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Abstract

We survey the development of scheme theory and demonstrate its use in modern algebraic geometry.
This will include a discussion of topics such as sheaf cohomology, commutative algebra and the
Riemann Roch Theorem.
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Introduction

Algebraic geometry is often said to be one of the oldest fields in mathematics. This is, however,
misleading, as the incarnation of algebraic geometry even a century ago is vastly different to what
we would consider “algebraic geometry” today. Indeed, classical algebraic geometry studies objects
known as (classical) varieties, which are, roughly speaking, the zeroes of polynomials over an alge-
braically closed field. The simplest type of variety is an affine variety:

Definition 0.0.1. Let k be an algebraically closed field. A set V ⊆ kn is said to be an affine variety
if there exists a prime ideal p ⊆ k[x1, ...xn] such that V = {P ∈ kn | f(P ) = 0 for all f ∈ p}. The
ring A := k[x1, ..., xn]/p is known as the coordinate ring of V .

By Hilbert’s Nullstellensatz and its corollaries, the points of V have a natural bijection with the max-
imal ideals of A. In this way, one may recover V up to some form of equivalence (specifically an
isomorphism of varieties), knowing A. However, note that A must satisfy certain properties: indeed
A must be a finitely-generated algebra over k that is also an integral domain. One may ask then: what
if we were to allow analogous constructions for any commutative ring with identity? The answer is
that we would end up with a scheme.

In fact, arguably the greatest turning point in algebraic geometry is the introduction of schemes by
Grothendieck, which replaced varieties as the fundamental object of study. Schemes are a generalisa-
tion of classical varieties, but they retain information that would otherwise be lost. Roughly speaking,
they are locally ringed spaces which locally look like affine schemes, which are themselves general-
isations of affine varieties. A key theorem is the following, which allows us to pass back and forth
between ring theory and geometry:

Theorem 0.0.2. The category of affine schemes is equivalent to the opposite category of rings.

In this dissertation, we will systematically develop scheme theory, with a view to providing a partial
proof to the Riemann Roch Theorem. The standard reference for this is [6], which we will loosely
follow.

A key construction in scheme theory is a sheaf which, roughly speaking, is a collection of objects
parameterised by the open sets of a topological space that keeps track of local data. The first chapter
will be devoted to sheaf theory, which we will develop with differential geometry as motivation. A
powerful method in algebraic geometry is sheaf cohomology, which gives us tools for defining invari-
ants. The construction of sheaf cohomology through the derived functor approach will be discussed
in this chapter.

Chapter 2 then defines and studies the basic properties of schemes and morphisms of schemes. We
will see a deep connection between schemes and morphisms of schemes and the rings which define
their underlying affine schemes. We will also isolate a class of schemes, known as abstract varieties
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which share similarities with classical varieties.

Finally, Chapter 3 aims to prove the Riemann Roch Theorem. It begins with the theory of divi-
sors, which, in their most basic form, are objects which encode the intrinsic geometry of a scheme or
variety, in the form of formal sums of points, subject to an equivalence relation defined by the scheme.
This allows us to define invariants of the scheme. Invertible sheaves, which behave like line bundles
on a manifold will be discussed too. In particular, we will define an analogous construction to the
cotangent bundle on a manifold. We conclude with a partial proof of the Riemann Roch Theorem.

0.1 Novel Elements

Being a very well-developed subject, it is comparatively difficult to prove original results in algebraic
geometry. We do not pretend that any new results are proven in this work. However, the author has
kept as much of the work original as possible. For example, proofs which were not worked out by
the author are kept short or left out altogether, with a reference to the complete proof given. The
exceptions to this are proofs which are interesting or enlightening. If a proof does not have a quoted
reference, it was worked out by the author, with the possible assistance of peers and advisors.

0.2 Background

The assumed background is a first course in classical algebraic geometry, such as Chapter I of [6] and
a first course in commutative algebra such [1]. Well-known results and terminology in commutative
algebra and category theory will be used without reference or explanation, though lesser-known re-
sults or results which have interesting proofs will be stated and possibly proved in the appendix. We
will also assume familiarity with elementary differential geometry, and the terminology of [8] will be
used without explanation.

0.3 Conventions

Rings will always be commutative with identity. Unless explicitly stated otherwise, fields are as-
sumed to be algebraically closed.

If A is a ring and p is a prime ideal, then if T denotes the multiplicative system A \ p then we
will write Ap for the localised ring T−1A. Functors take both objects and morphisms as inputs. A
classical variety will mean a variety as defined in [6, p.15 ]. Morphism and map will be used inter-
changeably.

This work will also feature use of sharps (]) and flats ([). Their use is not inherently meaningful,
they are simply used to denote objects that are similar in nature. Sharps are generally used to denote
a “lifting” of some sort, and flats will be used for the opposite. For example, a presheaf will usually
be denoted F [ and the associated sheaf will be denoted F , if used in the same context.



Chapter 1

Sheaves

1.1 Definitions and Basic Theory

Sheaves are tools which allow us to keep track of local information on a topological space in a single
mathematical object. Their use is ubiquitous throughout algebraic geometry. In this section, we will
study their basic theory.

To begin: observe that the open sets of a topological space have a natural poset structure under
“⊆”. Posets are small categories, and thus one can define a category Open(X) associated to any
topological space X , under this poset.

Definition 1.1.1. Let X be a topological space. A presheaf (of abelian groups) F [ on X is a con-
travariant functor from Open(X) into Ab, the category of abelian groups. For each open set U , the
group F [(U) will be called the space of sections over U and the members of the F [(U) will be called
the sections of F [ over U and for every morphism i : V → U , F [(i) will be called the restriction
map from U to V . If f ∈ F [(U), we will use f |V to denote F [(i)(f).

We can replace the category of abelian groups with other categories, such as the category of sets or
the category of rings. Unless stated otherwise however, a presheaf will always refer a presheaf of
abelian groups.

Example 1.1.2. Let X be a topological space and G an abelian group. Then the functor G[ which
maps every open set U to G and every inclusion to the identity is a presheaf, called the constant
presheaf, for obvious reasons.

Definition 1.1.3. Let X be a topological space, and let F [ be a presheaf on X . We say F [ is a sheaf
if it satisfies the following two axioms, called the identity and gluing axioms, denoted ID and GL
respectively:

ID If {Vi} is an open cover of some open set U and if f, g ∈ F [(U) are such that f |Vi = g|Vi for all
i, then f = g.

GL If {Vi} is an open cover of some open set U , and for each i we have some fi ∈ F [(Vi), and
for every i, j we have that fi|Vi∩Vj = fj |Vi∩Vj , then there exists some f ∈ F [(U) such that
f |Vi = fi

Note that ID implies that the section f obtained by GL is unique. If F [ is a sheaf, we will simply
denote it as F .

3
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Before we study further examples, we introduce a construction that is extremely important, that is
the stalk of a presheaf. The stalk may be thought of as what the presheaf “looks like” near a point.

Definition 1.1.4. Let X be a topological space, and let F [ be a presheaf on X . We define the stalk
F [P of F [ at some point P ∈ X to be the direct limit of the space of sections taken over all open
neighbourhoods of P under the restriction maps.

F [P := lim−→
V 3P
F [(V )

An element of the stalk is known as a germ.

Example 1.1.5. For a topological space X , we can define the sheaf of continuous real-valued func-
tions OX , where for each open set U ⊆ X , the sections are the continous functions f : U → R, and
the restriction maps are the restriction maps in the usual sense. To check that this is a sheaf, first fix
some open set U and an open cover {Ui} of U . If two sections f, g ∈ OX(U) satisfy f |Ui = g|Ui
for every i, then for every P ∈ U , there will be some Ui 3 P , and thus f(P ) = g(P ), hence
f = g, and OX satisfies ID. Next, if we have fi ∈ OX(Ui) for every i, such that for any i, j we have
fi|Ui∩Uj = fj |Ui∩Uj then we define f ∈ OX(U) as follows: for any P ∈ U define f(P ) := fi(P ),
where i is any index where Ui 3 P . This is clearly well-defined, and hence GL is satisfied. Note that
OX is a sheaf of rings: the sections inherit the ring structure of R.

Example 1.1.6. Let X be a classical affine variety over some base field k, embedded in A(k)n = kn.
Recall that a function ϕ : X → k is regular at some point P if for some open neighbourhood U of
P , there exist polynomials f, g ∈ k[x1, ..., xn] with V(g) ∩ U = ∅ such that ϕ(Q) = f(Q)

g(Q) for all
Q ∈ U . Then the presheaf O where O(U) is the set of regular functions on U is a sheaf. The stalk is
the local ring OP,X .

Example 1.1.7. The presheaf of bounded functions on R, which associates to every open set U the
set of bounded functions f : U → R, is not a sheaf, because it does not satisfy GL. Indeed, consider
the cover of {(n − 1, n + 1)}n∈N of R, and for each n, take fn : (n − 1, n + 1) → R to be the
restricted identity. Then each fn is bounded, but clearly the identity, which is what we would get if
we glued the fn together, is not bounded.

Definition 1.1.8. LetF [,G[ be presheaves onX . A morphism of presheaves ϕ : F [ → G[ is a natural
transformation from F [ to G[. In other words, it is a collection of morphisms ϕU : F [(U)→ G[(U)
for each open set U such that for any V ⊆ U open, the following diagram commutes:

F [(U) G[(U)

F [(V ) G[(V )

ϕU

ϕV

By abuse of notation, we will sometimes write ϕ for the induced map on sections too, if there is no
ambiguity. An isomorphism of presheaves is a morphism with a left and right inverse. For an open
set U , we define the sections functor ΓU which maps F [ to its section F [(U) over U .
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A morphism ϕ : F [ → G[ of presheaves also induces a morphism of stalks ϕP . Indeed, given a
point P ∈ X , for every open neighbourhood U we have a map F [(U) → G[(U) → G[P . Thus by
the universal property of direct limits, we have a map ϕP : F [P → G[P . The following result is very
useful; it will be our main tool for showing that a morphism of sheaves is an isomorphism.

Proposition 1.1.9. Let F ,G be sheaves on X . Then a map ϕ : F → G is an isomorphism if and only
if at every point the induced map of stalks is an isomorphism.

Proof. [6, p.63]

Remark 1.1.10. However, it is not always true that two sheaves that have isomorphic stalks are iso-
morphic. Indeed, the above proposition requires that the isomorphism of stalks be induced by the
same morphism of sheaves. For an explicit example, see Proposition 3.2.8.

We now present a very important lemma:

Lemma 1.1.11. Let B be a base of the topology of X , and F a sheaf. Then for any open set U , we
have

F(U) ∼= lim←−
V⊆U
V ∈B

F(V )

Proof. Observe that an element of lim←−F(V ) defines a section on each base open set V , and this
commutes with restriction. Thus by the sheaf axioms, this corresponds to a unique section in U , since
the base open sets V clearly cover U , and thus we have a unique map lim←−F(V ) → F(U) such that
for every base open W contained in U the following diagram commutes:

lim←−F(V ) F(U)

F(W )

Since any object with morphisms to each V factors uniquely through lim←−F(V ), this means thatF(U)
satisfies the same universal property. This concludes the proof.

Corollary 1.1.12. A sheaf F on X is uniquely determined by the values it takes on a basis for the
topology on X . A morphism F → G is also determined by the morphisms at each base open set.

Proof. This follows from the above lemma.

Remark 1.1.13. In fact, in order to define a sheaf it suffices [2, Proposition I-12] to give the sections
over the base open sets and restriction maps between them, as long as the sheaf axioms are satisfied
for the base open sets. We will make heavy use of this reduction.

We will now need suitable definitions of familiar concepts such as kernels, images, and cokernels for
our morphisms. One may be tempted to simply define them as U 7→ ker(ϕU ), U 7→ im(ϕU ), U 7→
coker(ϕU ), however, this does not work since the presheaves U 7→ im(ϕU ), U 7→ coker(ϕU ), re-
ferred to as the presheaf image and the presheaf cokernel of ϕ is not necessarily a sheaf (though the
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presheaf kernel, defined similarly, is a sheaf). See Example 3.1.12 for an example. This motivates the
following question: how do we make a sheaf which best approximates a presheaf? This is answered
below:

Theorem 1.1.14. Let F [ be a presheaf. Then there exists a sheaf F along with a morphism F [ → F
that satisfies the following universal property: if G is a sheaf and ϕ : F [ → G a morphism of
presheaves, there exists a unique ψ : F → G such that the following diagram commutes:

F [ F

G

ϕ
ψ

Moreover, ϕP is an isomorphism for every P .

Proof Sketch. Taken from [6, p.64]. For each open U , we define F(U) to be the set of functions
f : U →

⊔
P∈U
FP such that the following hold true:

1. For each f ∈ F(U) we have f(P ) ∈ FP

2. For each f ∈ F(U) and P ∈ U , there exists an open neighbourhood V of P and f [ ∈ F [(V )
such that f(Q) = f [Q for all Q ∈ V

The restriction maps are then the restriction maps in the usual sense. Details can be found in the
above reference.

Definition 1.1.15. Let F [ be a presheaf on X . We define the sheaf associated to F [ to be the sheaf
F defined in the above theorem. The process of constructing F from F [ is known as sheafification.

Note that sheafification is left-adjoint to the forgetful functor that maps a sheaf to its presheaf.

Example 1.1.16. Let X,G,G[ be as in Example 1.1.2. The sheaf G associated to G[ is the sheaf
defined as follows: Give G the discrete topology. Then the elements of G(U) are the continuous
functions from U to G, and the restriction maps are the restriction maps of functions. Then the map
G[ → G maps g ∈ G[(U) = G to the constant function g, where U is any open set.

To see that G is indeed the sheaf associated to G[, we check that G satisfies the required universal
property. So let F be a sheaf, and ϕ : G[ → F be a morphism of presheaves. This is equivalent to
giving a map G → F(X). Now note that if U is a connected open subset of X , then G(U) ∼= G,
since the only G-valued continuous functions on U are the constant functions. Since the connected
open sets of any topological space form a base, we have a map G(U) → F(U) for any connected
open set U . Lemma 1.1.11 implies there is a unique morphism of sheaves G → F such commutes
with the map G[ → G.

Definition 1.1.17. Let ϕ : F → G be a morphism of sheaves. Then we define the kernel, image
and cokernel of ϕ to be the sheaf associated with their respective presheaf counterparts. We say ϕ is
injective if kerϕ = 0 and surjective if imϕ = G.
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While it is true that a morphism ϕ : F → G is injective if and only if for every open set U the induced
map of sections is injective, ϕ being surjective does not necessarily mean that the induced map of
sections is surjective for every open set (see Example 3.1.12). However, it is true that a morphism is
surjective if and only if it is surjective at the stalks:

Lemma 1.1.18. Let ϕ : F → G be a morphism of sheaves. Then ϕ is injective (resp surjective) if
and only if for every point P , the map of stalks ϕP : FP → GP is injective (resp surjective)

Proof. The map ϕ is injective if and only if for every open set U , the induced map of sections is
injective. Since every section induces a germ and every germ is induced by a section, the result is
immediate.

