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Chapter 1

Introduction

The aim of this thesis is to construct several homology theories associated to grid diagrams,
and to find new ways to calculate knot invariants from them. More concretely, we find new
ways to compute Υ(K), Υ2(K) and G1(K;−,−) from a grid diagram representing some
knot K. We focus primarily on grid homology, however, in what follows we also give a brief
discussion of the pseudo-holomorphic theory, as this is a useful way to orient oneself when
thinking about grid diagrams. In fact, most constructions in grid homology are combinato-
rial analogues of constructions in the pseudo-holomorphic theory.

The algebraic machinery underlying grid homology originates in Floer homology. Floer
homology originated as Lagrangian Floer homology in symplectic geometry. In this formu-
lation, Floer constructed a functional A on a covering space of the path space from one
Lagrangian submanifold L0 to a second Lagrangian submanifold L1 for a symplectic mani-
fold M . A is chosen so that its critical points correspond to points in L0 ∩ L1. Floer was
able to determine relative indices for these critical points, which allowed him to construct a
form of Morse homology on the covering space.

In [1], Ozsváth and Szabó make modifications to the Lagrangian Floer homology of a
Heegaard diagram (Σ, α, β) for a 3-manifold Y . A Heegaard diagram for Y consists of a triple
like the one above, where Σ is a genus g surface and α and β are disjoint collections of circles
{α1, . . . , αg} and {β1, . . . , βg}. These circles must be chosen so that they form a symplectic
basis forH1(Σ;Z). Let Uα be the handlebody with boundary Σ, in which each α-circle bounds
a disk, and let Uβ be the handlebody with boundary Σ, in which each β-circle bounds a disk.
If we glue our two handlebodies along their common boundary, we obtain a closed 3-manifold
Y . We say our Heegaard diagram (Σ, α, β) represents Y . The Heegaard Floer homology of
(Σ, α, β) is the Lagrangian Floer homology of (SymgΣ, Tα1×· · ·×Tαg , Tβ1×· · ·×Tβg). Because
the circles are disjoint, both of the submanifolds Tα1×· · ·×Tαg = Tα and Tβ1×· · ·×Tβg = Tβ
are tori consisting of configurations of basepoints on each α-circle or β-circle, respectively.
The differential counts pseudo-holomorphic disks between points in Tα ∩ Tβ.

Unfortunately, this homology is not quite an invariant of the 3-manifold Y . To fix that,
Ozsváth and Szabó add the requirement that (Σ, α, β) is admissible, they add a basepoint z ∈
Σ\(α∪β), alter the differential to record the intersection of holomorphic disks with Vz = {z}×
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6 CHAPTER 1. INTRODUCTION

Symg−1Σ, and finally, equip Y with a spinc-structure s. With these modifications, Ozsváth

and Szabó obtain the chain complexes CF∞(Y, s), CF+(Y, s), CF−(Y, s) and ĈF (Y, s).
Treating the choice of spinc-structure as a grading, we obtain:

CF †(Y ) =
⊕

s∈spinc(Y )

CF †(Y, s),

where † is one of +,−,∞,̂ . Their homologies are denoted HF∞(Y, s), HF+(Y, s), HF−(Y, s)

and ĤF (Y, s). We also form:

HF †(Y ) =
⊕

s∈spinc(Y )

HF †(Y, s).

Each HF †(Y ) is an invariant of Y . Moreover, they are related to oneanother by long exact
sequences:

· · · ĤF (Y, s) HF+(Y, s) HF+(Y, s) · · · ,

· · · HF−(Y, s) HF−(Y, s) ĤF (Y, s) · · · ,

· · · HF−(Y, s) HF∞(Y, s) HF−(Y, s) · · · .

These modules contain a large mount of geometric and topological information about the
3-manifold Y . For example, in [2], Ozsváth and Szabó prove that ĤF (Y, s) detects the
Thurston norm of Y .

By introducing a filtration, we can use the machinery of Heegaard Floer homology to
study a null-homologous link K in Y . In [3], Ozsváth and Szabó lay out modifications one
can make to a Heegaard diagram (Σ, α, β) for Y to compute the Heegaard Floer homology
of the exterior of some nullhomologous knot K (that is, K has a Seifert surface). The extra
data consists of a second marked point w, so that z and w do not lie in the same component
of Σ \ α ∪ β. To associate (Σ, α, β, z, w) to a link, first, choose disks Dαi

bounded by αi
in Uα and Dβi bounded by βi in Uβ, then, connect basepoints in handlebodies Uα and Uβ
with unknotted arcs which avoid the disks we chose. Joining up these arcs forms a link L.
To form a chain complex from this data, start by forming CF †(Σ, α, β, z), where † is any of
+,−,∞,̂ . Ozsváth and Szabó construct a function Alex : Tα ∩ Tβ → Q, which is chosen in
such a way that thêflavour of knot Floer homology (defined below) categorifies the Alexan-
der polynomial of K. They prove that this function induces a filtration on CF †(Σ, α, β, z),
and call the new filtered complex CFK†(Σ, α, β, w, z). As above, this yields the complexes
CFK†(Y,K, s) where (Σ, α, β, w, z) represents (Y,K), and s is a spinc-structure on Y . Their
homologies are similarly denoted HFK†(Y,K, s). This was also independently discovered by
Rasmussen in his thesis [4]. When doing classical knot theory (i.e. in S3), we often suppress
the 3-manifold and spinc-structure, as S3 admits a unique spinc-structure.
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As above, we can form spinc-graded complexes:

CFK†(Y,K) =
⊕

s∈spinc(Y )

CFK†(Y,K, s),

and their spinc-graded homologies:

HFK†(Y,K) =
⊕

s∈spinc(Y )

HFK†(Y,K, s).

We denote Alexander filtration levels by CFK†(Y,K, p) and HFK†(Y,K, p) for p ∈ Q.
These split along spinc-structure in the following manner:

CFK†(Y,K, p) =
⊕

s∈spinc
CFK†(Y,K, s, p),

HFK†(Y,K, p) =
⊕

s∈spinc
HFK†(Y,K, s, p).

The Knot Floer chain complexes interact very well with operations on their underlying knot.
For example, in [3], Ozsváth and Szabó prove that for a pair of null-homologous knots (Y1, K1)
and (Y2, K2), and spinc structures si on Yi, there is a filtered chain homotopy equivalence:

CFK∞(Y1, K1, s1)⊗ CFK∞(Y2, K2, s2) → CFK∞(Y1#Y2, K1#K2, s1#s2). (1.1)

Moreover, if (Y,K) is a null-homologous knot, and (−Y,m(K)) denotes its mirror, then we
have chain homotopies:

CFK†(−Y,m(K)) ≃ CFK†(Y,K)∗, (1.2)

where the right hand side denotes the dual complex of CFK(Y,K).
Many geometric properties of null-homologous knots can be detected with this machinery.

The Seifert genus, denoted g3(K), of a nullhomologous knot K ⊂ Y is the minimal genus of

oriented surfaces in Y which bound K. In [2], Ozsváth and Szabó prove that ĤFK(Y,K)
detects the Seifert genus of K. A knot is fibred if its complement Y \K is an S1-bundle. In
the series of papers: [5], [6], [7] and [8], it is confirmed that a knot is fibred if and only if

ĤFK(Y,K, g3(K)) has rank 1.

At this point, we have not discussed the computability of Knot Floer homology. Having
effective techniques to calculate these modules, and numerical invariants associated to them,
is crucial for using these tools to study knots. Unfortunately, computing the boundary map
in CFK†(Y,K) requires one to solve nonlinear PDEs, so in general this formulation of Knot
Floer homology is not computable. Two developments solved this for knots in lens spaces or
S3. First, in [9], Lipshitz reformulated Heegaard Floer homology by choosing a new differen-
tial which counts pseudo-holomorphic curves in Σ× [0, 1]×R. This reduction in dimension is
accounted for by allowing higher genus curves. Then, in [10] and [11], Manolescu, Ozsváth,
and Sarkar use this reformulation, alongside a very rigid type of Heegaard diagram, to further
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simplify the boundary map to one which counts rectangles. From here, we assume Y = S3.
The immediate advantage of this formulation is that its boundary map is computable (there
are massive computational improvements to be made here, as doing this naively requires
2 · n!

(
n−1
2

)
calculations, so, in practise, one tries to avoid this calculation). This allows for

much larger scale tabulation of invariants arising from Knot Floer homology with the aid
of computers. For example, consider the Υ-invariant and d-invariants of a knot. These are
defined in terms of CFK∞, and in [12], Sano and Sato use grid diagrams to tabulate the
Υ-invariants and d-invariants of knots with up to 11 crossings.

Another advantage of this combinatorial boundary map is that it streamlines the con-
struction of spectra and pro-spectra for a stable homotopy theory of Knot Floer homology.
In [13], Manolescu and Sarkar use the grid complex of domains associated to a grid diagram
to construct framed flow categories, from which they obtain a stable homotopy theory for
HFK+. They also note that this construction works for all flavours of Knot Floer homology.

So far, we have discussed how HFK† can be used to detect geometric properties of knots.
We can also use HFK† to study larger scale objects. Suppose we have two links K and J
in S3. Then we say K is concordant to J if there is an embedding:

C : S1 × [0, 1] → S3 × [0, 1],

so that C|S1×{0} is K × {0} and C|S1×{1} is J × {1}. This is clearly an equivalence relation.
If C is the set of these equivalence classes, connected sum induces a well defined operation
on C, so that the inverse of [K] is given by [−m(K)]. Clearly (1.1) and (1.2) have useful
interactions here. In fact, recent work by Sato in [14] use these, plus Hom’s ν+-equivalence
classes defined in [15], to produce an algebraic model of the concordance group. Although C
has been studied for many years, suprisingly little is known about the group. A wide array
of techniques have been used to study the structure of C, so in the interest of conciseness,
we will focus on those which arise from Knot Floer theory.

In [16], Hom introduces the ϵ-invariant of a knot. This invariant records the interaction
between vertical and horizontal differentials in the doubly filtered complex CFK∞(K). As
demonstrated in [17], ϵ(K) is an invariant up to concordance. This has been studied using
grid diagrams by Dey and Doğa in [18]. In this paper, they use properties of grid diagrams
under mirroring to extract a new definition for ϵ(K). With this, and a generic grid presen-
tation for positive braids, Dey and Doğa show that all positive braids have ϵ(K) = 1.

Ozsváth and Szabó also define the concordance invariant τ(K) in [19]. This actually de-
scends to a homomorphism C → Z, via (1.1) and (1.2). Further, |τ(K)| gives a lower bound
for the 4-ball genus of a knot K. These facts allowed Ozsváth and Szabó to give a new
proof of the Milnor conjecture. Using specialisations of Knot Floer theory, more powerful
concordance invariants can be constructed.

The Upsilon invariant of a knot K, denoted ΥK , is a piecewise linear function ΥK :
[0, 2] → R. This invariant was initially introduced by Ozsváth, Stipsicz, and Szabó in [20].
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In [20], Ozsváth, Stipsicz, and Szabó construct a continuous family of chain complexes pa-
rameterised by t ∈ [0, 2], tCFK−(K). ΥK(t) records −2 times the height of H(tCFK−(K))
with respect to the t-modified grading. This was made combinatorial by Földvári in her
thesis [22], and subsequent paper [23]. The construction is formally very similar to that of
[20], with the major difference that the initial function extracted is only a knot invariant for
t ∈ [1, 2]. However, it is demonstrated in [20] that for all t ∈ [0, 1], ΥK(t) = ΥK(2 − t), so
this version recovers the full invariant. Another approach to this construction was outlined
in [22]. In this paper, Livingston places a special family of filtrations, Ft for t ∈ [0, 2], on the
double filtered complex CFK∞(K). Using the behaviour of this filtration on HFK∞(K),
Livingston was able to recover ΥK(t). This construction was generalised to arbirtrary south-
western regions in R2 in [24], which allowed Alfieri to recover Rasmussen’s hi invariants.
Livingston’s construction has recently been made combinatorial in [12], in which Sano and
Sato determine a reasonably efficient way to compute ΥK from GC−(G), where G is a grid
diagram representing K. Note that, although constructions of GC∞(G) exist, they are not
suited to computation, as the rank of G is at least two, so the set of generators for a given
filtration level may be infinite. See the orange parts of Figure 1.(1) for a visual description
of these relationships.

The crucial property of ΥK is that it induces a homomorphism:

Υ : C → {f |f : [0, 2] → R is piecewise linear}.

Observing how singularities interact with addition, this group of piecewise linear functions
clearly has uncountable rank, so Υ is potentially a very sensitive homomorphism. We can
think of ΥK as a significantly more sensitive version of τ(K), given Υ′

K(0) = −τ(K). Because
torus knots and quasi-alternating knots have very well understood knot complexes, compu-
tations of their Υ-invariants allowed Ozsváth, Stipsicz, and Szabó to determine that T2,3 is
linearly independent from all alternating knots. Moreover, Ozsváth, Stipsicz, and Szabó use
the change in derivative function ∆Υ′

K(t) to find a Z∞-summand of C. Ozsváth, Stipsicz,
and Szabó are also able to replicate a result of Hom by finding a family of topologically slice
knots {Kn}∞n=2 which are a basis for a direct summand of C which is isomorphic to Z∞.

As we noted above, an efficient way of computing ΥK is outlined in [12]. This is because
ΥK can be recovered from the set G0(K). The invariant G0(K) fits into the larger sequence
of invariants {Gn}∞n=0, which are constructed in [14]. These are chain homotopy invariants of
formal knot complexes. Loosely, a formal knot complex is an algebraic model of CFK∞(K).
We discuss formal knot complexes in much more detail in chapters 4 and 6. Of the invari-
ants Gn, G0 has been shown to contain a lot of useful information. In [12], Sano and Sato
demonstrate how one can easily recover ΥK and d-invariants from this set.

In their paper [25], Kim and Livingston extend the work of [22] to construct a second
concordance invariant, Υ2

K . This invariant essentially looks for filtration levels with a spe-
cific kind of homology at each singularity of ΥK . Alfieri also generalises this in [24], defining
for a triple of south-western regions C,C+, C− ΥK,C,C± . Unfortunately, it is not clear that
the work of Sato in [14] allows one to compute Υ2

K from G1(K;−,−). Sato is only able to
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demonstrate that one can bound Υ2
K with G1(K;−,−).

In chapter 2, we outline the basics of knot theory. In chapter 3 we develop the basic
theory and combinatorial topology of grid diagrams, and discuss most of the basic objects
we will need to construct our chain complexes. In chapter 4, we finally introduce the vari-
ous chain complexes from which our grid homologies arise. In chapter 5, we show that the
approach taken by Livingston in [22] also works in the setting of grid diagrams. To do this,
we use the new chain complexes constructed in chapter 4 to give two new constructions
of ΥK , and prove that both compute the same Υ-invariant as Földvári in [21]. These two
new constructions confirm that the work in [22] is mirrored in the world of grid diagrams,
and the main theorem of chapter 5 confirms that this reflection is consistent with [21]. In
chapter 6, we survey some very recent work done by Sano and Sato in [12]. In this paper,
Sano and Sato demonstrate how one can use a shift trick to compute the knot invariant
G0(K) from the grid complex GC−(G). As we will discuss later, there are major advantages
to this approach, so in the second half of chapter 6 we alter the shift trick to yield a new,
combinatorial, way to compute G1(K;−,−). Because this new method is combinatorial, we
see that G1(K;−,−) is computable.

All of the new work in this thesis is done for knots in S3. However, knots in lens spaces
also admit representations by twisted toroidal grid diagrams, so a natural direction for future
research is to extend the work in this thesis to twisted toroidal grid diagrams. Preliminary
calculations indicate there is no obvious obstruction to generalising the results in chapter 6
to twisted toroidal grid diagrams. This is exciting, because any attempt to study the effect of
stabilisations on GC−

sv(G) or tGC∞(G) in the twisted setting must at some point grapple with
a very difficult counting problem. By finding a way to avoid this obstruction, we conjecture
that all of the approaches to constructing invariants from toroidal grid diagrams outlined in
this thesis can be generalised to twisted toroidal grid diagrams.
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Chapter 2

Topology

2.1 Basic Definitions

Definition 2.1.1. A knot K ⊂ S3 is a circle smoothly embedded into S3. An oriented knot
is a knot with a choice of orientation.

Definition 2.1.2. Let K, J ⊂ S3 be knots. We say that K and J have the same knot type
if there exists an orientation preserving diffeomorphism D : S3 → S3 which sends K to J .
If the knots are oriented we also require that D preserves the orientations.

In practice, when we are working with a knot, we are actually working with its knot type.
This definition generalises immediately to the following.

Definition 2.1.3. A link L ⊂ S3 with n components is a disjoint union of n circles, smoothly
embedded into S3. An oriented link is a link with an orientation on each component.

Link equivalence is almost identical to knot equivalence.

Definition 2.1.4. Two n-component links L,M ⊂ S3 have the same link type if there exists
an orientation preserving diffeomorphism of S3 which sends L to M .

2.2 Diagrams

Definition 2.2.1. Let K ⊂ S3 be a knot, and let S2 ⊂ S3, such that the projection of K
onto S2 is an immersion with finitely many double points. Denote this projection by D.
Then, after we add crossing information, D is a diagram for K

Example 2.2.1. The following is a diagram for the figure eight knot.

13
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Note that, if we are given a diagram D, (which is really just a special kind of 4-valent
graph), then we can recover a knot of the same type as that which produced D. Start by
choosing a ball about each double point sufficiently small that it does not intersect any other
ball about any other double point, and only contains the ”cross” at the double point. Then
within each ball remove the cross and replace this with a pair of strands chosen to respect
crossing information (that is, the overstrand should be above the understrand, with respect
to S2).

Clearly there is more than one diagram for a given knot, and by adding nugatory crossings,

we can produce infinitely many different diagrams for a given knot type. The obvious
question is then: when do two diagrams represent the same knot type? This is answered by
Reidemeister’s theorem.

Theorem 2.2.1 (Reidemeister). Two diagrams D and D′ represent the same knot type if
and only if they can be connected by a sequence of the following three moves.

or

We call these Reidemeister type 1, 2 and 3 moves respectively.

