐿 is indeed a cocone. Let ((𝐺, 𝐺+, 𝑢), (𝜇𝛼)𝛼∈𝐼) be a cocone of 𝐾•, and we note that 

((𝐺, 𝐺+), (𝜇𝛼)𝛼∈𝐼) is a cocone of 𝐾• in OrdAb where we identified 𝐾• via the forgetful functor 

OrdAb1 ↪︎ OrdAb. Thus there is a unique positive homomorphism 𝜆 : 𝐾0(𝐴) → 𝐺 such that 

𝜇𝛼 = 𝜆 ∘ 𝐾0(𝜓𝛼) for each 𝛼 ∈ 𝐼 . Fix any 𝛼 ∈ 𝐼 , then in particular,

𝜆([1𝐴]0) = 𝜆(𝜓𝛼([1𝛼]0)) = 𝜇𝛼([1𝛼]0) = 𝑢,

so 𝜆 is unital. Hence 𝐿 is universal in OrdAb1, as required. ∎
The part (v) of the preceding theorem can be rephrased as follows.

Theorem 4.3.6. (Inductive Continuity of (𝐾0, 𝐾+
0 )). Let 𝐼 be a directed set, and 𝐴• be a diagram 

in C*-Alg𝑠 indexed by 𝐼 . Suppose lim
⟶

𝐴• exists in C*-Alg𝑠, then (𝐾0, 𝐾+
0 )(lim

⟶
𝐴•) is an inductive 

limit of (𝐾0, 𝐾+
0 )(𝐴•).

As a consequence of the continuity of 𝐾0, we can now compute the 𝐾0-group for 𝒦︀(𝐻) when 

𝐻 is a separable Hilbert space.
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Example 4.3.7. (𝐾0(𝒦︀(𝐻))). Recall from Example 4.2.9, 𝒦︀(𝐻) can realized as the inductive limit 

of the sequence:

𝜑1 𝜑2 𝜑3
ℂ ℳ︀2(ℂ) ℳ︀3(ℂ) ⋯

where 𝜑𝑛 : ℳ︀𝑛(ℂ) → ℳ︀𝑛+1(ℂ) is defined as 𝜑𝑛(𝑥) = 𝑥 ⊕ 01. In particular, one has the following 

commutative diagram using 𝐾0(tr) from the Structure of 𝐾00(ℬ︀(𝐻)) 3.3.9,

𝐾0(𝜑𝑛)

𝐾0(tr) 𝐾0(tr)

𝐾0(ℳ︀𝑛(ℂ)) 𝐾0(ℳ︀𝑛+1(ℂ))

ℤ ℤ
where = arrow means the idℤ map. As 𝐾0(tr) is an isomorphism, then on the 𝐾0-group level, the 

sequence

𝐾0(𝜑1) 𝐾0(𝜑2) 𝐾0(𝜑3)
𝐾0(ℂ) 𝐾0(ℳ︀2(ℂ)) 𝐾0(ℳ︀3(ℂ)) ⋯

(4.2)

can be realized as the sequence

ℤ ℤ ℤ ⋯
which clearly has an inductive limit of ℤ. Since by the Inductive Continuity of 𝐾0 4.3.5, the 𝐾0-

group for 𝒦︀(𝐻) is the inductive limit for the sequence (4.2), so 𝐾0(𝒦︀(𝐻)) ≅ ℤ.
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4.4 Approximately Finite-Dimensional Algebras

We shall first introduce the notion of AF-algebras and state the relevant general properties that 

they have and inherit from the finite-dimensional case. This will help us to prove the classification 

theorem next chapter.

For clarity of the definitions, we define the following categories:

• The category of finite-dimensional 𝐶∗-algebras, FinC*-Alg, whose objects are finite-dimensional 

𝐶∗-algebras, and morphisms are *-homomorphisms.

• The category of FinC*-Alg1, whose objects are finite-dimensional 𝐶∗-algebras, and morphisms are 

unital *-homomorphisms.

Both FinC*-Alg and FinC*-Alg1 are subcategories of C*-Alg and C*-Alg1 respectively, thus given a 

diagram in the subcategories, we may identify their inductive limits as objects in the larger categories.

Definition 4.4.1. (AF-Algebras). We say a 𝐶∗-algebra 𝐴 is an approximately finite-dimensional 

algebra or AF-algebra if 𝐴 is an inductive limit in C*-Alg of a diagram 𝐴• in FinC*-Alg indexed by 

some directed set 𝐼 .

The next lemma shows that the category of unital AF-algebras AF-Alg as a subcategory of C*-Alg1 is 

actually a subcategory of unital and stably finite 𝐶∗-algebras C*-Alg𝑠, which means we can associate 

a unital AF-algebra 𝐴 with its ordered Abelian 𝐾0-group.

Lemma 4.4.2. An AF-algebra 𝐴 is stably finite.

 Proof. Write 𝐴• = (𝐴𝛼, (𝜑𝛼𝛽)) be a diagram in FinC*-Alg, and (𝐴, (𝜓𝛼)𝛼∈𝐼) be an inductive 

limit of 𝐴•.

Case 1: If 𝐴 is unital.

Let 𝑠 ∈ 𝐴 be an isometry, i.e. 𝑠∗𝑠 = 1, then as 𝐴 = ⋃𝛼∈𝐼 im(𝜓𝛼), then there is a 𝛼 ∈ 𝐼 and a 𝑥 ∈
𝐴𝛼 such that ‖𝜓𝛼(𝑥) − 𝑠‖ < 1. Thus

‖𝑠∗𝜓𝛼(𝑥) − 1‖ = ‖𝑠∗(𝜓𝛼(𝑥) − 𝑠)‖ < ‖𝑠∗‖ = 1

so by Lemma 3.1.3, 𝑠∗𝜓𝛼(𝑥) is invertible in 𝐴, in particular, 𝜓𝛼(𝑥) is left-invertible with left-inverse 

(𝑠∗𝜓𝛼(𝑥))−1𝑠∗, thus 𝜓𝛼(𝑥)∗𝜓𝛼(𝑥) is invertible in im(𝜓𝛼) by Lemma 2.4.6. As 𝐴𝛼 is finite-dimen

sional, then so is im(𝜓𝛼), in particular, im(𝜓𝛼) is finite, thus 𝜓𝛼(𝑥) is invertible by Lemma 4.1.2. 

Thus 𝑠∗ = (𝑠∗𝜓𝛼(𝑥))𝜓𝛼(𝑥)−1 ∈ GL(𝐴), so 𝑠∗ is invertible, and as 𝑠 is a right-inverse of 𝑠∗, then 𝑠 
is the inverse of 𝑠∗. So 𝑠𝑠∗ = 1, i.e. 𝑠 is unitary, so by Lemma 4.1.2, 𝐴 is finite.

Case 2: If 𝐴 is nonunital.

Let 𝑛 ∈ ℕ, and it suffices to show that ℳ︀𝑛(𝐴) is finite. By the Inductive Continuity of Matrix 

Algebras 4.3.1 and the Inductive Continuity of Unitization 4.3.2, ℳ︀𝑛(𝐴) can be realized as an 

inductive limit of ℳ︀𝑛(𝐴•), and as each object in ℳ︀𝑛(𝐴•) is finite-dimensional, then ℳ︀𝑛(𝐴) is a 

AF-algebra, thus ℳ︀𝑛(𝐴) is finite by Case 1. ∎

Proposition 4.4.3. An AF-algebra 𝐴 is separable if, and only if, 𝐴 can be recognized as an inductive 

limit of finite-dimensional 𝐶∗-algebras where the underlying index set is ℕ.

 Proof. Follows from Proposition 4.2.8 as each im(𝜓𝛼) in the proposition is finite-dimensional, 

hence separable. ∎
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4.5 Elliott’s Classification of Separable AF-Algebras

In this chapter, we shall prove the Elliot’s classification theorem of AF-algebras. Before we proceed, 

we shall make some observations regarding finite-dimensional algebras. We make the remark that 

given a sum of matrix algebras

𝐴 = ℳ︀𝑛1
(ℂ) ⊕ ⋯ ⊕ ℳ︀𝑛𝑚

(ℂ)

then we have a natural basis for 𝐴, which for 1 ≤ 𝑟 ≤ 𝑚 and 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑟, we define 𝑒𝑖𝑗 ∈ ℳ︀𝑛𝑟
 

such that the (𝑖, 𝑗)th-entry of 𝑒𝑖𝑗 is 1 and 0 everywhere else, and let

𝑒(𝑟)
𝑖𝑗 = (0, …, 0, 𝑒𝑖𝑗, 0, …, 0)

where the 𝑒𝑖𝑗 is at the 𝑟th position. Note that {𝑒𝑖𝑗 : 1 ≤ 𝑟 ≤ 𝑚, 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑟} forms a basis for 𝐴 

and we say they are the standard basis for 𝐴, and they satisfy the following properties:

MU1. 𝑒(𝑟)
𝑖𝑗 𝑒(𝑠)

𝑘𝑙 = 𝑒(𝑟)
𝑖𝑙  if 𝑟 = 𝑠 and 𝑗 = 𝑘, and 0 otherwise.

MU2. (𝑒(𝑟)
𝑖𝑗 )∗ = 𝑒(𝑟)

𝑗𝑖 .

MU3. {𝑒(𝑟)
𝑖𝑗 : 1 ≤ 𝑟 ≤ 𝑚, 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑟} is a basis for 𝐴.

In general, if 𝐴 is an arbitrary 𝐶∗-algebra such that there exists a 𝑚 ∈ ℕ, 𝑛1, …, 𝑛𝑚 ∈ ℕ, and 

𝑒(𝑟)
𝑖𝑗 ∈ 𝐴 for 1 ≤ 𝑟 ≤ 𝑚 and 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑟, such that the collection {𝑒(𝑟)

𝑖𝑗 : 1 ≤ 𝑟 ≤ 𝑚, 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑟} 

satisfies MU1 and MU2, to be a collection of matrix units, if MU3 is also satisfied, then we say a 

basis of matrix units. This is in our interest as we can make comments about the ‘natural basic’ 

elements in our 𝐶∗-algebras which has ‘finite-dimensional’ subalgebras without explicitly stating 

their isomorphism to the sum of matirx algebras. For simplification of notation, we shall omit the 

inequalities for the indices, and their meaning will be reflected in our definition above if the context 

is clear.

Proposition 4.5.1. Let 𝐴 and 𝐵 be 𝐶∗-algebras and (𝑒(𝑟)
𝑖𝑗 ) and (𝑓 (𝑟)

𝑖𝑗 ) be collections of matrix 

units for 𝐴 and 𝐵 respectively where 1 ≤ 𝑟 ≤ 𝑚 and 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑟. Then:

(i) The collection (𝑒(𝑟)
𝑖𝑗 ) is linearly independent if 𝑒(𝑟)

𝑖𝑗 ≠ 0 for all 𝑖, 𝑗, 𝑟.
Suppose (𝑒(𝑟)

𝑖𝑗 ) is now a basis of matrix units.

(ii) There is a unique *-homomorphism 𝜑 : 𝐴 → 𝐵 such that 𝜑(𝑒(𝑟)
𝑖𝑗 ) = 𝑓 (𝑟)

𝑖𝑗  for all 𝑖, 𝑗, 𝑟.
(iii) If (𝑓 (𝑟)

𝑖𝑗 ) is a basis of matrix units. Then 𝜑 is a *-isomorphism. In particular, (𝑒(𝑟)
𝑖𝑗 ) is a basis 

for 𝐴, and 𝐴 is isomorphic to

ℳ︀𝑛1
(ℂ) ⊕ ⋯ ⊕ ℳ︀𝑛𝑚

(ℂ).

 Proof. Let 𝐸 = {𝑒(𝑟)
𝑖𝑗 : 𝑖, 𝑗, 𝑟}, and consider

0 = ∑
𝑚

𝑟=1
∑
𝑛𝑟

𝑖,𝑗=1
𝑎(𝑟)

𝑖𝑗 𝑒(𝑟)
𝑖𝑗 for 𝑎(𝑟)

𝑖𝑗 ∈ ℂ.

Fix 𝑠 ≤ 𝑚 and 𝑘, 𝑙 ≤ 𝑛𝑠. Then

0 = 𝑒(𝑠)
𝑘𝑘𝑎𝑒(𝑠)

𝑙𝑙 = ∑
𝑛𝑠

𝑖𝑗=1
𝑎(𝑠)

𝑖𝑗 𝑒(𝑠)
𝑘𝑘𝑒(𝑠)

𝑖𝑗 𝑒(𝑠)
𝑙𝑙 = 𝑎(𝑠)

𝑘𝑙 𝑒(𝑠)
𝑘𝑙 ,

thus 𝑎(𝑠)
𝑘𝑙 = 0. So 𝐸 is linearly independent; this shows (i).

Assume (ii). We can define a map 𝜑 : 𝐸 → 𝐵 such that 𝜑(𝑒(𝑟)
𝑖𝑗 ) = 𝑓 (𝑟)

𝑖𝑗  for all 𝑖, 𝑗, 𝑟, which has a 

unique linear onto 𝐴–still denoted as 𝜑. By MU1 and MU2, 𝜑 is a *-homomorphism. So if (iii) is 
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assumed, then 𝜑 is bijective hence an isomorphism. In particular, we can choose 𝐵 to be ℳ︀𝑛1
(ℂ) ⊕

⋯ ⊕ ℳ︀𝑛𝑚
(ℂ) which establishes the isomorphism type of 𝐴. ∎

Lemma 4.5.2. Suppose 𝐸 = {𝑒(𝑟)
𝑖𝑖 : 1 ≤ 𝑟 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑟} is a set of mutually orthogonal projec

tions in a 𝐶∗-algebra 𝐴. Suppose

𝑒(𝑟)
11 ∼ 𝑒(𝑟)

22 ⋯ ∼ 𝑒(𝑟)
𝑛𝑟𝑛𝑟

for each 𝑟. Then 𝐸 can be extended to a collection of matrix units (𝑒(𝑟)
𝑖𝑗 ) in 𝐴.