To prove the statement about surjectivity, we observe that by the construction of sheafification, for
every P , the stalk of the image (imϕ)P and the stalk of the presheaf image are equal. Moreover, it is
obvious that the stalk of the presheaf image at P is equal to the image of the induced map of stalks
im(ϕP ), and thus im(ϕP ) = (imϕ)P . Now ϕ is surjective if and only if imϕ = G, and since we have
a canonical injection imϕ→ G, this happens if and only if the stalks are equal, that isGP = (imϕ)P
and since we have established im(ϕP ) = (imϕ)P , the result follows.

Lemma 1.1.19. Let ϕ : F → G be a morphism of sheaves. Then ϕ is surjective if and only if for
every open set U and s ∈ G(U), there exists an open cover {Ui} of U and sections ti ∈ F(Ui) such
that ϕ(ti) = s|Ui .

Proof. Suppose ϕ is surjective. Then by Lemma 1.1.18, the induced map of stalks is surjective at
every point Pi ∈ U , so that there exists tPi ∈ FPi such that ϕPi(ti) = si. We now construct our open
cover as follows: for each i, choose a pair (Ui, ti) so that Pi ∈ Ui and ti induces the germ tPi and
ϕ(ti) and s agree on Ui, which exists because their germs agree. This is an open cover and satisifes
our conditions.

Conversely, suppose the latter condition is satisifed. By Lemma 1.1.18, it suffices to show that the
map of stalks is surjective at every point. Let P be a point and suppose sP ∈ GP . Then sP is the germ
of some s ∈ G(U) for some open neighbourhood U of P , and moreover we can assume U is small
enough so that there exists some t ∈ F(U) such that ϕ(t) = s. Then ϕP (tP ) = sP as required.

We will now explore the homological behaviour of sheaves. We begin by exploring the exactness of
the sections functor:

Proposition 1.1.20. The sections functor ΓU is left exact for every open U .

Proof. Suppose we have a short exact sequence of sheaves

0 F G H 0ι π

and an open set U . We consider the following sequence

0 F(U) G(U) H(U)
ιU πU
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Now ιU is still injective, so the sequence is exact at F(U). Now suppose we have s ∈ kerπ. Since ι
surjects onto the kernel of π, by Lemma 1.1.19 there exists an open cover Ui of U such that for each
i there exists ti ∈ F(Ui) such that ι(ti) = s|Ui . Now considering ti and tj for some i and j, we have
that ι(ti|Ui∩Uj ) = s|Ui∩Uj = ι(tj |Ui∩Uj ). But since ι is injective, that means ti|Ui∩Uj = tj |Ui∩Uj .
This means there exists t ∈ F(U) such that t|Ui = ti for every i, so that ι(t) = s. This completes the
proof.

However, the sections functor could be exact. As an example, we introduce the concept of a flasque
sheaf.

Definition 1.1.21. Let F be a sheaf. We say F is flasque or flabby if for every inclusion V ⊆ U , the
restriction map F(U)→ F(V ) is surjective.

Example 1.1.22. The sheaf of functions on any topological space is flasque. The sheaf of continuous
real-valued functions on R is not (for example the function f : x 7→ 1/x defined on R \ {0} cannot
be extended to the whole of R). The structure sheaf on a scheme, which we will define later, is also
not flasque.

Example 1.1.23. Let X be a topological space, A an abelian group and P ∈ X a point. We define
the skyscraper sheaf associated to A at P , denoted A(P ) to be the sheaf defined as follows: if P ∈ U
then A(P )(U) = A, if P /∈ U then A(P )(U) = 0. It is easily seen to be a sheaf. This is flasque,
since a section is always an element of A, which is also the space of global sections.

Proposition 1.1.24. Consider the following short exact sequence of sheaves

0 F G H 0ι π

Suppose that F is flasque. Then the sections functor ΓU is exact for every open set U .

Proof. We know that the functor is left exact, so it only remains to check that πU is surjective. Sup-
pose s ∈ H(U). We consider the set Ω of pairs (Ui, si) where si ∈ G(Ui) and s|Ui = π(ti).
Lemma 1.1.19 guarantees Ω is not empty. Ordering by inclusion, it is easy to see that each chain has
an upper bound, since we can take the union of the Ui, and the gluing axiom guarantees that such a
section exists. Thus by Zorn’s Lemma, there exists some maximal element (U0, s0).

Supposing for contradiction that U0 6= U , then there exists some V ⊆ U which is not a subset
of U0 and some corresponding s′ ∈ G(V ) such that s|V = π(s′). Now if V ∩ U0 = ∅, then s
and s′ clearly agree on their intersection (which is the trivial group), and thus we may glue them
together. Otherwise, W := V ∩ U0 is nonempty. Now since π(s0|W ) = sW = π(s′|W ), so that
s0|W−s′|W ∈ kerπW = im ιW , so that there exists some t0 ∈ F(W ) such that ι(t0) = s0|W−s′|W .
By the flasque property, we may extend t0 to some t ∈ F(V ). But we observe that s′ + ι(t) ∈ G(V )
and π(s′ + ι(t)) = π(s′) = s|V and moreover s0|W − (s′ + ι(t))W = s0|W − s′W − ι(t0) = 0, so
that we may glue s0 and s′ + ι(t) together on U0 ∪ V , contradicting the maximality of U0.

The converse is not true; for example the global sections functor on the structure sheaf OX of an
affine scheme, as we will see later, satisfies the exactness property, but OX is not flasque.
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Corollary 1.1.25. Consider the following short exact sequence of sheaves

0 F G H 0ι π

If F and G are flasque, thenH is also flasque.

Proof. Suppose we have an inclusion V ⊆ U and some s ∈ H(V ). Consider the following diagram

0 F(U) G(U) H(U) 0

0 F(V ) G(V ) H(V ) 0

ιU πU

ιV πV

Since F is flasque, we know πV is surjective by Proposition 1.1.24. Similarly, since G is flasque, the
map G(U)→ G(V ) is also surjective. Therefore there exists some t ∈ G(U) such that πV (t|V ) = s.
Then πU (t)|V = s as required.

We conclude this section with a discussion about the pushforwards and pullbacks of sheaves along
continuous maps. These are functors which allow sheaves to be passed along continuous maps. To be
precise:

Definition 1.1.26. Let f : X → Y be a continous map, F a sheaf on X , and G a sheaf on Y . Then
we define the pushforward sheaf f∗F on Y as U 7→ F(f−1(U)). It is easy to see that this is a sheaf.
Dually, we define the pullback sheaf f−1G on X as the sheaf associated to the presheaf defined by
the following direct limit

U 7→ lim−→
V⊇f(U)

G(V )

It is clear that the pushforward and the pullback are functorial. Note that while the pullback is more
complicated than the pushforward, it is very well-behaved; for example at a point P ∈ X , the stalk
f−1GP is isomorphic to Gf(P ), whereas the analogous result does not hold for the pushforward.

Theorem 1.1.27 (The Adjoint Property of f−1). There exists a natural bijection of sets

Hom(f−1G,F) ∼= Hom(G, f∗F)

Proof. Let {ϕU,V } be a collection of maps ϕU,V : G(V ) → F(U), running across all open sets
U ⊆ X , V ⊆ Y where V contains f(U). We say this collection is compatible if it commutes with
restriction. We claim that there is a bijection from Hom(f−1G,F) and Hom(G, f∗F) to the set of all
collections of compatible maps.

Suppose firstly that we have a morphism of sheaves ϕ : f−1G → F . Then given open subsets
U ⊆ X and V ⊆ Y where V contains f(U), we have a natural map G(V ) → lim−→

W⊇f(U)

G(W ) which

then induces a map G(V )→ F(U) through composition. We now check that this map is compatible.
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Let V ′ ⊆ V and U ′ ⊆ U be open subsets where V ′ ⊇ f(U ′). Since all maps are compatible with
restriction, the following diagram commutes:

G(V ) lim−→
W⊇f(U)

G(W ) f−1G(U) F(U)

G(V ′) lim−→
W⊇f(U ′)

G(W ) f−1G(U ′) F(U ′)

ϕ

πV

Conversely, given a compatible collection of maps {ϕU,V }, we construct a morphism ϕ : f−1G → F
as follows: suppose we have U, V as above. Now we observe that since every f(U) ⊆W comes with
a map G(W ) → F(U) which commutes with restriction, by the universal property of direct limits
we get a map lim−→

W⊇f(U)

G(W ) → F(U), which, by the universal property of sheafification induces a

natural map ϕU : f−1G(U) → F(U). By construction, these maps are compatible with restriction,
and thus define a morphism of sheaves. Moreover, it is easily checked through “diagram-chasing”
that the compatible collection generated by ϕ is {ϕU,V }. We omit the details.

To establish the other bijection, first suppose we have a morphism ϕ : G → f∗F . Then for every
(U, V ) pair as above, we define the map ϕU,V : G(V ) → F(U) to be the composition of ϕ with the
natural mapF(f−1(V ))→ F(U). Once again, the collection {ϕU,V } is easily seen to be compatible.

Conversely, suppose we have a compatible collection {ϕU,V }. Then we have a map ϕ : G(V ) →
F(f−1(V )) for every V ⊆ Y which commutes with restriction, thus giving us a morphism of sheaves.
Moreover, the compatible maps generated by ϕ are exactly {ϕU,V }, and thus we have a bijection. The
naturality of the bijection is easy to check.

1.2 Ringed Spaces and Sheaves of Modules

Ringed spaces play a big role in modern geometry. Indeed, many familiar geometric objects such as
varieties and manifolds are all ringed spaces. Schemes, as we will see later, are also ringed spaces. In
this section, we will develop the theory of ringed spaces in preparation for scheme theory, but prove
the results in the more general setting.

In particular, we are interested in sheaves of modules, as they can encode the information of an
underlying space in very useful ways. Two particularly important classes of sheaves, known as co-
herent and quasicoherent sheaves, are a generalisation of vector bundles, and their role in algebraic
geometry cannot be overstated. We will motivate them by first studying vector bundles, before giving
a few properties.

We begin with the definition of a ringed space, and a few examples.
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Definition 1.2.1. A ringed space is a pair (X,OX) consisting of a topological spaceX and a sheaf of
ringsOX , called the structure sheaf. A morphism of ringed spaces from (X,OX) to (Y,OY ) is a pair
(f, f#) consisting of a continuous map f : X → Y and a morphism of sheaves f# : OY → f∗OX .
A locally ringed space is a ringed space (X,OX) such that the stalk at every point is a local ring. A
morphism of locally ringed spaces is a morphism of ringed spaces (f, f#) : (X,OX) → (Y,OX)

such that the induced morphism f#
P : OY,f(P ) → OX,P is a local homomorphism for every P ∈ X;

that is, the preimage of the unique maximal ideal ofOX,P is the unique maximal ideal ofOY,f(P ) for
every P ∈ X .

Of course, not every ringed space is a locally ringed space, for example any topological space
equipped with the constant sheaf Z is a ringed space but not a locally ringed space. However, many
interesting familiar geometric examples are in fact locally ringed spaces. We will study some.

Example 1.2.2. A classical variety X over a field k with its sheaf of regular functions OX is an
example of a locally ringed space. Recall that a morphism of varieties is a continuous function
ϕ : X → Y such that given an open subset V ⊆ Y and a regular function f : V → k, the composition
f ◦ ϕ : f−1(V ) → k is regular [6, p.15]. It is easily checked that the induced map on sheaves, and
by extension stalks is a local homomorphism, making a morphism of varieties a morphism of locally
ringed spaces.

Example 1.2.3. For a smooth manifold M , the sheaf OM of C∞ real-valued functions forms a
structure sheaf, turning the pair (M,OM ) into a ringed space. In fact, it is also a locally ringed space;
the unique maximal ideal of the stalk OM,P consists of the functions which vanish at P . A smooth
map f : M → N induces a morphism of sheaves ON ,→ f∗OM where each section s ∈ ON (U) is
mapped to the section s ◦ f . In fact, this is a local homomorphism, since s ◦ f vanishes at P if and
only if s vanishes at f(P ).

We now develop the theory of sheaves of modules. We will begin with a few basic definitions and
results, and then we will look at smooth vector bundles from a sheaf theoretic point of view. In
particular, we will show that smooth vector bundles are the same thing as locally free sheaves (Defi-
nition 1.2.15). This will motivate the definition of coherent and quasicoherent sheaves, which, instead
of locally free, are locally the cokernel of free sheaves.

Definition 1.2.4. Let (X,OX) be a ringed space. A sheaf of OX -modules, or simply anOX -module,
is a sheaf of abelian groups F such that for every open subset U ⊆ X , the sections F(U) over U
form an OX(U)-module, and for every inclusion of open sets V ⊆ U , the map F(U) → F(V )
is compatible with OX(U) → OX(V ). More precisely, given a ∈ OX(U), x ∈ F(U), we have
(ax)|V = a|V x|V . A morphism ofOX -modules is a morphism of sheaves that is compatible with the
module structure.

A special case would be a sheaf of ideals, in which the module is in fact an ideal.

Proposition 1.2.5. Let (X,OX) be a ringed space and F a presheaf of OX -modules (that is, each
F(U) is a module overOX(U), and the restriction maps ofF are compatible with the retriction maps
of OX ). Then F ], the sheaf associated to F is an OX -module.
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Proof. This follows from the construction of sheafification. Indeed, each section of F ] is a function
that maps a point to a germ, which is locally induced. We can impose anOX -module structure on F ]
by defining multiplication pointwise on the functions.

Corollary 1.2.6. The kernel, cokernel, image of a morphism of OX -modules is an OX -module. Any
quotient sheaf of an OX -module is an OX -module.

Definition 1.2.7. Let F and G be sheaves of abelian groups. We define their direct sum, denoted
F ⊕ G to be the sheaf U 7→ F(U) ⊕ G(U). It is easily seen to be a sheaf. If they are OX -modules,
we define their tensor product over OX , denoted F ⊗OX G to be the sheaf associated to the presheaf

U 7→ F(U)⊗OX(U) G(U)

By the above corollary, it is also an OX -module.

We will now define the pullback and pushforward of an OX -module with respect to a continuous
map.