2.3 Cobordisms and Concordance

When studying manifolds, cobordisms are often a very useful relation. The same holds true
for knots. We are doing classical knot theory, so the ambient cobordism on S3 needs to be
trivial.
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Definition 2.3.1. Let L0 and L1 be oriented links in S3. A cobordism from L0 to L1 is
a compact oriented surface W with boundary, smoothly embedded in S3 × [0, 1] so that
W ∩ (S3 ∩ {i}) = Li.

Definition 2.3.2. Let L be an oriented link in S3. Choose a ball in S3 which intersects L in
two unknotted, unlinked arcs, that is, we can find a diagram with the same link type which
locally looks like (possibly adding a nugatory crossing to obtain correct orientation).

We can produce a new oriented link by glueing a thin rectangle r along L and then replacing
its intersection with L with the remainder of ∂r. Again this is easier to see with a local
picture.

This is called a saddle move.

Saddle moves correspond to crossing an index 1 critical point in our cobordism. We also
have birth and death moves.

Definition 2.3.3. Let L be a link. A birth move on L consists of adding an unknotted,
unlinked component to L. These correspond to index 0 critical points. If b is a positive
integer, we denote by Ub(L) the link obtained by performing b birth moves simultaneously
on L.

Definition 2.3.4. Let L be a link. A death move corresponds to the removal of an unknotted,
unlinked component. These correspond to index 2 critical points on a cobordism.

The following theorem gives a normal form for cobordisms of knots.

Theorem 2.3.1. Let K1 and K2 be a pair of knots connected by a genus g cobordism W .
Then there exist knots K ′

1, K
′
2 and integers b, d such that:

1. Ub(K1) can be obtained from K ′
1 by b simultaneous saddle moves.

2. K ′
1 and K ′

2 can be connected by a sequence of 2g saddle moves.

3. Ud(K2) can be obtained form K ′
2 by d simultaneous saddle moves.

Of particular interest are minimal genus cobordisms. These are, in some sense, the correct
notion of homotopy equivalence in this setting. It is immediate that if L0 and L1 are knots
then a minimal genus cobordism between the two must be an embedded cylinder. We have
already discussed concordance briefly in the introduction, but for completeness we restate it
as a definition.
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Definition 2.3.5. Let K0, K1 be oriented knots in S3. A concordance from K0 to K1 is a
smoothly embedded cylinder C ⊂ S3 × [0, 1] so that C ∩ (S3 × i) − Ki. If a concordance
exists between K0 and K1 we say the knots are concordant.

This is clearly an equivalence relation, and with a bit of work we can actually endow the
set of these equivalence classes with a group structure.

Definition 2.3.6. The concordance group C consists of the set of concordance classes of
oriented knots in S3, with group operation given by:

[K1] + [K2] = [K1#K2],

and inverses given by:
−[K] = [−m(K)].

Where −m(K) is the mirror of K with reversed orientation.

We conclude the section by sketching the proof that C is a group. Begin by noting that
the connected sum of two knotsK and J corresponds to an operation on their codomains, i.e.
the abstract circle before it is embedded in S3. That is, we perform the following operation:

K

#

J K J

This is also the case for concordances. Suppose we have four knots K1, K2, J1, J2 so that K1

is concordant to K2 and J1 is concordant to J2. Then we have abstract cylinders:

K1

K2

J1

J2

We cut out squares to get a pair of disks:

K1

K2

J1

J2
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Which finally we join to see that K1#J1 is concordant to K2#J2, hence the group operation
is well defined.

K1#J1

K2#J2

We can do this operation on abstract cylinders by thinking of our operation as a type of
connected sum of embeddings:

i, j : S1 × [0, 1] → S3 × [0, 1].

Moreover, if U is the unknot, then U#K = K, so [U ] is the identity element of C.
To see that the mirror reverse provides an inverse, start by embedding S3 as a great sphere
in S4. We can remove a point to think of our knot K as lying in a hyperplane of R4. Rotate
K up and out of the hyperplane, and then back down into it.

Km(K)

R4

R3

S1 × [0, 1]

This traces out a cylinder, and we see that K is concordant to m(K). Thus we have the
cylinder:

K

−m(K)

Cutting out a strip, we obtain a disk bounded by K# − m(K) whose interior lies in a
single component of S4 \ S3 = B4. Pushing the boundary of this disk into S3, we see that
K#−m(K) bounds a disk in D4. This, if we cut a ball out of D4, chosen sufficiently small
that it also cuts a ball out of the cylinder, we obtain a concordance from K# − m(K) to
the unknot, hence C is a group.
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Chapter 3

Grid Diagrams

To begin with, we define the basic combinatorial structure which will represent a knot or a
link.

Definition 3.0.1. Let n ∈ N. A grid diagram of rank n is an n×n grid G alongside disjoint
sets of grid markings X and O, where X and O have been chosen such that there is exactly
one X ∈ X (resp. O ∈ O) per column per row in G.

Given a grid diagram G, we can produce an oriented link diagram as follows. Begin by
connecting grid markings which lie in the same row or column with arcs. Then add crossing
data by declaring that vertical arcs go over horizontal arcs. This produces a link diagram
which we orient by declaring horizontal arcs to point from O-marking to X-marking, and
vertical arcs to point from X-marking to O-marking. We say that the grid diagram G
represents the link which corresponds to this diagram, and we say the link type of G is the
link type of the link which G represents.

Example 3.0.1. Consider the following grid diagram.

O

O

O

O

O

X

X

X

X

X

Adding oriented arcs, and suppressing markings, we obtain:

19
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Finally, we add crossing information, orientation and suppress the grid to see this grid
represents the trefoil.

We can also associate a grid diagram to a link diagram in the following way.

Example 3.0.2. Let L ⊂ S3 be a link. Pick a diagram D for L which we view as lying on
R2. Isotope the diagram in R2 so that it is piecewise linear, all corners have angle π/2 and
all edge segments lie on either a horizontal or vertical line. We call this rectilinearisation
and diagrams which satisfy this property are rectilinear. At this point, crossings in D look
like one of:

or

In the first configuration, the vertical strand crosses over the horizontal strand, which is
what the crossings coming from a grid diagram must look like, so we need to isotope the
second configuration to look (locally) like the first configuration. We do this by performing
the following local isotopy.

Next, we isotope the diagram so that, if e and f are distinct edge segments, then the lines
through them are distinct. Finally, we place X and O markings on corners of the diagram
to align with the orientation on L, and place a grid around them.



21

Example 3.0.3. Consider the following diagram for the figure eight knot.

We start by rectilinearising this diagram.

Then we can placeX andO-markings to align with the orientation on our rectilinear diagram.

X

X

X

X

X

X

O

O

O

O

O

O

Finally, we remove the curve and overlay a grid.
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X

X

X

X

X

X

O

O

O

O

O

O

Using these constructions, we can treat grid diagrams and links interchangeably.

Example 3.0.4. The following are grid diagrams which represent the unknot:

X

X

O

O

X

X

X

O

O

O

O

O

O

O

X

X

X

X

3.1 Toroidal Grid Diagrams

In S3, our grid diagrams are toroidal. This means that we identify opposite outer edges of
the grid G and treat the grid lines as meridian/equatorial circles on the surface of a torus.
Conventionally, we will denote the horizontal circles α := {α1, . . . , αn} and the vertical circles
β := {β1, . . . , βn}, with numbering as depicted below:

β1 β2 β3 β4
α1

α2

α3

α4

More formally, we have the following.

Definition 3.1.1. Let T be a torus and n ≥ 2. Let [0, n)× [0, n) be a fundamental domain
for T . Then a toroidal grid diagram G consists of the following data:
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1. A collection of circles α = {α1, . . . , αn}, where αi is given by the line y = i − 1 in
[0, n) × [0, n). Components of T \

⋃
α are called rows. We number these rows based

upon the index of the lower boundary circle.

2. A collection of circles β = {β1, . . . , βn}, where βi is given by x = i− 1 in [0, n)× [0, n).
The components of T \

⋃
β are called columns. We number these columns based upon

the index of the left hand boundary circle.

3. A collection X = {X1, . . . , Xn} of points lying in T \(
⋃
α∪
⋃
β) such that each element

of X lies in exactly one row and column.

4. A collection O = {O1, . . . , On} of points lying in T \ (
⋃
α ∪

⋃
β) such that each

element of O lies in exactly one row and column, and never lies in the same component
of T \ (

⋃
α ∪

⋃
α) as an element of X.

Treating our grid diagrams as toroidal, we have a second (equivalent) way of associating
a grid diagram to a link. First, we need to construct a genus 1 Heegaard decomposition of
S3. We treat S3 as the set:

{(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}.

Within S3, we have the Clifford torus T = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1, |z1| = |z2| =
1/
√
2}. We can decompose S3 along T into the two sets:

Tβ = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1, |z1| ≥ 1/
√
2},

Tα = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1, |z1| ≤ 1/
√
2}.

These are both solid tori, and clearly if we glue along T we recover S3. This is called a
genus 1 Heegaard decomposition of S3. Now suppose we have a toroidal grid diagram lying
on T . Connect grid markings which lie in the same column with an unknotted arc in Tβ,
and grid markings which lie in the same row with an unkotted arc in Tβ. Orient the arcs so
that arcs in Tβ point from X-marking to O-marking, and those in Tα point from O-marking
to X-marking. This clearly produces a link L. Note that, if we place the diagram in a
sufficiently small ball on T , then projecting these arcs onto the small ball we obtain the
same link diagram as the one we obtained earlier from a grid diagram.

3.1.1 Algebraic Topology of Toroidal Grid Diagrams

In this section, we build some simplicial structures for the torus T from grid diagrams and
pairs of grid diagrams. These will be fundamental to constructing our chain complexes and
checking the topological invariance of their homologies in the next chapter. In particular,
we will introduce domains, we will count different types of domains to construct our chain
complexes and chain maps. To begin with, we want to use a toroidal grid diagram G to
produce a simplicial structure on the torus. Fix a diagram G and let G have α-circles α =
{α1, . . . , αn} and β-circles β = {β1, . . . βn}. Let L = L(G) be the set of points (

⋃
α)∩

(⋃
β
)
.
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That is, L consists of points which are the intersection of two grid circles. We call L(G) the
lattice points of G. We can parameterise these points by writing:

xij = αi ∩ βj.

For each adjacent pair of lattice points, there is a 1-cell e which lies in the grid circle spanned
by the two points (and stays inside the fundamental domain). That is, e is one of:

e

xij

xij+1

e

xij

xi+1j

Collect these cells into sets Eα and Eβ, depending upon the type of the corresponding circle.
We also have a diagonal edge e between xij and xi+1j+1 (indices modulo n) whose interior
lies in T 2 \

⋃
α ∪

⋃
β. That is, we have the following configuration:

e

xij

xi+1j+1

Collect these edges into a set E∆ and set:

E = Eα ∪ Eβ ∪ E∆.

These will be the edges for our simplicial structure. Finally, note that in the local picture
below, we have 2 embedded simplices, one upper and one lower:

T+
i,j

T−
i,j

xij
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Collect these triangles into F = F+ ∪ F−. Clearly setting lattice points as 0-simplices, E
as 1-simplices and F as 2-simplices we obtain a simplicial structure on T 2. We call this the
simplicial structure associated to G and denote it ∆G.

Example 3.1.1. Consider the following rank 3 grid:

The corresponding simplicial structure on T 2 is then:

Definition 3.1.2. A small square of a grid diagram G is a formal sum T+
ij + T−

ij for any

i, j ∈ {1, . . . , n}. We call the the (i, j)th small square, and denote it Tij.

Now consider the simplicial boundary map ∂ : C2(∆G) → C1(∆G). If s ∈ C2(∆G) is a
small square, ∂(s) splits as ∂α(s) + ∂β(s), where summands of ∂α come from Eα and those
of ∂β come from Eβ. Diagrammatically, this looks like

s∂β ∂β

∂α

∂α

We can use this splitting to associate a category with G. Our objects are grid states and
our morphisms between grid states are domains.

Definition 3.1.3. Let G be a grid diagram. A grid state is a collection x of lattice points,
so that each α-circle and each β-circle contains exactly one element of x.

Example 3.1.2. The following is a grid state in a grid diagram which represents the trefoil.
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O

O

O

O

O

X

X

X

X

X

Definition 3.1.4. Let x, y be grid states of G. A domain ψ from x to y is a 2-chain of the
simplicial structure described above which is a formal sum of small squares c with positive
coefficients, such that:

∂(∂αc) = y − x.

That is, horizontal boundary segments of c point from x to y. We collect these in the set
Dom(x, y). Note that a domain consists of three pieces of data, the initial state x, the
terminal state y and its support, denoted suppψ. A domain ψ from x to y is empty if
its support only intersects each element of x ∩ y with multiplicity zero. We collect empty
domains into the set Domo(x, y). If all multiplicities of ψ at small squares are nonnegative,
we say ψ is a positive domain. We call the points in (x ∪ y) \ (x ∩ y) the corners of ψ.

One particular type of domain we are interested in is a rectangle.

Definition 3.1.5. Let x, y be grid states of G. A rectangle from x to y is an embedded
rectangle r in T 2, with counterclockwise orientation, whose boundary lies on

⋃
α∪
⋃
β, such

that the horizontal components of r point from x to y. We identify r with the corresponding
domain ψ who has multiplicity one at all squares which intersect int(r) and zero everywhere
else. We collect these into the set Rect(x, y). We say r is empty if its corresponding domain
is empty. Collect these rectangles into the set Recto(x, y).

Definition 3.1.6. Suppose ψ ∈ Dom(x, y) and ϕ ∈ Dom(y, z). Let ψ ∗ ϕ be the domain in
Dom(x, z) with support suppψ+ suppϕ. We call this domain the juxtaposition of ψ and ϕ.

This operation produces a domain from x to z, as:

∂∂α(suppψ + suppϕ) = z − y + y − x = z − x.

This is all the information we need to define our category.

Definition 3.1.7. Let CG be the category given by the following data:

Objects: Grid States(S(G))

Morphisms: CG(x, y) = Dom(x, y)

Composition: ϕ ◦ ψ = ψ ∗ ϕ
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We call CG the category associated to G. We also have the empty category associated to G,
denoted CoG, and defined by:

Objects: Grid States(S(G))

Morphisms: CG(x, y) = Domo(x, y)

Composition: ϕ ◦ ψ = ψ ∗ ϕ

One question we can ask is: If p and q are both positive formal sums of squares, which
are both the supports of domains, when is p + q the support of a domain? More concisely,
when is it reasonable to juxtapose the supports of positive domains?

Definition 3.1.8. Let suppDom(G) be the set of formal linear sums which are the supports
of domains in G. For each a ∈ suppDom(G) let t(a) be the lattice points in ∂∂αa with
positive coefficients, and s(a) be those in ∂∂αa with negative coefficient. So t(a) consists of
terminal corners, and s(a) consists of initial corners. Then clearly the corners of a can be
partitioned as:

t(a) ∪ s(a) = c(a).

Moreover:
∂∂αa =

∑
x∈t(a)

x−
∑
y∈s(a)

y.

To simplify this, we can abuse notation and write ∂∂αa = t(a) − s(a). Suppose a, b ∈
suppDom(G). Suppose there exist grid states x′, y′, z′ and domains ψ ∈ Dom(x, y) and
ϕ ∈ Dom(y, z) such that suppψ = a and suppϕ = b. Then we can use the partition
c(a) = s(a) ∪ t(a) to construct minimal sets of lattice points x, y, z such that x ⊂ x′, y ⊂ y′

and z ⊂ z′ Consider the sets of points:

x = s(a) ∪ s(b) \ t(a),

y = t(a) ∪ s(b),

z = (t(a) ∪ t(b)) \ s(b).

It is clear these are the minimal sets of points described above, so if, for each grid circle γ,
we have:

|x ∩ γ|, |y ∩ γ|, |z ∩ γ| ∈ {0, 1}. (3.1)

Then x, y, z can be extended to grid states which satisfy the condition. Hence a + b ∈
suppDom(G) if and only if 3.1 holds. We can translate 3.1 into some more geometric
conditions which make this easier to visualise. First note that we have to retain the following
weaker combinatorial condition for this to work:

|(γ ∩ (x ∪ y ∪ z)| ∈ {0, 1, 2, 3} (3.2)

If e = ∂a ∩ γ and f = ∂b ∩ γ are both nonempty, e and f must share an endpoint. Label
this corner c. Clearly c ∈ y, so c has a positive coefficient in ∂∂αa and a negative coefficient
in ∂∂αb, hence the local structure at c looks like one of:
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b

a

c

ab

c
b

a

c
a b

c

Notably, if all shared corners look like this locally, we have:

t(a) ∩ γ = s(b) ∩ γ,

where γ is a grid circle through this corner. I claim that if all shared corners look like this
locally, and 3.2 holds, then a+ b ∈ suppDom(G). We need to check that, if this is the case,
then for each grid circle γ,:

|x ∩ γ|, |y ∩ γ|, |z ∩ γ| ∈ {0, 1}.

Fix a grid circle γ and suppose |γ ∩ (s(a) ∪ s(b))| = 2. Then by 3.2 a and b have a shared
corner on γ. By our geometric conditions, this implies that s(b) = t(a), hence:

|γ ∩ ((s(a) ∪ s(b)) \ t(a))| = 1

Hence |γ ∩ x| = 0 or 1. Now, suppose |γ ∩ t(a)| = |γ ∩ s(b)| = 1. Then by 3.2 and our
geometric conditions this implies that t(a) = s(b), hence:

|γ ∩ y| = 1.

So |γ ∩ y| = 0 or 1. Finally, suppose |γ ∩ (t(a) ∪ t(b))| = 2. Then clearly t(a) = s(b), so:

|γ ∩ z| = |γ ∩ (t(a) ∪ t(b)) \ s(b)| = 1.