 Proof. Fix 𝑟 and 𝑖, 𝑗, then as 𝑒(𝑟)
11 ∼ 𝑒(𝑟)

𝑖𝑖 , then there exists a 𝑒(𝑟)
1𝑖 ∈ 𝐴 such that 𝑒(𝑟)

1𝑖
∗𝑒(𝑟)

1𝑖 = 𝑒(𝑟)
11  

and 𝑒(𝑟)
1𝑖 𝑒(𝑟)

1𝑖
∗ = 𝑒(𝑟)

𝑖𝑖 . Define 𝑒(𝑟)
𝑖𝑗 = 𝑒(𝑟)

1𝑖
∗𝑒(𝑟)

1𝑗 . Now 𝑒(𝑟)
𝑖𝑗

∗ = 𝑒(𝑟)
1𝑗

∗𝑒(𝑟)
1𝑖 = 𝑒(𝑟)

𝑗𝑖 , so MU2 is satisfied.

Fix 𝑠 and 𝑘, 𝑙. We note Proposition 3.1.1 (i). If 𝑟 ≠ 𝑠 or 𝑗 ≠ 𝑘, then

𝑒(𝑟)
𝑖𝑗 𝑒(𝑠)

𝑘𝑙 = 𝑒(𝑟)
1𝑖

∗𝑒(𝑟)
1𝑗 𝑒(𝑠)

1𝑘
∗𝑒(𝑠)

1𝑙 = 𝑒(𝑟)
1𝑖

∗𝑒(𝑟)
𝑗1

∗𝑒(𝑠)
𝑘1 𝑒(𝑠)

1𝑙 = 𝑒(𝑟)
1𝑖

∗𝑒(𝑟)
1𝑗 𝑒(𝑟)

𝑗𝑗 𝑒(𝑠)
𝑘𝑘𝑒(𝑠)

1𝑘
∗𝑒(𝑠)

1𝑙 = 0,

as 𝑒(𝑟)
𝑗𝑗 𝑒(𝑠)

𝑘𝑘 = 0. Otherwise if 𝑟 = 𝑠 and 𝑗 = 𝑘, then

𝑒(𝑟)
𝑖𝑗 𝑒(𝑠)

𝑘𝑙 = 𝑒(𝑟)
1𝑖

∗𝑒(𝑟)
1𝑗 𝑒(𝑟)

1𝑗
∗𝑒(𝑟)

1𝑙 = 𝑒(𝑟)
1𝑖

∗𝑒(𝑟)
11 𝑒(𝑟)

1𝑙 = 𝑒(𝑟)
1𝑖

∗𝑒(𝑟)
1𝑙 = 𝑒(𝑟)

𝑖𝑙 ,

so MU1 is satisfied, as required. ∎
Where 1 ≤ 𝑟, 𝑠 ≤ 𝑚, 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑟 and 1 ≤ 𝑘, 𝑙 ≤ 𝑛𝑠. We now observe that the 𝐾0-group for 𝐴 

has the following structure by Proposition 4.2.10:

𝐾0(𝐴) = ℤ[𝑒(1)
11 ]0 ⊕ ℤ[𝑒(2)

11 ]0 ⊕ ⋯ ⊕ ℤ[𝑒(𝑚)
11 ]0 ≅ ℤ𝑚

𝐾0(𝐴)+ = ℤ+[𝑒(1)
11 ]0 ⊕ ℤ+[𝑒(2)

11 ]0 ⊕ ⋯ ⊕ ℤ+[𝑒(𝑚)
11 ]0 ≅ (ℤ𝑚)+

[1𝐴]0 = 𝑛1[𝑒
(1)
11 ]0 + 𝑛2[𝑒

(2)
11 ]0 + ⋯ + 𝑛𝑚[𝑒(𝑚)

11 ]0.

(4.3)

where (ℤ𝑚)+ = {(𝑥1, …, 𝑥𝑚) ∈ ℤ𝑚 : 𝑥𝑖 ≥ 0 for all 𝑖 ≤ 𝑚}, and note that 𝑒(𝑟)
11 ∼ 𝑒(𝑟)

𝑖𝑖 , which is 

given by 𝑒(𝑟)
1𝑖

∗𝑒(𝑟)
1𝑖 = 𝑒(𝑟)

𝑖𝑖  and 𝑒(𝑟)
1𝑖 𝑒(𝑟)

1𝑖
∗ = 𝑒(𝑟)

𝑖𝑖 , and 1𝐴 = ∑𝑚
𝑟=1 ∑𝑛𝑟

𝑖=1 𝑒(𝑟)
𝑖𝑖 .

We first prove a very strong lemma, which essentially gives us sufficient conditions on when 

homomorphisms 𝛼 : 𝐾0(𝐴) → 𝐾0(𝐵) can be lifted to *-homomorphisms 𝜑 : 𝐴 → 𝐵 such that 

𝐾0(𝜑) = 𝛼. We shall keep in mind of the structure of 𝐾0(𝐴) for a finite-dimensional (4.3). Recall 

that 𝐶∗-algebra 𝐴 has the cancellation property if [𝑝]0 = [𝑞]0 implies 𝑝 ∼ 𝑞 for each 𝑝, 𝑞 ∈ P∞(𝐴).

Lemma 4.5.3. Let 𝐴 be a finite-dimensional 𝐶∗-algebra, and 𝐵 be a unital 𝐶∗-algebra with the 

cancellation property. Then

(i) Given a positive group homomorphism 𝛼 : 𝐾0(𝐴) → 𝐾0(𝐵) with 𝛼([1𝐴]0) ≤ [1𝐵]0, there is a *-

homomorphism 𝜑 : 𝐴 → 𝐵 with 𝐾0(𝜑) = 𝛼. Furthermore, 𝛼 is unital if, and only if, 𝜑 is unital.

(ii) Let 𝜑, 𝜓 : 𝐴 → 𝐵 be *-homomorphisms. Then 𝐾0(𝜑) = 𝐾0(𝜓) if, and only if, 𝜓 = ad𝑢 ∘ 𝜑 for 

some 𝑢 ∈ 𝐵.

 Proof. Claim: If 𝑝 ∈ P(𝐵), and 𝑔 ∈ 𝐾0(𝐵)+ such that 𝑔 ≤ [1𝐵]0 − [𝑝]0. Then there is a 𝑞 ∈
P(𝐵) such that 𝑝 ⟂ 𝑞 and 𝑔 = [𝑞]0.
Let 𝑛 ∈ ℕ and 𝑒, 𝑓 ∈ P𝑛(𝐵) such that [𝑒]0 = 𝑔 and [𝑓]0 = [1𝐵]0 − [𝑝]0 − 𝑔. By cancellation 

property, [𝑒 ⊕ 𝑓]0 = [1𝐵 − 𝑝]0 implies 𝑒 ⊕ 𝑓 ∼ 1𝐵 − 𝑝. See proof of Proposition 4.1.7 (iv) for [1𝐵 −
𝑝]0 = [1𝐵]0 − [𝑝]0. Let 𝑣 ∈ ℳ︀1,2𝑛(𝐵) such that 𝑒 ⊕ 𝑓 = 𝑣∗𝑣 and 1𝐵 − 𝑝 = 𝑣𝑣∗, then 𝑞 = 𝑣(𝑒 ⊕
0𝑛)𝑣∗. Now 𝑞 = 𝑞∗, and

𝑞2 = 𝑣(𝑒 ⊕ 0𝑛)(𝑒 ⊕ 𝑓)𝑣∗ = 𝑣(𝑒 ⊕ 0𝑛)𝑣∗

so 𝑞 is a projection, and
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𝑝𝑞 = (1𝐵 − 𝑣𝑣∗)𝑣(𝑒 ⊕ 0𝑛)𝑣∗ = 𝑞 − 𝑣(𝑒 ⊕ 𝑓)(𝑒 ⊕ 0𝑛)𝑣∗ = 0,

so 𝑝 ⟂ 𝑞, and finally 𝑞 ∼ 𝑒, so [𝑞]0 = [𝑒]0 = 𝑔, as required.

Claim: If 𝑔1, …, 𝑔𝑛 ∈ 𝐾0(𝐵)+ satisfies ∑𝑖≤𝑛 𝑔𝑖 ≤ [1𝐵]0, then there are mutually orthogonal projec

tions 𝑝1, …, 𝑝𝑛 ∈ 𝐵 such that [𝑝𝑖]0 = 𝑔𝑖 for each 𝑖 ≤ 𝑛.

Clearly the statement holds for 𝑛 = 1, so by induction on 𝑛 > 1, suppose 𝑔1, …, 𝑔𝑛−1, 𝑔𝑛 ∈ 𝐾0(𝐵)+ 

with ∑𝑖≤𝑛−1 𝑔𝑖 ≤ [1𝐵]0 with mutually orthogonal projections 𝑝1, …, 𝑝𝑛−1 ∈ 𝐵 such that [𝑝𝑖]0 = 𝑔𝑖 

for 𝑖 ≤ 𝑛 − 1. By Lemma 2.3.3, 𝑔𝑛 ≤ [1𝐵]0 − [𝑝1 + ⋯ + 𝑝𝑛−1], so by preceding claim, there is a 

𝑝𝑛 ∈ P(𝐵) such that 𝑝1 + ⋯ + 𝑝𝑛−1 ⟂ 𝑝𝑛 and [𝑝𝑛]0 = 𝑔𝑛. So for each 𝑖 ≤ 𝑛 − 1, one has

0 ≤ 𝑝𝑖𝑝𝑛 ≤ 𝑝1𝑝𝑛 + ⋯ + 𝑝𝑛−1𝑝𝑛 = 0

so 𝑝𝑖𝑝𝑛 = 0, hence 𝑝1, …, 𝑝𝑛 are mutually orthogonal. Hence claim is proven.

(i) Let (𝑒(𝑟)
𝑖𝑗 ) be the standard basis for 𝐴 for 1 ≤ 𝑟 ≤ 𝑚 and 1 ≤ 𝑖, 𝑗 ≤ 𝑛𝑟, and as 1𝐴 =

∑𝑟≤𝑚 ∑𝑖≤𝑛𝑟
𝑒(𝑟)

𝑖𝑖 , then by preceding claim, there are mutually orthogonal collection of projec

tions {𝑓 (𝑟)
𝑖𝑖 : 1 ≤ 𝑟 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛𝑟} in 𝐵 such that 𝛼([𝑒(𝑟)

𝑖𝑖 ]0) = [𝑓 (𝑟)
𝑖𝑖 ]0 for all 1 ≤ 𝑟 ≤ 𝑚 

and 1 ≤ 𝑖 ≤ 𝑛𝑟. By cancellation property of 𝐵, one has

𝑒(𝑟)
𝑖𝑖 ∼ 𝑒(𝑟)

𝑗𝑗 ⇒ [𝑒(𝑟)
𝑖𝑖 ]0 = [𝑒(𝑟)

𝑗𝑗 ]0 ⇒ [𝑓 (𝑟)
𝑖𝑖 ]0 = [𝑓 (𝑟)

𝑗𝑗 ]0 ⇒ 𝑓 (𝑟)
𝑖𝑖 ∼ 𝑓 (𝑟)

𝑗𝑗

for each 𝑟 and 𝑖. By Lemma 4.4.2, the collection extends to a collection of matrix units (𝑓 (𝑟)
𝑖𝑗 ) 

in 𝐵. By Proposition 4.5.1 (ii), there is a *-homomorphism 𝜑 : 𝐴 → 𝐵 such that 𝜑(𝑒(𝑟)
𝑖𝑗 ) =

𝑓 (𝑟)
𝑖𝑗  for all 𝑖, 𝑗, 𝑟, and hence 𝐾0(𝜑) = 𝛼 as {[𝑒(𝑟)

𝑖𝑗 ]0 : 𝑖, 𝑗, 𝑟} generates 𝐾0(𝐴).
Suppose 𝛼([1𝐴]0) = [1𝐵]0. Let 𝑝 = ∑𝑟≤𝑚 ∑𝑖≤𝑛𝑟

𝑓 (𝑟)
𝑖𝑖 , which is a projection by Lemma 2.3.3 

with 𝜑(1𝐴) = 𝑝. Thus

[1𝐵 − 𝑝]0 = [1𝐵]0 − [𝑝]0 = 𝛼([1𝐴]0) − 𝐾0(𝜑)([1𝐴]0) = 0

so 1𝐵 − 𝑝 ∼ 0 by cancellation property, thus 1𝐵 − 𝑝 = 0. Hence 𝜑(1𝐴) = 𝑝 = 1𝐵. So 𝜑 is unital.

If 𝜑 is unital, then 𝐾0(𝜑) = 𝛼 is automatically unital.

(ii) Suppose 𝐾0(𝜑) = 𝐾0(𝜓). As

[𝜑(𝑒(𝑟)
11 )]0 = 𝐾0(𝜑)[𝑒(𝑟)

11 ]0 = 𝐾0(𝜓)[𝑒(𝑟)
11 ]0 = [𝜓(𝑒(𝑟)

11 )]0

[1𝐵 − 𝜑(1𝐴)]0 = [1𝐵]0 − 𝐾0(𝜑)[1𝐴]0 = [1𝐵]0 − 𝐾0(𝜓)[1𝐵]0 = [1𝐵 − 𝜓(1𝐴)]0,

then by cancellation properties of 𝐵, there are 𝑣1, …, 𝑣𝑚, 𝑤 ∈ 𝐵 such that

𝑣∗
𝑟𝑣𝑟 = 𝜑(𝑒(𝑟)

11 ), 𝑣𝑟𝑣∗
𝑟 = 𝜓(𝑒(𝑟)

11 )

𝑤∗𝑤 = 1𝐵 − 𝜑(1𝐴), 𝑤𝑤∗ = 1𝐵 − 𝜓(1𝐴).