Definition 1.2.8. Let (f, f#) : (X,OX) → (Y,OY ) be a morphism of ringed spaces, F an OX -
module and G an OY -module. Then the pushforward of F is f∗F , the same as the pushforward of
F as a sheaf of abelian groups. Note that f∗F is an f∗OX -module and hence an OY -module via the
map OY → f∗OX . However, while f−1G is an f−1OY module, it is not an OX -module. However,
we do have a map f−1OY → OX through the adjunction, and thus we can define the pullback of F
to be

f∗(G) := f−1G ⊗f−1OY OX

which is then an OX -module. As in Theorem 1.1.27, one can show that f∗ is left adjoint to f∗.

Example 1.2.9. The structure sheaf on any ringed space (X,OX) is an OX -module.

Example 1.2.10. Let M be a smooth manifold and OM be its sheaf of smooth functions. Then the
tangent bundle is an OM -module. Indeed, given any section s over an open subset U , we have a
natural module structure through pointwise multiplication by a smooth function.

Example 1.2.10 paves the way to a very important phenomenon, which we will now study in greater
generality. We will take a brief detour into the world of differential geometry to explore this. Note that
the tangent bundle in Example 1.2.10 is a special case of a more general object known as a smooth
vector bundle. We recall its definition:

Definition 1.2.11. A smooth vector bundle, or just bundle over a smooth manifold M , is a smooth
manifold E equipped with a surjective map π : E →M such that the following hold

1. For every p ∈ M , the preimage Ep := π−1(p), known as the fibre over p is an n-dimensional
real vector space for some fixed n, which we call the rank of E.
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2. For every p ∈ M , there exists an open neighbourhood U and a diffeomorphism (known as the
local trivialisation) Φ : π−1(U)→ U × Rn such that the following diagram commutes

π−1(U) U × Rn

U

Φ

π
π1

and for every q ∈ U , the restriction of Φ to Eq is a linear isomorphism from Eq to {q}×Rn ∼=
Rn.

A section of the bundle over an open subset U ⊆ M is a smooth function ϕ : U → E such that
π ◦ ϕ = id.

Example 1.2.12. A cylinder (of infinite height) and a Möbius strip are examples of a bundle over the
circle. The details will take us too far afield, but they can be found in [8, p.251].

Proposition 1.2.13. Let M be a smooth manifold, OM its sheaf of smooth real-valued functions and
E a smooth vector bundle. Then the sections of E on each open subset form an OM -module.

Proof. The module structure follows from pointwise multiplication by a smooth function. Clearly,
the product of a smooth function and a smooth section (of the bundle) is a smooth section. The
compatibility with restriction maps is obvious. Since smoothness is a local property, the sheaf axioms
are true.

Definition 1.2.14. We call the sheaf in the above proposition the sheaf associated to E.

What is particularly interesting about smooth vector bundles from a sheaf-theoretic point of view is
the local trivialisation. Indeed, this is saying that, locally, a smooth vector bundle looks like copies
of the underlying space. The sheaf analogue is known as a locally free sheaf, which we will define
below. In fact, we will show that locally free sheaves and smooth vector bundles are the “same thing”.

Definition 1.2.15. Let (X,OX) be a ringed space, and let F be an OX -module. We say that F
is free if F ∼=

⊕
i∈I OX for some (possibly infinite) indexing set I . It is locally free if X can

be covered by open subsets {Ui} such that for each Ui there exists some indexing set J such that
F|Ui ∼=

⊕
j∈J OX |Ui . For each Ui, we say that the rank of F is the cardinality of J if it is finite, and

infinite otherwise. If the rank is the same for all such open subsets (for example if X is connected),
we will simply refer to the rank of F .

Example 1.2.16. Let M be any A-module. For any r ∈ N we define the r-th exterior power of M ,
denoted

∧rM to be the free module generated by the symbols x1 ∧ ... ∧ xr for (x1, ..., xr) ∈ M r,
subject to the following relations:

• a(x1 ∧ ... ∧ xr) = (ax1) ∧ ... ∧ xr = ... = x1 ∧ ... ∧ (axr)

• x1 ∧ ... ∧ xi−1 ∧ (xi + yi) ∧ xi+1 ∧ ... ∧ xr = (x1 ∧ ... ∧ xi−1 ∧ xi ∧ xi+1 ∧ ... ∧ xr) + (x1 ∧
... ∧ xi−1 ∧ yi ∧ xi+1 ∧ ... ∧ xr)
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• x1 ∧ ... ∧ xr = 0 if xi = xj and i 6= j.

A counting argument will show that if M is free of rank n, then
∧rM is also free of rank

(
n
r

)
.

Now if (X,OX) is a ringed space and F an OX -module, then we define
∧r F to be the sheaf asso-

ciated to the presheaf U 7→
∧r F(U). If F is locally free of rank r, then we

∧r F is free of rank(
n
r

)
.

Theorem 1.2.17. Let E be a smooth vector bundle of rank n over a smooth manifold M , and F the
sheaf associated to E. Then F is locally free of rank n. Conversely, if F is a locally free sheaf of
finite rank n, there exists a bundle E whose associated sheaf is isomorphic to F .

Proof. Let M be covered by {Ui} such that E is locally trivial on each Ui. Now on each Ui, every
section s : Ui → π−1(Ui) can be identified with a map s′ : Ui → Rn through the local trivialisation
and the identification of fibres Ep ∼= {p} × Rn. Now since s is smooth, the component functions of
s′ are also smooth, and thus we can identify s with n smooth functions sj : Ui → R for 1 ≤ j ≤ n,
giving us an element of

⊕n
j=1OM (U). Conversely, an element of

⊕n
j=1OM (U) is simply a tuple

of n smooth functions sj : Ui → R, which gives us a smooth function s′ : Ui → Rn, which we can
identify with a unique s : Ui → π−1(Ui). This shows that F is locally free of rank n.

Conversely, if F is locally free of finite rank n, we will proceed as follows. Let {Ui}i∈I be a cover
of X such that F|Ui is free. Now we take E] :=

⊔
i∈I Ui × Rn, with the product topology. Every

element of E] is of the form (i, P, x), where i ∈ I , P ∈ Ui and x ∈ Rn. Note that by the construction
of sheafification in Theorem 1.1.14, we can interpret elements s of F(Ui) as functions s : Ui →⊔
P∈Ui FP where the mapping is given by s : P 7→ sP . Since F is locally free, FP is naturally

isomorphic to (OX,P )n, where OX,P is the set of germs of smooth functions at P , and thus we have
a natural map (OX,P )n ∼= FP → Rn defined by sP = (s1,P , ..., sn,P ) 7→ (s1,P (P ), ..., sn,P (P )).
Composing this map with s itself, we may identify s with a natural map s] : Ui → E] given by
P 7→ (i, P, s1,P (P ), ..., sn,P (P )) ∈ E]

We define the equivalence relation∼ by (i, P, x) ∼ (j,Q, y) if P = Q and if for every s ∈ F(Ui∩Uj)
the map s] satisfies the property s](P ) = x if and only if s](Q) = y. Finally, we define E to be
E]/ ∼.

Now we will check that E is indeed a smooth vector bundle. To this end, take some P ∈ M , so
that its fibre is π−1(P ) = (

⊔
i(i, P ) × Rn)/ ∼ where the disjoint union is taken over all indices

i such that P ∈ Ui. It is easy to see that given i, j and any element (i, P, x) there exists a unique
x′ ∈ Rn such that (i, P, x) ∼ (j, P, x′). This means that π−1(P ) has a natural vector space structure.
It remains to check local trivialisation. But this is obvious, indeed given P ∈ M take any Ui such
that P ∈ Ui and by construction its preimage is isomorphic to Ui × Rn

Finally, we check that the sheaf associated to E is in fact isomorphic to F . To this end, let G de-
note the sheaf of sections of E and fix some U ⊆ M and some section s ∈ F(U). On each Ui such
that Ui ∩ U 6= ∅, the restriction s|Ui∩U defines a smooth function Ui ∩ U → Rn, and clearly this is
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compatible with restriction. Thus by the sheaf axioms, there exists some s′ ∈ G(U) that defines the
same smooth function, and thus we define the map s 7→ s′. This gives us a morphism of sheaves.
Since the induced map on stalks are clearly isomorphisms, this concludes the proof.

A natural generalisation then would be a sheaf that is not locally free, but locally presentable, by
which we mean the following:

Definition 1.2.18. Let (X,OX) be a ringed space and F an OX -module. We say F is quasicoherent
if X can be covered by open subsets {Ui} such that for every Ui there exists an exact sequence⊕

I

OX |Ui →
⊕
J

OX |Ui → F|Ui → 0

and the sets I and J depend on i. If we require the I and J to be finite, then F is coherent.

Proposition 1.2.19. Let F and G be quasicoherent (resp. coherent) sheaves. Then F ⊕G is quasico-
herent (resp. coherent).

Proof. Choosing a fine enough cover, we may assume that F and G are globally presentable. Thus
we have presentations ⊕

j∈J1

OX →
⊕
i∈I1

OX → F → 0

and ⊕
j∈J2

OX →
⊕
i∈I2

OX → G → 0

Then it is obvious that ⊕
j∈J1tJ2

OX →
⊕

i∈I1tJ2

OX → F ⊕ G → 0

is exact. Running the same argument through and assuming the I1, I2 and J1, J2 are finite yields the
result for coherent sheaves.

We conclude this section with a discussion about the dual sheaf of a locally free sheaf. A bit of
notation: given sheaves F and G, we denote Hom(F ,G) to be the sheaf U 7→ Hom(F|U ,G|U ) (it is
easily checked to be a sheaf). If F and G are OX -modules, we similarly define HomOX (F ,G).

Definition 1.2.20. Let (X,OX) be a ringed space and F a locally free OX -module of finite rank n.
We define the dual sheaf of F , denoted F∨ to be the sheaf HomOX (F ,OX).

Proposition 1.2.21. For any OX -module F we have (F∨)∨ ∼= F .

Proof. We define the morphism ϕ : F → (F∨)∨ as follows: given an open set U and some s ∈ F(U)
we define ϕU (s) to be the map evs : F∨|U → OX |U ; that is given V ⊆ U and t ∈ F∨(V ) we define
evs,V (t∨) to be the section tV (s|V ). It is easily checked that this is a morphism of sheaves. To check
that this is an isomorphism, we observe that at a given point the induced map of stalks is simply the
canonical inclusion FP → (F∨P )∨. Since F is locally free of rank n, this corresponds to the canonical
inclusion OnX,P → ((OnX,P )∨)∨, which is an isomorphism.
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Proposition 1.2.22. For anyOX -modules F and G we have HomOX (F ,G) ∼= F∨⊗G. In particular,
F∨ ⊗F ∼= HomOX (F ,F).

Proof. We define the morphism ϕ : F∨ ⊗ G → HomOX (F ,G) as follows. Given an open set U
and some s∨ ⊗ t ∈ HomOX,U (F|U ,OX |U ) ⊗ G(U), we define ϕ[U (s∨ ⊗ t) : F|U → G|U to be the
morphism given by x 7→ s∨V (x)t|V for any open V ⊆ U and x ∈ F(V ). As U varies, this defines
a morphism of presheaves ϕ[. By the universal property of sheafification (Theorem 1.1.14), this
induces a morphism of sheaves (ϕ[)] : F∨ ⊗ G → HomOX (F ,G). We define ϕ := (ϕ[)]. To check
that this is an isomorphism, we simply note that at a point P the induced map of stalks is simply the
natural isomorphism F∨P ⊗ GP → HomOX,P (FP ,GP ).

1.3 Sheaf Cohomology

Recall (Proposition 1.1.20) that the sections functor ΓU (·) is left-exact but not exact. In practice, this
presents a difficulty when computing dimensions of global sections. It would therefore be convenient
if there was a way to measure this obstruction. More precisely, given a short exact sequence of
sheaves,

0 F G H 0

we would like a long exact sequence

0 H0(X,F) H0 (X,G) H0 (X,H)

H1 (X,F) H1 (X,G) H1 (X,H) ...

(1.1)

of abelian groups where H0(X,F) = ΓX(F), and there exists some n ∈ N such that H i(X,F) = 0
for all i ≥ n. Fortunately, such a sequence does exist, and the H i(X,F) are called the cohomology
groups of F . We dedicate the remainder of this section to their construction.

The way we will construct these groups is Grothendieck’s derived functor approach, which is the
most general and can be generalised to construct other cohomology theories, for example étale co-
homology. We will work over an arbitrary abelian category (see [5]), and by the Freyd-Mitchell
embedding theorem [3, Thm 7.14] we may assume without loss of generality that the abelian cate-
gory is a subcategory of the category of modules over some ring. In particular, this means that we may
“diagram-chase” in our proofs. An object in this section will always mean an object in an abelian
category.

Definition 1.3.1. Let A and B be abelian categories. A functor F : A → B is said to be additive
if for every hom-set HomA(A,B) in A the induced map HomA(A,B) → HomB(F (A), F (B)) is a
homomorphism of abelian groups.
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Proposition 1.3.2. Suppose F : A → B is an additive functor. Then for any objects A and B in A,
we have

F (A⊕B) = F (A)⊕ F (B)

.

Proof. [9, p.197]

Definition 1.3.3. A (co-chain) complex A• is a collection of objects Ai for every integer i as well
as maps diA : Ai → Ai+1 called co-boundary maps, with the property that di+1

A ◦ diA = 0 for all i.
If there is no ambiguity, we will write di in place of diA. For each i, we define the i-th cohomology
group H i(A•) to be ker di/ im di−1; this makes sense by the previous condition. If we only specify
objects or co-boundary maps for some i, the rest are assumed to be 0. A morphism of complexes
f• : A• → B• is a collection of morphisms f i : Ai → Bi that commute with the co-boundary maps.

Note that a morphism of complexes f• : A• → B• naturally induces morphisms between the co-
homology groups H i(f•) : H i(A•) → H i(B•) given by x 7→ f i(x), where x is the image of
x ∈ ker diA in H i(A•) and f i(x) is the image of f i(x) ∈ ker diB in H i(B•). It is easily checked to
be well-defined.

Theorem 1.3.4. Given a short exact sequence of complexes

0 A• B• C• 0

There exists a long exact sequence of cohomology groups

0 H0 (A•) H0 (B•) H0 (C•)

H1 (A•) H1 (B•) H1 (C•) ...