Thus all of |x∩ γ|, |y∩ γ|, |z ∩ γ| ∈ {0, 1}, so 3.2 and local geometric conditions are sufficient
and necessary for 3.1. Note that to have a+ b ∈ suppDom(G), we could also exchange the
roles of a and b in the working above, so to obtain full conditions we need to swap a and b in
the working above. Noting that the geometric conditions are symmetric if we remove labels:

c
c

c

c

and that 3.2 is symmetric in a and b, we obtain complete conditions to determine if a + b
lies in suppDom(G). Note that these conditions place very tight constraints on how we can
form juxtapositions of rectangles. Up to combinatorial structure (and rotating/reflecting),
we only get the following arrangements:
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3.1.2 Grid Moves

It should be reasonably clear from the manner in which we construct grid diagrams that
there are many grid diagrams which correspond to a given link type. For example, 3.0.4
demonstrates a few different diagrams of the unknot. Thus, as with link diagrams, we need
to introduce some moves which preserve link type and can be used to obtain any grid diagram
of a fixed link type from any other diagram of that type. We will call these moves grid moves
and Cromwell moves interchangeablely.

Cyclic Permutation

Definition 3.1.9. Let G be a toroidal grid diagram. Then a cyclic permutation of G is
a grid move which corresponds to a rotation of the torus which sends adjacent columns to
adjacent columns.

In view of the Heegaard decomposition approach of associating a link to a toroidal grid
diagram, these moves don’t change the type of the link corresponding to the cyclically per-
muted grid diagram. Moreover, cyclic permutations give equivalences between the category
of domains for the pre and post permuted grid diagrams, so preserves all counts of domains.

Commutation

Suppose G is a grid diagram. Associate to each row and column of G an interval by connect-
ing the two markings in that row or column with a straight line and then projecting onto
the vertical or horizontal axis respectively. If G contains a pair of adjacent rows or columns
such that either: one interval contains the other in its interior, or the two intervals do not
intersect, we can form a new diagram G′ by swapping the two rows or columns. If G′ is
obtained from G in this way, we say the two differ by a commutation move. For example:
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X

O

X

O

X

O

X

O

In fact, up to cyclic permutation, all commutations of columns look like this, or its inverse.

Switches

Switch moves model, up to mirroring along α lines, β lines or rotations, the following moves:

Definition 3.1.10. We introduce these moves so that we only need to consider one type
of stabilisation in our proofs of invariance. Let G be a grid diagram. Let k ∈ {1, . . . , n}.
Suppose the X marking in either the kth or k + 1th column lies in the same row as the O-
marking in the respective k+1th or kth column. Let G′ be the diagram obtained by swapping
the kth and k + 1th column. We say G and G′ differ by a column switch. Vertical switches
are defined by interchanging rows and columns in the definition above. In either case G and
G′ differ by a switch.

Switches are very similar to commutation. Up to cyclic permutation, a switch will look like
the following, or its inverse.
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X

O

O

X

γi

X

O

O

X

γ′i

Note that this move does not change the knot type of G.

Augmented Diagrams

If G and G′ differ by a switch or a commutation, we can form an augmented diagram by
“drawing both diagrams on the same torus”. These are how we study the relationship
between the two grid diagrams. Our diagrams will all be for column commutations, but the
discussion also applies to row commutations, row switches and column switches. To begin,
let γi be the grid circle in G across which the commutation/switch occurs. Let γ′i be that of
G′. If we have a commutation, we assume G and G′ are arranged like the following (rotate
by π/2 to see the row version):

X

O

X

O

γi

X

O

X

O

γ′i

The case for switches is very similar, importantly, the perturbation below works identically.
By perturbing markings in the two columns, and the grid circles γi and γ′i, we obtain the
augmented diagram by drawing both diagrams on the same torus. Locally, this looks like:
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X

O

X

O

γiγ′i

.a

.b

As with an ordinary grid diagram, we can define a CW -structure on T 2 and use this to define
categories of domains. The CW -structure is determined by the following:

1. 0-cells are elements of the set: (⋃
α
)
∩
(⋃

β ∪ γ′i
)
,

or: (⋃
α ∪ γ′i

)
∩
(⋃

β
)
,

Depending upon if γi lies in β or in α.

2. 1-cells are the connected components of:(⋃
α ∪

⋃
β ∪ γ′i

)
\ {0-cells}.

3. 2-cells are the connected components of:

T 2 \
(⋃

α ∪
⋃

β ∪ γ′i
)
.

Fix the notation developed above for the remainder of this section.

Definition 3.1.11. A state in the augmented grid diagram is an element of S(G) ∪ S(G′)
embedded into the augmented diagram.

We can clearly treat these as 0-chains in the CW chain complex associated to the aug-
mented diagram. As a result we can define domains, and the associated category.

Definition 3.1.12. Let x, y ∈ S(G) ∪ S(G′). A domain ψ from x to y is a 2-chain suppψ
such that one of the following holds:

∂∂α(suppψ) = y − x (if γi is a β-circle)

∂∂β(suppψ) = x− y (if γi is an α-circle)

If suppψ has multiplicity zero on all elements of x ∩ y, we say ψ is empty. We collect these
in sets Domaug(x, y) and Dom

o
aug(x, y) respectively.
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X

O

X

O

γiγ′i

.a

.b

Figure 3.1: A pentagon

Clearly we can juxtapose domains, and the conditions to composing domains are similar
to those discussed earlier. Juxtaposition is trivially associative, so we have a category of
domains.

Definition 3.1.13. The category of domains corresponding to the augmented diagram is
given by the following data:

Objects: Elements of G ∪G′

Morphisms: Mor(x, y) := Dom(x, y)

Composition: ψ ◦ ϕ = ϕ ∗ ψ

There are a few specific types of domains we will find useful when working with the
augmented diagram.

Definition 3.1.14. Let x, y ∈ S(G) ∪ S(G′). A pentagon from x to y is a disk p embedded
into T 2 such that:

1. ∂p ⊂
⋃
α ∪

⋃
β ∪ γ′i

2. ∂p has 5 singular points, one of which lies on γi ∩ γ′i and four of which lie on both an
α-circle and a β-circle. The distinguished point is called the vertex of p

3. Equipped with counterclockwise orientation, and starting at the vertex, the next point
along the boundary is an element of x.

If no elements of x ∪ y lie in the interior of p, we say that pentagon is empty.

Definition 3.1.15. Let x, y ∈ S(G∪G′). A hexagon from x to y is a disk h embedded into
T 2 so that:

1. ∂h ⊂
⋃
α ∪

⋃
β ∪ γ′i.
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2. ∂h has six singular points, two of which are a and b, the other four are (x∪y)\ (x∩y).

3. If G differs from G′ by a column commutation, then ∂∂αh = y−x, if the pair differ by
a row commutation then ∂∂βh = x− y.

We collect these in the set Hex(x, y). If h intersects no point of x or y in its interior, we say
it is empty. We collect empty hexagons from x to y into the set Hexo(x, y).

Definition 3.1.16. Let x, y ∈ S(G) ∪ S(G′). Then, a triangle t from x to y is a disk
embedded in T 2 such that:

1. ∂t ⊂
⋃
α ∪

⋃
β ∪ γ′i.

2. ∂p has 3 singularities, one of which lies on γi∩γ′i and 2 of which lie on both an α-circle
and a β-circle. We call the distinguished point the vertex of t.

3. ∂∂αt = y − x or ∂∂βt = x− y.

We say a triangle is empty if its interior contains no element of x or y. Noting that triangles
always lie in one of the bigons cut out by γi and γ

′
i, all triangles are empty.

Note that the conditions defining triangles are actually very strong. Because the grid
states can only differ on one point, x uniquely determines y and y uniquely determines x.
As a result we will label the unique triangle from x by tx. The points they differ on must lie
on γi ∪ γi, so the support of each tx must lie between γi and γ

′
i.

Stabilisation

Up to rotations, and mirror symmetries along α or β lines, we want to isotope the following
local feature in a rectilinear diagram:

Into one of the following four configurations:

To turn these into pieces of grid diagrams, we have two choices for the marking on the
distinguished point in the first diagram. If it is an X-marking, we can fill in the second
diagrams to obtain:
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X O

X O

X

X O

XO

X

X O

XO

X

X O

X O

X

If it is an O-marking, then we have:

X O

X O

X

X O

XO

X

X O

XO

X

X O

X O

X

We can describe these more formally by the following:

Definition 3.1.17. Let G be a grid diagram. We obtain a stabilisation of G at a grid
marking by the following. Select a column and a row through that grid marking. Erase the
markings in these rows and split them down the middle to produce a new column and row.
Then there are 4 different ways to fill this in to produce a new grid diagram. All of these
diagrams are stabilizations of G. We say G is obtained from any of these diagrams by a
destabilization.

The diagrams above give the various combinatorial structures of the new rows after stabi-
lization. The different types of stabilisations are denoted with one label indicating the type of
marking the stabilisation occurs at, and one indicating the location of the unmarked square
relative to the distinguished point. So, for example, if we have the following distinguished
2× 2 square, then we have an X : SW stabilisation.

X

X O
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Cromwell’s Theorem

Having defined our grid moves, we state the following fundamental theorem, which relates
grid moves to the link type of a grid diagram.

Theorem 3.1.1 (Cromwell). Let G and G′ be a pair of grid diagrams. Then G has the
same link type as that of G′ if and only if there exists a sequence of stabilisations and
commutations which transforms G into G′.

Proof. See [26].

In fact, [27, Lemma 3.2.2] simplifies the moves we need to X-stabilisations and com-
mutations. Noting that all X-stabilisations differ by a sequence of switch moves, two grids
represent the same knot if and only if they are connected by a sequence of switches, commuta-
tions and X : SW -stabilisations. So there is a bijective correspondence between equivalence
classes of grid diagrams (with respect to commutations and stabilisations) and knot types.
This allows us to study knots by studying these equivalence classes.

3.1.3 Destabilization Domains

In this section, we discuss the structure of destabilization domains. These are a type of pos-
itive domain which are nessecary in proving stabilisation invariance on the level of homology
for grid complexes where the boundary map is not obstructed by X or O-markings. This
is intended to supplement the discussion of destabilization domains in [27], in particular,
verifying some properties which the authors take for granted. To begin, we lay out some
notation. Let G be a grid diagram. Suppose we perform an X:SW destabilisation domain
on some X-marking in G to obtain a new grid diagram G′. By construction, G′ has a
distinguished 2× 2 square:

X O

X

We label points on this square as below, and let O2 be the O-marking in the same row as
X2.

X1 O1

X2
c

Note that grid states in G′ fall into one of two types. Denote the set of states who contain
c by I(G′) and those who do not by N(G′). We can think of the set I(G′) as representing
S(G) by sending x ∈ S(G) to x∪ c ∈ I(G′). This suggests that domains with an initial state
in N(G′) and final state in I(G′) should tell us something about the relationship between G
and G′.
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Definition 3.1.18. Fix a state x ∈ S(G′) and a state y ∈ I(G′). Then a domain ϕ from x
to y is of type iL if it follows the following conditions:

1. All local multiplicities of ϕ are non-negative.

2. At each corner point of ϕ, apart from c, at least three of the four adjacent squares have
multiplicity 0

3. ϕ has the same local multiplicity k at three of the four squares who share the corner
c, and has multiplicity k − 1 at the southwest square.

4. |x \ (x ∩ y)| = 2k + 1

Similarly:

Definition 3.1.19. Fix a state x ∈ S(G′) and a state y ∈ I(G′). Then a domain ϕ from x
to y is of type iR if it follows the following conditions:

1. All local multiplicities of ϕ are non-negative.

2. At each corner point of ϕ, apart from c, at least three of the four adjacent squares have
multiplicity 0

3. ϕ has the same local multiplicity k at three of the four squares who share the corner
c, and has multiplicity k + 1 at the southeast square.

4. |x \ (x ∩ y)| = 2k + 1

We collect these domains in the sets πiL(x, y) and πiR(x, y) respectively. If a domain ϕ
from x to y lies in either of these sets, then we say ϕ is a destabilization domain. We collect
destabilization domains into the set πD(x, y).

Definition 3.1.20. Let ϕ be a destabilisation domain from x to y. Then the complexity of
ϕ is the number of horizontal segments in its boundary.

Definition 3.1.21. Let ϕ ∈ πD(x, y). Let x1 be the intersection point of x and βi, where
βi is the β-circle through c. Then the innermost width of ϕ is the length of the horizontal
segment of ∂ϕ containing x.

Definition 3.1.22. Let ϕ ∈ πD(x, y). Let x1 be the intersection point of x and αk, where
αk is the β-circle through c. Then the innermost height of ϕ is the length of the vertical
segment of ∂ϕ containing x.

From here, it is helpful to dissect a few examples.

Example 3.1.3. Consider the following type iL domains (where the number in a region
indicates local multiplicity).
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3

3

3
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There are a few features to note here. The left hand domain has complexity 5 and the
right hand domain has complexity 9. The inner width/height correspond to the shortest
horizontal/vertical edges. The vertical and horizontal edges which do not touch c fall into
4 classes, all of whose projections (horizontal/vertical respectively) are nested (based on
distance from c). The final interesting feature of these domains is that their boundaries are
connected.

I claim the properties we observed above are actually generic properties of all destabiliza-
tion domains. We start by partitioning horizontal and vertical edges which do not intersect
c. Fix a destabilization domain ϕ. Note that all horizontal edges which do not intersect c
look like one of the following, by condition 2 of 3.1.19 or 3.1.18.

Where the dotted lines indicate the vertical edges connected to the horizontal edge. We
denote the first type South Facing (which we often abbreviate to SF) and the second North
Facing (which abbreviates to NF). Clearly SF edges lie above c and NF edges lie below c.
We can similarly partition vertical edges which do not intersect c into east and west facing
as a consequence of the properties in 3.1.18 and 3.1.19. Above the top horizontal edge of
ϕ, ϕ has local multiplicity 0, and edges correspond to pairs of regions with different local
multiplicities, so conditions 3 and 4 of 3.1.18 and 3.1.19 guarantee that there are k north
facing edges and k south facing edges. Moreover the vertical edges these are connected to
must extend at least one square past c. Thus they must intersect all other horizontal edges
of the same type.

Now suppose we have a pair of SF edges. We have 4 options for how they are arranged:
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Only one of these does not violate condition 2 of 3.1.18 and 3.1.19, so in general SF edges
are arranged like:

Clearly we have the same structure for NF, EF and WF edges. In the case that ϕ is iL, the
local multiplicities above the exceptional horizontal edge look like:

c
1 2 k − 1 k

Denoting this edge eh, we see that eh intersects all EF edges, so eh must connect c to the
outermost EF edge. Similarly, labelling the vertical exceptional edge ev, we see that ev con-
nects c to the outermost NF edge.

Now let e be the ith innermost EF edge. By a similar argument to above, we find that
multiplicities to the left of e look like:

1

2

k − i + 1

2

1
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Thus e connects the ith outermost NF edge to the i + 1th SF edge. Similar analysis can
be applied to the NF,SF,WF edges to completely describe the combinatorial structure of
ϕ. Importantly, note that the complexity of ϕ determines its combinatorial structure. An
analogous approach determines the structure of type iR domains in terms of their complexity.
Note that, with the rules derived above, we see that the boundary of ϕ is connected. Thus
we have described the structure of ϕ. We can now prove an important structural lemma
about destabilisation domains.

Lemma 3.1.2. Let p ∈ π(x, y) be a destabilisation domain with complexity k. Then there
is a sequence of states {xi}ki=1 and rectangles {ri}k−1

i=1 such that each ri ∈ Recto(xi, xi+1) and:

p = r1 ∗ · · · ∗ rk−1.

Among such sequences of rectangles, there is exactly one with the property that each ri has
an edge on the β-circle through c.

Proof. We proceed by induction. Suppose the result holds for all domains with complexity
in {1, . . . , n}. Suppose ϕ has complexity n + 1 or n + 2. Let αj be the horizontal circle
through c and βi be the vertical circle through c. Let x1 be the point in x which lies on βi.
For each m, let ym be the element of y which lies on the same horizontal circle as xm, and
xm+1 be that the element of x which lies on the same vertical circle as ym. Label the rest
of the elements of x and y (which coincide) randomly. Let t be the intersection of βi with
the edge between x2 and y2, and s be that of βi with the edge between x3 and y3. Then,
set x1 = x, x2 = {y1, t, x3, . . . , xn} and x3 = {y1, y2, s, x4, . . . , xn}. There are exactly two
rectangles in Rect(x1, x2) and Rect(x2, x3). Moreover, exactly one of these each lies in the
support of ϕ. Thus ϕ = r1 ∗ r2 ∗ ψ. Moreover, r1 intersects the NE and SE squares about c
with multiplicity 1, and r2 intersects the NW and SW squares about c with multiplicity 1,
hence ψ is also in πD and has the same type as ϕ. Thus the result follows by induction.

3.1.4 Stabilization Domains

Having defined destabilisation domains, we can also define stabilisation domains. As before
assume we perform an X : SW stabilisation on some grid diagram G to produce G′. Then
we have a distinguished 2× 2 square in G′:

X1 O1

X2
c

Splitting S(G′) as usual we have the following definition:

Definition 3.1.23. Fix x ∈ I(G′) and y ∈ S(G′). A domain p from x to y is said to be out
of L or out of R if it is trivial (in which case it is oL) or if it satisfies all of the following:

1. All local multiplicites are non-negative.



3.1. TOROIDAL GRID DIAGRAMS 41

2. At each corner in x ∪ y \ {c} at least 3 of the adjoining squares have vanishing local
multiplicity.

3. In a neighbourhood of c, the local multiplicities in three of the adjoining squares are
the same number k. If p is type oL then the domain has local multiplicity k− 1 at the
NW square meeting c. If p is type oR then the domain has local multiplicity k + 1 at
the NE square meeting c.

4. If the domain is type oL then y has 2K + 1 elements not in x, if the domain is type
oR then y has 2k + 2 elements not in x.

This definition is also very unwieldy, however, if we note that reflecting along the α-circle
through c we preserve conditions 1, 2 and 4, and transform 3 into the third condition for
destabilisation domains. Thus stabilisation domains are really just destabilisation domains
reflected across the α-circle through c. The dissection of destabilisation domains above
then applies, so the combinatorial structure of a stabilisation domain is determined by its
complexity. Moreover, we can perform the same decomposition into rectangles.