Note that 𝜓(𝑒(𝑟)
𝑖1 )𝑣𝑟𝜑(𝑒(𝑟)

1𝑖 ) is a partial isometry for each 1 ≤ 𝑟 ≤ 𝑚 and 1 ≤ 𝑖 ≤ 𝑛𝑟, and

𝑤∗𝑤 + ∑
𝑟≤𝑚

∑
𝑖≤𝑛𝑟

(𝜓(𝑒(𝑟)
𝑖1 )𝑣𝑟𝜑(𝑒(𝑟)

1𝑖 ))∗(𝜓(𝑒(𝑟)
𝑖1 )𝑣𝑟𝜑(𝑒(𝑟)

1𝑖 ))

= 𝑤∗𝑤 + ∑
𝑟≤𝑚

∑
𝑖≤𝑛𝑟

𝜑(𝑒(𝑟)
𝑖1 )𝑣∗

𝑟𝜓(𝑒(𝑟)
11 )𝑣𝑟𝜑(𝑒(𝑟)

1𝑖 )

= 𝑤∗𝑤 + ∑
𝑟≤𝑚

∑
𝑖≤𝑛𝑟

𝜑(𝑒(𝑟)
𝑖1 )𝑣∗

𝑟𝑣𝑟𝑣∗
𝑟𝑣𝑟𝜑(𝑒(𝑟)

1𝑖 )

= 𝑤∗𝑤 + ∑
𝑟≤𝑚

∑
𝑖≤𝑛𝑟

𝜑(𝑒(𝑟)
𝑖1 )𝜑(𝑒(𝑟)

11 )𝜑(𝑒(𝑟)
1𝑖 )
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= 𝑤∗𝑤 + ∑
𝑟≤𝑚

∑
𝑖≤𝑛𝑟

𝜑(𝑒(𝑟)
𝑖𝑖 )

= 1𝐵 − 𝜑(1𝐴) + 𝜑(1𝐴) = 1𝐵

and similarly,

𝑤𝑤∗ + ∑
𝑟≤𝑚

∑
𝑖≤𝑛𝑟

(𝜓(𝑒(𝑟)
𝑖1 )𝑣𝑟𝜑(𝑒(𝑟)

1𝑖 ))(𝜓(𝑒(𝑟)
𝑖1 )𝑣𝑟𝜑(𝑒(𝑟)

1𝑖 ))∗ = 1𝐵,

so by Lemma 2.3.4, the element

𝑢 = 𝑤 + ∑
𝑟≤𝑚

∑
𝑖≤𝑛𝑟

𝜓(𝑒(𝑟)
𝑖1 )𝑣𝑟𝜑(𝑒(𝑟)

1𝑖 )

is unitary. In particular for 𝑠 ≤ 𝑚 and 𝑘, 𝑙 ≤ 𝑛𝑠, and using 𝑤 = 𝑤𝑤∗𝑤 to obtain

𝑤𝜑(𝑒(𝑠)
𝑘𝑙 ) = 𝑤(1𝐵 − 𝜑(1𝐴))𝜑(𝑒(𝑠)

𝑘𝑙 ) = 0 = 𝜓(𝑒(𝑠)
𝑘𝑙 )𝑤,

hence

𝑢𝜑(𝑒(𝑠)
𝑘𝑙 ) = 𝑤𝜑(𝑒(𝑠)

𝑘𝑙 ) + ∑
𝑟≤𝑚

∑
𝑖≤𝑛𝑟

𝜓(𝑒(𝑟)
𝑖1 )𝑣𝑟𝜑(𝑒(𝑟)

1𝑖 𝑒(𝑠)
𝑘𝑙 ) = 𝜓(𝑒(𝑠)

𝑘1 )𝑣𝑠𝜑(𝑒(𝑠)
1𝑙 )

and similarly

𝜓(𝑒(𝑠)
𝑘𝑙 )𝑢 = 𝜓(𝑒(𝑠)

𝑘1 )𝑣𝑠𝜑(𝑒(𝑠)
1𝑙 ).

Thus 𝜓 = ad𝑢 ∘ 𝜑 as they agree on the basis of 𝐴.

Suppose 𝜓 = ad𝑢 ∘ 𝜑 for some 𝑢 ∈ 𝒰︀(𝐴), and since 𝐾0(ad𝑢) = id𝐾0(𝐴) as ad𝑢(𝑥) ∼𝑢 𝑥 for all 

𝑥 ∈ 𝐴, then

𝐾0(𝜓) = 𝐾0(ad𝑢) ∘ 𝐾0(𝜑) = 𝐾0(𝜑),

as required. ∎

Lemma 4.5.4. Let 𝐼 = ℕ, and 𝐴• = (𝐴𝑛, (𝜑𝑛𝑚)) be a diagram in FinC*-Alg indexed by 𝐼 , and 

(𝐴, (𝜓𝑛)𝑛∈𝐼) be the inductive limit of 𝐴•. Let 𝐵 be a finite-dimensional 𝐶∗-algebra, and suppose 

there is a 𝑛 ∈ 𝐼 , such that there are positive group homomorphisms 𝑓 : 𝐾0(𝐴𝑛) → 𝐾0(𝐵), and 

𝑔 : 𝐾0(𝐵) → 𝐾0(𝐴) with 𝑔 ∘ 𝑓 = 𝐾0(𝜓𝑛). Then there is a 𝑚 > 𝑛 in 𝐼 , and a positive group 

homomorphism ℎ : 𝐾0(𝐵) → 𝐾0(𝐴𝑚) making the diagram

𝐾0(𝜑𝑛𝑚) 𝐾0(𝜓𝑚)

𝑓
ℎ

𝑔

𝐾0(𝐴𝑛) 𝐾0(𝐴𝑚) 𝐾0(𝐴)

𝐾0(𝐵)
commutative. Furthermore, if the connecting maps of 𝐴• are unital and 𝑓 is unital, then so is ℎ.

 Proof. Let (𝑒(𝑟)
𝑖𝑗 ) be the standard basis for 𝐵 with 𝑟 ≤ 𝑚 and 𝑖, 𝑗 ≤ 𝑛𝑟, and let 𝑦𝑟 =

𝑔([𝑒(𝑟)
11 ]0) ∈ 𝐾0(𝐴)+ for all 𝑟 ≤ 𝑚. From Inductive Continuity of 𝐾0 4.3.5, one has 𝐾0(𝐴)+ =

⋃𝛾∈𝐼 𝐾0(𝜓𝛾)(𝐾0(𝐴𝑘)+), and so there is a 𝑘 ∈ 𝐼 with 𝑘 ≥ 𝑛 with 𝑥𝑟 ∈ 𝐾0(𝐴𝑘)+ such that 

𝑦𝑟 = 𝐾0(𝜓𝑘)(𝑥𝑟) for all 𝑟 ≤ 𝑚. Note that 𝐾0(𝐵) is the free Abelian group generated by 

[𝑒(1)
11 ]0, [𝑒

(2)
11 ]0, …, [𝑒(𝑚)

11 ]0, and so there is a unique homomorphism ℎ′ : 𝐾0(𝐵) → 𝐾0(𝐴𝑘) such 

that ℎ′([𝑒(𝑟)
11 ]) = 𝑥𝑟 for each 𝑟 ≤ 𝑚. Given 𝑔 ∈ 𝐾0(𝐵)+, one has
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𝑔 = ∑
𝑟≤𝑚

𝑖𝑟[𝑒
(𝑟)
11 ]0 for 𝑖𝑟 ∈ ℕ0

hence

ℎ′(𝑔) = ∑
𝑟≤𝑚

𝑖𝑟𝑥𝑟 ∈ 𝐾0(𝐵)+

thus ℎ′ is a positive. Since

(𝐾0(𝜓𝑘) ∘ ℎ′)[𝑒(𝑟)
11 ]0 = 𝐾0(𝜓𝑘)𝑥𝑟 = 𝑦𝑟 = 𝑔([𝑒(𝑟)

11 ]0)

then 𝐾0(𝜓𝑘) ∘ ℎ′ = 𝑔. Let {𝑔1, …, 𝑔𝑠} be a set of generators of a finitely generated Abelian group 

𝐾0(𝐴𝑛), and observe that as

𝐾0(𝜓𝑘) ∘ (ℎ′ ∘ 𝑓 − 𝐾0(𝜑𝑛𝑘)) = 𝑔 ∘ 𝑓 − 𝐾0(𝜓𝑛) = 0

then (ℎ′ ∘ 𝑓 − 𝐾0(𝜑𝑛𝑘))(𝑔𝑖) is in the set

ker(𝐾0(𝜓𝑘)) = ⋃
𝑚≥𝑘

ker(𝐾0(𝜑𝑘𝑚))

for each 𝑖 ≤ 𝑠, so there is a 𝑚 > 𝑘 such that

(ℎ′ ∘ 𝑓 − 𝐾0(𝜑𝑛𝑘))(𝑔𝑖) ∈ ker(𝜑𝑘𝑚) for all 𝑖 ≤ 𝑠.

Let ℎ = 𝐾0(𝜑𝑘𝑚) ∘ ℎ′, so

(ℎ ∘ 𝑓 − 𝐾0(𝜑𝑛𝑚))(𝑔𝑖) = (𝐾0(𝜑𝑘𝑚) ∘ (ℎ′ ∘ 𝑓 − 𝐾0(𝜑𝑛𝑘)))(𝑔𝑖) = 0

for each 𝑖 ≤ 𝑠, thus ℎ ∘ 𝑓 = 𝐾0(𝜑𝑛𝑚). Furthermore,

𝑔 = 𝐾0(𝜓𝑘) ∘ ℎ′ = 𝐾0(𝜓𝑚) ∘ 𝐾0(𝜑𝑘𝑚) ∘ ℎ′ = 𝐾0(𝜓𝑚) ∘ ℎ,

so the diagram is commutative. Finally, the last statement follows from the commutativity of the 

diagram. ∎

Theorem 4.5.5. (Elliott). The unital separable AF-algebras 𝐴 and 𝐵 are isomorphic if, and only 

if, the triples (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0) and (𝐾0(𝐵), 𝐾0(𝐵)+, [1𝐵]0) are isomorphic. In particular, if 

there is an isomorphism 𝑓 : (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0) → (𝐾0(𝐵), 𝐾0(𝐵)+, [1𝐵]0), then there is an *-

isomorphism 𝜑 : 𝐴 → 𝐵 with 𝐾0(𝜑) = 𝑓 .

 Proof. By Proposition 4.1.9, if 𝐴 and 𝐵 are isomorphic, then so are (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0) 
and (𝐾0(𝐵), 𝐾0(𝐵)+, [1𝐵]0).
So now we suppose there is an isomorphism 𝑓 : 𝐾0(𝐴) → 𝐾0(𝐵) with 𝑓(𝐾0(𝐴)+) = 𝐾0(𝐵)+ and 

𝑓([1𝐴]0) = [1𝐵]0. By Corollary 4.2.6 and Proposition 4.4.3, we may assume 𝐼 = ℕ such that 𝐴 and 

𝐵 are inductive limits of diagrams 𝐴• = (𝐴𝑛, (𝜑𝑛𝑚)) and 𝐵• = (𝐵𝑛, (𝜓𝑛𝑚)) in FinC*-Alg1 indexed 

by 𝐼 , also let 𝜇𝑛 : 𝐴𝑛 → 𝐴 and 𝜈𝑛 : 𝐵𝑛 → 𝐵 be boundary maps of 𝐴 and 𝐵 respectively for each 

𝑛 ∈ ℕ. Let 𝐵0 = ℂ, so one has a *-homomorphism 𝜑′ : 𝐵0 → 𝐴1 given by 𝜑′(𝜆) = 𝜆1𝐴1
, similarly, 

one has unique *-homomorphisms 𝜓01 : 𝐵0 → 𝐵1, and 𝜈0 : 𝐵0 → 𝐵. Let 𝛽0 = 𝐾0(𝜑′), and note 

that (𝑓 ∘ 𝐾0(𝜇1)) ∘ 𝛽0 = 𝐾0(𝜈0), so by Lemma 4.5.4, there is a 𝑚1 ∈ ℕ and a unital positive group 

homomorphism 𝛼1 : 𝐴1 → 𝐵𝑚1
 such that one has a commutative diagram:

𝐾0(𝜓0𝑚1
) 𝐾0(𝜈𝑚1

)

𝛽0

𝛼1
𝑓 ∘ 𝐾0(𝜇1)

𝐾0(𝐵0) 𝐾0(𝐵𝑚1
) 𝐾0(𝐵)

𝐾0(𝐴1)
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where the existence of 𝛼1 is guaranteed by Lemma 4.5.4. Note that

(𝑓−1 ∘ 𝐾0(𝜈𝑚1
)) ∘ 𝛼1 = 𝑓−1 ∘ (𝑓 ∘ 𝐾0(𝜇1)) = 𝐾0(𝜇1)

so by Lemma 4.5.4, there is a 𝑛2 > 1, and a unital positive group homomorphism 𝛽1 : 𝐾0(𝐵𝑚1
) →

𝐾0(𝐴𝑛2
) such that one has the following commutative diagram:

𝐾0(𝜑12) 𝐾0(𝜇𝑛2
)

𝛼1

𝛽1
𝑓−1 ∘ 𝐾0(𝜈𝑚1

)

𝐾0(𝐴1) 𝐾0(𝐴𝑛2
) 𝐾0(𝐴)

𝐾0(𝐵𝑚1
)

We play the same game to obtain a 𝑚2 > 𝑚1 and a unital positive group homomorphism 𝛼2 :
𝐾0(𝐴𝑛2

) → 𝐾0(𝐵𝑚2
) such that one has a commutative diagram:

𝐾0(𝜑𝑚1𝑚2
) 𝐾0(𝜇𝑚2

)

𝛽1

𝛼2
𝑓 ∘ 𝐾0(𝜇𝑛2

)

𝐾0(𝐵𝑚1
) 𝐾0(𝐵𝑚2

) 𝐾0(𝐵)

𝐾0(𝐴𝑛2
)

Hence continuing this process inductively, we obtain strictly increasing sequences of natural numbers 

(𝑛𝑘)𝑘∈ℕ (where 𝑛1 = 1) and (𝑚𝑘)𝑘∈ℕ such that one has a commutative diagram

𝛽𝑘−1 𝛼𝑘
𝛽𝑘

𝛼𝑘+1 𝑓 𝑓−1

𝐾0(𝐵𝑚𝑘−1
)

𝐾0(𝐴𝑛𝑘
)

𝐾0(𝐵𝑚𝑘
)

𝐾0(𝐴𝑛𝑘+1
) ⋯

⋯

𝐾0(𝐴)

𝐾0(𝐵)
for each 𝑘 ∈ ℕ. By Lemma 5.4.6, 𝐴 and 𝐵 are inductive limits of the diagrams (𝐴𝑛𝑘

, (𝜑𝑛𝑘𝑛𝑘+1
)) 

and (𝐵𝑚𝑘
, (𝜓𝑚𝑘𝑚𝑘+1

)) indexed by 𝑘 ∈ ℕ, then we may assume that 𝑛𝑘 = 𝑚𝑘 = 𝑘 for each 𝑘 ∈
ℕ. By Lemma 4.5.3 (i), we can find unital *-homomorphisms 𝜀′

𝑘 : 𝐴𝑘 → 𝐵𝑘 and 𝜂′
𝑘−1 : 𝐵𝑘−1 → 𝐴𝑘 

such that 𝐾0(𝜀′
𝑘) = 𝛼𝑘 and 𝐾0(𝜂′

𝑘−1) = 𝛽𝑘−1 for each 𝑘 ∈ ℕ. As

𝐾0(𝜑𝑘) = 𝛽𝑘 ∘ 𝛼𝑘 = 𝐾0(𝜂′
𝑘 ∘ 𝜀′

𝑘)
𝐾0(𝜓𝑘) = 𝛼𝑘+1 ∘ 𝛽𝑘 = 𝐾0(𝜀′

𝑘+1 ∘ 𝜂′
𝑘)

where 𝜑𝑘 = 𝜑𝑘,𝑘+1 and 𝜓𝑘 = 𝜓𝑘,𝑘+1. Note that 𝜂0′ : 𝐵0 → 𝐴1, so 𝜂0′ = 𝜑′, and one has 𝜓0 = 𝜀′
1 ∘

𝜂′
0, and choose 𝜀1 = 𝜀′

1. As 𝐾0(𝜑1) = 𝐾0(𝜂′
1 ∘ 𝜀′

1), then by Lemma 4.5.3 (ii), there is a 𝑢1 ∈ 𝒰︀(𝐴2) 
such that

𝜑1 = ad𝑢1 ∘ 𝜂′
1 ∘ 𝜀′

1

and hence choose 𝜂1 = ad𝑢1 ∘ 𝜂′
1, so one has 𝜑1 = 𝜂1 ∘ 𝜀1. As 𝐾0(𝜂′

1) = 𝐾0(𝜂1), so 𝐾0(𝜓1) =
𝐾0(𝜀′

2 ∘ 𝜂1), then by Lemma 4.5.3 (ii), there is a 𝑣2 ∈ 𝒰︀(𝐵2) such that

𝜓1 = ad𝑣2 ∘ 𝜀′
2 ∘ 𝜂1

then choose 𝜀2 = ad𝑣2 ∘ 𝜀′
2. Continuing this applying Lemma 4.5.3 (ii) inductively, there are 𝑣𝑘 ∈

𝒰︀(𝐵𝑘) (with 𝑣1 = 1𝐵1
), and 𝑢𝑘 ∈ 𝒰︀(𝐴𝑘+1) such that

given 𝜂𝑘 = ad𝑢𝑘 ∘ 𝜂′
𝑘 and 𝜀𝑘 = ad𝑣𝑘 ∘ 𝜀′

𝑘,
one has 𝜑𝑘 = 𝜂𝑘 ∘ 𝜀𝑘 and 𝜓𝑘 = 𝜀𝑘+1 ∘ 𝜂𝑘.

So one has a commutative diagram
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𝜂0 𝜀1
𝜂1

𝜀2 𝜑 𝜑−1

𝐵0

𝐴1

𝐵1

𝐴2 ⋯

⋯

𝐴

𝐵
where the universal *-isomorphism 𝜑 : 𝐴 → 𝐵 is exists by Elliott’s Intertwining Argument 5.4.8, and 

𝐾0(𝜀𝑘) = 𝐾0(𝜀′
𝑘) = 𝛼𝑘. Hence 𝐴 and 𝐵 are isomorphic AF-algebras. Note that the two diagrams

𝐾0(𝜇𝑘) 𝐾0(𝜇𝑘)

𝐾0(𝜈𝑘) 𝐾0(𝜈𝑘)
𝛼𝑘 = 𝐾0(𝜀𝑘) 𝐾0(𝜑) 𝛼𝑘 𝑓

𝐾0(𝐴𝑘) 𝐾0(𝐴) 𝐾0(𝐴𝑘) 𝐾0(𝐴)

𝐾0(𝐵𝑘) 𝐾0(𝐵) 𝐾0(𝐵𝑘) 𝐾0(𝐵)
are commutative, so one has 𝐾0(𝜑)|im(𝐾0(𝜇𝑘)) = 𝑓|im(𝐾0(𝜇𝑘)) for each 𝑘 ∈ ℕ. By Inductive Continuity 

of (𝐾0, 𝐾+
0 ) 4.3.6, as

𝐾0(𝐴) = ⋃
𝑘∈ℕ

im(𝐾0(𝜇𝑘))

then 𝐾0(𝜑) = 𝑓 , as required. ∎
By the classification theorem, we have that the functor (𝐾0, 𝐾+

0 ) when restricted to the subcat

egory of unital separable AF-algebras (with morphisms being unital *-homomorphisms), is also a 

classification functor. We also have a similar proof for the classification of nonunital AF-algebras, 

which relies on a different, but similar, variant called the dimension range. To be precise, if 𝐴 is a 

𝐶∗-algebra, then the dimension range of 𝐴 is the set

𝐷(𝐴) = {[𝑝]0 : 𝑝 ∈ P(𝐴)} ⊆ 𝐾0(𝐴)
and one can consider the following invariant

(𝐾0(𝐴), 𝐷(𝐴))
of 𝐴 called scaled (pre)ordered (Abelian) groups.1 A homomorphism 𝑓 between scaled (pre)or

dered groups (𝐺, 𝐺+, 𝐷𝐺) and (𝐻, 𝐻+, 𝐷𝐻) is a group homomorphism that satisfies 𝛼(𝐺+) ⊆ 𝐻+ 

and 𝛼(𝐷𝐺) ⊆ 𝐷𝐻 .

Theorem 4.5.6. Let 𝐴 and 𝐵 be AF-algebras. If there is an isomorphism 𝛼 : 𝐾0(𝐴) → 𝐾0(𝐵) 
of scaled ordered groups, i.e. 𝛼 is a group isomorphism such that 𝛼(𝐾0(𝐴)+) = 𝐾0(𝐵)+ and 

𝛼(𝐷(𝐴)) = 𝐷(𝐵), then there is a *-isomorphism 𝜑 : 𝐴 → 𝐵 such that 𝐾0(𝜑) = 𝛼.

 Proof. See [5, Theorem 7.3.2]. ∎
It turns out Elliott’s Theorem 4.5.5 does not hold with nonseparable AF-algebras; see [10]. One of 

the immediate applications of Elliott’s classification theorem is allowing us to easily classify UHF-

algebras, which are AF-algebras that are countable inductive limits of simple 𝐶∗-algebras in FinAlg1.

Definition 4.5.7. A uniformly hyperfinite algebra (UHF) 𝐴 is an inductive limit of sequences of 

the form

ℳ︀𝑘1
(ℂ) ⟶

𝜑1
ℳ︀𝑘2

(ℂ) ⟶
𝜑2

ℳ︀𝑘3
(ℂ) ⟶ ⋯ (4.4)

where 𝑘1, 𝑘2, … ∈ ℕ and 𝜑1, 𝜑2, … are unital *-homomorphisms.

1The pre-prefix in preordered refers to to how the pair (𝐾0(𝐴), 𝐾0(𝐴)+) does not actually have a partial order. 

We we know it will when 𝐴 is unital and stably finite.
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We can associate each UHF-algebra 𝐴 with a supernatural number. Let {𝑝1, 𝑝2, 𝑝3, …} be an 

increasing sequence of all prime numbers, and for each 𝑖, 𝑘 ∈ ℕ, define ord𝑝𝑖
(𝑘) to be a number 

𝑚 ∈ ℕ0 such that 𝑝𝑚
𝑖 | 𝑘 but 𝑝𝑚+1

𝑖 ∤ 𝑘. Now given the sequence of numbers (𝑘𝑖)𝑖∈ℕ from (4.4), 

define 𝑛𝑖 = sup{ord𝑝𝑖
(𝑘𝑗) : 𝑗 ∈ ℕ} ∈ ℕ0 ∪ {∞}, and the set 𝑛 = {𝑛𝑖}𝑖∈ℕ is called a supernatural 

number associated to the UHF-algebra 𝐴. Define ℚ(𝑛) ⊆ ℚ to be the set of rational numbers 𝑥
𝑦  

such that 𝑥 ∈ ℤ, and 𝑦 = ∏𝑖≥1 𝑝𝑚𝑖
𝑖  for 0 ≤ 𝑚𝑖 < 𝑛𝑖 + 1 where the number 𝑖 such that 𝑚𝑖 > 0 is 

finite, then by [2, Lemma 7.4.4], one has that

(𝐾0(𝐴), [1𝐴]0) ≅ ℚ(𝑛) = ⋃
𝑖≥1

𝑘−1
𝑖 ℤ.

In particular, one has the following classification theorem.

Theorem 4.5.8. Let 𝐴 and 𝐵 be UHF-algebras with associated supernatural numbers 𝑛𝐴 and 𝑛𝐵 

respectively. Then the following are equivalent:

(i) 𝐴 and 𝐵 are isomorphic.

(ii) 𝑛𝐴 = 𝑛𝐵.

(iii) There is an isomorphism 𝜑 : 𝐾0(𝐴) → 𝐾0(𝐴′) such that 𝜑([1𝐴]0) = [1𝐴′ ]0.
(iv) There is a unital order isomorphism 𝜑 : (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴]0) → (𝐾0(𝐴′), 𝐾0(𝐴′)+, [1𝐴′ ]0).

Furthermore, for each supernatural number 𝑛, there is a UHF-algebra 𝐴 whose associated super

natural number 𝑛.

For the details of the theorem, refer to [2, Theorem 7.4.5]. One example of the theorem that 

consider the UHF-algebra 𝐴, which is an inductive limit of the sequence:

𝜑1 𝜑2 𝜑3 𝜑4
ℂ ℳ︀2(ℂ) ℳ︀4(ℂ) ℳ︀8(ℂ) ⋯

where 𝜑𝑖 : ℳ︀2𝑖−1(ℂ) → ℳ︀2𝑖(ℂ) defined as 𝜑(𝑥) = 𝑥 ⊕ 𝑥. One has that 𝐾0(𝐴) is isomorphic to 

the group of dyadic rationals. We can also admit a UHF-algebra 𝐴 such that 𝐾0(𝐴) ≅ ℚ. Consider 

(4.4) where we choose 𝑘𝑖 = 𝑖! for each 𝑖 ∈ ℕ, so the map 𝜑𝑖 : ℳ︀𝑘𝑖
(ℂ) → ℳ︀𝑘𝑖+1

(ℂ) defined as 

𝜑(𝑥) = 𝑥 ⊕ ⋯ ⊕ 𝑥⏟
𝑖+1 times

 is unital. Let 𝑛 be the associated supernatural number to 𝐴, so we know that

𝐾0(𝐴) ≅ ℚ(𝑛) = ⋃
𝑖≥1

1
𝑖!

ℤ.

Now given any 𝑦 ∈ ℕ, then 1/𝑦 = (𝑦 − 1)!/𝑦! ∈ ℚ(𝑛), so it follows that ℚ(𝑛) contains every rational 

number, hence 𝐾0(𝐴) ≅ ℚ. This shows that the 𝐾0-groups for separable 𝐶∗-algebras need not be 

finitely-generated.

This is only the beginning of Elliott’s classification program, as much more research was done to 

classify other classes of 𝐶∗-algebras with a much more richer invariant involving 𝐾1-groups. Where 

we associate each 𝐶∗-algebra 𝐴 with a sextuple (𝐾0(𝐴), 𝐾0(𝐴)+, 𝐷(𝐴), 𝐾1(𝐴), 𝑇 +(𝐴), 𝜌𝐴) called 

the Elliot invariant and the question asks if the invariant is sufficient to classify separable amenable 

𝐶∗-algebras. The details will not be discussed here, see [11] for the recent survey of the program as 

of 2023.
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5 | Appendix: Category Theory

5.1 Category and Functors

We will give a soft introduction towards category theory. The aim is to build up terminologies and 

tools relevant to this paper, so we only shift our attention towards locally small categories as one 

might find greater comfort with the axioms that shall be introduced below. Though do note that 

all results and definitions mentioned will hold in general categories unless stated otherwise, and we 

shall only state the definitions and results required for our thesis.