Proof. First consider the diagram:

0 A0 B0 C0 0

0 A1 B1 C1 0

0 A2 B2 C2 0

a0 b0 c0

a1 b1 c1

Now the sequence

0→ ker a0 → ker b0 → ker c0 → coker a0 → coker b0 → coker c0

is exact by the Snake Lemma (Theorem A.0.2). Now since the 0th cohomology groups are simply
the kernels of the 0th maps and since the 0th maps map into the kernel of the first map, we can restrict
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the cokernels of the 0th maps to the kernels of the first map while retaining exactness to get the exact
sequence:

0→ H0 (A•)→ H0 (B•)→ H0 (C•)→ H1 (A•)→ H1 (B•)→ H1 (C•)

Now applying the Snake Lemma at some i ≥ 1 we have an exact sequence:

ker ai → ker bi → ker ci → coker ai → coker bi → coker ci

Then clearly the following sequence is also exact:

H i(A•)→ H i(B•)→ H i(C•)

Now it remains to check that H i(B•) → H i(C•) → coker ai is still exact, but this follows from the
surjectivity of Bi−1 → Ci−1 and the exactness of the original maps, and once again restricting the
cokernel we get the exact sequence:

H i (A•)→ H i (B•)→ H i (C•)→ H i+1 (A•)→ H i+1 (B•)→ H i+1 (C•)

And thus by induction, we have the desired long exact sequence of cohomology groups.

Definition 1.3.5. An object I is injective if if given any injective map i : A → B and morphism
ϕ : A → I there exists a (not necessarily unique) ϕ] : B → I such that the following diagram
commutes:

A B

I

i

ϕ

ϕ]

Before we state the next result, recall that Hom(·, A) is a contravariant left-exact functor.

Proposition 1.3.6. Let I be an object. Then the following are equivalent:

(a) I is injective;

(b) The functor Hom(·, I) is exact;

(c) Every short exact sequence of the form

0 I A B 0
f

(1.2)

splits.

Proof. We begin with (c)⇒ (a), which is the hardest direction. The following proof is based on the
one found in [7, p.17]. Suppose we have an inclusion i : A → B and a morphism ϕ : A → I . Now
we have a map A→ I ⊕B given by a 7→ (ϕ(a),−a). Let M denote the cokernel of this map, hence
we have the following exact sequence:

A I ⊕B M 0π
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We claim π|I is injective. Indeed, if π(x, 0) = 0 then (x, 0) = (ϕ(a),−a) for some a ∈ A, which
means a = 0. Thus we have the following short exact sequence, which splits by assumption:

0 I M cokerπ|I 0
π|I

Hence there exists a map M → I such that I
π|I→ M → I = id. We claim that B

π|B→ M → I is our
desired map. Indeed, if a ∈ A, then

π(0, a) = π(0, a) + π(ϕ(a),−a) = π(ϕ(a), 0) 7→ ϕ(a)

as required.

Next we establish (b)⇒ (c). We apply Hom(·, I) to 1.2 to obtain the following sequence:

0 Hom(B, I) Hom(A, I) Hom(I, I) 0
f∗

In particular, there exists a g : A → I such that g ◦ f = id. We construct a map B → A as follows:
given b ∈ B, we define its image to be the unique x such that f(x) = b and x ∈ ker g. To see that
such an element exists, we take any b′ ∈ A that maps to b and define x := b′ − f ◦ g(b′). To see that
this element is unique, suppose x′ ∈ ker g also satisfies f(x′) = b. Then x−x′ ∈ im f ∩ker g, which
is easily seen to be 0. Thus we have have a map I ⊕ B → A, and this map is easily seen to be the
unique map which commutes with g and A→ B, and thus A satisfies the required universal property.

The equivalence (a)⇔ (b) follows directly from the definitions.

Example 1.3.7. An abelian group G (written additively) is said to be divisible if for every y ∈ G and
n ∈ N there exists x ∈ G such that nx = y. We claim that G is injective if and only if it is divisible.
Indeed, if G is injective, then given n ∈ N and y ∈ G, we define ϕ : Z → G given by 1 7→ y, and
i : Z→ Q to be the natural embedding. Since G is injective, the map ϕ lifts to ϕ] : Q→ G, and the
element x := ϕ(1/n) has the desired property.

Conversely, if i : A → B is injective, and we have a map ϕ : A → G, a Zorn’s Lemma argu-
ment applied to pairs (C,ϕ]C) where C ⊆ B is a subgroup containing A and ϕ]C : C → I is a map
such that ϕ]C ◦ i = ϕ, will yield the result.

Definition 1.3.8. Let A be an object. An injective resolution A → I• of A consists of a complex I•

such that each Ii is injective and an inclusion A→ I0 such that the following sequence is exact:

0 A I0 I1 ...

Example 1.3.9. An injective resolution of Z is

0 Z Q Q/Z 0
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An abelian category A has enough injectives if every objectA can be embedded in an injective object.
If A has enough injectives, then it is easy to see that every object has an injective resolution. Indeed,
we can define I0 to be some injective object into which A embeds, and I1 to be some injective object
into which I0/A embeds and having defined Ii and Ii−1 for i ≥ 1, we define Ii+1 to be an injective
object into which Ii/Ii−1 embeds.

Our further constructions will involve choosing and manipulating an injective resolution for each
object, so naturally we have to check that these do not depend on the injective resolution we choose.
To do this, we introduce the idea of a homotopy of complexes. Let A• and B• be two complexes with
co-boundary maps diA and diB respectively for each i. We say two morphisms f•, g• : A• → B• are
homotopic if there exists a collection ∆i : Ai → Bi−1 of morphisms for each i (that do not neces-
sarily commute with the co-boundary maps) such that f i − gi = di−1

B ◦∆i + ∆i+1 ◦ diB for each i.
Diagramatically:

Ai Ai+1

Bi−1 Bi

diA

∆i

f i−gi
∆i+1

di−1
B

It is readily seen that if f and g are homotopic, then they induce the same map on cohomology. Now
we introduce a fundamental lemma, which will ensure that our further constructions are well-defined:

Lemma 1.3.10. Let A→ I• and B → J• be two injective resolutions and f : A→ B a morphism.
Then f induces a morphism of complexes f• : I• → J• which is unique up to homotopy.

Proof. The proof for the dual result can be found at [13, p.50]. Applying the same argument with
relevant arrows reversed yields this result.

For the remainder of this section, F will be an additive left-exact covariant functor from an abelian
category A with enough injectives into another such abelian category B.

Definition 1.3.11. We define the right derived functors of F as follows: for each object A we choose
an injective resolution A → I•. Then we apply F to our resolution and remove F (A) to get a
complex F (I•) (which is not necessarily still exact), and then we define the right derived functors
RiF (A) := H i(F (I•)). By the above lemma, any two injective resolutions will define canonically
isomorphic right derived functors.

Theorem 1.3.12. There is a natural isomorphism F (A) ∼= R0F (A).

Proof. By the left-exactness of F the following sequence is still exact:

0 F (A) F (I0) F (I1)
F (d0)

Thus ε : F (A) → F (I0) is injective and kerF (d0) = im ε ∼= F (A). Hence R0F (A) = H0(I•) =
kerF (d0)/0 ∼= F (A) as required.
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Theorem 1.3.13. For any short exact sequence:

0 A B C 0

There exists a long exact sequence:

0 R0F (A) R0F (B) R0F (C)

R1F (A) R1F (B) R1F (C) ...

Proof. We select injective resolutions A → I• and C → J• for A and C. Applying the Horseshoe
Lemma Lemma A.0.3, we get an injective resolution B → (I ⊕ J)• of B. In particular, we have a
short exact sequence of complexes that splits.

0 I• I• ⊕ J• J• 0

Applying F now, Proposition 1.3.2 implies that we have a short exact sequence of complexes:

0 FI• FI• ⊕ FJ• FJ• 0

The Snake Lemma then implies the result.

We will now show that this construction is unique in some way. We require a definition:

Definition 1.3.14. Let A and B be abelian categories. A covariant δ-functor from A to B consists of
a collection of functors T = (T i)i≥0 for each nonnegative integer i such that given any short exact
sequence,

0 A B C 0 (1.3)

and i ≥ 0 there exists a morphism δi : T i(C)→ T i+1(A) such that the resulting sequence is exact

0 T 0 (A) T 0 (B) T 0 (C)

T 1 (A) T 1 (B) T 1 (C) ...

δ0

and given a morphism of the sequence 1.3 into another sequence,

0 A′ B′ C ′ 0

the following square commutes:

T i(C) T i+1(A)

T i(C ′) T i+1(A′)

δi

δi
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Proposition 1.3.15. The collection of right derived functors is a covariant δ-functor.

Proof Sketch. Note that we have already proved the existence of the long exact sequence, so it suffices
to show that the square commutes. To this end, we simply chase through the following diagram:

0 A B C 0

0 A′ B′ C ′ 0

0 I0 I0 ⊕ J0 J0 0

0 I0′ I0′ ⊕ J0′ J0′ 0

Definition 1.3.16. A δ-functor T from A to B is universal if given another δ-functor T ′, and a natural
transformation f0 : T 0 → T 0′ , there exists a unique collection of natural transformations f i : T i →
T i
′

for each i > 0 which commute with the δi−1.

Note that if we fix T 0 (for example requiring F = R0(F )), then if a universal δ-functor exists, then
it is unique up to isomorphism.

We present a striking theorem of Grothendieck:

Theorem 1.3.17 (Grothendieck). Let T = (T i)i≥0 be a δ-functor from A into B. If for every object
A in A and i > 0 there exists a monomorphism u : A→M such that T i(u) = 0 then T is universal.

Proof. [5, p.141]

Corollary 1.3.18. The right derived functors RiF are universal.

Proof. Fix an object A, and take a monomorphism into an injective object u : A→ I . Note that

0 I I 0

is an injective resolution of I . In particular, RiF (I) = 0 for all i > 0. Thus F (u) = 0. Then
Theorem 1.3.17 implies the result.

Finally, we will define the cohomology groups for sheaves. Let (X,OX) be a ringed space. Note that
the category of OX -modules is naturally abelian.

Theorem 1.3.19. The category ofOX -modules has enough injectives. In particular, if we takeOX to
be the constant sheaf Z, then the category of sheaves of abelian groups on X has enough injectives.
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Proof. [6, p, 207]

Hence we see that if we define H i(X,F) to be the right derived functors of ΓX , then we will have
the desired long exact sequence of cohomology groups. We conclude this section with the statement
of Grothendieck’s Vanishing Theorem. Recall that the Noetherian dimension of a topological space
X is the maximum natural number n such that there is a chain of irreducible closed subsets

Z0 ( Z1 ( ... ( Zn

If no such natural number exists, then the dimension is taken to be∞.

Theorem 1.3.20. [5, Théorème 3.6.5] Let X be a Noetherian topological space of Noetherian di-
mension n. Then for all i > n and all sheaves of abelian groups F on X we have H i(X,F) = 0.
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Chapter 2

Schemes

2.1 Definitions and Properties of Schemes

Definition 2.1.1. Let A be a ring. Then the spectrum of A, written SpecA is the set of prime ideals
of A.

Let I be a subset of A. We write V(I) to be the set of prime ideals p of SpecA such that p ⊇ 〈I〉.

Lemma 2.1.2. Let A be a ring. Then the following hold:

(i) V(0) = SpecA,V(1) = ∅

(ii) If I and J are two ideals, then V(IJ) = V(I) ∪ V (J)

(iii) If {Iα} is a family of ideals, then V(
∑
Iα) = ∩α(V(Iα))

Proof. [6, p.70]

It follows from these two observations that the sets V(I) taken across all ideals I form the closed sets
of a topology on SpecA. We call this topology the Zariski topology.

Definition 2.1.3. Let f be an element of A. The distinguished open subset generated by f , written
D(f) is the set SpecA \ V(f)

Proposition 2.1.4. The distinguished open subsets form a base of the Zariski Topology on SpecA.

Proof. Let U = X \ V(I) be an open subset of SpecA. Note that

I =
∑
f∈I
〈f〉

and by Lemma 2.1.2 we have
V(I) =

⋂
f∈I
V(f)

Taking complements and applying de Morgan’s laws will yield the result.

We now define a sheaf of rings O on SpecA to make a ringed space. We proceed as follows: for
each D(f), we define O(D(f)) := A[f−1], the localisation of A at the multiplicative set 〈f〉. Note
that D(f) ∩D(g) = D(fg) and thus we have a natural restriction map between base open subsets.

25
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In particular, observe that the global section is isomorphic to A. We can check the sheaf axioms
are satisfied (for example [2, pp.19-20]) and thus by Lemma 1.1.11 we have a sheaf. By abuse of
notation, we will simply denote the pair (SpecA,O) as just SpecA. It is a ringed space; in fact a
locally ringed space:

Proposition 2.1.5. Let SpecA be the spectrum of some ring A. Then for any p ∈ SpecA, the stalk
at p is isomorphic to Ap.

Proof. [6, p.71]

We now come to the definition of a scheme:

Definition 2.1.6. An affine scheme is a locally ringed space that is isomorphic to the spectrum of
some ring. A scheme is a locally ringed space (X,OX) that can be covered by open sets {Uα} such
that for each Uα the pair (Uα,OX |Uα) is an affine scheme. Such a Uα is known as an open affine
subset. A morphism of schemes is a morphism of locally ringed spaces between schemes.

Example 2.1.7. LetX = SpecZ. Then the elements ofX are the ideals generated by prime numbers,
and the zero ideal. Since Z is a PID, every open set is a distinguished open set, and on the open set
D(n), we have OX(D(n)) = Z[n−1]. Note that X does not have an analogy in the category of
classical varieties.

Example 2.1.8. Let A denote the zero ring and let X = SpecA. Since A has no prime ideals, X
does not contain any points. The sheaf of rings is therefore empty too. Conversely, if X is a scheme
and OX(U) is the zero ring, then for any open affine subset V we have OX(V ) = 0 and hence V is
empty, and thus U is empty too.

Let k be an algebraically closed field. Then any affine variety V over k has a natural associated
scheme, Spec k[V ], where k[V ] is its co-ordinate ring. Note firstly that V is T1, whereas Spec k[V ]
is not always, for example, if V is the affine plane, then any prime ideal of k[V ] ∼= k[x, y] that is not
maximal will not be closed. (In fact, the point corresponding to the zero ideal is dense! Such a dense
point is known as a generic point). However, the set of closed points of Spec k[V ] is homeomorphic
to V , and the sheaf of regular functions on V pushed forward via the inclusion is isomorphic to
OSpec k[V ]. We will study another subtle difference below.

Example 2.1.9. As varieties, the equations x = 0 and x2 = 0 define the same variety in A1(k). In-
deed, they both correspond to the point 0. However, as schemes, we observe thatX := Spec k[x]/〈x〉
and Y := Spec k[x]/〈x2〉 are different. While topologically they are identical, consisting of only one
point, we observe that the space of global sections (which in this occasion is also the local ring) of
X is isomorphic to k whereas the space of global sections of Y is a two-dimensional k-algebra. This
shows how schemes can retain information that is lost in the case of varieties.

Of course, not every scheme is affine, see for example Example 3.1.12.