Lemma 3.1.3. Let p be a stabilisation domain with complexity k. Then there are grid
states {xi}ki=1 and rectangles {ri}k−1

i=1 , where ri ∈ Recto(xi, xi+1) for which p = r1 ∗ · · · ∗ rk−1.
Moreover if we add the condition that each rectangle must have an edge lying in the β-circle
through c, this decomposition is unique.

We can reflect our examples from earlier to see how these look.
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Chapter 4

Grid Homology

In this chapter, we construct numerous chain complexes from which we will extract a few
different definitions of ΥK in the next chapter. We are interested in applying the techniques of
[22] to the setting of grid diagrams. For technical reasons, Livingston uses the construction of
ΥK (given in [3]) from a chain complex which is a F[v1/n]-module. The existing construction
of ΥK via grid diagrams was laid out by Földvári in [21], and uses a chain complex which is a
F[vt, v2−t]-module, where t is any element of [0, 2]. To account for this difference of ring, we
construct two different t-modified chain complexes, we also construct two different Z2-filtered
chain complexes to obtain a grid analogue for other chain complexes used in [22]. In the
next chapter, we will relate these different chain complexes, and show that their homologies
allow one to compute the same Υ-invariant. We are working with chain complexes over
many different rings, so to keep our notation clear, we tabulate notations for the rings we
are interested in below (F is always the field with two elements):

Ring Notation
F[U,U−1] Λ

F[U ] Λ−

F[V1, V −1
1 , . . . , Vn, V

−1
n ] R∞

n

F[V1, . . . , Vn] R−
n

F[v1/n, v−1/n] S1/n

F[v1/n] S−
1/n

F[vt, v2−t] S−
t

4.1 Graded Grid Homology Theories

4.1.1 GC−(G)

Gradings

We want to form a bigraded chain complex (GC−(G), ∂−X ) generated over grid states, so we
begin by defining Maslov (which will give the homological grading) and Alexander functions
for grid states. The Maslov function on S(G) is determined by the following:

43
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Proposition 4.1.1. For any toroidal grid diagram G, there exists a function:

MO : S(G) → Z,

called the Maslov function on grid states, which is uniquely determined by the following two
properties:

1. Let xNWO be the grid state whose components are the upper left corners of squares
containing O-markings. Then MO(x) = 0.

2. If x, y ∈ S(G) and r ∈ Rect(x, y), then MO(x)−MO(y) = 1− 2|r ∩O|+ 2|x ∩ int(r)|.

Proof. See [27, Proposition 4.3.1].

Exchanging the roles of X and O markings, we also have:

Proposition 4.1.2. For any toroidal grid diagram G, there exists a function:

MX : S(G) → Z,

which is uniquely determined by the following two properties:

1. Let xNWX be the grid state whose components are the upper left corners of squares
containing X-markings. Then MX(x) = 0.

2. If x, y ∈ S(G) and r ∈ Rect(x, y), then MX(x)−MX(y) = 1− 2|r ∩ X|+ 2|x ∩ int(r)|.

We can also define these functions in a non-recursive way. Start with the following.

Definition 4.1.1. Let P be a poset and A,B ⊂ P × P be finite subsets. Define:

I(A,B) = |{(a, b) ∈ A×B : a1 < b1 and a2 < b2}|.

We can make this symmetric by defining:

J (a, b) =
1

2
(I(A,B) + I(B,A)).

Then we can compute MO and MX by the following. Let G be a toroidal grid diagram.
Choose [0, n) × [0, n) as a fundamental domain for the corresponding torus. Then we can
think of grid states as collections of points with integer coordinates, and grid markings as
points in the fundamental domain with coordinates in (Z+ 1

2
)× (Z+ 1

2
). Treating grid states

and marking in this manner, we obtain the following.

Lemma 4.1.3. If x ∈ S(G), then:

� MO(x) = J (x, x)− 2J (x,O) + J (O,O) + 1,

� MX(x) = J (x, x)− 2J (x,X) + J (X,X) + 1.

Proof. See [27, Lemma 4.3.5].
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We can use these two functions to define the following.

Definition 4.1.2. The Alexander function on grid states is given by:

Alex(x) =
1

2
(MO(x)−MX(x))−

(
n− l

2

)
.

Where l is the number of components of the link corresponding to G.

We will almost never use MX, so we abbreviate MO as M .

Proposition 4.1.4. Let G be a toroidal grid diagram. Then the function Alex is char-
acterised (up to additive constant) by the following property. For any x, y ∈ S(G), and
r ∈ Rect(x, y):

Alex(x)− Alex(y) = |r ∩ X| − |r ∩O|

Proof. The idea for this proof is to combine the two recursive formulae above, see [27,
Proposition 4.3.3] for details.

For this subsection, fix a grid diagram G of rank n and recall R−
n = F[V1, . . . , Vn]. Label

the O-markings as {Oi}ni=1.

Definition 4.1.3. The unblocked grid complex GC−(G) is a free module over R−
n , with

boundary map given on grid states x by:

∂−X (x) =
∑

y∈S(G)

∑
{r∈Recto(x,y):r∩X=0}

V
O1(r)
1 . . . V On(r)

n · y.

Where Oi(r) is one if r contains Oi, and zero otherwise.

We can make this bigraded by extending the Maslov and Alexander functions in the
following manner, for each x ∈ S(G):

M(V k1
1 . . . V kn

n x) =M(x)− 2k1 − 2k2 − · · · − 2kn,

Alex(V k1
1 . . . V kn

n x) = Alex(x)− k1 − k2 − · · · − kn.

This clearly equips GC−(G) with a bigrading. More explicitly, let:

GC−
d (G, s),

be the vector space spanned by basis vectors V k1
1 , . . . , V kn

n x (x ∈ S(G)) which satisfy:

M(V k1
1 . . . V kn

n x) = d,

Alex(V k1
1 . . . V kn

n x) = s.

Theorem 4.1.5. The object (GC−(G), ∂−X ) is a bigraded chain complex over R−
n .

Proof. See proof of [27, Theorem 4.6.3].
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Definition 4.1.4. The unblocked grid homology of G, denoted GH−(G) is the homology of
(GC−(G), ∂−X ), viewed as a bigraded module over Λ−, where U is induced by multiplication
by V1.

This is well defined as a consequence of the following.

Lemma 4.1.6. Suppose G represents a knot. For any pair i, j ∈ {1, . . . , n}, multiplication
by Vi is chain homotopic to multiplication by Vj, when thought of as homogeneous maps
from GC−(G) to itself of degree (−2,−1).

Proof. This was proven in [27, Lemma 4.6.9], by showing that, if two O markings share a
common X marking (ie. are adjacent to the same X-marking in the corresponding rectilinear
diagram), then there is a chain homotopy between the variables in R−

n which correspond to
those markings. The proof is complete once one notes that, because G represents a knot,
there is a sequence of O-markings so that each consecutive pair of markings share an X-
marking, and all O markings appear in the sequence.

We have the following fundamental invariance theorem:

Theorem 4.1.7. The bigraded F[U ]-module GH−(G) depends only upon the knot type of
G.

Proof. See [27, Theorem 5.3.1].

Finally, we have the following theorem which connects combinatorial and pseudo-holomorphic
theories.

Theorem 4.1.8. IfH is a Heegaard diagram induced from a grid diagramG, then (CFK−(H), ∂−K)
is isomorphic to (GC−(G), ∂−X ).

Proof. See [27, Theorem 16.4].

For more details on CFK−(H), see [27, §16.3].

4.2 t-Modified Homologies

In this section, we construct variants of t-modified grid homology by changing the coefficient
ring we use. This is necessary for us to make the construction in [22] combinatorial, as the
algebraic filtration induced by the larger coefficient ring Földvári uses in [21], when expanded
to include positive algebraic filtration levels, does not separate the corresponding homology
in the correct way.

We start with a brief summary of Földvári’s chain complex.
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4.2.1 tGC−(G)

This is a grid homology theory developed in [21]. We briefly summarise the pertinent prop-
erties of tGC−(G) in this section. To begin with, fix a grid diagram G and a number
t ∈ [0, 2]. Recall we have the functions M and Alex defined on S(G). Then the t-Modified
Grid Homology of G is given by the following definition.

Definition 4.2.1. Let tGC−(G) be the free S−
t -module generated over S(G), equipped with

the S−
t -endomorphism:

∂−t : tGC−(G) → tGC−(G),

given on grid states x ∈ S(G) by:

∂−t (x) =
∑

y∈S(G)

∑
r∈Recto(x,y)

vt|X∩r|+(2−t)|O∩r| · y.

We call the pair (tGC−(G), ∂−t ) the t-Modified Grid Complex and its homology,H∗(tGC
−(G)),

is called the t-Modified Grid Homology of G. We denote this tGH−(G).

We have implicitly assumed in the definition above that tGC−(G) is a chain complex.
The following verifies this.

Theorem 4.2.1. The endomorphism ∂−t given above satisfies ∂−t ◦ ∂−t = 0.

Proof. See [21, Theorem 3.22].

R-grading

The homological grading on tGC−(G) is an R-grading. This is necessary, as we want to use
this grading to construct ΥK(t), which can take on non integer values.

Definition 4.2.2. Let x ∈ S(G) and Uα ∈ S−
t . Then the t-grading on Uα ·x is given by the

following:
grt(U

α · x) =M(x)− tAlex(x)− α.

It makes sense to treat this as the homological grading of tGC−(G), as a consequence of
the following.

Proposition 4.2.2. ∂−t is homogeneous of degree −1 with respect to grt.

Proof. See [21, Proposition 3.24].

Effect of Grid Moves

Recall that two grid diagrams have the same link type if and only if there exists a sequence
of Cromwell moves connecting the two diagrams. In [21], Földvári proves the following.

Theorem 4.2.3. If G differs from G′ by a commutation move or a switch move, then
tGH−(G) and tGH−(G′) are isomorphic as R-graded S−

t -modules.



48 CHAPTER 4. GRID HOMOLOGY

Proof. See [21, Theorem 3.34].

Theorem 4.2.4. If G′ is obtained from G by a stabilisation move, then we have the following
isomorphism of R-graded S−

t -modules:

tGH−(G′) ∼= tGH−(G)⊕ tGH−(G)[1− t].

Proof. See [21, §3.5].

4.2.2 tGC∞(G)

In this subsection we construct a grid analogue of the t-modified homology used in [22]. To
begin, fix t ∈ Q∩ [0, 2] and n ∈ Z for which t = m

n
and gcd(m,n) = 1. Recall S∞

1/n is the ring

of Laurent polynomials modulo 2 in the variable v
1
n . Similarly S−

1/n is the ring of polynomials

modulo 2 in the variable v
1
n .

Definition 4.2.3. For t, n as defined above, and a grid diagram G, the t-modified grid com-
plex is the free S∞

1/n-module tGC∞(G) generated over S(G), equipped with the differential:

∂∞t (x) =
∑

y∈S(G)

∑
r∈Recto(x,y)

vt|X∩r|+(2−t)|O∩r|y x ∈ S(G).

We also have a grading and a filtration:

grt(v
αx) =M(x)− tAlex(x)− α x ∈ S(G), vα ∈ S∞

1/n.

alg(vαx) = −α x ∈ S(G), vα ∈ S−
1/n.

Our first task is to check that this forms a graded, filtered chain complex.

Theorem 4.2.5. The tuple (tGC∞(G), ∂∞t , grt, alg) is a grt-graded, alg-filtered chain com-
plex.

Proof. To begin with, we check that (∂∞t )2 = 0. Fix grid states x, z ∈ S(G), and for each
ψ ∈ Dom(x, y), let N(ψ) be the number of ways ψ can be expressed as a juxtaposition of
two empty rectangles. Then clearly we have:

(∂∞t )2 (x) =
∑
z∈S(G)

∑
ψ∈Dom(x,z)

N(ψ)vt|X∩ψ|+(2−t)|O∩ψ|z.

Based upon our discussion of juxtapositions of rectangles in §3.1, if N(ψ) ̸= 0, then ψ falls
into one of three cases. Decompose ψ as ψ = r ∗ s where r ∈ Recto(x, y) and s ∈ Recto(y, z).
Then ψ falls into one of three cases. If r and s share 0 or 1 corner, then by the proof of
[27, Lemma 4.6.7] N(ψ) = 2, so these cases cancel in (∂∞t )2. If r and s share 4 corners,
then we must have z = x. Moreover, ψ is empty so must be a thin annulus (a domain
corresponding to a component of T \ ᾱ or T \ ¯beta). There are exactly 2rank(G) of these
thin annuli which contribute to (∂∞t )2, each contributing v2x, so this case also contributes
zero. Thus (∂∞t )2 = 0.
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Next, we need to check that ∂∞t drops grt by 1. Let x, y ∈ S(G) and r ∈ Recto(x, y).
Recall we have the recursive formulae:

M(x)−M(y) = 1− 2|O ∩ r|,

Alex(x)− Alex(y) = |X ∩ r| − |O ∩ r|.

Thus:

grt(x)− grt(y) =M(x)−M(y)− t(Alex(x)− ALex(y)) (4.1)

= 1− 2|O ∩ r| − t(|X ∩ r| − |O ∩ r|) (4.2)

= 1− t|X ∩ r| − (2− t)|O ∩ r|. (4.3)

Hence:

grt(x)− grt(v
t|X∩r|+(2−t)|O∩r|y) = 1,

so the tuple is grt-graded. Finally, noting that all coefficients of the summands in ∂∞t (x)
have a positive power, ∂∞t is trivially filtered.

As per [27, Corollary 3.2.3] to understand how tGC∞ transforms under grid moves, it is
sufficient to understand how it transforms under: commutations, switches and stabilisations
of type X : SW .

Commutations and Switches

For this section, let G and G′ be a pair of grid diagrams who differ by a commutation or
a switch. Assume without loss of generality that this occurs across γi in G and γ′i in G′ so
that their augmented diagram looks like:

X

O

X

O

γiγ′i

.a

.b

As before rotate by π/2 to obtain the diagram for row commutations/switches. We can use
this diagram to construct the pentagon counting maps.
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Definition 4.2.4. For G and G′ as above, define the following pair of maps.

P : tGC∞(G) → tGC∞(G′)

P (x) =
∑

y∈S(G′)

∑
p∈Pentoa(x,y)

vt|X∩p|+(2−t)|O∩p|y x ∈ S(G)

P : tGC∞(G′) → tGC∞(G)

P (x) =
∑

y∈S(G)

∑
p∈Pentob(x,y)

vt|X∩p|+(2−t)|O∩p|y x ∈ S(G′)

We call these the pentagon counting maps.

Lemma 4.2.6. The maps P and P ′ are graded and filtered.

Proof. As noted in the proof that ∂∞t is filtered, all coefficients in P (x) and P ′(x′) have a
non-negative power, so the maps are trivially filtered. Checking these maps are graded is
much more involved. There is a canonical bijection between S(G) and S(G′) obtained by
sending x ∈ S(G) to the element x′ ∈ S(G′) which agrees with x on n− 1 lattice points. By
the proof of [27, Lemma 5.1.3], we know that, if p is a pentagon from x ∈ S(G) ∪ S(G′) to
y ∈ S(G ∪ S(G′)), then:

M(x)−M(y) = −2|p ∩O|+ 2|x ∩ Intp|,
Alex(x)− Alex(y) = |p ∩X| − |p ∩O|.

Thus we have:

grt(x)− grt(y) =M(x)−M(y)− (tAlex(x)− tAlex(y))

= −2|p ∩O|+ t(|p ∩O| − |p ∩ X|)
= −t|p ∩ X| − (2− t)|p ∩O|.

So:
grt(x)− grt(v

t|X∩p|+(2−t)|O∩p|y) = 0,

which means that P and P ′ are both graded.

Next we need to check these are chain maps. The proof is combinatorial, so much can
be lifted from the proof of [27, Lemma 5.1.4].

Lemma 4.2.7. The maps P and P ′ are chain maps.

Proof. We prove this for P , the proof for P ′ is identical. The approach is very similar to
the proof that ∂∞t squares to zero. Let x ∈ S(G) and y ∈ G′ and ψ be a domain in the
augmented diagram connecting x to y. Let N(ψ) be the number of ways that ψ can be
decomposed as a the juxtaposition of an empty pentagon and an empty rectangle, or an
empty rectangle and an empty pentagon. Clearly, we have, for x ∈ S(G):

∂∞t ◦ P + P ◦ ∂∞t (x) =
∑

y∈S(G′)

∑
ψ∈Domo(x,y)

N(ψ)vt|X∩ψ|+(2−t)|O∩ψ|y.
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In the proof of [27, Lemma 5.1.4] it is verified that N(ψ) = 2 for all ψ with N(ψ) ̸= 0, apart
from the case where ψ consists of an annulus supported in between γi−1 and γi+1. Given
we are working modulo 2, we only need to deal with this special case. These domains must
have support in the annulus between γi−1 and γi+1, so their states can differ on at most
one point, hence y = x′. Thus there are only two of these domains for each x. We have
one to the west, which we denote ψ1 and one to the east which we label ψ2. To establish
the relationship between ψ1 and ψ2, let χ1 be the western annulus and χ2 be the eastern
annulus. If t′x is the triangle connecting x and x′ = y, with its third corner at b, then it is
clear that ψ1 = χ1 + t′x and ψ2 = χ2 + t′x. Neither χ1 nor χ2 intersects a grid marking, so
noting that ψ1−ψ2 = χ1−χ2, both domains contribute the same summand to the equation.
Again given we are working modulo 2, this means that their contributions cancel, so we have
proven that:

∂∞t ◦ P = P ◦ ∂∞t .

Now we use hexagons to construct chain homotopy equivalences from P to P ′ and P ′ to
P . Start by defining the hexagon counting maps.

Definition 4.2.5. Let G and G′ be as above. Then the hexagon counting maps are given
by:

H : tGC∞(G) → tGC∞(G)

H(x) =
∑

y∈S(G)

∑
h∈Hexo(x,y)

vt|X∩h|+(2−t)|O∩h|y x ∈ S(G)

H ′ : tGC∞(G′) → tGC∞(G′)

H(x) =
∑

y∈S(G′)

∑
h∈Hexo(x,y)

vt|X∩h|+(2−t)|O∩h|y x ∈ S(G′)

Lemma 4.2.8. Both H and H ′ raise the grading by 1.