Definition 5.1.1. (Category). A (locally small) category 𝒜︀ consists a class1 of objects Obj(𝒜︀) and 

a class of morphisms Mor(𝒜︀). Such that for each 𝐴, 𝐵 ∈ Obj(𝒜︀), one has a set of morphisms 

Mor𝒜︀(𝐴, 𝐵), which satisfies the following:

C1. There is an associative binary operator, called the composition,

∘ : Mor𝒜︀(𝐵, 𝐶) × Mor𝒜︀(𝐴, 𝐵) → Mor𝒜︀(𝐴, 𝐶).

That means, for 𝑓 ∈ Mor𝒜︀(𝐴, 𝐵), 𝑔 ∈ Mor𝒜︀(𝐵, 𝐶), and ℎ ∈ Mor𝒜︀(𝐶, 𝐷), one has

(ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓).
C2. For each 𝐴 ∈ Obj(𝒜︀), there is an identity id𝐴 ∈ Mor𝒜︀(𝐴, 𝐴) such that

𝑓 ∘ id𝐴 = 𝑓 and id𝐴 ∘ 𝑔 = 𝑔
for all 𝑓 ∈ Mor𝒜︀(𝐵, 𝐴) and 𝑔 ∈ Mor𝒜︀(𝐴, 𝐵).

It is common to notate 𝑓 : 𝐴 → 𝐵 to infer that 𝑓 ∈ Mor𝒜︀(𝐴, 𝐵).
Given two categories 𝒜︀ and ℬ︀, we say that 𝒜︀ is a subcategory of ℬ︀ if Obj(𝒜︀) ⊆ Obj(ℬ︀) and 

for each 𝐴, 𝐵 ∈ Obj(𝒜︀), one has Mor𝒜︀(𝐴, 𝐵) ⊆ Morℬ︀(𝐴, 𝐵).

Definition 5.1.2. (Morphisms). Let 𝑓 : 𝐴 → 𝐵 be a morphism in some category 𝒜︀. We say 𝑓 

is a split-monic (resp. split-epic) if 𝑓 has a left-inverse (resp. right-inverse), that is, there is 

a morphism 𝑔 : 𝐵 → 𝐴 such that 𝑔 ∘ 𝑓 = id𝐴 (resp. 𝑓 ∘ 𝑔 = id𝐵). Finally, we say that 𝑓 is an 

isomorphism if 𝑓 has a left-inverse and a right-inverse, which is readily verified to be the same 

morphism and is unique.

We say that 𝐴 is the domain of 𝑓 and 𝐵 is the codomain of 𝑓 .

Example 5.1.3. We have some examples of categories we are interested in:

• The category of sets, Set, where the objects are sets and the morphisms are functions.

• The category of groups, Grp, where the objects are groups and the morphisms are group 

homomorphisms.

• The category of Abelian groups, where the objects are Abelian groups and the morphisms are 

group homomorphisms. As it turns out, Ab is a full subcategory of Grp; refer to Definition 5.1.4 

below.

• The category of 𝐶∗-algebras, C*-Alg, where the objects are 𝐶∗-algebras and the morphisms 

are *-homomorphisms. When discussing about the category of unital 𝐶∗-algebras, C*-Alg1, the 

morphisms are now unital.

1See Wikipedia for definition of class.
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Definition 5.1.4. (Functors). Given categories 𝒜︀ and ℬ︀, a covariant functor 𝐹  is a well-defined 

mapping from the objects and morphisms of 𝒜︀ into the objects and morphisms of ℬ︀ such that the 

following are satisfied:

F1. 𝐹(𝐴) ∈ Obj(ℬ︀) for all 𝐴 ∈ Obj(𝒜︀).
F2. 𝐹(id𝐴) = id𝐹(𝐴) for each 𝐴 ∈ Obj(𝒜︀).
F3. For each 𝑓 ∈ Mor𝒜︀(𝐴, 𝐵), one has 𝐹(𝑓) ∈ Morℬ︀(𝐹(𝐴), 𝐹(𝐵)).
F4. 𝐹(𝑔 ∘ 𝑓) = 𝐹(𝑔) ∘ 𝐹(𝑓) for 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 in 𝒜︀.

We write 𝐹 : 𝒜︀ → ℬ︀ to infer that 𝐹  is a functor.

We say 𝐹  is faithful (resp. full) if 𝐹  is an injection (resp. surjection) from Mor𝒜︀(𝐴, 𝐵) into 

Morℬ︀(𝐹(𝐴), 𝐹(𝐵)) for each 𝐴, 𝐵 ∈ Obj(𝒜︀). If 𝐹  is faithful and full, we say that 𝐹  is fully faithful 

and that 𝒜︀ is a full subcategory of ℬ︀.

Example 5.1.5. (The Identity Functor). Every category 𝒜︀ has a covariant functor from 𝒜︀ to itself, 

namely the identity functor id𝒜︀ : 𝒜︀ → 𝒜︀ which does the following:

• id𝒜︀(𝐴) = 𝐴 for all 𝐴 ∈ Obj(𝒜︀).
• id𝒜︀(𝑓) = 𝑓 for all 𝑓 ∈ Mor(𝒜︀).
It is clear that id𝒜︀ is a fully faithful functor.

Definition 5.1.6. Given a category 𝒜︀, we say an object 𝐴 of 𝒜︀ is initial (resp. final) if for all 𝐵 ∈
Obj(𝒜︀), the set Mor(𝐴, 𝐵) (resp. Mor(𝐵, 𝐴)) only has 1 element. We say 𝐴 is a zero object if 𝐴 

is both initial and final. Which we denote 𝐴 as 0.

Now note that give objects 𝐴 and 𝐵, one can construct a unique zero morphism 0 : 𝐴 → 𝐵 by 

considering the composition 𝐴 ⟶ 0 ⟶ 𝐵.

Proposition 5.1.7. Given a category 𝒜︀, then if 𝐴 ∈ Obj(𝒜︀) is initial (resp. final), then all initial 

(resp. final) objects in 𝒜︀ are isomorphic to 𝐴
 Proof. Note that this proof works regardless if 𝐴 is initial or final. Let 𝐵 ∈ Obj(𝒜︀) be another 

initial object, then one obtains 𝑓 ∈ Mor(𝐴, 𝐵) and 𝑔 ∈ Mor(𝐵, 𝐴). Thus 𝑓 ∘ 𝑔 ∈ Mor(𝐵, 𝐵) =
{id𝐵} and 𝑔 ∘ 𝑓 ∈ Mor(𝐴, 𝐴) = {id𝐴}, thus 𝑓 and 𝑔 are isomorphisms, as required. ∎

5.2 Universal Constructions

We begin with an example. Let 𝑁  be a normal subgroup of a group 𝐺, then one has a canonical 

map 𝜋 : 𝐺 → 𝐺/𝑁 . Then one has the following property regarding this construction:

For any homomorphism 𝑓 : 𝐺 → 𝐾 to another group 𝐾, if 𝑁 ⊆ ker(𝑓), then there is a unique 

homomorphism 𝑔 : 𝐺/𝑁 → 𝐾 such that 𝑓 = 𝑔 ∘ 𝜋, i.e. one has the following commutative diagram:

𝜋

𝑔
𝑓

𝐺 𝐺/𝑁

𝐾
We say such a pair (𝐺/𝑁, 𝜋) is a universal construction. In particular, consider the category 𝒜︀ 

where the objects are all homomorphisms 𝑓 with domain 𝐺 such that 𝑁 ⊆ ker(𝑓), and given 𝑓 :
𝐺 → 𝐻 and 𝑔 : 𝐺 → 𝐾 being objects in 𝒜︀, then a morphism 𝑝 ∈ Mor𝒜︀(𝑓, 𝑔) is a homomorphism 
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from 𝐻 to 𝐾 such that 𝑔 = 𝑝 ∘ 𝑓 . We shall observe that 𝒜︀ forms a category with composition in a 

natural way; see Construction 5.2.1 where 𝐹 = idGrp.

Observe that 𝜋 is an initial object in 𝒜︀. Thus by Proposition 5.1.7, if there is another group 

𝑄 and a homomorphism 𝜏 : 𝐺 → 𝑄 (with 𝑁 ⊆ ker(𝜏)) such that 𝜏  is initial in 𝒜︀, then there are 

morphisms 𝑓 ∈ Mor𝒜︀(𝐺/𝑁, 𝑄) and 𝑔 ∈ Mor𝒜︀(𝑄, 𝐺/𝑁) such that 𝑓 ∘ 𝑔 = id𝜏 = id𝑄 and 𝑔 ∘ 𝑓 =
id𝜋 = id𝐺/𝑁 , and 𝜋 = 𝑔 ∘ 𝜏  and 𝜏 = 𝑓 ∘ 𝜋. Observe that 𝑓 and 𝑔 are isomorphisms, so 𝐺/𝑁  and 𝑄 

are isomoprhic groups, and 𝜋 and 𝜏  are related by an isomorphism.

This inspires us with the following construction and definition.

Construction 5.2.1. (Comma Categories). Let 𝐹  be a covariant functor between categories 𝒜︀ and 

ℬ︀, and 𝐵 ∈ Obj(ℬ︀). Define the comma category 𝐵 ↓ 𝐹  as follows:

• The objects of 𝐵 ↓ 𝐹  are morphisms of the form 𝐵 → 𝐹(𝐴) in ℬ︀ where 𝐴 ∈ Obj(𝒜︀).
• Given objects 𝑓 : 𝐵 → 𝐹(𝐴) and 𝑓 ′ : 𝐵 → 𝐹(𝐴′) where 𝐴, 𝐴′ ∈ Obj(𝒜︀), a morphism 𝑔 : 𝑓 →

𝑓 ′ in 𝐵 ↓ 𝐹  is a morphism 𝑔 ∈ Mor𝒜︀(𝐴, 𝐴′) such that 𝑓 ′ = 𝐹(𝑔) ∘ 𝑓 .

The composition in 𝐵 ↓ 𝐹  is given as follows:

Suppose 𝑓 : 𝐵 → 𝐹(𝐴), 𝑓 ′ : 𝐵 → 𝐹(𝐴′), 𝑓″ : 𝐵 → 𝐹(𝐴″) are morphisms in ℬ︀ where 𝐴, 𝐴′, 𝐴″ ∈
Obj(𝒜︀) with morphisms 𝑔 : 𝐴 → 𝐴′ and 𝑔′ : 𝐴′ → 𝐴″ in 𝒜︀ such that 𝑓″ = 𝑔′ ∘ 𝑓 ′ and 𝑓 ′ = 𝑔 ∘
𝑓 . Then define the composition in 𝐵 ↓ 𝐹  as the composition 𝑔′ ∘ 𝑔 : 𝐴 → 𝐴″ given in 𝒜︀, so 𝑓″ =
(𝑔′ ∘ 𝑔) ∘ 𝑓 . Thus one has the following commutative diagram:

𝑓

𝑓 ′

𝑓″

𝐹(𝑔)

𝐹(𝑔′)

𝑔

𝑔′

𝐵

𝐹(𝐴)

𝐹(𝐴′)

𝐹(𝐴″)

𝐴

𝐴′

𝐴″

Hence one has a category 𝐵 ↓ 𝐹 .

Similarly, one can define the comma category 𝐹 ↓ 𝐵 as follows:

• The objects of 𝐹 ↓ 𝐵 are morphisms of the form 𝐹(𝐴) → 𝐵 in ℬ︀ where 𝐴 ∈ Obj(𝒜︀).
• Given objects 𝑓 : 𝐹(𝐴) → 𝐵 and 𝑓 ′ : 𝐹 (𝐴′) → 𝐵 where 𝐴, 𝐴′ ∈ Obj(𝒜︀), a morphism 𝑔 : 𝑓 →

𝑓 ′ in 𝐹 ↓ 𝐵 is a morphism 𝑔 ∈ Mor𝒜︀(𝐴, 𝐴′) such that 𝑓 ′ = 𝑓 ∘ 𝑔.

The composition is given a natural way similarly as above.

Definition 5.2.2. (Universal Constructions). Let 𝐹  be a covariant functor between categories 𝒜︀ and 

ℬ︀. Given an object 𝐴 ∈ Obj(𝒜︀) and 𝐵 ∈ Obj(ℬ︀), and a morphism 𝑓 : 𝐵 → 𝐹(𝐴) in ℬ︀. We say 

the pair (𝐹(𝐴), 𝑓) is a universal construction if 𝑓 is an initial or final object in a subcategory 𝒟︀ of 

the comma category 𝐵 ↓ 𝐹 . Assuming the pair is initial, then the pair (𝐹(𝐴), 𝑓) has the following 

universal property:

Let 𝐴′ ∈ Obj(𝒜︀) and suppose 𝑓 ′ : 𝐵 → 𝐹(𝐴′) is a morphism in ℬ︀ and an object in 𝒟︀, then there 

is a unique moprhism 𝑔 : 𝐴 → 𝐴′ in 𝒜︀ such that 𝑓 ′ = 𝐹(𝑔) ∘ 𝑓 . We say 𝑔 and 𝐹(𝑔) to be universal.

In general, a universal construction would be a suitable pair (𝐹(𝐴), 𝑓) that is an initial or final 

object in a subcategory of any of the comma categories.

Note that by Proposition 5.1.7, universal constructions are unique up to isomorphism, that is for 

example if (𝐹(𝐴), 𝑓) and (𝐹(𝐴′), 𝑓 ′) are both initial objects in 𝐵 ↓ 𝐹 , then there is an isomorphism 

𝑔 : 𝐴 → 𝐴′ such that 𝑓 ′ = 𝐹(𝑔) ∘ 𝑓 . So we say (𝐹(𝐴), 𝑓) and (𝐹(𝐴′), 𝑓 ′) are isomorphic, and 
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note that it is insufficient to have that an isomorphism 𝑔 from 𝐴 to 𝐴′ to conclude that 𝐴 and 𝐴′ 

are isomorphic as universal constructions, as we also require that 𝑓 ′ = 𝐹(𝑔) ∘ 𝑓 . Hence (𝐹(𝐴), 𝑓) 
and (𝐹(𝐴′), 𝑓 ′) are isomorphic if the associated universal morphism is an isomorphism.