Proposition 2.1.10. Let SpecA be an affine scheme and g ∈ A. Then D(g) with the restricted sheaf
is isomorphic to SpecA[g−1].
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Proof. The setD(g) is the set of prime ideals that do not contain any power of g and are in one-to-one
correspondence with the prime ideals of A[g−1]. This defines a map f : D(g)→ SpecA[g−1] which
is clearly a homeomorphism. We now define a map f# : OSpecA[g−1] → f∗OSpecA[g−1]|D(g). Indeed,
given any base open set D(h) ∈ SpecA, the corresponding base open set in D(g) is D(gh), and we
have OSpecA(D(gh)) = A[(gh)−1]. On the other hand, the corresponding open set in OSpecA[g−1]

also has a section isomorphic to A[(gh)−1], and thus we have an isomorphism of sections. Clearly
these commute with restriction, and thus we have a isomorphism of sheaves as required.

Corollary 2.1.11. The underlying topological space of every scheme has a base of open affine
schemes.

Proposition 2.1.12. Every affine scheme is compact.

Proof. Let X = SpecA be an affine scheme, and let {D(Iα)} be open sets which cover X . Then by
definition,

∑
α I = A and in particular, there exist some finite collection f1, ..., fn where fi ∈ Iαi

such that 1 =
∑n

i=1 fi. Then the {D(Iα1), ..., D(Iαn)} cover X

Theorem 2.1.13. The category of affine schemes is equivalent to the opposite category of rings

Proof. A morphism of rings ϕ : A→ B induces a morphism of spectra f : SpecB → SpecA given
by f(p) = ϕ−1(p). This in turn induces naturally a morphism of sheaves f# : OSpecA → OSpecB .
Details can be found in [6, p.73].

Conversely, given a morphism (f, f#) : SpecB → SpecA, we have a morphism of sheaves
OSpecA → f∗OSpecB . Taking global sections we obtain a morphism ϕ : A → B. We can then
show that f is induced by ϕ. Details can be found in [6, p.73].

Example 2.1.14. The inclusion morphism SpecA[f−1]→ SpecA corresponds to the inclusionA→
A[f−1].

We will now introduce the Proj construction. This is a generalisation of projective varieties, in the
same way affine schemes are generalisations of affine varieties. In order to do so, we will first need
the concept of a graded ring.

Definition 2.1.15. Let S be a ring. A grading on S is a collection of subgroups Si indexed over some
commutative monoid G, often the nonnegative integers, such that S =

⊕
i∈G Si and SiSj ⊆ Si+j

for any i, j ∈ G. A ring S equipped with such a grading is known as a graded ring. An element of
such an Si is known as a homogeneous element of degree i. A homogeneous ideal is an ideal that
can be generated by homogeneous elements. If S is graded over the nonnegative integers, the ideal
S+ =

⊕
i>0 Si is known as the irrelevant ideal. A graded homomorphism is a homomorphism of

rings graded over the same monoid ϕ : S → T such that ϕ(Si) ⊆ Ti.

Example 2.1.16. The canonical example is S = k[x1, ..., xn] for some field k. The Si are the group
of homogeneous polynomials of degree i.

Example 2.1.17. Let S be a graded ring and T a multiplicative system of homogeneous elements.
Then T−1S has a natural grading, where deg(s/t) = deg(s)− deg(t).
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Definition 2.1.18. Let S be a ring graded over Z≥0. We define ProjS to be the set of homogeneous
prime ideals of S that do not contain the irrelevant ideal.

Similar to Spec, we will introduce a topology on ProjS. For a set of homogeneous elements I , we
define V+(I) to be the elements of ProjS that contain 〈I〉. The statements of Lemma 2.1.2 all hold
here too, and thus the V+(I) form a topology on ProjS.

Definition 2.1.19. For a homogeneous f ∈ S+, we define the distinguished open homogeneous
subsets D+(f) to be D+(f) := ProjS \ V+(f).

Proposition 2.1.20. The D+(f) form a base of the topology on ProjS. If S is generated by S1 as an
S0-algebra, then the D+(f) for f ∈ S1 form a base of the topology on ProjS.

Proof. The proof is identical to that of Proposition 2.1.4, except we sometimes add in the condition
of homogeneity.

And finally we define a sheaf of rings O on ProjS. To do this, we define O(D+(f)) := (S[f−1])0,
the elements of degree 0 in the ring S[f−1]. Note that there is a natural homeomorphism between
D+(f) and the underlying space of Spec(S[f−1])0, and thus (D+(f),O|D+(f)) ∼= Spec(S[f−1])0.
This shows that ProjS is actually a scheme! We call a scheme of the form ProjS a scheme of Proj
type.

Similar to Spec, we can show that Proj is a contravariant functor (only for graded homomorphisms);
the proof is virtually identical.

Example 2.1.21. For any projective variety V with co-ordinate ring S := k+[V ], the scheme ProjS
is the scheme which is naturally associated to V .

Proposition 2.1.22. Let V be a projective variety over k, let S := k+[V ] and let X := ProjS. Then
ΓX(OX) ∼= k.

Proof. By Lemma 1.1.11, we know that ΓX(OX) = lim←−F(U) where the limit is taken across all the
distinguished open subsets. It is easy to check that k satisfies the required univeral property.

We will now study some general properties of schemes.

Let A be a ring and X a scheme. Given a morphism f : X → SpecA, we have an associated
morphism of sheaves f# : OSpecA → f∗OX and taking global sections we have a morphism
A→ ΓX(OX). Thus we have a map α : Hom(X,SpecA)→ Hom(A,ΓX(OX)).

Proposition 2.1.23. The above map α is a bijection

Proof. Given a homorphism g : A → ΓX(OX), composing with the natural maps ΓX(OX) → Bi
for an affine open subset SpecBi we get a morphism gi : A → Bi. Applying Spec, this in turn
gives us morphisms SpecBi → A for every Bi. It suffices to show that this uniquely determines a
morphism f : X → SpecA such that α(f) = g. To this end, we note that the SpecBi cover X and
they thus factoring through their inclusion maps, we get a map of topological spaces. We will show
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it is well defined; suppose p is contained in both SpecBi and SpecBj . Let SpecB be an open affine
subset of SpecBi ∩ SpecBj that contains p. Then the following diagram commutes:

A

ΓX(OX)

Bi Bj

B

and thus tracing p as a prime ideal of B back, we see that its image in SpecA is well-defined.

We will now define the map of sheaves f# : SpecA→ f∗(OX). But this follows since Γf−1(U)(OX) =
lim←−iBi for each U , where the limit is taken over all affine open subsets SpecBi of f−1(U). Clearly
then α(f) = g, since ΓX(OX) = lim←−iBi where the limit is taken over all i. Moreover, it is
clear that this f is unique, since the induced map of global sections uniquely determine the maps
SpecBi → SpecA, which uniquely determines the morphism, as we have seen.

Corollary 2.1.24. The scheme SpecZ is final in the category of schemes. The scheme Spec 0 is initial
in the category of schemes.

Proof. This follows from the above proposition and the fact that Z and 0 are respectively initial and
final in the category of rings.

2.2 OX-Modules on a Scheme

We have looked at OX -modules before in the setting of a ringed space, and we have shown, as an
example, that a vector bundle on a manifold is a locally free sheaf. This motivated the definition
of quasicoherent and coherent sheaves as a generalisation. In the setting of schemes , quasicoherent
sheaves are much better behaved, and have many desirable properties. In fact, we will give a char-
acterisation of all quasicoherent sheaves on an affine scheme, and all coherent sheaves for a class of
affine schemes. We begin with a definition.

Definition 2.2.1. Let A be a ring and M an A-module. Then we define the sheaf associated to M on
SpecA, denoted M̃ to be the unique sheaf that takes on the values M [f−1] for all distinguished open
subsets D(f). It can be shown that this is a sheaf ([2, pp.19-20]).

Proposition 2.2.2. If A is a ring and X = SpecA then Ã = OX

Proof. Clear from the definitions

Proposition 2.2.3. The functor M 7→ M̃ is fully faithful and exact.
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Proof. (Taken from [6, p. 111]) The first statement follows since ∼ induces a map HomA(M,N)→
HomOX (M̃, Ñ) for any pair of A-modules N and M . Then taking global sections gives us a map the
other way, and these two maps are clearly inverses. The second statement follows because localisation
is exact, and a sequence is exact if and only if the induced sequence of stalks is exact.

We will now characterise quasicoherent sheaves on an affine scheme. We begin with a lemma

Lemma 2.2.4. Let X = SpecA be an affine scheme. Then for any A-module M and OX -module F
there is a natural isomorphism

HomA(M,ΓX(F)) ∼= HomOX (M̃,F)

Proof. We define α : HomOX (M̃,F) → HomA(M,ΓX(F)) as follows: given a morphism ϕ :
M̃ → F we define α(ϕ) := ϕX , the morphism between global sections. This is clearly a group
homomorphism.

To check that it is an isomorphism, we observe that any morphism of sheaves is uniquely deter-
mined by the morphisms on the distinguished open subsets. The morphism between global sections
is also uniquely determined this way, by Lemma 1.1.11, and thus it follows that α is injective. To see
that it is surjective, note that for any f ∈ A and morphism ϕX : M → ΓX(F), there exists a unique
morphism ϕD(f) : F [f−1]→ ΓD(f)(F) such that the following diagram commutes

M ΓX(F)

M [f−1] ΓD(f)(F)

ϕX

ϕD(f)

and hence any ϕX lifts to a morphism of sheaves ϕ : M̃ → F . The naturality is easy to check.

Theorem 2.2.5. Let X be a scheme and F an OX -module. Then F is quasicoherent if and only
if X can be covered by affine open subsets U = SpecA such that F|U ∼= M̃ for some A-module
M . Furthermore, if each A is Noetherian, then F is coherent if and only if F|U ∼= M̃ for some
finitely-generated A-module M .

Proof. Since quasicoherence and coherence are local properties, we may assume X is affine and
equal to SpecA. Suppose F = M̃ for some module M . Note that M is presentable, thus we have an
exact sequence ⊕

i∈I A
⊕

j∈J A M 0

Applying ∼ we deduce F is quasicoherent. If M is finitely generated, then the sets I and J are finite
(we need the Noetherian hypothesis to deduce that the kernel of

⊕
j∈J A→M is finitely-generated),

and thus F is coherent.

Conversely, suppose we have an exact sequence⊕
i∈I OX

⊕
j∈J OX F 0 (2.1)
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Taking global sections, we have a morphism AI → AJ , and we define M to be the cokernel of this
map. Applying ∼, we have an exact sequence⊕

i∈I OX
⊕

j∈J OX M̃ 0 (2.2)

The above lemma implies that the first morphisms in 2.1 and 2.2 are the same, and hence M̃ and F
are cokernels of the same morphism, and are hence isomorphic.

If F is coherent, then I and J are finite, thus M is finitely generated.

Corollary 2.2.6. There is an equivalence of categories between the category of A-modules and qua-
sicoherent OSpecA modules. If A is Noetherian, then there is an equivalence of categories between
the category of finitely-generated A-modules and the category of coherent OSpecA modules.

Proposition 2.2.7. Let ϕ : A→ B be a homomorphism of rings, f : SpecB → SpecA the induced
morphism of spectra, M an A-module and N a B-module. Write NA for N as an A-module. Then
f∗(Ñ) ∼= ÑA and f∗(M̃) ∼= M̃ ⊗A B

Proof. For the first statement, take a base open subset D(g) of SpecA. Pulling back, this is the base
open subset D(ϕ(g)) of SpecB, thus

f∗(Ñ)(D(g)) = Ñ(D(ϕ(g)))A[g−1] = NA[g−1] = NA(D(g))

It is clear that this isomorphism lifts to an isomorphism of sheaves.

For the second statement, we observe firstly that by Theorem A.0.1 there is a natural isomorphism

HomB(M ⊗A B,N) ∼= HomA(M,NA)

Now by Lemma 2.2.4, we know that there are isomorphisms

HomOSpecB
(M̃ ⊗A B, Ñ) ∼= HomB(M ⊗A B,N)

and
HomA(M,NA) ∼= HomOSpecA

(M̃, ÑA)

and thus we have a natural isomorphism

HomOSpecB
(M̃ ⊗A B, Ñ) ∼= HomOSpecA

(M̃, ÑA)

Since ÑA
∼= f∗(Ñ), that means M̃ ⊗A B satisfies the adjunction property of f∗(M̃), and thus they

are isomorphic.

Next we introduce the following key theorem, which helps us characterise affine schemes.

Theorem 2.2.8. Let X be an affine scheme and F a quasicoherent sheaf. Then for all i > 0 we have
H i(X,F) = 0
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Proof. [4, p.432]

Finally, we conclude this section with an analogous construction for Proj-type schemes.

Definition 2.2.9. Let X = ProjS be a projective scheme and M a graded S-module. We define the
sheaf associated toM , denoted M̃ to be the sheaf such that for eachD+(f), we define M̃(D+(f)) :=
M [f−1]0, the degree zero elements of the localised module M [f−1]0.

Note that on SpecS[f−1]0, the restriction of the sheaf M̃ is simply M̃ [f−1]0, and thus the sheaf M̃
is quasicoherent.

2.3 Morphisms

In this section, we will study some properties of morphisms. To begin, we will define two especially
important classses of morphisms, known as open immersions and closed immersions. These provide
us with a rigorous definition of subschemes.

Definition 2.3.1. LetX be a scheme and U an open subset ofX . Then U equipped with the restricted
sheaf OX |U is a scheme, by Proposition 2.1.4. An open subscheme is a scheme (Y,OY ) that is
isomorphic to (U,OX |U ). An open immersion is an open subscheme Y equipped with a morphism
Y → X that factors into an isomorphism Y → U followed by the inclusion U → X .

Indeed, the inclusion i : U → X equipped with the natural morphism of sheaves i# : OX → i∗OU
is a morphism for any open set U .

Definition 2.3.2. Let X be a scheme. A closed subscheme of X is a scheme Y equipped with a
morphism Y → X , known as a closed immersion such that the map of spaces is a homeomorphism
onto a closed subset of X and the morphism of sheaves is surjective.

For any open subset U of X , there is a unique open subscheme up to isomorphism. However, this is
not true for closed subschemes. Consider the following example:

Example 2.3.3. Consider the affine line A1
k := Spec k[x]. The quotient map k[x]→ k[x]/〈x〉 corre-

sponds to the closed immersion that maps the unique point of Spec k[x]/〈x〉 to the point 〈x〉 ∈ A1,
and the associated morphism of sheaves is defined in the obvious way. Similarly, k[x] → k[x]/〈x2〉
defines a closed immersion that maps the unique point of Spec k[x]/〈x2〉 to the point 〈x〉 ∈ A1.
However, observe that these two schemes are not isomorphic.

Proposition 2.3.4. If X is a closed subscheme of Y = Proj k[x0, ..., xn] then ΓX(OX) = k if X is
nonempty.