Proof. Note that if h ∈ Hexo(x, y) then adding one of the two bigons between a and b
results in a rectangle r from x to y. Both of these bigons intersect exactly one X-marking
and exactly one O-marking, so we have:

grt(x)− grt(y) = −t|X ∩ r| − (2− t)|O ∩ r|+ 1

= −t|X ∩ h| − (2− t)|O ∩ h|+ 1− 2

= −t|X ∩ h| − (2− t)|O ∩ h| − 1.

Thus:

grt(x)− grt(v
t|X∩h|+(2−t)|O∩h|) = −1,

so the result follows.

Theorem 4.2.9. H is a chain homotopy from P ′ ◦ P to the identity.
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Proof. We need to check the following equation holds:

P ′ ◦ P + ∂∞t ◦H +H ◦ ∂∞t = id.

Let x, y ∈ S(G) and ψ be an empty domain in the augmented diagram from x to y. Let
N(ψ) be the number of ways ψ can be decomposed as h ∗ r, r ∗ h or p ∗ q, for some hexagon
and rectangle h and r respectively, or for pentagons p, q. Then:

(P ′ ◦ P + ∂∞t ◦H +H ◦ ∂∞t )(x) =
∑

y∈S(G)

∑
ψ∈Domo

aug(x,y)

N(ψ)vt|X∩ψ|+(2−t)|O∩ψ|y. (4.4)

It is verified in the proof of [27, Lemma 5.1.6] that if x ̸= y, then N(ψ) = 2 or 0, so these
terms drop out of 4.4. If x = y, then there is a unique domain ψ in Domo

aug(x, y) and as
noted in [27, Lemma 5.1.6] N(ψ) = 1. Because ψ is empty it must be a thin annulus, one of
χ1 or χ2. Neither of these intersect a grid marking, so each summand contributes x, giving:

(P ′ ◦ P + ∂∞t ◦H +H ◦ ∂∞t )(x) = x.

And the result follows.

A nearly identical proof verifies this is the case for H ′, so we have the following:

Theorem 4.2.10. If G and G′ are grid diagrams who differ by a commutation move or a
switch, then there is a filtered chain homotopy equivalence between tGC∞(G) and tGC∞(G′).
In particular, we have a filtered isomorphism:

tGH∞(G) ∼= tGH∞(G′).

Stabilisation

Now, suppose G is a grid diagram of rank n and G′ is a grid diagram obtained from G by
an X : SW stabilisation. Recall we have the distinguished 2× 2 square:

X1 O1

X2
c

We fix a numbering of the markings in G′ for brevity. First label markings as indicated in the
figure above. Then let O2 be the O-making in the same row as X2. Number the remaining
markings arbitrarily. Then the grid states in G′ can be decomposed as S(G′) = I(G′) ∪
N(G′) = I ∪ N , where x ∈ I(G′) = Iif c ∈ x. We have a canonical map e : I(G′) → S(G)
defined by sending x to x \ {c}.

Lemma 4.2.11. If x ∈ I(G′), then:

grt(x) = grt(e(x)) + t− 1.
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Proof. By [27, Lemma 5.2.4], we know that:

M(x) =M(e(x))− 1

Alex(x) = Alex(e(x))− 1

So:

grt(x) =M(x)− tAlex(x)

=M(e(x))− tAlex(e(x)) + t− 1

= grt(e(x)) + t− 1

Also note that alg(x) = alg(e(x)). Then the result follows.

Recall that we defined and described destabilisation domains in 3.1.1. We can now use
these to construct the following.

Definition 4.2.6. Fix t ∈ [0, 2] ∩Q. Let O = {O1, O3, O4, . . . } and X = {X1, X3, X4, . . . }.
Define:

DiL : tGC∞(G′) → tGC∞(G)[1− t]

DiL(x) =
∑

y∈I(G′)

∑
ψ∈πiL(x,y)

vt|X∩ψ|+(2−t)|O∩ψ|e(y) x ∈ S(G′)

and:

DiR : tGC∞(G′) → tGC∞(G)

DiR(x) =
∑

y∈I(G′)

∑
ψ∈πiR(x,y)

vt|X∩ψ|+(2−t)|O∩ψ|e(y) x ∈ S(G′)

Taking D = DiR ⊕DiL we obtain the t-modified destabilisation map:

D : tGC∞(G′) → tGC∞(G)⊕ tGC∞(G)[1− t].

Lemma 4.2.12. DiL is filtered and graded.

Proof. Let x ∈ S(G′) and y ∈ I(G′). Let ψ ∈ πiL(x, y). Let ψ have complexity k. Then by
3.1.2, ψ decomposes as a juxtaposition of rectangles:

r1 ∗ · · · ∗ rk−1.

Then, recursively applying 4.3 we find:

grt(x)− grt(y) = −t|X ∩ ψ| − (2− t)|O ∩ ψ|+ k − 1.

Because type iL domains have the same multiplicity at both O1 and X2, we have:

grt(x)− grt(y) = −t|X ∩ ψ| − (2− t)|O|,

hence, applying 4.2.11:

grt(x)− grt(v
t|X∩ψ|+(2−t)|O∩ψ|e(y)) = −1 + t

So the map is graded. As usual the map is trivially filtered, so the result follows.
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Lemma 4.2.13. DiR is graded and filtered.

Proof. Let x ∈ S(G′) and y ∈ I(G′). Let ψ ∈ πiR(x, y). Let ψ have complexity k. Then by
3.1.2, ψ decomposes as a juxtaposition of rectangles:

r1 ∗ · · · ∗ rk−1.

Then, recursively applying 4.3 we find:

grt(x)− grt(y) = −t|X ∩ ψ| − (2− t)|O ∩ ψ|+ k − 1.

For type iR domains the multiplicity at X2 is one larger than at O − 1, so:

grt(x)− grt(y) = −t|X ∩ ψ| − (2− t)|O|+ 1− t,

hence:

grt(x)− grt(v
t|X∩ψ|+(2−t)|O∩ψ|e(y)) = 0,

so the map is graded. As usual the map is clearly filtered, so the result follows.

Theorem 4.2.14. The map D : tGC∞(G′) → tGC∞(G)⊕ tGC∞(G)[1− t] is a chain map.

Proof. The proof of this result involves pairing up certain juxtapositions of destabilisation
domains and rectangles. Fortunately, the proof of [27, Lemma 13.3.13] applies with the
modification that V1 = V2 = v.

Next, we need a little bit of homological algebra. What follows is similar to the approach
to stabilisation in [21], the only difference being the ring over which we work.

Lemma 4.2.15. Let C and D be graded chain complexes over F[v 1
n ]. Further, suppose that

the grading on C and D is bounded above. Let vα be a monomial in F[v 1
n ], and f be a graded

chain map. Then f is a quasi-isomorphism if and only if it induces a quasi-isomorphism:

f̄ : C/vαC → D/vαD.

Proof. We use a mapping cone argument. If f is a quasi-isomorphism, thenH(Cone(f)) = 0.
C and D are free, so Cone(f) is free. Thus, there exists a short exact sequence:

0 Cone(f) Cone(f) Cone(f)/vαCone(f) 0vα q

Via the snake lemma, we obtain the exact triangle:

H(Cone(f)) H(Cone(f))

H(Cone(f)/vαCone(f))
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So clearly, ifH(Cone(f)) = 0 thenH(Cone(f)/vαCone(f)) = 0. Noting thatH(Cone(f̄)) =
H(Cone(f)/vαCone(f)), this implies that f̄ is a quasi-isomorphism. Suppose now that
H(Cone(f)) ̸= 0. Again we have the exact triangle (now with morphisms labelled):

H(Cone(f)) H(Cone(f))

H(Cone(f)/vαCone(f))

vα

q∗
δ

H(Cone(f)) ̸= 0, so there is a homogeneous element of H(Cone(f)) with maximal grading.
If x = vαy, we have a contradiction, as the grading is maximal. Thus x /∈ Imvα = ker q∗, so x
injects into H(Cone(f̄)). Then clearly H(Cone(f̄)) ̸= 0. Thus H(Cone(f)) = 0 if and only
if H(Cone(f̄)) = 0, so f is a quasi-isomorphism if and only if f̄ is a quasi-isomorphism.

Next, for a grid diagram G, let G̃C(G) be the quotient of tGC∞(G) obtained by setting

v1/n = 0. Then the differential of G̃C(G) is then given on spanFS(G) by:

∂̃(x) =
∑

y∈S(G)

∑
r∈Recto(x,y)
r∩(O∪X)=∅

y.

This is the full blocked grid complex from [27, §4.4], with its grading altered and algebraic
filtration introduced. We sketch the invariance of this, lifting the combinatorics from [27,
§4.4]. Recall we have fixed grid diagrams G and G′ so that G′ is an X : SW -stabilisation

of G. Noting that rectangles cannot pass X-markings, G̃C(G′) splits. Set Ĩ = spanFI(G′),

and Ñ = spanFN(G′). G̃C(G′) is the mapping cone of ∂̃Ñ
Ĩ
. First, we relate Ĩ to G̃C(G).

Lemma 4.2.16. Define a map e : Ĩ → G̃C(G) by sending a state x ∈ S(G′) to x \ c. This

yields an isomorphism between (Ĩ , ∂̃ Ĩ
Ĩ
) and G̃C(G)[1− t]

Proof. To see why this map commutes with the differential, see [27, Lemma 5.2.5]. By [27,
Lemma 5.2.4], we know this map raises M(x) and Alex(x) by 1. Thus:

grt(e(x)) =M(e(x))− tAlex(e(x))

=M(x) + 1− t(Alex(x) + 1)

=M(x)− tAlex(x) + 1− t.

Thus the result follows.

Next, we relate the complexes Ĩ and Ñ . Define:

H̃Ĩ
X2

: Ñ → Ĩ ,

H̃Ĩ
X2
(x) =

∑
y∈I(G′)

∑
r∈Recto(x,y)
r∩(O∪X)={X2}

y.

It is proven in [27, Lemma 5.2.6] that this induces an isomorphism on homology, and drops

Alexander and Maslov gradings by 1. Thus H̃Ĩ
X2

drops the grt-grading by 1 − t. Applying

[27, Lemma 5.2.7], we see that ∂̃Ñ
Ĩ

is zero on homology.
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Proposition 4.2.17. There is an isomorphism:

G̃C(G′) ∼= G̃C(G)⊕ G̃C(G)[1− t].

Proof. Because ∂̃Ñ
Ĩ

is zero on homology, the long exact sequence of Cone(∂̃Ñ
Ĩ
) splits as:

0 Ñ G̃H(G′) Ĩ 0.

Adding in the isomorphisms we described above we get:

0 Ñ G̃C(G′) Ĩ 0

0 G̃H(G) G̃H(G)⊕ G̃H(G)[1− t] G̃H(G)[1− t] 0.

e◦H̃Ĩ
X2

e

Finally, note that we are working over F-spaces, so all short exact sequences split, and thus
the two isomorphisms induce the middle distinguished isomorphism in the diagram below:

0 Ñ G̃C(G′) Ĩ 0

0 G̃H(G) G̃H(G)⊕ G̃H(G)[1− t] G̃H(G)[1− t] 0

e◦H̃Ĩ
X2

e

So (e, e ◦ H̃Ĩ
X2
) : G̃H(G′) → G̃H(G)⊕ G̃H(G)[1− t] is an isomorphism.

Theorem 4.2.18. For each s ∈ R, the restriction:

Dalg≤s : tGC
∞
alg≤s(G′) → tGC∞

alg≤s(G)⊕ tGC∞
alg≤s(G)[1− t],

is a quasi-isomorphism.

Proof. First, suppose that s = 0. In the case, we have:

tGC∞
alg≤s(G′)

v
1
n tGC∞

alg≤s(G′)
∼= G̃C(G′),

tGC∞
alg≤s(G)⊕ tGC∞

alg≤s(G)[1− t]

v
1
n (tGC∞

alg≤s(G)⊕ tGC∞
alg≤s(G)[1− t])

∼= G̃C(G)⊕ G̃C(G)[1− t].

The quotient map Dalg≤s = Dalg≤s/v
1
nDalg≤s is equal to the quasi-isomorphism given in

4.2.17, hence is a quasi-isomorphism. Then by 4.2.15, Dalg≤s is a quasi-isomorphism.

Next, note that for all s ∈ R, there exists k ∈ Z such that:

tGC∞
alg≤s(G′) = tGC∞

alg≤k/n(G′),

tGC∞
alg≤s(G)⊕ tGC∞

alg≤s(G)[1− t] = tGC∞
alg≤k/n(G)⊕ tGC∞

alg≤k/n(G)[1− t]
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Fix any such s and k. Then we have a commutative diagram:

tGC∞
alg≤0(G′) tGC∞

alg≤0(G)⊕ tGC∞
alg≤0(G)[1− t]

tGC∞
alg≤s(G′) tGC∞

alg≤s(G)⊕ tGC∞
alg≤s(G)[1− t]

v−k/n v−k/n

Dalg≤0

Dalg≤0

Three of the four morphisms in this diagram are quasi-isomorphisms, so Dalg≤s is a quasi-
isomorphism.

What we have really demonstrated above is a natural isomorphism between the filtrations
on tGH∞(G′) and tGH∞(G)⊕tGH∞(G)[1−t]. IfW is a 2 dimensional, graded F-space, with
one basis element in grading level 0 and one in grading level 1− t, this natural isomorphism
becomes:

tGH∞(G′) ∼=filt. tGH
∞(G)⊗W .

Thus, we have the following invariance theorem.

Theorem 4.2.19. Suppose G and G′ are grid diagrams with the same link type. If G′ has
rank larger than or equal to that of G, then there is n ∈ N for which we have isomorphisms:

tGH∞(G′) ∼= tGH∞(G)⊗W⊗n,

tGH∞
alg≤s(G′) ∼= tGH∞

alg≤s(G)⊗W⊗n.

Moreover, these isomorphisms commtue with the inclusion maps corresponding to this fil-
tration.

4.3 Filtered Homology Theories

In this section, we construct Z2-filtered chain complexes associated to grid diagrams. We
have assumed the reader is familiar with these, if not, the basic theory is covered in A.4. In
particular, A.4 outlines how to pass between a Z2-filtration and a pair of Z-filtrations.

4.3.1 Z2-filtered GC∞(G)

In this and the subsequent section, we construct some Z2-filtered chain complexes. Topologi-
cal invariance will not be discussed, as these chain complexes will be used to construct Υ and
Υ2 by studying their relationships with other chain complexes, whose invariance is already
well understood. As usual, fix a grid diagram G of rank n with markings O = {O1, . . . , On}
and X = {X1, . . . , Xn}. If ψ is a domain in G, let Oi(ψ) denote the algebraic intersec-
tion number of Oi and ψ. Then multi-variable Z2-filtered grid homology is specified by the
following.

Definition 4.3.1. Let GC∞(G) be the free R∞
n -module generated over S(G), equipped with

the following.
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� An endomorphism ∂∞ : GC∞(G) → GC∞(G) given on grid states x ∈ S(G) by:

∂∞(x) =
∑

y∈S(G)

∑
r∈Recto(x,y)

V
O1(r)
1 . . . V On(r)

n y.

� Grading M(V k1
1 . . . V kn

n x) =MO(x)− 2
∑

i=1n ki

� A pair of Z-filtrations Alex and alg given by, for x ∈ S(G):

Alex(V k1
1 . . . V kn

n x) = Alex(x)−
n∑
i=1

ki,

alg(V k1
1 . . . V kn

n x) = −
n∑
i=1

ki.

These induce a Z2-filtration:

({Falg
i }i∈Z, {FAlex

j }j∈Z).

Theorem 4.3.1. The tuple:

(GC∞(G),M, ({Falg
i }i∈Z, {FAlex

j }j∈Z)),

forms a Z2-filtered complex.

Proof. We begin by observing that, if ∂− is the boundary map of GC− in [27, §13.2], then
∂∞ = ∂− ⊗R−

n
1R∞

n
. Abbreviate this as ∂∞ = ∂− ⊗ 1. Noting that ∂− ◦ ∂− = 0, we

must have ∂∞ ◦ ∂∞ = 0. Similarly, ∂− drops M by 1, and 1 preserves the grading, so
∂∞ drops the grading by 1. Moreover, both ∂− and 1 are filtered with respect to Alex,
so ∂∞ is Alex-filtered. Finally, if x, y ∈ S(G) and r ∈ Recto(x, y), then alg(x) = 0 and

alg(V
O1(r)
1 . . . V

On(r)
n y) = −|O ∩ r|, so ∂∞ is also alg-filtered, and the result follows.

Finally, we recover Z2-filtered GC−.

Definition 4.3.2. Fix a grid diagram G. Then:

GC−(G) := Falg
0 (GC∞(G)).

4.3.2 Single Variable Ft-filtered GC∞

To ensure our chain complex interacts correctly with t-modified grid complexes, we are
interested in the following specialisation of GC∞.

Definition 4.3.3. Fix t ∈ Q∩ [0, 2]. Let GC∞
sv(G) = GC∞(G)

V1=V2=···=Vn , and replace its Z2filtration
with an R-filtration given on filtered basis elements by:

Ft(x) =
t

2
Alex(x) +

(
1− t

2

)
alg(x).
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We call this single variable Ft-filtered grid homology.

Theorem 4.3.2. The tuple:
(GC∞

sv(G), ∂∞sv ,Ft),

is an R-filtered chain complex.

Proof. We have already checked that ∂∞ ◦ ∂∞ = 0, so this passes to the quotient and
∂∞sv ◦ ∂∞sv = 0. We have also checked that ∂∞ drops the grading by 1, this also passes to the
quotient so ∂∞sv drops the grading by 1. Finally, ∂∞sv is clearly filtered with respect to Alex
and alg, because ∂∞ is, so noting that Ft is a convex combination of these two filtrations,
∂∞sv is Ft-filtered.

As with GC∞, topological invariance properties of GC∞
sv are not relevant to our computa-

tions of Υ and Υ2, so we omit their discussion.