The product (e.g. product of groups) is perhaps one of the most common universal constructions. 

To realize the product in the categorical setting, we first need to consider the following category. 

Let 𝒜︀ be a category and 𝐼 be a nonempty set, define the category ∏𝐼 𝒜︀ as follows:

• Let the objects of ∏𝐼 𝒜︀ be tuples of the form (𝐴𝑖)𝑖∈𝐼 such that 𝐴𝑖 ∈ Obj(𝒜︀) for each 𝑖 ∈ 𝐼 .

• A morphism 𝑓 in ∏𝐼 𝒜︀ from (𝐴𝑖)𝑖∈𝐼 to (𝐵𝑖)𝑖∈𝐼 is a collection of moprhisms (𝑓𝑖)𝑖∈𝐼 such that 

𝑓𝑖 ∈ Mor𝒜︀(𝐴𝑖, 𝐵𝑖) for each 𝑖 ∈ 𝐼 .

• Given morphisms 𝑓 = (𝑓𝑖)𝑖∈𝐼 and 𝑔 = (𝑔𝑖)𝑖∈𝐼 such that the codomain of 𝑓 is the domain of 𝑔, 

define 𝑔 ∘ 𝑓 as the morphism (𝑔𝑖 ∘ 𝑓𝑖)𝑖∈𝐼 .

The category ∏𝐼 𝒜︀ is called a product category. We also have a diagonal functor Δ𝒜︀ : 𝒜︀ →
∏𝐼 𝒜︀ which maps objects 𝐴 to the tuple (𝐴)𝑖∈𝐼 and morphisms 𝑓 : 𝐴 → 𝐵 to (𝑓)𝑖∈𝐼 . Note that 

Δ𝒜︀ defines a faithful covariant functor.

Definition 5.2.3. (Categorical Product). Given a nonempty set 𝐼 and a category 𝒜︀, and suppose 

(𝐴𝑖)𝑖∈𝐼 is a collection of objects in 𝒜︀. Then given a object 𝑃 ∈ 𝒜︀ and morphisms 𝜋𝑖 : 𝑃 → 𝐴𝑖 in 

𝒜︀, we say the pair (𝑃 , (𝜋𝑖)𝑖∈𝐼) is the (categorical) product of (𝐴𝑖)𝑖∈𝐼 if (𝜋𝑖)𝑖∈𝐼 is final in the 

category Δ𝒜︀ ↓ (𝐴𝑖)𝑖∈𝐼 . That means, given 𝑃 ′ ∈ Obj(𝒜︀) and morphisms 𝑓𝑖 : 𝑃 ′ → 𝐴𝑖, so (𝑓𝑖)𝑖∈𝐼 

is an object in ∏𝐼 𝒜︀, there is a unique morphism 𝑔 : 𝑃 ′ → 𝑃  such that (𝑓𝑖)𝑖∈𝐼 = (𝜋𝑖)𝑖∈𝐼 ∘ Δ𝒜︀(𝑔). 
That is, 𝑓𝑖 = 𝜋𝑖 ∘ 𝑔 for all 𝑖 ∈ 𝐼 . We typically denote the object of the categorical product as ∏𝑖∈𝐼 𝐴𝑖.

We say the category 𝒜︀ have categorical products if a categorical product exists for any collection 

(𝐴𝑖)𝑖∈𝐼 for any index set 𝐼 .

Example 5.2.4. (Product of Groups). In the category of groups, Grp, it has a categorical products. 

Indeed, let 𝐼 be any index set and (𝐺𝑖)𝑖∈𝐼 , and define the usual product group:

∏
𝑖∈𝐼

𝐺𝑖 = {𝑓 : 𝐼 → ⋃
𝑖∈𝐼

𝐺𝑖 : 𝑓(𝑖) ∈ 𝐺𝑖 for all 𝑖 ∈ 𝐼},

and define canonical projection maps 𝜋𝑖 : 𝐺 → 𝐺𝑖 as 𝜋𝑖(𝑓) = 𝑓(𝑖), which are homomorphisms for 

each 𝑖 ∈ 𝐼 . Thus for any group 𝑃  such that one has homomorphisms 𝑓𝑖 : 𝑃 → 𝐺𝑖 for each 𝑖 ∈ 𝐼 . 

Then one can define the homomorphism

𝑔 : 𝑃 → ∏
𝑖∈𝐼

𝐺𝑖 : 𝑝 ↦ (𝑖 ↦ 𝑓𝑖(𝑝))

which satisfies 𝑓𝑖 = 𝜋𝑖 ∘ 𝑔 for each 𝑖 ∈ 𝐼 . So indeed ∏𝑖∈𝐼 𝐺𝑖 is the categorical product.

5.3 Categorical Limits

Categorical limits are one of the most important universal constructions in category theory, which 

even generalizes the categorical product. However, we shall be interested in inductive limits in 

categories as that is the only main categorical concept mentioned in our classification theorem. 

Some other definitions are introduced for the sake of completeness.

Let 𝐼 be a small category, that is, Obj(𝐼) is a set, and given a category 𝒜︀, we define the functor 

category 𝒜︀𝐼 as follows:

• The objects of 𝒜︀𝐼 are covariant functors from 𝐼 to 𝒜︀.
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• The morphisms between objects 𝐹, 𝐺 : 𝐼 → 𝒜︀ are natural transformations 𝜂 : 𝐹 → 𝐺, that is, 

for each 𝑖 ∈ 𝐼 , there is a morphism 𝜂(𝑖) : 𝐹 (𝑖) → 𝐹(𝑗), such that for each morphism 𝑚 : 𝑖 → 𝑗 
in 𝐼 , one has 𝜂(𝑗) ∘ 𝐹(𝑚) = 𝐺(𝑚) ∘ 𝜂(𝑖), i.e. one has the commutative diagram:

𝐹(𝑚)

𝜂(𝑖) 𝜂(𝑗)
𝐺(𝑚)

𝐹(𝑖) 𝐹(𝑗)

𝐺(𝑖) 𝐺(𝑗)
• Given two natural transformations 𝜂 : 𝐹 → 𝐺 and 𝜀 : 𝐺 → 𝐻, we define the composition 𝜀 ∘ 𝜂 

such that (𝜀 ∘ 𝜂)(𝑖) = 𝜀(𝑖) ∘ 𝜂(𝑖) for each 𝑖 ∈ 𝐼 , which is indeed a natural transformation from 𝐹  

to 𝐻.

In this case, we say 𝐼 is an index category as we only care about the objects and the morphisms 

between them rather then their intrinsic properties. Hence if 𝐼 is a small index category, then 𝐼 

admits a natural preordering ≤ (transitive and reflexive) such that 𝑖 ≤ 𝑗 if, and only if, there is a 

morphism 𝑖 → 𝑗, and we shall realize this as the canonical ordering on 𝐼 . Hence we realize small 

index categories are just preordered sets.

Note that any partially ordered set (𝐼, ≤) can be realized as a small index category in a natural way:

• Let the objects of 𝐼 to be the elements of 𝐼 .

• Given 𝑖, 𝑗 ∈ 𝐼 , we have a morphism 𝑖 → 𝑗 if 𝑖 ≤ 𝑗.
• Given morphisms 𝑖 → 𝑗 and 𝑗 → 𝑘, we have a morphism 𝑖 → 𝑘 by transitivity of ≤.

In particular, we are interested in a type of ordering called directed ordering, that is:

• ≤ is a partial ordering on 𝐼 .

• For each 𝑖, 𝑗 ∈ 𝐼 , there is a 𝑘 ∈ 𝐼 such that 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘.

Given any small index category 𝐼 and a covariant functor 𝐹 : 𝐼 → 𝒜︀, we say the collection 𝐴• =
(𝐴𝑖, (𝑓𝑖𝑗)𝑖,𝑗∈𝐼) is a diagram indexed by 𝐹  if 𝐴𝑖 = 𝐹(𝑖) for each 𝑖 ∈ 𝐼 , and given 𝑖, 𝑗 ∈ 𝐼 such 

that 𝑖 ≤ 𝑗, then 𝑓𝑖𝑗 = 𝐹(𝑖 → 𝑗).1 In general, we say 𝐴• is a diagram indexed by 𝐼 in 𝒜︀. We say 

the morphisms 𝑓𝑖𝑗 are connecting morphisms (or connecting maps) of 𝐴•.

If one has an object 𝐴 ∈ 𝒜︀ and morphisms 𝜑𝑖 : 𝐴 → 𝐴𝑖 for each 𝑖 ∈ 𝐼 such that for all 𝑖, 𝑗 ∈ 𝐼 

with 𝑖 → 𝑗, then 𝜑𝑗 = 𝑓𝑖𝑗 ∘ 𝜑𝑖, i.e. one has the commutative diagram:2

𝜑𝑖

𝜑𝑗
𝑓𝑖𝑗

𝐴 𝐴𝑖

𝐴𝑗
Then we say the collection (𝐴, (𝜑𝑖)𝑖∈𝐼) is a cone of 𝐴•. Note that (𝜑𝑖)𝑖∈𝐼 defines a natural 

transformation from the constant functor 𝑐𝐴 to 𝐹  since we have a commutative diagram:3

1We write 𝑖 → 𝑗 to mean a morphism 𝑚 : 𝑖 → 𝑗 in 𝐼 . However, if there are two distinct morphisms 𝑚, 𝑚′ : 𝑖 → 𝑗, 
then there will be two distinct corresponding 𝑓𝑖𝑗’s, we shall make this distinction if necessary.

2To be more specific, if 𝑚 : 𝑖 → 𝑗 is a morphism in 𝐼 , then 𝜑𝑗 = 𝐹(𝑚) ∘ 𝜑𝑖.
3That is for each 𝑖, 𝑗 ∈ 𝐼 , one has 𝑐𝐴(𝑖) = 𝐴 and 𝑐𝐴(𝑖 → 𝑗) = id𝐴.
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id𝐴

𝜑𝑖 𝜑𝑗
𝑓𝑖𝑗

𝐴 𝐴

𝐴𝑖 𝐴𝑗
If one has morphisms 𝜑𝑖 : 𝐴𝑖 → 𝐴 for each 𝑖 ∈ 𝐼 instead, such that for all 𝑖, 𝑗 ∈ 𝐼 with 𝑖 → 𝑗, 

then 𝜑𝑖 = 𝜑𝑗 ∘ 𝑓𝑖𝑗, i.e. one has the commutative diagram:

𝜑𝑖

𝜑𝑗
𝑓𝑖𝑗

𝐴 𝐴𝑖

𝐴𝑗
Then we say the collection (𝐴, (𝜑𝑖)𝑖∈𝐼) is a cocone of 𝐴•, and hence (𝜑𝑖)𝑖∈𝐼 defines a natural 

transformation from 𝐹  to 𝑐𝐴.

Suppose (𝐴, (𝜑𝑖)𝑖∈𝐼) is a cone (resp. cocone), then we say the pair is universal if (𝜑𝑖)𝑖∈𝐼 it is 

final (resp. initial) in the category Δ𝒜︀ ↓ 𝐹  (resp. 𝐹 ↓ Δ𝒜︀) where Δ𝒜︀ : 𝒜︀ → 𝒜︀𝐼 is the diagonal 

functor which for each 𝐴 ∈ Obj(𝒜︀), one has Δ𝒜︀(𝐴) = 𝑐𝐴. So if (𝐴, (𝜑𝑖)𝑖∈𝐼) is a universal cone, 

then for each cone (𝐵, (𝜓𝑖)𝑖∈𝐼) of 𝐴•, there is a unique morphism 𝜇 : 𝐵 → 𝐴 such that 𝜓𝑖 = 𝜑𝑖 ∘
𝜇. Diagrammatically speaking:

∃!𝜇 𝜑𝑖

𝜑𝑗 𝑓𝑖𝑗

𝜓𝑖

𝜓𝑗

𝐵 𝐴 𝐴𝑖

𝐴𝑗

Similarly, if (𝐴, 𝜑𝑖)𝑖∈𝐼 is a universal cocone of 𝐴•, then for any cocone (𝐵, (𝜓𝑖)𝑖∈𝐼). there is 

a unique morphism 𝜇 : 𝐴 → 𝐵 such that 𝜓𝑖 = 𝜇 ∘ 𝜑𝑖. We say the morphisms 𝜑𝑖 are boundary 

morphisms (or boundary maps) of 𝐴•.

Definition 5.3.1. (Categorical Limits). Given a small index category 𝐼 , and a category 𝒜︀. Let 𝐴• 

be a diagram indexed by 𝐼 in 𝒜︀, then we say a cone (resp. cocone) (𝐴, (𝜑𝑖)𝑖∈𝐼) is a limit (resp. 

colimit) of 𝐴 if (𝐴, (𝜑𝑖)𝑖∈𝐼) is universal, and we write (𝐴, (𝜑𝑖)𝑖∈𝐼) ≅ lim
⟵

𝐴• (resp. (𝐴, (𝜑𝑖)𝑖∈𝐼) ≅
lim
⟶

𝐴•). We say the limit is inductive if 𝐼 is directed and (𝐴, (𝜑𝑖)𝑖∈𝐼) is a colimit.

Note that ≅ is used instead of =, since limits are universal constructions and thus they are all 

isomorphic to each other, we shall use = if there is a canonical construction of the limits.