Proof. Since ΓY (OY ) = k and the map ΓY (OY ) → ΓY (OX) is surjective, it follows that ΓX(OX)
is either zero or k. If ΓX(OX) is the zero ring, then ΓU (OX) = 0 for any open set U , which would
imply X is empty, contrary to the hypothesis. The result follows.

Definition 2.3.5. Let i : Y → X be a closed immersion. We define the sheaf of ideals IY of Y to be
the kernel of i# : OX → i∗OY .
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Theorem 2.3.6. The sheaf of ideals IY is quasicoherent. Conversely, any quasicoherent sheaf of
ideals on X is the sheaf of ideals of a unique closed subscheme up to isomorphism.

Proof. [6, p. 116]

Corollary 2.3.7. Let X = SpecA be an affine scheme. Then there is a one-to-one correspondence
between ideals of A and closed immersions of A. In particular, every closed subscheme of A is affine.

Proof. Given any ideal a, we observe that the projection A→ A/a identifies a closed immersion.

Conversely, let f : Y → X be a closed immersion. Then ideal sheaf of Y is quasicoherent, so it
is of the form ã for some ideal a. Thus we have the following short exact sequence

0→ ã→ OX → f∗OY → 0

By Theorem 2.2.8, taking global sections, we obtain

0→ a→ A→ A/a→ 0

Now taking Spec, we see ã is the sheaf of ideals of SpecA/a, and thus by the above theorem Y ∼=
SpecA/a. By Proposition 2.1.23, the projection A → A/a identifies the morphism Y → SpecA
uniquely. It is clear that this process is the inverse of the one defined in the first paragraph.

Now we come to the definition of a scheme over another scheme.

Definition 2.3.8. Let Y be a scheme. A scheme over Y is a scheme X equipped with a morphism
f : X → Y . If A is a ring, we will say X is a scheme over A if X is a scheme over SpecA.

Example 2.3.9. An affine variety V over k comes with an inclusion k → k[V ]. Applying Spec to
this map, we see that the scheme associated any affine variety is a scheme over k.

Example 2.3.10. If V is a projective variety with projective coordinate ring k+[V ], then by Propo-
sition 2.1.22 and Proposition 2.1.23 there is a natural map Proj k+[V ] → Spec k induced by the
identity map on k, thus the scheme associated to projective varieties are schemes over k.

Definition 2.3.11. A morphism f : X → Y is locally of finite type if Y can be covered by open affine
subsets Vi = SpecBi such that f−1Vi can be covered by Uij = SpecAj such that Aj is a finitely
generated Bi-algebra. The morphism f is of finite type if f−1Vi can be covered by a finite number of
the Uij .

Example 2.3.12. If V is an affine variety with coordinate ring A := k[V ], then the morphism
SpecA→ Spec k is of finite type.

Example 2.3.13. If V is a projective variety with projective coordinate ring S := k+[V ], then the
morphism ProjS → Spec k is of finite type. Indeed, ProjS can be covered by a finite number of
the sets SpecS[f−1]0, and since each S[f−1]0 is finitely generated as an algebra over k, the result
follows.
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We conclude this section with some important results about coherent sheaves on a projective scheme
over a field. Before we begin, first observe that if S = k[x1, ..., xn] is the polynomial ring over a field
k then there is a natural map X = ProjS → Spec k, induced by the identity map k → k = ΓX(OX)
(Proposition 2.1.23).

Definition 2.3.14. Let X be a scheme over a field k. We say X is projective over k if the morphism
ϕ : X → Spec k factors into a closed immersion X → Proj k[x1, ..., xn] for some n followed by the
map Proj k[x1, ..., xn]→ Spec k as described above.

Example 2.3.15. Let S = k[x, y, z]/〈y2−xz〉. Then the natural map k[x, y, z]→ k[x, y, z]/〈y2−xz〉
induces a closed immersion ProjS → Proj k[x1, ..., xn]. Composing with the projection we observe
that ProjS is projective over k.

Theorem 2.3.16. Let X be a projective scheme over k and let F be a coherent OX -module. For any
i ≥ 0 we have dimkH

i(X,F) <∞.

Proof. [6, p.228].

Definition 2.3.17. Let X be a projective scheme over k and F a coherent sheaf. We define the Euler
characteristic, χ(F) of F to be the following quantity:

∞∑
i=0

(−1)i dimkH
i(X,F)

Proposition 2.3.18. Let X be a projective scheme over k and suppose F ,G,H are coherent sheaves
such that the following sequence is exact:

0 F G H 0

Then χ(G) = χ(F) + χ(H).

Proof. Since Proj k[x0, ..., xn] has dimension n (see, for example, [6, p.12]), and X is a closed
subset of Proj k[x0, ..., xn] for some n, it follows that X is finite-dimensional (and thus Noetherian
as a topological space). By Theorem 1.3.20, it follows that H i(X,F) = H i(X,G) = H i(X,H) = 0
for i > n. Thus the long exact sequence of cohomology 1.3.13 is zero for all but finitely many
terms, and since theH i are finite-dimensional vector spaces, the result follows from the Rank-Nullity
Theorem.

2.4 Varieties as Schemes

As seen in the previous sections, schemes enlarge the class of varieties by a lot. There are many
schemes which do not have analogous varieties (for example, SpecZ). In this section, we will de-
fine a class of schemes known as abstract varieties which share familiar properties. However, being
schemes there will naturally be differences, for example the existence of generic points. These will
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be studied.

We first consider a basic example. Recall that in Example 2.1.9 we noted that schemes can keep
track of multiplicity. The reason is that k[x]/〈x2〉 is not the co-ordinate ring of any affine variety;
since any affine variety is irreducible, and thus its defining polynomial must be irreducible. In partic-
ular, note that this means that any co-ordinate ring is an integral domain. This motivates the following
definitions:

Definition 2.4.1. Let X be a scheme. We say that X is irreducible if its underlying space is irre-
ducible.

Definition 2.4.2. Let X be a scheme. We say X is reduced if for every open subset U , the ring
OX(U) is a reduced ring (that is it has no nilpotent elements). We say X is integral if for every open
subset U , the ring OX(U) is an integral domain.

Note then that integrability implies reducedness. In fact:

Proposition 2.4.3. Let X be a scheme. Then X is integral if and only if it is reduced and irreducible.

Proof. [6, p.82]

For affine schemes, these properties are much more simple.

Proposition 2.4.4. Let X = SpecA be an affine scheme. Then

(a) X is irreducible if and only if nilA is prime.

(b) X is reduced if and only if nilA = 0.

(c) X is integral if and only if A is an integral domain.

Proof. If nilA is prime, then any closed set that contains nilA is necessarily X . Conversely, if nilA
is not prime, then there exists elements a, b such that ab is nilpotent but a and b are both not. Then
X = V(ab) but V(a) and V(b) are both proper. This proves (a).

The forward implication of (b) is trivial. Conversely, suppose nilA = 0. Note that if x ∈ OX(U)
is nilpotent for some open set U then the image of x is nilpotent in OX(D(f)) for any f such that
D(f) ⊆ U . In particular, that means fnxm = 0 for some m,n and supposing without loss of gener-
ality that m ≥ n it follows (fx)m = 0 in A and thus fx = 0, hence x = 0 in OX(D(f)). Since the
D(f) cover OX(U) by the sheaf axiom it follows that x = 0 in OX(U). This proves (b).

Part (c) follows from (a) and (b) and Proposition 2.4.3.

As a quick application, we address the issue of closed subschemes not being unique.

Theorem 2.4.5. LetX be a scheme and V a closed subset. Then there exists a unique reduced closed
subscheme Y such that the associated closed immersion f : Y → X is a homeomorphism onto V .
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Proof Sketch. First, suppose X is affine and equal to SpecA. Then V is a set of prime ideals of A.
Set

a :=
⋂
p∈V

p

and let Y := SpecA/a, and let f be the closed immersion f : Y → X induced by the projection
A→ A/a. Since a is clearly radical, the ring A/a is reduced, and hence Y is reduced. Uniqueness is
clear in this case.

If X not affine, we cover X with affines, apply the above process and then ”glue” them together
to form Y . Details can be found at [6, p. 70].

Definition 2.4.6. The closed subscheme Y described above is known as the reduced subscheme as-
sociated to V .

Now we define an abstract variety:

Definition 2.4.7. An abstract variety is an integral scheme of finite type over a field k.

Recall that a generic point of a topological space X is a point which is dense in X . As remarked,
a classical variety does not have generic points. However, on an abstract variety (and in general a
“nice” scheme), generic points are very well-behaved. We give some properties.

Proposition 2.4.8. Let X be a scheme. Then every irreducible closed subset has a unique generic
point.

Proof. Let V be an irreducible closed subset of X . We put the reduced subscheme structure on V .
Then any open subset of V (in the induced topology) is also irreducible. Let SpecA be an open affine
subset of V . Now SpecA is also irreducible, and thus A has a prime nilradical ζ, whose closure in X
is the closure of SpecA in X . But since V is irreducible, SpecA is dense in V as well, which means
the closure of SpecA in X is V . We have shown that ζ is the generic point of V .

To prove uniqueness, suppose ζ and η are two generic points of V . Since the boundary of any set is
closed, they must be in the interior V ◦. Now let SpecA be an open affine neighbourhood of ζ con-
tained in V ◦, SpecB be an open affine neighbourhood for η and let SpecR be an affine open subset
of the nonempty intersection SpecA ∩ SpecB. Then the inclusion morphism SpecR → SpecA
induces a morphism of rings ϕ : A → R, and clearly nilA = ϕ−1(nilR). In particular, this means
that the inclusion maps the generic point of SpecR to the generic point of SpecA. Since the same
argument is true for SpecB, we must conclude that ζ and η are the same point.

Proposition 2.4.9. Let X be an integral scheme with a unique generic point ζ. Then the local ring
Oζ,X is a field.

Proof. Since the local ring depends only on a neighbourhood of X , we may assume that X is affine.
Let X = SpecA. Then A is an integral domain by Proposition 2.4.4. Now ζ corresponds to the zero
ideal of X and thus Oζ,X is the localisation of A at 0, which is in fact the fraction field of A.
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Corollary 2.4.10. Let X be an integral scheme with unique generic point ζ, and let SpecA and
SpecB be open affine subschemes. Then A and B have isomorphic fraction fields, which are isomor-
phic to the local ring at ζ.

We conclude this section with a discussion about the dimension of a scheme. In general, dimensions
are not always well-behaved, but for abstract varieties, their properties are as expected.

Definition 2.4.11. Let X be a scheme. The dimension of X is its Noetherian dimension. If Y is an
irreducible closed subset, then the codimension of Y in X , denoted codimX(Y ) is defined to be the
largest integer n such that there exists a chain

Y = Y0 ( Y1 ( ... ( Yn

where each Yi is closed and irreducible, and∞ if no such chain exists. If Y is not irreducible, then

codimX(Y ) := min
Z⊆Y

(codimX(Z))

where the minimum is taken across all irreducible closed subsets of Y . Finally, if Y is not closed, we
define codimX(Y ) := codimX(Y ).

Theorem 2.4.12. Let X = SpecA be an affine scheme. Then there is a one-to-one inclusion-
reversing correspondence between prime ideals of A and irreducible closed subsets of X .

Proof. Let
Y0 ( Y1 ( ... ( Yn

be a chain of irreducible closed subsets. Given the reduced subscheme structure, each Yi is integral
by Proposition 2.4.3, and hence isomorphic to SpecA/pi for some prime ideal pi. If i < j, it is clear
that pi ) pj , and thus we have a chain of prime ideals

p0 ) p1 ) ... ) pn

Conversely, given a chain of prime ideals

p0 ) p1 ) ... ) pn

we have a chain of integral (hence irreducible) subschemes

Y0 ( Y1 ( ... ( Yn

where Yi := SpecA/pi.

Corollary 2.4.13. Let X = SpecA be an affine scheme. Then dimX = dimA.

Corollary 2.4.14. Let X = SpecA be an affine scheme and Y = SpecA/p be an integral closed
subscheme. Then codimX Y = ht p.

Where dimA is the Krull Dimension of A and ht p is the height of p.

Proposition 2.4.15. Let X be an abstract variety over a field k, and Y a closed subscheme. Then
dim(X) = dim(Y ) + codimX(Y ).

Proof. [12, pp.311-312]
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Chapter 3

Geometric Constructions on Schemes

3.1 Divisors

In this section, we develop the theory of Weil and Cartier divisors, which are, roughly speaking,
objects that encode the intrinsic geometry of an underlying scheme. In particular, they allow us to
develop two invariants, known as the divisor classes. We will introduce Weil Divisors in the context
of smooth abstract varieties, then we will introduce Cartier Divisors in the context of schemes, and
state a partial equality. A variety in this section will always mean an abstract variety.

We begin with two key definitions:

Definition 3.1.1. Let X be an integral scheme. We define the function field of X , denoted K(X) to
be the local ring at the generic point of X .

Definition 3.1.2. Let X be a variety. We say X is smooth if all its local rings are regular rings.

Now we define the notion of a Weil divisor.

Definition 3.1.3. LetX be a smooth variety. A prime divisor onX is a closed subvariety of codimen-
sion one. The group of Weil divisors DivX is the free abelian group generated by the prime divisors.
A Weil divisor is an element of DivX .

We will next define a subgroup of DivX that captures the geometric information of the underlying
variety. In order to do so, we require the following result:

Proposition 3.1.4. Let X be a smooth variety, Y a prime divisor and η its generic point. Then the
local ring OX,η is a discrete valuation ring, with residue field K(X), the function field of X .

Proof. We may assume X is an affine scheme X = SpecA where A is a finitely-generated k-algebra
that is also an integral domain. Then Y is an integral closed subscheme and hence Y = SpecA/p for
some prime ideal p. Corollary 2.4.14 implies that ht p = 1. Since p is dense in SpecA/p (being the
zero ideal), we have η = p and thus OX,η = Ap. Since Ap is regular by assumption, it follows that p
is principal. [11, Ch. 1, Proposition 2] then implies that Ap is a discrete valuation ring, and it is clear
that the residue field equal to K(X).

Let X be a smooth variety with function field K, Y be a prime divisor with generic point η and
f ∈ K∗ a function. We define the valuation of f at Y , denoted vY (f) to be the valuation of f in the
discrete valuation ring OX,η.

39
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Proposition 3.1.5. We have vY (f) = 0 for all but finitely many Y .

Proof. [6, p.131]

Definition 3.1.6. Let X be a smooth variety with function field K, Y be a prime divisor with generic
point η and f ∈ K∗ a function. We define the divisor associated to f to be

div f :=
∑

vY (f)Y

taken across all prime divisors Y . By the above proposition, this sum is finite, so this divisor is
well-defined.