4.3.3 CFK∞(K)

In [3], Ozsváth and Szabó construct a Z2-filtered chain complex CFK∞(K) by using a doubly
marked Heegaard diagram (Σ, α, β, w, z) which represents a knot K. The construction of
this chain complex is very long, so for more details see [3]. Fortunately for us, CFK∞(K)
is a formal knot complex. Sano and Sato have a discussion of formal knot complexes in [12].

Definition 4.3.4. We call a tuple:

(C, ∂, {Cn}n∈Z, {FAlex
j }j∈Z, {Falg

i }i∈Z),

a formal knot complex, if it satisfies the following.

1. C is a chain complex over Λ with decomposition C =
⊕

nCn. The grading of a
homogeneous element x is denoted M(x) and is called the Maslov grading of x.

2. C has a Z-filtration {FAlex
j }j∈Z called the Alexander filtration. The filtration level of

an element is denoted Alex(x).

3. C has a Z-filtration {Falg
i }i∈Z called the algebraic filtration. The filtration level of an

element x is denoted by alg(x). When we regard C as a Z2-filtered complex, we use

the Z2 filtration induced by
(
{Falg

i }i∈Z, {FAlex
j }j∈Z

)
.

4. The action of U lowers M by 2 and both Alex and alg by 1.

5. C is a free module with finite rank, and there exists a basis {xk}1≤k≤r such that:

� each xk is homogeneous with respect to the Maslov grading.

� FAlex
0 is a free F[U ]-module with a basis {UAlex(xk)xk}1≤k≤r.

� Falg
0 is a free F[U ]-module with a basis {Ualg(xk)xk}1≤k≤r.

We call {xk}1≤k≤r a filtered basis.
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6. There exists a Z2-filtered homotopy equivalence ι : C → Cr, where Cr is the same

graded chain complex as C, with filtration
(
{FAlex

j }j∈Z, {Falg
i }i∈Z

)
.

7. Regard Λ as a chain complex with trivial boundary map, and define a homological
grading by:

Λn =

{
{0, U−n/2} n is even

0 n is odd

and Falg
i (Λ) = FAlex

i (Λ) = U−i · F[U ]. Then there is a Z filtered chain homotopy
equivalence map fAlex (resp. falg) fAlex : C → Λ over Λ with respect to the Alexander
(resp. algebraic) filtration.

This final property is called global triviality.

Theorem 4.3.3. If K is a knot, then CFK∞(K) is a formal knot complex.

Proof. The tricky part is to check that global triviality holds. Loosely, we prove this by first
noting that CFK∞(K), equipped only with algebraic filtration, computes CF∞(S3), so is
alg-filtered chain homotopic to Λ. Then, we use can property 6 to see that Alex-filtered
CFK∞(K) is Alg-filtered chain homotopic to Λ. For more details, see [25, §2.1].

One subcomplex of CFK∞(K) which we are particularly interested in is Falg
0 (CFK∞(K)).

We denote this CFK−(K). This subcomplex is related to grid homology by the following
theorem.

Theorem 4.3.4. If G is a grid diagram which represents a knot K, then there is a Z2-filtered
chain homotopy equivalence:

GC−(G) ≃ CFK−(K).

Proof. See [12, Corollary 4.2].



Chapter 5

Υ-Invariant

In this chapter, we develop three different ways of calculating ΥK(t) for some knot K. The
existing methods have used a variety of rings, so, for convenience, we again list out our
notations for different rings.

Ring Notation
F[U,U−1] Λ

F[U ] Λ−

F[V1, V −1
1 , . . . , Vn, V

−1
n ] R∞

n

F[V1, . . . , Vn] R−
n

F[v1/n, v−1/n] S1/n

F[v1/n] S−
1/n

F[vt, v2−t] S−
t

5.1 t-Modified Construction

We start by discussing torsion in S−
t -modules, where S−

t is the ring used to define tGC∞(G).

Definition 5.1.1. Let M be an S−
t -module. We say an element x ∈ M is torsion if there

exists p ∈ R such that p · x = 0. If no such p exists, then we say x is non-torsion.

Because all of our rings are commutative integral domains, we can collect torsion elements
into a submodule.

Definition 5.1.2. LetM be an S−
t -module. Then Tor(M) is the submodule ofM consisting

of torsion elements. We call Tor(M) the torsion submodule of M .

In the case that M is a Maslov graded S−
t -module (and the action S−

t interacts with the
grading correctly), a stronger condition governs torsion for homogeneous elements.

Lemma 5.1.1. LetM be an S−
t -module with a grading such that, if x ∈M is homogeneous:

gr(vαx) = gr(x)− α.

Then a homogeneous element x of M is torsion if and only if there is a monomial vα ∈ S−
t

such that vα · x = 0.

61
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Proof. One direction is trivial for this lemma. Suppose x ∈M is homogeneous and torsion.
Then there is some p = vα1 + · · ·+ vαk ∈ S−

t such that p · x = 0. Given we are working over
F2, we may assume all the αi’s are distinct. Then clearly for each i ̸= j, we have:

gr(vαix) ̸= gr(vαjx).

Noting that M splits as
⊕

d∈ZMd, the equation:

(vα1 + · · ·+ vαk)x = 0

Implies that vα1x = 0. Thus the result follows.

It then makes sense to give the following definition.

Definition 5.1.3. Fix a grid diagram G. A homogeneous element x ∈ tGH−G is called
torsion if there is some vα ∈ S−

t such that vα · x = 0. If no such vα exists then we say x is
nontorsion.

We use torsion to define the Upsilon invariant.

Definition 5.1.4. Let G be a grid diagram. Define ΥG(t) by:

ΥG(t) = max{grt(x) : x ∈ tGH−(G) is homogeneous and non-torsion}

5.1.1 Invariance

Given tGH−(G) is invariant under commutation moves, we have the following.

Theorem 5.1.2. Let G and G′ be grid diagrams which differ by commutation move. Then
for each t ∈ [0, 2], ΥG(t) = ΥG′(t).

For stabilisation, recall that:

tGH−(G′) ∼= tGH−(G)⊕ tGH−(G)[1− t],

where G′ is a stabilisation of G. This gives us the following:

Theorem 5.1.3. Let G′ be a stabilisation of G. Then for t ∈ [1, 2], we have ΥG′(t) = ΥG(t).

Proof. By the theorem above we have:

tGH−(G′) ∼= tGH−(G)⊕ tGH−(G)[1− t].

Clearly, if the maximum grading of a homogeneous, nontorsion element of tGH−(G) is d,
the corresponding grading in tGH−(G)[1− t] is d+1− t. For t ∈ [1, 2], we have d+1− t ≤ d,
so the result follows.

Fortunately, ΥK(t) = ΥK(2−t)(see [20, Proposition 1.2]), so to define our knot invariant,
we take a grid representative G of a knot K and let ΥK |[1,2] = ΥG|[1,2], and then extend via
ΥK(t) = ΥK(2− t).
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5.2 Rational t-Modified Construction

In [22] the Livingston uses S−
1/n as his ring for t-modified homology to check that his con-

struction of ΥK is equivalent to that of [20]. This chain complex was originally constructed
by Ozsváth, Stipsicz, and Szabó in [20], as a means to define the chain complex over a simpler
ring than the ring of long power series. We call its homology rational t-modified Heegaard
Floer Knot homology. To do this with grid diagrams we use tGC∞(G), as its filtration levels
are S−

1/n-modules.

Definition 5.2.1. Let t ∈ Q ∩ [0, 2]. If t ≥ 1, then define:

ΥG(t) = max{grt(x) : x ∈ tGH∞
alg≤0(G) is homogeneous and nontorsion}.

If t ≤ 1, then define ΥG(t) = ΥG(2− t).

Noting the manner in which the isomorphism type of tGH∞(G) changes under grid moves,
this is clearly a knot invariant. Noting that tGC∞

alg≤0(G) = tGC−(G)⊗R−
t
S−
1/n, adapting the

proof of [20, Proposition 4.9] implies this definition of the Upsilon invariant is equivalent to
the previous definition.

Proposition 5.2.1. Let C be a finitely generated chain complex over R−
t and consider the

induced chain complex C⊗R−
t
S−
1/n. Then the maximal grading of a homogeneous-nontorsion

element of H(C) agrees with that of H(C ⊗R−
t
S−
1/n).

Proof. We begin by noting that S−
1/n is a free R−

t -module, treating R−
t as a subring of S−

1/n.
Next, suppose that M is an Rt-module. Then we have a short exact sequence:

0 Tors(M) M M/Tors(M) 0

Noting that S−
1/n is free, we can take tensor products to form the short exact sequence:

0 Tors(M)⊗ S−
1/n M ⊗ S−

1/n (M/Tors(M))⊗ S−
1/n 0i q

Next, suppose
∑n

i=1 xi⊗pi is an element of Tors(M)⊗S−
1/n. Then for each i there is λi ∈ Rt

for which λixi = 0. Noting that R−
t is commutative, if λ =

∏n
i=1 λi, then λxi = 0. Thus

λ
∑n

i=1 xi⊗pi = 0, so
∑n

i=1 xi⊗pi ∈ Tors(M⊗S−
1/n), so Tors(M)⊗S−

1/n ⊂ Tors(M⊗S−
1/n).

Thus Imi ⊂ Tors(M ⊗ S−
1/n). By exactness, we have ker q ⊂ Tors(M ⊗ S−

1/n). Moreover,

the R−
t -module (M/Tors(M)) ⊗ S−

1/n is torsion-free, so Tors(M ⊗ S−
1/n) ⊂ ker q. Thus

Tors(M ⊗ S−
1/n) = Tors(M)⊗ S−

1/n. Then:

(M ⊗ S−
1/n)/Tors(M ⊗ S−

1/n) = (M ⊗ S−
1/n)/(Tors(M)⊗ S−

1/n)

= (M/Tors(M))⊗ S−
1/n.

S−
1/n is a torsion free module over R−

t , so by the universal coefficient theorem:

H(C ⊗ S−
1/n)

∼= H(C)⊗ S−
1/n.
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Hence:
H(C ⊗ S−

1/n)/Tors(H(C ⊗ S−
1/n))

∼= (H(C)/Tors(H(C)))⊗ S−
1/n. (5.1)

Elements of S−
1/n drop the grading or preserve it, so the maximal grading of a homoge-

neous element of H(C)/Tors(H(C)) equals that of (H(C)/Tors(H(C))) ⊗ S−
1/n. Applying

the isomorphism from 5.1, we see that the maximal grading of a homogeneous element of
(H(C)/Tors(H(C))) ⊗ S−

1/n equals that of H(C ⊗ S−
1/n)/Tors(H(C ⊗ S−

1/n)), so the result
follows.

5.3 Construction from GC∞
sv(G)

In this section, we perform the same construction as in [22], but insead of working with a
double pointed Heegaard diagram, we work with grid diagrams. Fix some t ∈ [0, 2]. We
will deviate slightly here from the notation for filtered complexes in the appendix, to line up
with the notation from [22]. So filtrations level s will be denoted:

(GC∞
sv(G),Ft)s,

Maslov grading level m will be denoted:

GC∞
sv,m(G),

and their intersection is denoted:
(GC∞

sv,m(G),Ft)s

Fix a grid diagram G of rank n. Recall that, for each t ∈ [0, 1], (GC∞
sv(G), ∂∞,M,Ft) is a

discrete R-filtered, Z-graded chain complex. Associated to (GC∞
sv(G), ∂∞,M,Ft), we have a

subset of Z× Z which is the image of the function:

GC∞
sv(G) → R× R

x 7→ (Alg(x), Alex(x))

Denote this subset LG.

Definition 5.3.1. Let s be the smallest number for which the following inclusion is nonzero
on homology:

(GC∞
sv,0(G),Ft)s ⊕ (GC∞

sv,1(G),Ft)s+ 1
2

GC∞
sv,0(G)⊕ GC∞

sv,1(G)

Then we define γG(t) = s and ΥG(t) = −2s.

This definition can be made less opaque by studying a particular subset of LG.

Definition 5.3.2. Let L0 ⊂ LG consist of the filtration level of nontrivial cycles in grading
0, and L1 consist of filtration levels of nontrivial cycles in grading 1, shifted down and to the
left by 1

2
. Let L = L0 ∪ L1.
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Consider the line Lt,s given in (x, y)-coordinates by the following:(
1− t

2

)
x+

t

2
y = s

Thus the map in 5.3.1 is nonzero precisely when there is a point of L in the half plane down
and to the right of Lt,s. In particular, Lt,γG(t) contains no points from L in the interior of the
corresponding half plane, and at least one point from L lies on Lt,γG(t). Noting that there

are finitely many lines which intersect more than one point of L (at most
(|L|

2

)
), for all but

finitely many values of t ∈ [0, 2], Lt,γG(t) intersects precisely one point.

Definition 5.3.3. Denote the points which Lt,γG(t) passes through by Pt. If Pt contains more
than one point of L, we say t ∈ [0, 2] is a pivot point of ΥG(t).

Clearly, if we choose δ > 0 to be smaller than the distance between any pair of pivot
points, then at a pivot point t ∈ [0, 2], both Pt+δ and Pt−δ must be singletons.

Definition 5.3.4. If t is a pivot point, then we call p+t ∈ Pt+δ and p−t ∈ Pt−δ the positive
and negative pivots at t, respectively.

Now suppose that Pt is a singleton. Then for sufficiently small δ > 0, all Px are equal,
for |t − x| < δ. Pick some t′ ∈ (x − δ, x + δ) \ {t}. Then Pt = Pt′ , so if Pt = {(x, y)}, then
we have equations:

y =
2

t
γG(t) +

(
1− 2

t

)
x,

y =
2

t′
γG(t) +

(
1− 2

t′

)
x.

Hence:

γG(t)− γG(t
′) =

(
t

2
− t′

2

)
(y − x)

So we have the following local equation for ΥG:

ΥG(t)−ΥG(t
′) = (t− t′)(x− y)

So away from points where |Pt| > 1, ΥG is linear. If t ∈ [0, 2] is a pivot point, then the
calculation above yields:

ΥG(t)−ΥG(t
+) = (t− t+)(x− y),

ΥG(t
−)−ΥG(t) = (t− − t)(x′ − y′),

where p+t = (x, y) and p−t = (x′, y′). So clearly if x− y ̸= x′ − y′, then ΥG has a singularity
at t. Clearly, then, ΥG is piecewise linear, so all we need now is to compute ΥG in terms of
lattice points is ∆Υ′

G(t). Clearly if t is not a pivot point, ∆Υ′
G(t) = 0. If t is a pivot point,

then setting:
p+t = (i, j),

p−t = (x, y).
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We have:
Υ′

G(t
−) = (x− y),

ΥG(t
+) = (i− j).

So:
∆Υ′

G(t) = (y − j)− (x− i).

The points (i, j) and (x, y) both lie on the line Lt,γ(t),so:

y =
2

t
γ(t) +

(
1− 2

t

)
x

j =
2

t
γ(t) +

(
1− 2

t

)
i

So:

∆′
G(t) =

((
1− 2

t

)
x−

(
1− 2

t

)
i

)
− (x− i)

=
2

t
(i− x)

⇒ |∆Υ′
G(t)| =

2

t
|i− x|

So we have proven the following.

Theorem 5.3.1. ΥG satisfies the following conditions:

1. ΥG is piecewise linear.

2. At nonsingular points of ΥG, |Υ′
G(t)| = |i− j| where (i, j) is some point in L0,1.

3. Singularities only occur at t ∈ [0, 2] for which |Pt| > 1.

4. At singularities of ΥG, |∆Υ′
G(t)| = 2

t
|i− i′|, where i is the x-coordinate of p+t , and i′ is

that of p−t .

This gives us a straightforward (although not particularly efficient) way of computing
ΥG(t) from the set L.

Start by computing L. Let P0 consist of all elements of L with minimal x-coordinate.
This x-coordinate is γG(0). Let p0 ∈ P0 be the element with minimal y coordinate. Then:

Υ′
G(0) = x(p0)− y(p0).

This defines the function up until the first singularity. Noting that the slope, m of any Lt,s
is equal to 1 − t

2
, we have: Rotate the line L0,γ(0) about p0 counterclockwise until it hits a

second point p1. Then the slope of this line is given by:

m =
y(p1)− y(p0)

x(p1)− x(p0)
,
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so:

t = 2

(
1− y(p1)− y(p0)

x(p1)− x(p0)

)
Finally ∆Υ′

G(t) = 2
t
(x(p1) − x(p0)). We can repeat this process, of calculating slope and

rotating Lt,γ(t) to find the next pivot point, to fully compute ΥG.

5.4 Equivalence of Definitions

Fix a grid diagram G. Recall we have the chain complexes:

(GC∞
sv(G)) and tGC∞(G)

Where:

grt(x) =M(x)− t(Alex(x)− Alg(x))

Ft(x) =
t

2
Alex(x) +

(
1− t

2

)
Alg(x)

To start with, we construct a few equivalent definitions of ΥG(t) from tGC∞(G).

Lemma 5.4.1. ΥG(t) is equal to the largest grading of an element of tGH∞
alg≤0(G) which

maps to a nontrivial element in tGH∞.

Proof. Let [x] be a homogeneous, non torsion element of tGH∞
alg≤0(G) with grading equal to

ΥG(t). Then for each vk ∈ S−
1/n:

vk[x] = [vkx] ̸= 0

Now suppose [y] ∈ tGH∞
alg≤0(G) maps to a nontrivial element of tGH∞(G) and has maximal

grading. Suppose vk[y] = 0. Then [vky] = 0, so V ky is a boundary of ∂∞t . But v−k(Im∂∞t ) =
Im∂∞t , so this implies that y is a boundary. Thus we have a contradiction so [y] cannot be
torsion. Now suppose [x] maps to a trivial element of tGH∞(G). Then x is a boundary of
∂∞t . Given ∂∞t commutes with vk for all vk ∈ S−

1/n, this implies all vkx are boundaries of ∂∞t .

Let ∂∞t (y) = x and k = −Alg(y). Then vky ∈ tGC∞
alg≤0(G), so [vkx] = vk[x] = 0. Thus we

have a contradiction, so the two definitions agree.