Observe that the categorical product of two objects is just the limit of the diagram:

• •
Hence categorical products are just limits of small index categories 𝐼 where the only morphisms 

in 𝐼 are identity morphisms. Note that we are particularly interested in inductive limits in this paper, 

thus the other definitions need not matter too much.
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Definition 5.3.2. (Continuity of Functors). Given a covariant functor 𝐹 : 𝒜︀ → ℬ︀ between cate

gories 𝒜︀ to ℬ︀, and an index category 𝐼 . We say 𝐹  is 𝐼-continuous (resp. 𝐼-cocountinuous) 

if for all diagrams 𝐴• indexed by 𝐼 such that the limit (resp. colimit) of 𝐴• exists, then one has 

𝐹(lim
⟵

𝐴•) ≅ lim
⟵

𝐹(𝐴•) (resp. 𝐹(lim
⟶

𝐴•) ≅ lim
⟶

𝐹(𝐴•)) where 𝐹(𝐴•) is a diagram in ℬ︀ indexed 

by the composition of 𝐼 and 𝐹 . We say 𝐹  is inductively continuous if 𝐹  is 𝐼-cocontinuous for 

every directed set 𝐼 .

Definition 5.3.3. (Complete Categories). Given an index category 𝐼 , we say a category 𝒜︀ is 𝐼-

complete (resp. 𝐼-cocomplete) if all diagrams in 𝒜︀ indexed by 𝐼 has a limit (resp. colimit). We 

say 𝐴 is:

• Inductive complete if 𝒜︀ is 𝐼-cocomplete for all directed sets 𝐼 .

• Small complete (resp. small cocompelete) if 𝒜︀ is 𝐼-complete (resp. 𝐼-cocomplete) for all small 

index category 𝐼 .

5.4 Diagram Chasing Lemmas

The purpose of this chapter is to produce general diagram-related lemmas that will be used in this 

paper. As we are working with groups and 𝐶∗-algebras, we shall give a definition that encapsulates 

the properties of those categories which is sufficient for our lemmas.

Definition 5.4.1. (Algebraic Categories). We say a category 𝒜︀ is algebraic if the following condition 

holds:

AC1. 𝒜︀ has a zero object, which we denote as 0.

AC2. For each 𝐴 ∈ Obj(𝒜︀), 𝐴 is a set equipped with a binary operation + : 𝐴 × 𝐴 → 𝐴 that 

satisfies the group axioms.

AC3. For each 𝑓 ∈ Mor𝒜︀(𝐴, 𝐵), 𝑓 is a map from 𝐴 to 𝐵 that preserves the +, i.e. 𝑓(𝑥 + 𝑦) =
𝑓(𝑥) + 𝑓(𝑦) for each 𝑥, 𝑦 ∈ 𝐴.

AC4. For each 𝑓 ∈ Mor𝒜︀(𝐴, 𝐵), the sets ker(𝑓) ≔ {𝑥 ∈ 𝐴 : 𝑓(𝑥) = 0} and im(𝑓) ≔ {𝑓(𝑥) : 𝑥 ∈
𝐴} are in Obj(𝒜︀).

AC5. If a map 𝑓 ∈ Mor𝒜︀(𝐴, 𝐵) is bijective, then it is an isomorphism.

AC6. For each 𝑓 ∈ Mor𝒜︀(𝐴, 𝐵), the set 𝐴/ ker(𝑓) ≔ {𝑥 + ker(𝑓) : 𝑥 ∈ 𝐴} is in 𝒜︀, where 

𝑥 + ker(𝑓) ≔ {𝑥 + 𝑦 : 𝑦 ∈ ker(𝑓)} for each 𝑥 ∈ 𝐴. Furthermore, there is a map 𝜋 ∈
Mor𝒜︀(𝐴, 𝐴/ ker(𝑓)) defined as 𝜋(𝑥) = 𝑥 + ker(𝑓) such that for each 𝑔 ∈ Mor𝒜︀(𝐴, 𝐵) with 

ker(𝑓) ⊆ ker(𝑔), there is a unique ℎ ∈ Mor𝒜︀(𝐴/ ker(𝑓), 𝐵) such that 𝑔 = ℎ ∘ 𝜋.

To elaborate on AC2, we mean that + is associative; there is a 0 ∈ 𝐴 such that 𝑥 + 0 = 0 + 𝑥 =
𝑥 for all 𝑥 ∈ 𝐴; for each 𝑥 ∈ 𝐴, there is a 𝑦 ∈ 𝐴 such that 𝑥 + 𝑦 = 𝑦 + 𝑥 = 0.

It is clear that the categories, such as Grp, and Ab are algebraic by our definition. Fortunately, 

the category of 𝐶∗-algebras, both C*-Alg and C*-Alg1, are also algebraic; see Chapter 2.1. It should 

be no surprise that a map 𝑓 : 𝐴 → 𝐵 in an algebraic category is injective if, and only if, ker(𝑓) =
0, and 𝑓 is surjective if, and only if, im(𝑓) = 𝐵.

Definition 5.4.2. (Exact Sequences). Let 𝒜︀ be an algebraic category. Let 𝐴, 𝐵, 𝐶 ∈ 𝒜︀, and 𝑓 :
𝐴 → 𝐵, and 𝑔 : 𝐵 → 𝐶 be morphisms. We denote this relation as a sequence:

𝑓 𝑔
𝐴 𝐵 𝐶
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to which we say this sequence is exact at 𝐵 if im(𝑓) = ker(𝑔). In particular, we say the sequence

𝑓 𝑔
0 𝐴 𝐵 𝐶 0

(5.1)

is exact if it is exact at 𝐴, 𝐵, and 𝐶. We say such sequences are exact sequences. We shall use the 

arrow ↪︎ if the corresponding morphism is an injection, and ↠ if the corresponding morphism is a 

surjection. We say (5.1) is split-exact if there is a ℎ : 𝐶 → 𝐵 that is the right-inverse of 𝑔 such 

that one has the sequence:

𝑓 𝑔

ℎ
0 𝐴 𝐵 ℂ 0

We shall also use the arrow = between two of the same objects 𝐴 to mean the underlying morphism 

is id𝐴.

1⟩  Five Lemma

From here on out, we assume that 𝒜︀ is always an algebraic category.

Lemma 5.4.3. Let 𝐴, 𝐵, 𝐶, 𝐷, 𝐴′, 𝐵′, 𝐶′, 𝐷′, be objects in 𝒜︀, and suppose one has a commutative 

diagram:

𝑓 𝑔 ℎ

𝑖 𝑗 𝑘
𝑙 𝑚 𝑛 𝑜

𝐴 𝐵 𝐶 𝐷

𝐴′ 𝐵′ 𝐶′ 𝐷′

If the rows are exact, 𝑚 and 𝑜 are injective, and 𝑙 is surjective, then 𝑛 is injective.

 Proof. Let 𝑐 ∈ ker(𝑛), we shall argue that 𝑐 = 0 to conclude the proof.

• As (𝑜 ∘ ℎ)(𝑐) = (𝑘 ∘ 𝑛)(𝑐) = 𝑘(0) = 0, then ℎ(𝑐) ∈ ker(𝑜).
• As ker(𝑜) = 0, then ℎ(𝑐) = 0, so 𝑐 ∈ ker(ℎ).
• As im(𝑔) = ker(ℎ), there is a 𝑏 ∈ 𝐵 such that 𝑔(𝑏) = 𝑐.
• As (𝑗 ∘ 𝑚)(𝑏) = (𝑛 ∘ 𝑔)(𝑏) = 𝑛(𝑐) = 0, so 𝑚(𝑏) ∈ ker(𝑗).
• As im(𝑖) = ker(𝑗), there is a 𝑎′ ∈ 𝐴′ such that 𝑖(𝑎′) = 𝑚(𝑏).
• As im(𝑙) = 𝐴′, there is a 𝑎 ∈ 𝐴 such that 𝑙(𝑎) = 𝑎′.

• As (𝑚 ∘ 𝑓)(𝑎) = (𝑖 ∘ 𝑙)(𝑎) = 𝑖(𝑎′) = 𝑚(𝑏) and ker(𝑚) = 0, then 𝑓(𝑤) = 𝑏.
• As im(𝑓) = ker(𝑔), then 𝑏 ∈ ker(𝑔), so 𝑐 = 𝑔(𝑏) = 0, as required. ∎

Lemma 5.4.4. Let 𝐴, 𝐵, 𝐶, 𝐷, 𝐴′, 𝐵′, 𝐶′, 𝐷′, be objects in 𝒜︀, and suppose one has a commutative 

diagram:

𝑓 𝑔 ℎ

𝑖 𝑗 𝑘
𝑙 𝑚 𝑛 𝑜

𝐴 𝐵 𝐶 𝐷

𝐴′ 𝐵′ 𝐶′ 𝐷′

If the rows are exact, 𝑙 and 𝑛 are surjective, and 𝑜 is injective, then 𝑚 is surjective.

 Proof. Let 𝑏′ ∈ 𝐵′, we shall argue that 𝑏′ ∈ im(𝑚) to conclude the proof.

• As im(𝑗) = ker(𝑘), then 𝑗(𝑏′) ∈ ker(𝑘).
• As im(𝑛) = 𝐶′, then there is a 𝑐 ∈ 𝐶 such that 𝑛(𝑐) = 𝑗(𝑏′).
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• As (𝑜 ∘ ℎ)(𝑐) = (𝑘 ∘ 𝑛)(𝑐) = 𝑘(𝑗(𝑏′)) = 0, then ℎ(𝑐) ∈ ker(𝑜).
• As ker(𝑜) = 0, then ℎ(𝑐) = 0, so 𝑐 ∈ ker(ℎ).
• As im(𝑔) = ker(ℎ), then there is a 𝑏 ∈ 𝐵 such that 𝑔(𝑏) = 𝑐.
• As (𝑗 ∘ 𝑚)(𝑏) = (𝑛 ∘ 𝑔)(𝑏) = 𝑛(𝑐) = 𝑗(𝑏′), hence 𝑗(𝑏′ − 𝑚(𝑏)) = 0, so 𝑏′ − 𝑚(𝑏) ∈ ker(𝑗).
• As im(𝑖) = ker(𝑗), there is a 𝑎′ ∈ 𝐴′ such that 𝑖(𝑎′) = 𝑏′ − 𝑚(𝑏).
• As im(𝑙) = 𝐴′, there is a 𝑎 ∈ 𝐴 such that 𝑙(𝑎) = 𝑎′.

• As and (𝑚 ∘ 𝑓)(𝑎) = (𝑖 ∘ 𝑙)(𝑎) = 𝑖(𝑎′) = 𝑏′ − 𝑚(𝑏), one has

𝑚(𝑓(𝑎) + 𝑏) = 𝑏′ − 𝑚(𝑏) + 𝑚(𝑏) = 𝑏′,

as required. ∎

Lemma 5.4.5. (Five). Let 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐴′, 𝐵′, 𝐶′, 𝐷′, 𝐸′ be objects in 𝒜︀, and suppose one 

has a commutative diagram:

𝑓 𝑔 ℎ 𝑖

𝑗 𝑘 𝑙 𝑚
𝑛 𝑜 𝑝 𝑞 𝑟

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴′ 𝐵′ 𝐶′ 𝐷′ 𝐸′

If the rows are exact, 𝑜 and 𝑞 are isomorphisms, 𝑛 is surjective, 𝑟 is injective, then 𝑝 is an isomorphism.

 Proof. By viewing 𝑝 as 𝑛 in Lemma 5.4.3, we see that 𝑝 is injective. By viewing 𝑝 as 𝑚 in 

Lemma 5.4.4, we see that 𝑝 is an surjective. So 𝑝 is bijective, hence an isomorphism. ∎

2⟩  Lemmas on Inductive Limits

We say a directed set 𝐽  is cofinal in a directed set 𝐼 if there is a mapping 𝑓 : 𝐽 → 𝐼 such that

(i) For all 𝑥, 𝑦 ∈ 𝐽 , if 𝑥 ≤ 𝑦 in 𝐽 , then 𝑓(𝑥) ≤ 𝑓(𝑦) in 𝐼 .

(ii) For each 𝑦 ∈ 𝐼 , there is a 𝑥 ∈ 𝐽  such that 𝑓(𝑥) ≥ 𝑦 in 𝐼 .

We say such a map 𝑓 to be a cofinal map. Given a diagram 𝐴• = (𝐴𝛼, (𝜑𝛼𝛽)) indexed by 𝐼 in 

a category 𝒜︀. Denote 𝐴𝑓(•) to a diagram (𝐴𝑓(𝛼), (𝜑𝑓(𝛼)𝑓(𝛽))) be a diagram in 𝒜︀ indexed by 𝐽 .

Lemma 5.4.6. Let 𝒜︀ be an inductively complete category. Let 𝐼 be a directed set, and 𝐴• =
(𝐴𝛼, (𝜑𝛼𝛽)) be a diagram in 𝒜︀ indexed by 𝐼 with inductive limit (𝐴, (𝜇𝛼)𝛼∈𝐼). If 𝑓 : 𝐽 → 𝐼 be a 

cofinal map, then 𝐴 can be recognized as an inductive limit of 𝐴𝑓(•). That is, (𝐴, (𝜇𝑓(𝛼))𝛼∈𝐽) is a 

universal cocone of 𝐴𝑓(•).