The map f 7→ div f gives us a homomorphism K∗ → DivX . We call the image of K∗ the group of
principal divisors. An element in this group is a principal divisor.

Definition 3.1.7. The group of Weil divisors quotiented by the group principal divisors is known as
the divisor class group of X , denoted ClX .

We will now study some examples.

Example 3.1.8. Let X = Ank = Spec k[x1, ..., xn]. Then prime divisors are in one-to-one correspon-
dence with principal prime ideals of k[x1, ..., xn] (which, in turn, are in one-to-one correspondence
with irreducible polynomials) and the function field of X is equal to k(x1, ..., xn). If D =

∑
niPi is

a Weil Divisors, and fi is the polynomial which generates the principal prime ideal associated to Pi,
then div

∏
fnii = D. In particular, ClX = 0.

Example 3.1.9. Let X = Spec k[x, y]/〈y − x2〉. Now prime divisors on X are simply points, and
in particular they are in one-to-one correspondence with the polynomials x − a for a ∈ k. Thus
given a divisor D =

∑
niPi, we may associate ai ∈ k to each Pi, and div

∏
fnii = D. Once again

ClX = 0. In fact, it can be shown that if A is a UFD and SpecA is normal, meaning that all its local
rings are integrally closed integral domains, then Cl(SpecA) = 0 ([6, Ch. II, Proposition 6.2]).

Let X be a scheme, recall that it has a base of open affine subsets. We define a sheaf KX on it as
follows: let U = SpecA be one such base open affine subset. We define K(A) to be the localisation
of A at the set of non zero-divisors (if A is an integral domain, then K(A) is just the field of fractions
FracA), and define KX(U) to simply be K(A). If V = SpecA[f−1] is a base open affine subset of
SpecA, then we have a natural map K(U)→ K(V ) and it is easy to see that it will agree for all such
U and V as they vary. Thus we have a sheaf. Furthermore, we define the sheaf K∗X as follows: for an
open affine subset U = SpecA, we take K∗X(U) to be the multiplicative group of invertible elements
of KX(U). Now observe that OX is a subsheaf of KX (by which we mean OX(U) ⊆ KX(U) for
any open set U ), and in similar fashion we can define O∗X . It is a subsheaf of K∗X .

Definition 3.1.10. Let X be a scheme. A Cartier divisor is a global section of K∗X/O∗X . A principal
Cartier divisor is an element in the image of K∗X(X) → (K∗X/O∗X)(X). We define the Cartier
divisor class group of X denoted CaClX to be the group (K∗X/O∗X)(X)/K∗(X).

Theorem 3.1.11. Let X be a smooth variety. Then there is an isomorphism ClX ∼= CaClX .
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Proof Sketch. Given a Cartier divisor DCart, we may write DCart as {(Ui, fi)} where the Ui cover X
and the image of fi ∈ K∗X(Ui) in (K∗X/O∗X)(Ui) is equal to DCart|Ui . Then for each prime divisor
Y , we define nY to be vY (fi) where i is any index such that Ui ∩ Y 6= ∅. It can be shown that this
does not depend on i and that the nY = 0 for all but finitely many Y ; and thus we have a Cartier
Divisor

∑
nY Y . It is clear that this is a homomorphism. Details can be found at [6, p. 141].

Conversely, given a Weil divisor D, we can take a small enough open subset U such that the re-
striction of D is principal, and is associated to some f . Then as U varies, we recover a global section,
which can be shown to be a Cartier divisor. It is easy to check that these processes are inverses.
Details can be found at [6, p. 141].

Example 3.1.12. To see how this works, we compute an example. LetX = Proj k[x, y, z]/〈yz−x2〉
and define the following points P := (3, 9, 1) = 〈x − 3z〉, Q := (2, 4, 1) = 〈x − 2z〉 and R :=
(0, 0, 1) = 〈y〉. Let

D := 3P − 4Q+R

We will compute the Cartier Divisor associated to D as follows: On the open set UP := D(yz(x −
2z)), the restriction of D is simply 3P . Now note that this is the same as the principal divisor
generated by fP := ((x− 3z)/z)3 ∈ K(X). Similarly, we can take fQ := ((x− 2z)/z)−4 ∈ K(X)
on UQ, fR := (y/z) ∈ K(X) on UR and fz := 1 on Uz := D(y(x− 2z)(x− 3z)). Now these open
subsets cover X and the note that the image of f i on Ui ∩ Uj is invertible in OX(Ui ∩ Uj) if i 6= j
and is thus the identity in K∗X/O∗X , and so we have a global section, which is a Cartier Divisor.

Remark 3.1.13. Note that we have an example of a surjective map of sheaves such that the induced
map of sections is not surjective. This means the presheaf image is not equal to the image sheaf. In
particular, this means that H1(X,OX) 6= 0, hence X is not affine by Theorem 2.2.8.

3.2 Invertible Sheaves

We saw in a previous section that locally free sheaves of finite rank on a smooth manifold are ”the
same” as smooth vector bundles. In this section, we will study locally free sheaves on a scheme,
though we restrict ourselves to locally free sheaves of rank one. Such sheaves are also known as
invertible sheaves. We will first explain this term, then we will introduce twisting sheaves on a Proj-
type scheme as an example. This will be followed by a gneeral study of invertible sheaves and their
relation to divisors.

Proposition 3.2.1. Let X be a scheme and F be a locally free sheaf of rank 1 on X . Then F ⊗F∨ =
OX . If G is another locally free sheaf of rank 1, we then so F ⊗ G is also locally free of rank 1.

Proof. (Based on the proof in [6, p.143]) We know from Proposition 1.2.22 thatF⊗F∨ ∼= Hom(F ,F),
so it suffices to show that Hom(F ,F) ∼= OX . Now observe that there is a natural map OX →
Hom(F ,F), given by scalar multiplication. At the level of the stalks, the induced morphism is the
natural homomorphismOX,P → HomOX (OX,P ,OX,P ), which is well known to be an isomorphism.
This proves the first statement.
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The second statement is clear, since F and G are locally free of rank 1.

Definition 3.2.2. An invertible sheaf on a ringed space (X,OX) is a locally free sheaf of rank 1.

The above proposition shows that the isomorphism classes of sheaves on a ringed space (X,OX)
forms a group, known as the Picard Group, denoted PicX .

Definition 3.2.3. Let S be a graded ring, graded over some monoid G, and M an S-module. A
grading on M is a collection of submodules Mi, indexed over G such that M =

⊕
i∈GMi, and

SiMj ⊆ Mi+j for any i, j ∈ G. A module M equipped with sich a grading is known as a graded
ring. An element of Mi is known as a homogeneous element of degree i.

Definition 3.2.4. Let S be a graded ring, and M a graded S-module. We define M(n) the n-th twist
on M to be M with the following grading: M(n)m := Mn+m.

Unless stated otherwise, a graded ring S will always be graded over Z≥0 in the rest of this section.
However, we will sometimes twist by negative integers. In order for this to make sense, we re-interpret
the grading on S as over Z, but Sn = 0 if n < 0.

If M and N are graded modules, there is a natural grading on M ⊗ N where if u ∈ M, v ∈ N
are homogeneous of degree m and n respectively, then u⊗ v is of degree m+ n. Since any element
of M (resp N ) can be written uniquely as a sum of homogeneous elements, this is well-defined. Note
that M0 ⊗N0

∼= (M ⊗N)0

Lemma 3.2.5. For any graded module M , we have M(n)⊗M(m) = M(m+ n).

Proof. Clear from the definitions.

Lemma 3.2.6. Let S be a graded ring, X = ProjS and suppose S is generated by S1 as an S0-
algebra. Then (M ⊗S N)∼ ∼= M̃ ⊗OX Ñ .

Proof. Since (M [f−1] ⊗ N [f−1])0
∼= M [f−1]0 ⊗ N [f−1]0 for any f ∈ S1, we have a natural

isomorphism on the D+(f), which clearly commute. Since the D+(f) form a base of the topology,
the result follows

Definition 3.2.7. Let S be a ring graded over the nonnegative integers andX = ProjS. We define the
twisted structure sheaf of degree n, denoted OX(n) to be the sheaf S(n)∼. If F is any OX -module,
we define the twisting of F of degree n, denoted F(n) to be F ⊗OX(n).

Proposition 3.2.8. Let S be a graded ring and X = ProjS and suppose S is generated by S1 as a
S0-algebra. Then OX(n) is locally free of rank 1 for any n ∈ Z.

Proof. Taken from [6, p.117]. Suppose f ∈ S1. We will show that OX(n)|D+(f)
∼= OX |D+(f). By

definition, we knowOX(n)|D+(f) = S(n)∼ andOX |D+(f) = S[f−1]0 onD+(f) ∼= SpecS(n)[f−1]0.
Since f is invertible, multiplication by fn induces an isomorphism of modules S[f−1]0 → S(n)[f−1]0.
Applying ∼ we obtain an isomorphism OX |D+(f) → OX(n)|D+(f). Since S is generated by S1 as
an S0-algebra, the D+(f) cover X and the result follows.
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Remark 3.2.9. Note that while OX(n) and OX have isomorphic stalks, they are not isomorphic
(indeed, they behave differently with respect to tensor products). This is because the isomorphisms
of modules induced by multiplication by f in the above proof is not compatible between different
distinguished open sets; in other words it does not commute with the restriction maps.
Remark 3.2.10. Note that multiplication by f only induces an isomorphism of modules, not rings.
We will now associate an invertible sheaf to a divisor on a scheme, in such a way that is compatible
with the group structure. We will work with Cartier Divisors, but this works with Weil Divisors too,
as we will see.

Definition 3.2.11. Let X be a scheme and let DCart be a Cartier Divisor. We define L(DCart) to be
theOX -module as follows: on an open set U , let f ∈ K∗(U) representDCart|U (recall thatDCart is a
global section ofK∗X/O∗X ). We define L(DCart)(U) := 〈f−1〉. This is a submodule ofKX(U). Note
that this is well-defined, since if f ′ also represents DCart on U ′, then by definition f/f ′ is invertible
in OX(U ∩ U ′) and thus they generate the same module. The obvious restriction maps turn this into
a sheaf.

If X is a smooth variety and D =
∑
niYi is a Weil Divisor (where the sum is taken across all prime

divisors Yi, but all but finitely many ni are 0), then we can alternatively define L(D) as follows:

L(D)(U) := {f ∈ KX(U) | vYi(f) + ni ≥ 0 for each i such that Yi ∩ U 6= ∅}

If DCart is the Cartier Divisor associated to D, then it is easy to see that L(DCart) = L(D), since
the divisor D is obtained from DCart by taking valuations of DCart at all prime divisors of X , thus
an element of L(D)(U) would be a multiple of some f satisfying vYi(f) = −ni. But such an f is a
generator of L(DCart)(U). Conversely any multiple of such an f is an element of L(DCart).

Theorem 3.2.12. Let X be a scheme and D a Cartier Divisor. Then L(D) is invertible and the
mapping D 7→ L(D) is an injective group homomorphism CaClX → PicX . If X is integral, then
it is an isomorphism.

Proof. [6, p. 144]

Example 3.2.13. LetX be a smooth variety of dimension 1 and P a prime divisor. Then P is a point,
by Proposition 2.4.15. The structure sheaf of P , considered as a closed subscheme, is the skyscraper
sheaf k(P ) (Example 1.1.23). Now observe that there is a canonical injection L(−P ) → OX . We
will define a map OX → k(P ) as follows: given an open set U , if U 3 P we take the mapping
OX(U) → k(P )(U) to be f 7→ f̄P , where fP is the image of f ∈ OX(U) in OX,P and f̄P is the
image of fP in the residue field ofOX,P , which is isomorphic to k(P )(U) = k. If U does not contain
P then f 7→ 0. We claim that the following sequence is exact

0 L(−P ) OX k(P ) 0 (3.1)

To check this, observe that L(−P )P = {fP ∈ OX,P | vP (f) ≥ 1}, thus f̄P = 0 for all fP ∈ L(−P ).
Conversely, if f̄P = 0 for some fP ∈ OX,P then vP (fP ) ≥ 1, thus fP ∈ L(−P )P . Exactness at
L(−P )P and k(P )P are easily checked, hence the induced map of stalks is exact at P . If Q 6= P is a
point, then L(−P )Q = OX,Q and k(P )Q = 0, and thus the induced sequence of stalks is exact at Q
as well, and thus the sequence is exact.
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Example 3.2.14. More generally, if D is any Weil Divisor and P is a point, then the following
sequence is exact.

0 L(D) L(D + P ) k(P ) 0 (3.2)

Indeed, tensoring 3.1 with L(D + P ), we obtain the following sequence.

0 L(−P )⊗ L(D + P ) OX ⊗ L(D + P ) k(P )⊗ L(D + P ) 0 (3.3)

We will show this is exact. Indeed, since tensor products commute with direct limits, at the level of
the stalks the induced sequence is

0 L(−P )Q ⊗ L(D + P )Q OX,Q ⊗ L(D + P )Q k(P )Q ⊗ L(D + P )Q 0

Because tensoring is right exact, and since exactness is measured at the stalks, this means the sequence
3.3 is exact everywhere except possibly at L(−P ) ⊗ L(D + P ). Thus we need only check that
L(−P )⊗L(D+ P )→ OX ⊗L(D+ P ) is injective. To see this, simply observe that the following
diagram commutes

L(−P )⊗ L(D + P ) OX ⊗ L(D + P )

L(D) L(D + P )

where the downward pointing arrow on the left is an isomorphism by Theorem 3.2.12, the downward
pointing arrow on the right is the canonical isomorphism, and the right-pointing arrow on the bottom
is the canonical injection.

Finally, we identify the objects of 3.3 with those of 3.2. The isomorphisms L(−P )⊗ L(D + P ) →
L(D) and L(D + P )→ OX ⊗ L(D + P ) are discussed already. Now note that there is a canonical
injection k(P ) → k(P ) ⊗ L(D + P ). Since L(D + P ) is locally free of rank 1, the induced map
of stalks is the canonical isomorphism k(P )P → k(P ) ⊗OX,P OX,P at P , and the identity on zero
elsewhere, and thus the map k(P )→ k(P )⊗ L(D + P ) is an isomorphism and the result follows.

3.3 Sheaves of Differentials

In this section, we will develop the theory of differentials, which is allows us access to the tools of
calculus, similar to their use in differential geometry. In particular, we will define the sheaf of relative
differentials, which is analogous to the sheaf of differential 1-forms (or equivalently the cotangent
bundle, through the association in Theorem 1.2.17), on a smooth manifold. We will use this to define
the tangent sheaf and the canonical sheaf.