Lemma 5.4.2. ΥG(t) = −2s, where s is the smallest number for which tGH∞
Alg≤s(G) has an

element which is nontrivial in tGH∞(G) and has grading 0.

Proof. Let ΥG(t) be defined as per 5.4.1, and choose s as given in the lemma statement. Let
[y] ∈ tGH∞

Alg≤s(G) be nontrivial in tGH∞(G) and [x] ∈ tGH−(G) be nontrivial in tGH∞(G),
and have grading ΥG(t). Then [v2sy] ∈ tGH−(G) is nontrivial in tGH∞(G) and has grading
−2s. Similarly, [vΥG(t)x] ∈ tGH∞

Alg≤−ΥG(t)

2

(G). Clearly the two definitions agree by their

respective maximality and minimality.

Now we have a definition of ΥG(t) which we can relate to that from H(GC∞
sv(G)). Let Λ

act on tGC∞ by setting U = v2.
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Theorem 5.4.3. Let ΥG(t) be defined as in 5.4.2. If:

s := min{k : H0((GC∞
sv(G),Ft)s)⊕H1((GC∞

sv(G),Ft)s+ 1
2
) → H0(GC∞

sv(G))⊕H1(GC∞
sv(G)) is nonzero}

Then ΥG(t) = −2s.

Proof. To begin with, we should describe the relationship between GC∞
sv,0(G) ⊕ GCsv,1(G)

and tGC∞
0 (G). Partition grid states S = S(G) as S = E ∪O, where:

E = {x ∈ S :M(x) is even}

O = {x ∈ S :M(x) is odd}

Thus we have the following filtered bases for GC∞
sv,0(G) and GC∞

sv,1(G):

B0 = {UM(x)/2x : x ∈ E}

B1 = {U (M(x)−1)/2x : x ∈ O}

Similarly tGC∞
0 (G) has a filtered basis:

F = {vgrt(x)x : x ∈ S}

Noting that, if x ∈ S is at filtration level (i, j), we have grt(x) =M(x)− t(j − i), so one of
the following holds:

If M(x) is even then: v−t(j−i)vgrt(x)x = UM(x)/2x

If M(x) is odd then: v1−t(j−i)vgrt(x)x = U (M(x)−1)/2x

So we have a bijective correspondence between the two bases. This induces a graded Λ-
homomorphism:

T : GC∞
sv(G)⊕ GC∞

sv(G)[−1] → tGC∞(G).

Which we will analyze. From here, to simplify equations, a filtered basis element y will
be said to be at filtration level (iy, jy). Fix an element x ∈ B0 ∪ B1 at filtration level
(i, j) of GC∞

0,1(G). Recall that if we write ∂∞(x) =
∑

l yl, then ∂∞t (x) =
∑

l V
αlyl, where

αl = t((j − jy)− (i− iy)). If x ∈ B0:

T (∂∞(x)) = T

(∑
l

yl

)
=
∑
l

v−t(jyl−iyl )yl

∂∞t (x) =
∑
l

v−t(j−i)vt((j−jyl )−(i−iyl ))yl

=
∑
l

v−t(jyl−iyl )yl
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If x ∈ B1:

T (∂∞(x)) = v
∑
l

v−t(jyl−iyl )yl

∂∞t (T (x)) = v
∑
l

v−t(jyl−iyl )yl

Hence the following diagram must commute:

GC∞
sv(G)⊕ GC∞

sv(G)[−1] GC∞
sv(G)⊕ GC∞

sv(G)[−1]

tGC∞(G) tGC∞(G)

∂∞

TT

∂∞t

If we recall U = v2 and define M =
⋃
n∈Z U

ntGC∞
0 (G), then clearly T maps GC∞(G) ⊕

GC∞(G)[−1] isomorphically onto M . In particular, on the level of homology, we have:

H0(GC∞
sv(G))⊕H1(GC∞

sv(G)) H0(tGC
∞(G))

∼=

The final step in our proof is to study the effect of T upon the filtration lattices for GC∞
sv(G)⊕

GC∞
sv(G)[−1] and tGC∞G. Start with GC∞

sv. If x ∈ B0 has filtration level (i, j), then clearly
T (x) is at filtration level (i+ 1

2
(j − i)t, j + 1

2
(j − i)t) So on the filtration lattice for GC∞

sv(G),
T induces the transformation:

(i, j) 7→
((

1− t

2

)
i+

t

2
j,− t

2
+

(
1 +

t

2

)
j

)
Note that this sends the line y = (1− 2

t
)x+(2

t
)s to the line x = s, so we have the restriction:

T0 : (GC∞
sv(G),Ft)s → tGC∞(G)alg≤s

Similarly, if x ∈ B1 has filtration level (i, j), then T (x) has filtration level:(
i+

1

2
(j − i)t− 1

2
, j +

1

2
(j − i)t− 1

2

)
Hence T induces the following transformation on the filtration lattice for GC∞(G)[−1]:

(i, j) 7→
((

1− t

2

)
i+

t

2
j − 1

2
,− t

2
+

(
1 +

t

2

)
j − 1

2

)
This sends the line: (

1− t

2

)
x+

t

2
y = s+

1

2

To the line x = s, so we get the restriction:

T1 : (GC∞
sv(G)[−1],Ft)s+ 1

2
→ tGC∞(G)Alg≤s
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Combining these two, we have the commutative square:

(GC∞
sv(G),Ft)s ⊕ (GC∞

sv(G)[−1],Ft)s+ 1
2

tGC∞(G)Alg≤s

GC∞
sv(G)⊕ GC∞

sv(G)[−1] tGC∞(G)

T1

T1

(5.2)

Passing down to homology, we obtain:

H0((GC∞
sv(G),Ft)s)⊕H1((GC∞

sv(G),Ft)s+ 1
2
) H0(tGC

∞(G))Alg≤s

H0(GC∞
sv(G))⊕H1(GC∞

sv(G)) H0(tGC
∞(G))

∼=

j∗

∼=

i∗

Where i∗ and j∗ are induced by the corresponding inclusions in 5.2. Clearly i∗ is nonzero if
and only if j∗ is nonzero. Thus ΥG(t) = −2s.

Corollary 5.4.3.1. ΥG(t), as defined from GC∞
sv(G), is a knot invariant.

Proof. See [21, Theorem 4.3].

5.5 Υ2

As discussed in the introduction, there is also a secondary Upsilon invariant. In [25], Kim
and Livingston define a function Υ2

K : [0, 2]2 → R ∪ {−∞} by the following procedure.

Definition 5.5.1. Let K be a knot, and define γK(t) = −1
2
ΥK(t). Fix some t ∈ [0, 2].

Recall we have positive and negative pivots, so we have sets Pt, Pt± . Then, let Z± be the set
of cycles in Ft±,γK(t±)(CFK

∞(K)) which are nontrivial in H0(CFK
∞(K)). Then we define

γ2K,t(s) to be the smallest r ∈ R for which there exist z+ ∈ Z+ and z− ∈ Z− which represent
the same homology class in:

H0(Ft,γK(t)(CFK
∞(G)) + Fs,r(CFK

∞(K))).

Then Υ2
K(t, s) = −2γ2K,t(s)−ΥK(t).

This suggests the following definition of Υ2
K from GC∞

sv(G).

Definition 5.5.2. Let K be a knot and G be a grid diagram representing K. Fix t, s ∈ [0, 2],
and consider the set of points LG ⊂ R2. As above we have sets of points Pt and Pt± . Let
Z± be the set of cycles which are sent to nontrivial elements on homology by the inclusion
in 5.3.1 for t±. Then γ2G,t(s) is the smallest r ∈ R for which there exist z± ∈ Z± so that z−

has the same homology class as z+ in:

H0((GC∞
sv(G),Ft)γK(t) + (GC∞

sv(G),Fs)r)⊕H1((GC∞
sv(G),Ft)γK(t)+1/2 + (GC∞

sv(G),Fs)r+1/2)



Chapter 6

G-sets

In this chapter, we introduce G-sets. These are sets of closed regions in Z2 which were first
introduced by Sato in [14]. We are primarily interested in G0 and G1 (Sato notes that he isn’t
sure if the higher order G-sets are even nonempty), the former computes ΥK , and the latter
gives a bound on Υ2

K . The first half of the chapter is a survey of results from [12] which
outline how one can compute G0(K) from a grid diagram G for K. The core observation
Sano and Sato exploit in this section of [12] is that, for very large s ∈ Z≥0, the structures of
U sCFK∞

0 (K) and CFK−
−2s(K) are identical, so one can perform a shift trick and then pass

through a chain homotopy to compute G0(K) from GC−(G). Sano and Sato also construct
an algorithm in [12] which we only mention in passing as it is not relevant to the original
work in the second half of the chapter. A major advantage of this algorithm is that it avoids
computing the boundary map of GC−(G) directly, instead using sparse linear systems. This
means that the algorithm is reasonably efficient, and allowed Sano and Sato to compute the
G0-type and Υ-invariants of prime knots with up to 11 crossings in around an hour. In the
second half, we observe a similar relationship between U sCFK∞

0,1(K) and CFK−
−2s,−2s+1(K).

Using this shift trick, we find a new way to compute G1(K;−,−), along the lines of [12] from
GC−(G).

6.1 Formal Knot Complexes and ν+-equivalence

Recall we defined formal knot complexes in 4.3.4. We start by defining a chain homotopy
invariant of formal knot complexes.

Definition 6.1.1. Let C be a formal knot complex. Then define:

ν+(C) := min{m ∈ Z≥0 : Ci≤0,j≤m contains a homological generator}.

We can then use this to define ν+-equivalence classes.

Definition 6.1.2. Let C and C ′ be formal knot complexes. Then we say C is ν+-equivalent
to C ′ if:

ν+(C ⊗ C ′∗) = ν+(C∗ ⊗ C ′) = 0,

where C∗ denotes the dual complex of C.
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We also want to work with ν+-equivalence of subcomplexes, for which the definitions
above are not suitable. Fortunately, Sato proves the following in [14] (the partial order is
introduced in [14] but we will not discuss details as they are not relevant):

Theorem 6.1.1. Two ν+-classes satisfy [C]ν+ ≥ [C ′]ν+ if and only if there is a Z2-filtered
quasi-isomorphism:

f : C → C ′.

Thus we can redefine ν+-equivalence by the following.

Definition 6.1.3. Let C and C ′ be formal knot complexes. Then C is ν+-equivalent to C ′

if there exists a pair of Z2-filtered quasi-isomorphisms:

f : C → C ′

g : C ′ → C

We also say C ′ ≤ν+ C if there exists a Z2-filtered quasi-isomorphism:

f : C → C ′

This definition is easily extended to subcomplexes of formal knot complexes. Moreover, it
recovers the original definition of ν+-equivalence, so this is what we will use as the definition
from here.

Definition 6.1.4. A formal knot subcomplex is a chain complex S which is a Z2-filtered
subcomplex of a formal knot complex C.

The definition above clearly applies to formal knot subcomplexes.

Definition 6.1.5. Let C and D be a pair of formal knot subcomplexes. We say that C is
ν+-equivalent to D if there are filtered quasi-isomorphisms:

f : C → D,

g : D → C.

We also say that D ≤ν+ C or equivalently [D]ν+ ≤ [C]ν+ if there is a filtered quasi-
isomorphism:

f : C → D.

6.2 G0

Next, we outline the construction of G0(K), and the results which motivate, and are also
crucial for, the next section.

Definition 6.2.1. Fix a knot K, and let C = CFK∞(K). A homological generator of C is
a nontrivial cycle x ∈ C0. Then:

G̃0(K) := {R ∈ CR(Z2) : R contains a homological generator},
G0(K) := min G̃0(K).
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In [12], Sano and Sato prove the following.

Theorem 6.2.1. For all knots K, G0(K) is nonempty and finite.

Theorem 6.2.2. For any R ∈ CR(Z2) (this set is defined in §A.4.1), the following holds:

R ∈ G̃0(K) ⇐⇒ ∃R′ ∈ G0(K), R′ ⊂ R.

Proposition 6.2.3. If [K]ν+ ≤ [J ]ν+ , then for any R′ ∈ G0(J), there exists R ∈ G0(K) such
that R ⊂ R′.

Corollary 6.2.3.1. G0(K) is a concordance invariant.

Proposition 6.2.4. For any R ∈ G0(K), there exists a homological generator whose closure
is equal to R. We call these homological generators realisers for R, and collect them in the
set gen0(C;R).

Next, we need to discuss shifts of G0.

Definition 6.2.2. Let C be a formal knot subcomplex such that Hn(C) = F for some n ∈ Z.
Then a homological generator of degree n is a nontrivial cycle in Cn. Then we can define:

G̃(n)
0 (C) := {R ∈ CR(Z2) : R contains a homological generator of degree n},
G(n)
0 := min G̃(n)

0 (C).

To relate these homologically shifted versions of G0 to G0, we need to be able to move
our closed regions around the plane.

Definition 6.2.3. If R ∈ CR(Z2), then for s ∈ R:

R[s] := {(i, j) ∈ Z2 : (i+ s, j + s) ∈ R},

and if S ⊂ CR(Z2):
S[s] := {R[s] : R ∈ S}.

The following results, also from [12], indicate why shifted G0 sets are crucial to translating
G0 from CFK∞(K) to GC−(G), where G is a grid diagram which represents K.

Proposition 6.2.5. For any knot K and s ∈ Z:

G̃(−2s)
0 (CFK∞(K)) = G̃0(K)[s]

G(−2s)
0 (CFK∞(K)) = G0(K)[s].

Theorem 6.2.6. For any knot K, and s ∈ Z≥0:

G(−2s)
0 (CFK−(K)) = {R[s] : R ∈ G0(K), shiftR ≤ s}.

Where shiftR := max{i ∈ Z ∪ {∞} : ∃j ∈ Z such that (i, j) ∈ R}.

Defining shiftG0(K) = max{shiftR : R ∈ G0(K)}, we obtain the following corollary.

Corollary 6.2.6.1. If s ∈ Z such that s ≥ shiftG0(K), then:

G(−2s)
0 (CFK−(K)) = G0(K)[s].
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6.3 G1

6.3.1 Pseudo-Holomorphic Construction

We begin by constructing G1 along the lines of [14].

Definition 6.3.1. Let C be a formal knot complex, and suppose that G0(K) contains two
distinct elements R1 and R2. Define G1(C;R1, R2) by the following:

� g̃en1(C;R1, R2) := {x ∈ C1 : ∃zi ∈ gen0(C;Ri), ∂x = z1 + z2}.

� G̃1(C;R1, R2) := {Rx : x ∈ g̃en1(C;R1, R2)}.

� G1(C;R1, R2) := min G̃1(C;R1, R2).

There are only three results about G1 in [14], these are listed below and can all be found
in [14, §5.3.1]. We fix the notation from 6.3.1 for brevity.

Lemma 6.3.1. G1(C;R1, R2) is nonempty and finite.

Theorem 6.3.2. Suppose [C]ν+ ≤ [C ′]ν+ and G0(C)∩G0(C
′) contains two distinct elements

R1 and R2. Then, for any R′ ∈ G1(C
′;R1, R2), there exists R ∈ G1(C;R1, R2) for which

R ⊂ R′.

Corollary 6.3.2.1. For any [C]ν+ ∈ Cf , and distinct pair R1, R2 ∈ G0(C), G1(C;R1, R2) is
an invariant of [C]ν+ .

6.3.2 Shifts

The next step in constructing G1 for GC−(G) is to set up shifted versions of G1.

Definition 6.3.2. Fix a formal knot subcomplex C and an integer s ∈ Z≥0. If R1 and R2

are distinct elements of G(−2s)
0 (C), then we construct G(−2s)

1 (C;R1, R2) by the following:

� g̃en
(−2s)
1 (C;R1, R2) := {x ∈ C−2s+1 : ∃zi ∈ gen

(−2s)
0 (C;Ri), ∂x = z1 + z2}.

� G̃(−2s)
1 (C;R1, R2) := {Rx : x ∈ g̃en

(−2s)
1 (C;R1, R2)}.

� G(−2s)
1 (C;R1, R2) := min G̃(−2s)

1 (C;R1, R2).

To begin with, we want to check that shifted G1-sets are still invariant under ν
+-equivalence.

We mimic the approach of [14, §5.3.1].

Lemma 6.3.3. Let C and D be formal knot subcomplexes. Suppose f : C → D is a filtered
quasi-isomorphism, and that there are distinct R1, R2 ∈ G(−2s)

0 (C) ∩ G(−2s)
0 (D). Then if

R′ ∈ G(−2s)
1 (C;R1, R2), there exists R ∈ G(−2s)

1 (D;R1, R2) for which R ⊂ R′.
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Proof. Let R′ ∈ G(−2s)
1 (C;R1, R2). Then there are realisers zi ∈ gen

(−2s)
0 (C;Ri) and x ∈

C−2s+1 for which ∂x = z1 + z2 and Rx = R′. Given f is a quasi-isomorphism, Rf(zi), Ri ∈
G̃(−2s)
0 (D). Moreover, f is filtered so Rf(zi) ⊂ Rzi = Ri. By the minimality of Ri in G̃(−2s)

0 (D),

we must then have Rf(zi) = Ri = Rzi . In particular, this implies f(zi) ∈ gen
(−2s)
0 (D;Ri).

Noting that ∂f(x) = f(∂x) = f(z1) + f(z2), we find f(x) ∈ G̃(−2s)
1 (D;R1, R2), so there is

R ∈ G(−2s)
1 (D;R1, R2) with R ⊂ Rf(x) ⊂ Rx = R′.

Corollary 6.3.3.1. If C and D are ν+-equivalent formal knot subcomplexes, s ∈ Z and
there exist distinct R1, R2 ∈ G(−2s)

0 (C) ∩ G(−2s)
0 (D), then:

G(−2s)
1 (C;R1, R2) = G(−2s)

1 (D;R1, R2).

Proof. Given C and D are ν+-equivalent, there exist filtered quasi-isomorphisms:

f : C → D,

g : D → C.