 Proof. Let (𝐴𝑓 , (𝜈𝑓(𝛼))𝛼∈𝐽) be an inductive limit of 𝐴𝑓(•), as (𝐴, (𝜇𝑓(𝛼))𝛼∈𝐽) is a cocone of 

𝐴𝑓(•), then there is a morphism Φ : 𝐴𝑓 → 𝐴 such that Φ ∘ 𝜈𝑓(𝛼) = 𝜇𝑓(𝛼) for each 𝛼 ∈ 𝐽 . Let 𝛼 ∈
𝐼 , then there is a 𝑔(𝛼) ∈ 𝐽  such that 𝑓(𝑔(𝛼)) ≥ 𝛼, and we define 𝜀𝛼 = 𝜈𝑓(𝑔(𝛼)) ∘ 𝜑𝛼𝑓(𝑔(𝛼)). Suppose 

there is another 𝛽 ∈ 𝐽  such that 𝑓(𝛽) ≥ 𝛼, and so there is a 𝛾 ∈ 𝐽  such that 𝛾 ≥ 𝛽 and 𝛾 ≥ 𝑔(𝛼), 
then one has

𝜀𝛼 = 𝜈𝑓(𝑔(𝛼)) ∘ 𝜑𝛼𝑓(𝑔(𝛼)) = 𝜈𝑓(𝛾) ∘ 𝜑𝑓(𝑔(𝛼))𝑓(𝛾) ∘ 𝜑𝛼𝑓(𝑔(𝛼))

= 𝜈𝑓(𝛾) ∘ 𝜑𝛼𝑓(𝛾) = 𝜈𝑓(𝛾) ∘ 𝜑𝑓(𝛽)𝑓(𝛾) ∘ 𝜑𝛼𝑓(𝛽) = 𝜈𝑓(𝛽) ∘ 𝜑𝛼𝑓(𝛽)

so 𝜀𝛼 does not depend on the choice of 𝑔(𝛼), i.e. 𝜀𝛼 is well-defined. In particular, if 𝛼 ∈ 𝐽 , then we 

can choose 𝑔(𝛼) = 𝛼, so 𝜀𝑓(𝛼) = 𝜈𝑓(𝛼) ∘ 𝜑𝑓(𝛼)𝑓(𝛼) = 𝜈𝑓(𝛼). Now for each 𝛼 ≤ 𝛽 in 𝐼 , one has
𝜀𝛽 ∘ 𝜑𝛼𝛽 = 𝜈𝑓(𝛽) ∘ 𝜑𝛽𝑓(𝛽) ∘ 𝜑𝛼𝛽 = 𝜈𝑓(𝛽) ∘ 𝜑𝛼𝑓(𝛽) = 𝜈𝑓(𝛽) ∘ 𝜑𝑓(𝛼)𝑓(𝛽) ∘ 𝜑𝛼𝑓(𝛼) = 𝜈𝑓(𝛼) ∘ 𝜑𝛼𝑓(𝛼) = 𝜀𝛼,

so (𝐴𝑓 , (𝜀𝛼)𝛼∈𝐼) is a cocone of 𝐴•, thus there is a morphism Ψ : 𝐴 → 𝐴𝑓  such that Ψ ∘ 𝜇𝛼 = 𝜀𝛼 

for each 𝛼 ∈ 𝐼 . Let 𝛼 ∈ 𝐽 , one has
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Ψ ∘ Φ ∘ 𝜈𝑓(𝛼) = Ψ ∘ 𝜇𝑓(𝛼) = 𝜀𝑓(𝛼) = 𝜈𝑓(𝛼)

so by uniqueness, one has Ψ ∘ Φ = id𝐴𝑓
. Let 𝛼 ∈ 𝐼 , one has

Φ ∘ Ψ ∘ 𝜇𝛼 = Φ ∘ 𝜀𝛼 = Φ ∘ 𝜈𝑓(𝑔(𝛼)) ∘ 𝜑𝛼𝑓(𝑔(𝛼)) = 𝜇𝑓(𝑔(𝛼)) ∘ 𝜑𝛼𝑓(𝑔(𝛼)) = 𝜇𝛼,

so by uniqueness, one has Φ ∘ Ψ = id𝐴. Hence Φ is a universal isomorphism, thus (𝐴, (𝜇𝑓(𝛼))𝛼∈𝐼) 

is an inductive limit of 𝐴𝑓(•). ∎

Lemma 5.4.7. Let 𝐼 be a directed set, and 𝐴• = (𝐴𝛼, (𝜑𝛼𝛽)) be a diagram in 𝒜︀ indexed by 𝐼 

and suppose 𝐴• has an inductive limit (𝐴, (𝜇𝛼)𝛼∈𝐼). For each 𝛼 ∈ 𝐼 , define 𝐵𝛼 = 𝐴𝛼/ ker(𝜇𝛼), 
and let 𝜋𝛼 : 𝐴𝛼 → 𝐵𝛼 be the canonical map identified in AC6. Then there are injective maps 𝜓𝛼𝛽 :
𝐵𝛼 → 𝐵𝛽 for each 𝛼 ≤ 𝛽 in 𝐼 such that 𝜋𝛽 ∘ 𝜑𝛼𝛽 = 𝜓𝛼𝛽 ∘ 𝜋𝛼. Let 𝐵• = (𝐵𝛼, (𝜓𝛼𝛽)) be a diagram 

indexed by 𝐼 , and suppose (𝐵, (𝜈𝛼)𝛼∈𝐼) is an inductive limit of 𝐵•. Then there is a map 𝜋 : 𝐴 →
𝐵, such that the following diagram commutes

𝜑𝛼𝛽

𝜋𝛼 𝜋𝛽
𝜓𝛼𝛽

𝜋

𝐴𝛼 𝐴𝛽 ⋯ 𝐴

𝐵𝛼 𝐵𝛽 ⋯ 𝐵
Where the ⋯ ⟶ arrows refers to the 𝜇𝛼 and 𝜈𝛼 morphisms respectively. Moreover, if we define 

𝛾𝛼 = 𝜈𝛼 ∘ 𝜋𝛼 : 𝐴𝛼 → 𝐵 for each 𝛼 ∈ 𝐼 , then:

(i) 𝜋 is the universal map induced by the cocone (𝐵, (𝛾𝛼)𝛼∈𝐼) of 𝐴•.

(ii) If 𝜈𝛼 is injective, then ker(𝛾𝛼) = ker(𝜇𝛼) for each 𝛼 ∈ 𝐼 .

(iii) im(𝛾𝛼) = im(𝜈𝛼) for each 𝛼 ∈ 𝐼 .

 Proof. Let 𝛼 ≤ 𝛽 in 𝐼 , and define 𝜑̃𝛼𝛽 = 𝜋𝛽 ∘ 𝜑𝛼𝛽 : 𝐴𝛼 → 𝐵𝛽, then given 𝑥 ∈ ker(𝜇𝛼), one has 

0 = 𝜇𝛼(𝑥) = 𝜇𝛽(𝜑𝛼𝛽(𝑥)), so 𝜑𝛼𝛽(𝑥) ∈ ker(𝜇𝛽), so 𝜑̃𝛼𝛽(𝑥) = 0. Thus ker(𝜇𝛼) ⊆ ker(𝜑̃𝛼𝛽), hence 

by AC6, there is a unique map 𝜓𝛼𝛽 : 𝐵𝛼 → 𝐵𝛽 such that 𝜑̃𝛼𝛽 = 𝜓𝛼𝛽 ∘ 𝜋𝛼, in particular,

𝜓𝛼𝛽 ∘ 𝜋𝛼 = 𝜑̃𝛼𝛽 = 𝜋𝛽 ∘ 𝜑𝛼𝛽.

Let 𝜋𝛼(𝑥) ∈ ker(𝜓𝛼𝛽), so
0 = 𝜓𝛼𝛽(𝜋𝛼(𝑥)) = 𝜋𝛽(𝜑𝛼𝛽(𝑥))

thus 𝜑𝛼𝛽(𝑥) ∈ ker(𝜇𝛽), so 𝜇𝛼(𝑥) = 𝜇𝛽(𝜑𝛼𝛽(𝑥)) = 0, hence 𝑥 ∈ ker(𝜇𝛼), thus 𝜋𝛼(𝑥) = 0. So 𝜓𝛼𝛽 

is injective.

Suppose 𝐵• has an inductive limit given in the statement. Let 𝛼 ∈ 𝐼 , and define 𝛾𝛼 = 𝜈𝛼 ∘ 𝜋𝛼 :
𝐴𝛼 → 𝐵, and observe that if 𝛽 ≥ 𝛼, then

𝛾𝛽 ∘ 𝜑𝛼𝛽 = 𝜈𝛽 ∘ 𝜋𝛽 ∘ 𝜑𝛼𝛽 = 𝜈𝛽 ∘ 𝜓𝛼𝛽 ∘ 𝜋𝛼 = 𝜈𝛼 ∘ 𝜋𝛼 = 𝛾𝛼

so (𝐵, (𝛾𝛼)𝛼∈𝐼) defines a cocone of 𝐴•, hence by universality, there is a unique map 𝜋 : 𝐴 → 𝐵 

such that 𝛾𝛼 = 𝜋 ∘ 𝜇𝛼. This shows (i).

For (ii). Let 𝛼 ∈ 𝐼 . It is clear that ker(𝜇𝛼) ⊆ ker(𝛾𝛼) as 𝛾𝛼 = 𝜋 ∘ 𝜇𝛼. Let 𝑥 ∈ ker(𝛾𝛼), so 𝜋𝛼(𝑥) ∈
ker(𝜈𝛼). If 𝜈𝛼 is injective, then 𝜋𝛼(𝑥) = 0, so 𝑥 ∈ ker(𝜇𝛼). Hence ker(𝜇𝛼) = ker(𝛾𝛼).
For (iii). As 𝜋𝛼 is surjective, then im(𝛾𝛼) = im(𝜈𝛼) follows. ∎
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Lemma 5.4.8. (Elliott’s Intertwining Argument). Let 𝐼 be a directed set, and 𝐴• = (𝐴𝑖, (𝑓𝑖𝑗)) and 

𝐵• = (𝐵𝑖, (𝑔𝑖𝑗)) be diagrams in any category 𝒜︀ indexed by 𝐼 . Suppose:

• There is a mapping 𝑖 ↦ 𝑘𝑖 from 𝐼 to 𝐼 such that 𝑘𝑖 ≥ 𝑖 and 𝑘𝑗 ≥ 𝑘𝑖 for all 𝑗 ≥ 𝑖 in 𝐼 .

• For each 𝑖 ∈ 𝐼 , there are morphisms 𝛼𝑖 : 𝐴𝑖 → 𝐵𝑖 morphisms 𝛽𝑖 : 𝐵𝑖 → 𝐴𝑘𝑖
 such that one has a 

commutative diagram:

𝑓𝑖𝑘𝑖

𝛼𝑖

𝑔𝑖𝑘𝑖

𝛼𝑘𝑖
𝛽𝑖

𝐴𝑖 𝐴𝑘𝑖

𝐵𝑖 𝐵𝑘𝑖

If (𝐴, (𝜑𝑖)𝑖∈𝐼) and (𝐵, (𝜓𝑖)𝑖∈𝐼) are inductive limits of 𝐴• and 𝐵• respectively, then there are 

isomorphisms 𝛼 : 𝐴 → 𝐵 and 𝛽 : 𝐵 → 𝐴 with 𝛼−1 = 𝛽 such that one has a commutative diagram:

𝜑𝑖

𝛼𝑖

𝜓𝑖

𝛼𝛽

𝐴𝑖 𝐴

𝐵𝑖 𝐵

for each 𝑖 ∈ 𝐼 .

 Proof. Let 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗. Define 𝛾𝑖 = 𝜓𝑖 ∘ 𝛼𝑖 : 𝐴𝑖 → 𝐵, and observe that

𝛾𝑗 ∘ 𝑓𝑖𝑗 = 𝜓𝑗 ∘ 𝛼𝑗 ∘ 𝑓𝑖𝑗 = 𝜓𝑗 ∘ 𝑔𝑖𝑗 ∘ 𝛼𝑖 = 𝜓𝑖 ∘ 𝛼𝑖 = 𝛾𝑖,

so (𝐵, (𝛾𝑖)𝑖∈𝐼) is a cocone of 𝐴•. Thus by universality of lim
⟶

𝐴• there is a morphism 𝛼 : 𝐴 → 𝐵 

such that 𝛾𝑖 = 𝛼 ∘ 𝜑𝑖 for all 𝑖 ∈ 𝐼 .

Define 𝛿𝑖 = 𝜑𝑘𝑖
∘ 𝛽𝑖 : 𝐵𝑖 → 𝐴, and observe that

𝛿𝑗 ∘ 𝑔𝑖𝑗 = 𝜑𝑘𝑗
∘ 𝛽𝑗 ∘ 𝑔𝑖𝑗 = 𝜑𝑘𝑗

∘ 𝑓𝑘𝑖𝑘𝑗
∘ 𝛽𝑖 = 𝜑𝑘𝑖

∘ 𝛽𝑖 = 𝛿𝑖,

so (𝐴, (𝛿𝑖)𝑖∈𝐼) is a cocone of 𝐵•. Thus by universality of lim
⟶

𝐵• there is a morphism 𝛽 : 𝐵 → 𝐴 

such that 𝛿𝑖 = 𝛽 ∘ 𝜓𝑖 for each 𝑖 ∈ 𝐼 .

Now observe that

(𝛽 ∘ 𝛼) ∘ 𝜑𝑖 = 𝛽 ∘ 𝛾𝑖 = 𝛽 ∘ 𝜓𝑖 ∘ 𝛼𝑖 = 𝛿𝑖 ∘ 𝛼𝑖 = 𝜑𝑘𝑖
∘ 𝛽𝑖 ∘ 𝛼𝑖 = 𝜑𝑘𝑖

∘ 𝑓𝑖𝑘𝑖
= 𝜑𝑖,

so by uniqueness, it follows that 𝛽 ∘ 𝛼 = id𝐴. Also

(𝛼 ∘ 𝛽) ∘ 𝜓𝑖 = 𝛼 ∘ 𝛿𝑖 = 𝛼 ∘ 𝜑𝑘𝑖
∘ 𝛽𝑖 = 𝛾𝑘𝑖

∘ 𝛽𝑖 = 𝜓𝑘𝑖
∘ 𝛼𝑘𝑖

∘ 𝛽𝑖 = 𝜓𝑘𝑖
∘ 𝑔𝑖𝑘𝑖

= 𝜓𝑖

so by uniqueness, it follows that 𝛼 ∘ 𝛽 = id𝐵. Thus 𝛼−1 = 𝛽 and the rest follows. ∎
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