A variety in this section will always refer to an abstract variety. We begin with a review of the
theory of differentials:
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Definition 3.3.1. Let A be a ring, B an A-algebra and N a B-module. An A-derivation of B is a
map d : B → N such that

(a) d(b1 + b2) = d(b1) + d(b2)

(b) d(b1b2) = b2d(b1) + b1d(b2)

(c) d(a) = 0 for all a ∈ A.

Example 3.3.2. Let A := R, B := D[0, 1] = {f : [0, 1] → R | f is differentiable} and N :=
HomSets([0, 1],R). Then differentiation is an example of an A-derivation of B.

Example 3.3.3. Let M be a smooth manifold. A vector field X on M can be interpreted as a map
dX : C∞(M) → C∞M given by f 7→ Xf , where Xf may be interpreted as the directional
derivative of f along X (here we adopt the notation of [8]). This is an R-derivation of C∞(M);
indeed,

X(fg) = fX(g) + gX(f)

See [8, pp. 180-182] for details.

Example 3.3.4. Continuing with the previous example, given an element f ∈ C∞(M), define f̂ ∈
T ∗M , given by f̂(X) = X(f) where T ∗M is the space of smooth 1-forms. By the previous example,
the map f 7→ f̂ is a derivation.

Example 3.3.4 will be our motivating example. Given a morphism of schemes f : X → Y , we will
attempt to construct a sheaf on X , in a way that if we take Y = Spec k for some field k then the
sections of the sheaf behave like differential forms. We require a module contruction first:

Theorem 3.3.5. Let B be an A-algebra. Then there exists a B-module ΩB/A and an A-derivation
d : B → ΩB/A such that if N is another B-module with a derivation d′ : B → N there exists a
unique morphism of B-modules f : ΩB/A → N such that the following diagram commutes:

B

ΩB/A N

d
d′

f

Proof Sketch. We define ΩB/A to be the free module generated by the set of symbols {db | b ∈ B},
subject to the relations:

• d(b1 + b2) = d(b1) + d(b2)

• d(b1b2) = b2d(b1) + b1d(b2)

• da = 0 for any a ∈ A.

Details can be found at [6, pp. 172-173].
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Definition 3.3.6. Let B be an A-algebra. We define the module of relative differentials of B over A
to be the module ΩB/A in the previous theorem, equipped with the derivation d : B → ΩB/A.

It can be shown ([6, Ch. II Corollary 8.5]) that if B is a finitely-generated A-algebra, then ΩB/A is a
finitely-generated B-module

Definition 3.3.7. Let f : X → Y be a scheme. Let U = SpecA be an affine open subset of
Y and let V = SpecB be an affine open subset of f−1(U). Then we define the sheaf of relative
differentials ΩX/Y of X over Y to be the following sheaf: on V we define ΩX/Y (V ) := (ΩB/A)∼.
If V ′ = SpecB′ is an open affine subset of V then we have a map B → B′, and composing with
the map d′ : B′ → ΩB′/A we have an A-derivation B → ΩB′/A. By the above theorem, this induces
a morphism ΩB/A → ΩB′/A. We can check that this commutes with restriction, and that the sheaf
axioms are satisfied. As U and V vary, the V form a base of X and thus we have a sheaf.

By construction, the sheaf ΩX/Y is quasicoherent by Theorem 2.2.5. If X is a variety and Y =
Spec k, we will simply write ΩX/k instead. Since, by assumption, X can be covered by affine open
subsets U = SpecA where A is a finitely generated k-algebra, it follows that ΩA/k is a finitely-
generated A-module. A is also noetherian by Hilbert’s Basis Theorem, thus it follows that ΩX/k is
coherent.

The sheaf ΩX/k plays the role of the sheaf of differential 1-forms, which is the sheaf associated
to the cotangent bundle on a manifold M (or equivalently it maps an open set U to the set of 1-forms
on U ). Indeed, note the following analogy with Example 3.3.4: we have seen that the map f 7→ f̂ is
a derivation, and similarly we have a derivation A→ ΩA/k for any affine open subset SpecA of X .

As another more subtle similarity: smoothness is, very loosely speaking, associated with having a
well-defined, well-behaved tangent space at every point. For example, a smooth manifold M has a
tangent bundle as a vector bundle, as we saw in Example 1.2.10. This means smoothness as defined
in Definition 3.1.2 should in some way be encoded in the sheaf ΩX/k. Fortunately, this is the case. In
fact:

Theorem 3.3.8. Let X be a variety over k. Then X is smooth if and only if ΩX/k is locally free.

Proof. [6, pp. 177-178]

By the association between locally free sheaves and vector bundles we saw in Theorem 1.2.17, this
result agrees with our analogy.

To conclude this section, we will define two sheaves on a smooth variety.

Definition 3.3.9. Let X be a smooth variety over k. We define the tangent sheaf to be the sheaf
TX := HomOX (ΩX/k,OX).

Since we saw that ΩX/k is similar to the cotangent sheaf on a manifold, this definition makes sense.

Definition 3.3.10. Let X be a smooth variety of dimension n. We define the canonical sheaf ωX
on X to be

∧n ΩB/A, where
∧

is the exterior power defined in Example 1.2.16. Note that this is
invertible.
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3.4 The Riemann Roch Theorem

In this section, we will provide a partial proof of the famous Riemann-Roch Theorem for curves,
which relates the cohomology of invertible sheaves to an invariant known as the genus. We begin
with some definitions.

Definition 3.4.1. A curve over a field k is a smooth abstract variety of dimension one, projective over
k.

Note that since X is a curve, the canonical sheaf is simply equal to ΩX/k. However, we will still
denote it ωX .

Definition 3.4.2. Let X be a curve. We define the genus of X , denoted p(X) to be dimk ΓX(ωX).
Since ωX is coherent, this is finite by Theorem 2.3.16.

Remark 3.4.3. The genus as defined above is often known as the geometric genus. There is another
quantity known as the arithmetic genus, and for curves they are the same quantity ([6, Ch. IV, Propo-
sition 1.1]). In higher dimensions, this may not hold.

The main ingredient in this proof is the Duality Theorem of Serre:

Theorem 3.4.4 (Serre Duality (Théorème 4 of [10]) ). LetX be a curve over k, F a locally free sheaf
and ωX the canonical sheaf. Then for each i there is a natural isomorphism of vector spaces:

H i(X,F) ∼= H2−i(X,F∨ ⊗ ωX)∨

Now we state and prove the main theorem. The proof closely follows that of [6, p.295-296], but we
will present it nonetheless, as it demonstrates how the techniques we have developed may be applied.

Theorem 3.4.5. Let D be a divisor and K a canonical divisor on a curve X of genus g. Then:

dim ΓX(L(D))− dim ΓX(L(K −D)) = degD + 1− g

Proof. Note that ΓX(L(D)) = H0(X,L(D)) by definition. Similarly, we have ΓX(K − D) =
H0(X,L(K − D)). By Theorem 3.2.12, it follows that L(K − D) = ωX ⊗ L(D)∨. By the Serre
Duality Theorem, we have dimH0(X,ωX ⊗ L(D)∨) = dimH1(X,L(D)). Thus the formula re-
duces to χ(L(D)) = deg +1− g. We will prove this by induction on degD.

If degD = 0, then D = 0 and L(D) = OX by Theorem 3.2.12. Since ωX is invertible, it
follows from the Serre Duality Theorem that g = dimH1(X,OX), and Proposition 2.3.4 implies
dimH0(X,OX) = 1. Thus the formula evaluates to g + 1 = g + 1 + 0, which is obviously true.

Now suppose the formula holds for some D, and let P be a prime divisor, by Example 3.2.13 and
Example 3.2.14 we have the exact sequences:

0 L(−P ) OX k(P ) 0
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and
0 L(D) L(D + P ) k(P ) 0

By Proposition 2.3.18, we have

χ(L(D + P )) = χ(L(D)) + 1 (3.4)

But by the inductive hypothesis, we have

χ(L(D)) = degD + 1− g (3.5)

and thus plugging 3.4 into 3.5 we obtain

χ(L(D + P )) = (degD + 1) + 1− g = deg(D + P ) + 1− g

and thus the formula is true for D + P .

Finally, we need to show that the formula holds for D − P . To do this, simply run the above ar-
gument through with D in place of D + P and D − P in place of D. The result follows.



Appendix A

Some Results from Algebra

Theorem A.0.1 (Adjoint Property of ⊗AB). Let A → B be a ring homomorphism, M and A-
module and N a B-module. Write NA as N considered as an A-module via the homomorphism.
Then M ⊗A B has a natural structure as a B-module and there is a natural isomorphism of groups

HomB(M ⊗A B,N) ∼= HomA(M,NA)

Proof. We can give M ⊗A B a natural B-module structure by defining, for b ∈ B and m ⊗ b′ ∈
M ⊗A B multiplication as b(m⊗ b′) := m⊗ bb′.

Now given some ϕ : M → NA, we define τϕ : M ⊗A B → N as m ⊗ b 7→ bϕ(m). Con-
versely, given ψ : M ⊗A B → N , we define σψ : M → NA as m 7→ ψ(m⊗ 1).

We now verify that σ and τ are inverses of each other. Suppose ϕ : M → NA is a module ho-
momorphism, and define ψ := τϕ. Then ψ(m⊗b) = bϕ(m). But now σψ(m) = ψ(m⊗1) = ϕ(m)
so that σψ = στϕ = ϕ.

Conversely, suppose ψ : M ⊗A B → N is a module homomorphism, and now define ϕ := σψ
so that ϕ(m) = ψ(m ⊗ 1). Now observe that τϕ(m ⊗ b) = bϕ(m) = bψ(m ⊗ 1) = ψ(m ⊗ b) so
that τσψ = ψ as required.

Theorem A.0.2 (Snake Lemma). Let A,B,C,A′, B′, C ′ be objects and suppose we have the follow-
ing commutative diagram,

A B C 0

0 A′ B′ C ′

α β γ

such that the rows are exact. Then there exists an exact sequence:

kerα kerβ ker γ

cokerα cokerβ coker γ

f

δ
g

Proof. The maps between the kernels and between the cokernels are straightforward. We construct
δ as follows: we have c ∈ ker γ. Then there exists cB ∈ B that maps to c in C by the surjectivity

49
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of B → C. Now β(cB) is in the kernel of B′ → C ′ since the image of cB is 0 in C ′, and since the
second row is exact, there exists some unique cA ∈ A′ whose image in B′ is β(cB). Moreover this
cB is defined uniquely up to addition by an element in the image of A → B, and thus when pulled
back to A′, we see that cA is defined uniquely as an element of cokerα.

Now it remains to check that the resulting sequence is exact. Exactness everywhere except at ker γ
and cokerα follow from the exactness of the first diagram. We now check exactness at the remaining
two objects. Suppose firstly c ∈ im f . Then there exists x ∈ kerβ such that f(x) = c. In particular,
that means β(x) = 0 and thus δ(c) = 0 by the construction of δ. Conversely, suppose c ∈ ker δ so
that δ(c) = 0 in the cokernel of α. We show that c ∈ im g as follows. By the surjectivity, we know
that there exists some element cB ∈ B whose image in C is c. Then β(cB) as an element of A′ is in
the image of α, and thus there exists some a ∈ A such that the image of a in B′ is equal to β(cB),
and thus we observe that a− cB , as an element of B is in the kernel of β and clearly f(a− cB) = c
as desired.

We now check exactness at cokerα. Clearly im δ ⊆ ker g. Now suppose a ∈ ker g. Then
g(a) ∈ kerβ (here we are abusing notation and using g(a) to denote both the element in cokerβ
and a preimage in B′). We take a preimage b of g(a) in kerβ, and clearly f(b) is mapped to a by δ.
This concludes the proof.

Lemma A.0.3 (Horseshoe Lemma). Consider the diagram:

0

0 A I0 I1...

B

0 C J0 J1...

0

if the following sequence is exact:

0 A B C 0

and A→ I• and C → J• are injective resolutions, there is an injective resolution B → (I ⊕ J)• of
B, where (I ⊕ J)i = Ii ⊕ J i.

Proof. We begin by showing that if I and J are injective, then so is I ⊕ J . To see this, suppose we
have an inclusion i : A → B and a map ϕ : A → I ⊕ J . Then composing ϕ with the projections
πi : I ⊕ J → I and πj : I ⊕ J → J we have maps πi ◦ ϕ : A → I and πj ◦ ϕ : A → J . By
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assumption, I and J are injective, so we have maps B → I and B → J . By the universal property
of products, this induces a map B → I ⊕ J . A diagram-chase will show that this map does indeed
commute with i and ϕ.

Now we will check that B → (I ⊕ J)• is an injective resolution. Firstly defining the map B →
I0⊕J0, we observe that sinceA→ B is injective, there exists a mapB → I0 such that the following
diagram commutes:

A I0

B

(A.1)

And by the diagram, we have a natural map B → C → J0. Thus by the universal property of
products, this induces a map ψ : B → I0 ⊕ J0. To see that this map is injective, observe that if
b ∈ kerψ, then the image of b is 0 in J0, which means b is in the kernel of B → C, since the map
C → J0 is injective. This means b ∈ A. But since the kernel of A → I0 is trivial, hence b = 0 as
desired. Exactness at Ii ⊕ J i for i > 0 follows from the injectivity of the rows of A.1.
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Noetherian, 23
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divisor class group, 40
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Weil, 39
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uniqueness, 36
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graded module, 42
graded ring, 27
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vanishing theorem, 23

homogeneous element, 27
homotopy, 20

injective object, 18
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irrelevant ideal, 27

manifold, 11
module of relative differentials, 45
morphism of schemes, 26, 32

locally of finite type, 33
of finite type, 33
projective, 34

open immersion, 32

Picard Group, 42
presheaf, 3

regular function, 4
Riemann Roch Theorem, 47
right derived functors, 20
ringed space, 10

locally ringed space, 11
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structure sheaf, 11

scheme, 26
integral, 35
over another scheme, 33
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reduced, 35
structure sheaf, 25

schemes, 25
sections functor, 4

left exactness, 7
Serre Duality, 47
sheaf, 3

of modules, 11
associated to a divisor, 43
associated to a module, 29
associated to a vector bundle, 13
axioms, 3
canonical, 46
coherent, 15
constant, 6
direct sum, 12
dual, 15
exterior power, 13
flasque, 8
free, 13
invertible, 41
locally-free, 13
morphism, 4
of ideals, 11

of a closed subscheme, 33
pullback, 9, 12
pushforward, 9, 12

quasicoherent, 15
sheafification, 6
skyscraper, 8
stalk, 4
tangent, 46
tensor product, 12
with a twist, 42

spectrum of ring, 25
subscheme, 32

reduced closed, 35
closed, 32
open, 32

twisted module, 42

variety, 34
affine, 33
abstract, 36
projective, 28, 33
smoothness, 39, 46

vector bundle, 12
correspondence with locally free sheaves,
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