By applying 6.3.3 to f , if R ∈ G(−2s)
1 (C;R1, R2), then there exists R′ ∈ G(−2s)

1 (D;R1, R2)

such that R′ ⊂ R. Similarly, applying 6.3.3 to g, we obtain R′′ ∈ G(−2s)
1 (C;R1, R2) such that

R′′ ⊂ R′ ⊂ R. By the minimality of R, we have R = R′ = R′′, so R ∈ G(−2s)
1 (D;R1, R2).

Thus G(−2s)
1 (C;R1, R2) ⊂ G(−2s)

1 (D;R1, R2). If we exchange the roles of f and g is the

argument above, we see that G(−2s)
1 (D;R1, R2) ⊂ G(−2s)

1 (C;R1, R2), so the result follows.

In this setting, we lose global triviality, so in general we no longer have:

G(−2s)
1 (C;R1, R2) = G1(C;R1[−s], R2[−s]).

Restricting to formal knot complexes recovers this.

Theorem 6.3.4. If C is a formal knot complex, s ∈ Z≥0 and R1, R2 ∈ G(−2s)
0 are distinct,

then:
G(−2s)
1 (C;R1, R2) = G1(C;R1[−s], R2[−s])[s].

Proof. First note that, by the proof of [12, Proposition 3.2], we have:

G(−2s)
0 (C) = G0(C)[s],

so if R1 and R2 are distinct elements of G(−2s)
0 (C), then (following the proof of [12, Proposition

3.2]) the corresponding elements of G0(C) are R1[−s] and R2[−s] respectively. Thus, we can
relate realisers by the following:

gen
(−2s)
0 (C;Ri) = U sgen0(C;Ri[−s]).

From here, it is obvious from the definitions of G1 and G(−2s)
1 (and property 4 of formal knot

complexes) that it is sufficient to prove:

g̃en
(−2s)
1 (C;R1, R2) = U sg̃en1(C;R1[−s], R2[−s]).
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Let x ∈ g̃en1(C;R1, R2). Then there are zi ∈ gen
(−2s)
0 (C;Ri) such that ∂x = z1 + z2.

Clearly, ∂U−sx = U−sz1+U
−sz2. By construction, U−sx ∈ C1 and U

−szi ∈ gen0(C;Ri[−s]),
so U−sx ∈ g̃en1(C;R1[−s], R2[−s]). Conversely, suppose that x ∈ g̃en1(C; , R1[−s], R2[−s]).
Then there are x ∈ C1 and zi ∈ gen0(C;Ri) such that ∂x = z1 + z2. As above, ∂U sx =

U sz1 + U sz2, so by a nearly identical argument, U sx ∈ g̃en
(−2s)
1 (C;R1, R2). Thus the result

follows.

This is the first shift result we need. Now we want to extract G1 from Falg
0 (C).

Proposition 6.3.5. If f : C → C ′ is a chain map which preserves filtration levels of elements,
for some s ∈ Z induces quasi-isomorphisms on C−2s and C−2s+1, and if there exist distinct

R1, R2 ∈ G(−2s)
0 (C) ∩ G(−2s)

0 (C ′), then:

G̃(−2s)
1 (C;R1, R2) ⊂ G̃(−2s)

1 (C ′;R1, R2).

Proof. Let f be a map which satisfies the hypotheses above. Let x ∈ g̃en
(−2s)
1 (C;R1, R2).

Then there are zi ∈ gen
(−2s)
0 (C;Ri) such that ∂x = z1 + z2. Given f preserves filtration

levels of elements, Rf(zi) = Rzi = Ri. Moreover f is a quasi-isomorphism on C−2s and

C−2s+1, f(zi) is a nontrivial cycle, so f(zi) ∈ gen
(−2s)
0 (C ′;Ri). Given f is a chain map,

∂f(x) = f(z1)+ f(z2). Thus f(x) ∈ g̃en
(−2s)
1 (C ′;R1, R2), so Rx = Rf(x) ∈ G̃(−2s)

1 (C ′;R1, R2),
and the result follows.

For the following lemmata, fix the following setup. Let C be a formal knot complex, and
ι : Falg

0 C → C be the standard inclusion. Fix an integer s ∈ Z≥1 and distinct R1, R2 ∈
G(−2s)
0 (C) for which shiftRi ≤ 0.

Lemma 6.3.6. IfR ∈ G̃(−2s)
1 (Falg

0 C;R1, R2), then there exists an elementR′ ∈ G(−2s)
1 (C;R1, R2)

such that R′ ⊂ R and shiftR′ ≤ 0.

Proof. Recall that, by the global triviality of C, we have a filtered chain homotopy equiva-
lence: (

C, {Falg
k }k∈Z

)
∼
(
Λ, {Falg

k }k∈Z
)
.

Thus ι induces quasi-isomorphisms on all Falg
0 Ck for all k less than or equal to 0. in particular,

ι induces quasi-isomorphisms on Falg
0 C−2s and Falg

0 (C−2s+1). Moreover, ι is an inclusion, so
preserves filtration levels of elements. Thus by 6.3.5 we have:

G̃(−2s)
1 (Falg

0 C;R1, R2) ⊂ G̃1(−2s)(C;R1, R2).

So if R ∈ G̃(−2s)
1 (Falg

0 C;R1, R2), then R ∩ {i ≤ 0} ∈ G̃(−2s)
1 (Falg

0 C;R1, R2), so R ∩ {i ≤ 0} ∈
G̃1(−2s)(C;R1, R2). Thus there is R′ ∈ G(−2s)

1 (C;R1, R2) such that R′ ⊂ R ∩ {i ≤ 0}, so
R′ ⊂ R and shiftR′ ≤ 0.

Lemma 6.3.7. If R ∈ G(−2s)
1 (C;R1, R2), and shiftR ≤ 0, then R ∈ G̃(−2s)

1 (Falg
0 C;R1, R2).

Proof. Let R ∈ G(−2s)
1 (C;R1, R2) with shiftR ≤ 0. Pick realisers zi ∈ gen

(−2s)
0 (C;Ri) and

x ∈ G(−2s)
1 (C;R1, R2;R) so that ∂x = z1+z2. Then Rx = R and shiftR ≤ 0, so x ∈ CR∩{i≤0}

which implies that x ∈ Falg
0 C. Given shiftRi ≤ 0, both R1 and R2 lie in G0, so zi ∈

gen0(Falg
0 C;Ri). Thus x ∈ g̃en

(−2s)
1 (Falg

0 C;R1, R2), so R = Rx ∈ G̃(−2s)
1 (Falg

0 C;R1, R2).
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We can now prove the main shifting theorem.

Theorem 6.3.8. For s, R1, R2 as defined earlier, we have:

G(−2s)
1 (Falg

0 C;R1, R2) = {R ∈ G(−2s)
1 (C;R1, R2) : shiftR ≤ 0}.

Proof. Let R ∈ G(−2s)
1 (Falg

0 C;R1, R2). Then R ∈ G̃(−2s)
1 (Falg

0 C;R1, R2), so by 6.3.6 there is

R′ ∈ G(−2s)
1 (C;R1, R2) such thatR′ ⊂ R and shiftR′ ≤ 0. By 6.3.7R′ ∈ G̃(−2s)

1 (Falg
0 C;R1, R2).

Noting that R is minimal, we must have:

R = R′ ∈ G(−2s)
1 (C;R1, R2).

Now suppose that R ∈ G(−2s)
1 (C;R1, R2) and shiftR ≤ 0. By 6.3.7 we must have R ∈

G̃(−2s)
1 (Falg

0 C;R1, R2). Assume that R′ ∈ G̃(−2s)
1 (Falg

0 C;R1, R2) for which R′ ⊂ R. Then

by 6.3.6 there is R′′ ∈ G(−2s)
1 (C;R1, R2) such that R′′ ⊂ R′ ⊂ R. By minimality of R,

R′′ = R′ = R, so R ∈ G(−2s)
1 (F (−2s)

0 C;R1, R2).

As a consequence of 6.3.8 and 6.3.4, we have the following corollary.

Corollary 6.3.8.1. If s ≥ max{shiftR : R ∈ G1(C;R1, R2)}, then:

G1(C; , R1, R2)[s] = G(−2s)
1 (Falg

0 C;R1[s], R2[s]).

6.3.3 Combinatorialisation

The final step is to relate this to the grid complex GC−(G). Recall that we have a filtered
chain homotopy equivalence:

CFK−(K) ≃ GC−(G).

Where G is a grid diagram who represents the knot K. Noting that G1 is invariant under
chain homotopies, the corollary above can be combinatorialised to the following:

Corollary 6.3.8.2. If s ≥ max{shiftR : R ∈ G1(C;R1, R2)}, then:

G1(C; , R1, R2)[s] = G(−2s)
1 (GC−(G);R1[s], R2[s]).

6.4 Recovering Invariants from G-sets
In [12, Theorem 2.20], Sano and Sato give the following formula for ΥK .

Definition 6.4.1. For t ∈ [0, 2] and s ∈ R, set:

{Rt(s) := {(i, j) ∈ Z2 : (1− t/2)i+ (t/2)j ≤ s}}.

Then:

ΥK(t) = −2min{s ∈ R : ∃R ∈ G0(K), R ⊂ Rt(2)}.
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Noting the similarity between the constructions of G1 and Υ2
K , one might hope that

G1(K;−,−) can be used to recover Υ2
K . Unfortunately, in [14], the authors are only able to

demonstrate a bound. They do this by comparing G1 and γ
2
K . Recall we have t

± by choosing
a very small δ > 0 and setting t± = t± δ. Fix t ∈ [0, 2], and define Gt±0 (K) := {R ∈ G0(K) :
R ⊂ Rt±(γK(t±))}. Then we set Gt1(K) =

⋃
R±∈Gt±

0 (K),R− ̸=R+ G1(K;R−, R+). This culminates

with the following bound in [14]:

γ2K,t(s) ≤ min{r ∈ R : ∃R ∈ Gt1(K), R ⊂ (Rt(γK(t)) ∪R2(r))}.



Appendix A

Homological Algebra

In this chapter, we outline the preliminary homological algebra needed to work with grid
complexes and Knot Floer complexes.

A.1 Representation Theory

For the duration of this section, let L be a unitary ring.

Definition A.1.1. An abelian groupM equipped with a homomorphism ψM : L→ End(M)
is called an L-module. We denote the action of l ∈ L on x ∈ M by l · x or lx. Note that ψ
being a homomorphism is equivalent to the conditions:

1. For all x, y ∈M and l ∈ L, l(x+ y) = lx+ ly.

2. For all x ∈M and l, s ∈ L, l(sx) = (ls)x.

3. For all x ∈M and l, s ∈ L, (l + s)x = lx+ sx.

Modules admit all the usual definitions of subobjects, freeness, coproducts, ect.

Definition A.1.2. Let M be an L-module. Then N ⊂ M is called a submodule of M if N
is a subgroup of M which is invariant under the action of each l ∈ L.

We can quotient out by a submodule.

Definition A.1.3. Let M be an L-module and N be a submodule of M . Then the quotient
module of M modulo N , denoted M/N is given by the set of cosets:

M/N := {x+N : x ∈M},

with its induced group and module structure.

Definition A.1.4. Let {Mi}i∈I be a collection of L-modules. Then the product of this
collection is the module with underlying group

∏
i∈IMi, and L-action determined by l ·

(xi)i∈I = (l · xi)i∈I .

79
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Definition A.1.5. Let {Mi}i∈I be a collection of L-modules. Then the direct sum of this
collection is the module:⊕

i∈I

Mi := {x ∈
∏
i∈I

Mi : for all but finitely many i, xi = 0}.

Definition A.1.6. An L-module M is free if there exists a set B = {bi}i∈I ⊂M such that:

n∑
k=1

lkbik = 0 ⇐⇒ each lk = 0,

and each x ∈ M lies in {
∑n

k=1 lkbik : n ∈ N and each lk ∈ L}. If B satisfies this property,
we call it a basis.

Definition A.1.7. An L-module M is finitely generated if there exists a finite set F ⊂ M
such that:

M = {
n∑
k=1

lkfk : n ∈ N, lk ∈ L, fk ∈ F}.

Definition A.1.8. Let M be an L-module. An element x ∈ M is called torsion if there
exists nonzero l ∈ L for which l · x = 0. If no such l exists we say x is nontorsion.

If L is a commutative integral domain (all of the rings we use in the main text are
commutative integral domains), then it is immediate that the set of torsion elements forms
a submodule of M , denoted Tor(M). Next, we discuss the tensor product. This is a
complicated operation in general, so we discuss the finitely generated case (which is all we
will need).

Definition A.1.9. LetM andN be finitely generated L-modules. Then their tensor product
is the set of formal linear combinations:

{
n∑
i=1

li(mi ⊗ ni) : n ∈ N, li ∈ L,mi ∈M,ni ∈ N},

quotiented by the following relations:

1. ∀l ∈ L,m ∈M,n ∈ N , we have (lm)⊗ n = l(m⊗ n).

2. ∀m1,m2 ∈M,n ∈ N , we have (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n.

3. ∀m ∈M,n1, n2 ∈ N , we have m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2.

Sometimes we will be working in situations where an object has actions induced by
multiple rings. In this case, we denote the tensor product M ⊗L N to make it clear when
the first condition of A.1.9 can be applied. Finally, we discuss morphisms.

Definition A.1.10. Let M and N be L-modules and f :M → N be a function. Then f is
an L-homomrphism (or just a homomorphism if the context is clear) if, for each x ∈M and
l ∈ L, f(lx) = lf(x).
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We have a few submodules associated to homomorphisms.

Definition A.1.11. Let f : M → N be an L-homomorphism. Then the kernel of f is the
set of elements mapped to 0 in N . This is clearly a submodule, as f is a homomorphism.

Definition A.1.12. Let f : M → N be a homomorphism. Then the image of f , denoted
im(f) is the set f(M). Because M is an L-module and f is an L-homomorphism, it is easy
to check that this is a submodule of N .

Definition A.1.13. Let f :M → N be a homomorphism. Then we say f is an isomorphism
if it is a bijection.

We finish with the isomorphism theorems. These are well known, proofs can be found in
[28, §5.4].

Theorem A.1.1 (First Isomorphism Theorem). Let f : M → N be an L-homomorphism.
Then we can decompose f according to the following diagram:

M M/ ker(f) im(f) N∼=

The surjection on the left hand side is the canonical quotient, and the injection on the left
hand side is the canonical inclusion. Most importantly, we have an isomorphismM/ ker(f) ∼=
im(f).

Theorem A.1.2 (Second Isomorphism Theorem). Let M be an L-module and N,P be
submodules of M . Then:

� N + P is a submodule of M .

� N ∩ P is a submodule of M .

� N+P
P

∼= P
N∩P .

Theorem A.1.3 (Third Isomorphism Theorem). LetM be an L-module, N be a submodule
ofM , and P be a submodule ofM containinig N , that is: N ≤ P ≤M . Then P/N ≤M/N ,
and:

M/N

P/N
∼= M/P.

A crucial tool in homological algebra is the exact sequence. We will be interested in two
different kinds of exact sequences.

Definition A.1.14. A short exact sequence is a diagram:

0 A B C 0,
f g

in which ker g = imf , f is an injection, and g is a surjection.

Definition A.1.15. A long exact sequence is a diagram:

· · · An+1 An An−1 · · · ,fn+2 fn+1 fn fn−1

in which for each i ∈ Z, ker fi = imfi−1.

To effectively work with exact sequences, we can add a cancelling differential to our
modules.
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A.2 Graded Chain Complexes

Graded complexes are the first sort of chain complexes one encounters when learning alge-
braic topology, generally as a way of constructing simplicial homology. We will work in a
much more general setting. Fix a pair of rings L and R for the remainder of this section.

Definition A.2.1. An R-graded chain complex over L consists of a pair (C, ∂), where C is
an L-module, and ∂ : C → C is an L-homomorphism with ∂ ◦ ∂ = 0. We also require that
C has an R-grading which is compatible with ∂. That is, we have a splitting C =

⊕
r∈R Cr

so that for each r ∈ R, ∂(Cr) ⊂ Cr−1.

Associated to a graded chain complex is its homology, which is the L-module ker ∂/im∂
and denotedH(C). Note thatH(C) inherits theR-grading; if we setHr(C) := ker(∂|Cr)/im(∂|Cr−1),
then compatibility with the differential confirms that H(C) =

⊕
r∈RHr(C).

Definition A.2.2. Let (C, ∂C) and (D, ∂D) be graded chain complexes, and f : C → D be
an L-homomorphism. Then we say f is a chain map if the following diagram commutes:

C C

D D.

∂C

ff

∂D

Moreover, if f(Cr) ⊂ Dr for all r ∈ R, we say that f is graded.

Commutativity of A.2.2 ensures that a chain map f will induce a homomorphism H(f).
Clearly, if f is also graded, for each r ∈ R we have Hr(f) : Hr(C) → Hr(D).

Definition A.2.3. Let f : C → D be a chain map and s ∈ R. We say that f is homogeneous
of degree s if, for each r ∈ R, f(Cr) ⊂ Dr+s.

Definition A.2.4. A graded chain map f is a quasi-isomorphism if H(f) is an isomorphism.

Definition A.2.5. A short exact sequence of chain complexes consists of a short exact
sequence of L-modules:

0 C D E 0,
f g

in which all objects are chainn complexes and all arrows are chain maps.

We conclude with the snake lemma.

Lemma A.2.1 (Snake Lemma). Suppose we have a short exact sequence of chain complexes:

0 C D E 0,
f g

with the additional property that all arrows are graded. Then for each r ∈ R, there is a long
exact sequence:

· · · Hr(C) Hr(D) Hr(E) Hr−1(C) · · · .
∂∗r+1 Hr(f) Hr(g) ∂∗r Hr−1(f)
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Equivalently, we can bundle these into an exact triangle.

H(C) H(D)

H(E)

H(f)

H(g)∂∗

Where ∂∗ is homogeneous of degree −1.

Proof. This is a foundational lemma for homological algebra, a proof can be found in [29,
Chapter 1]. The proof essentially involves using the boundary map on E and exactness to
send an element of Hr(E) to Hr−1(C).

Definition A.2.6. Let (C, ∂C) and (D, ∂D) be a pair of graded chain complexes. Then we
form their tensor product of L by the tuple (C ⊗L D, ∂C ⊗L 1 + 1⊗L ∂D), and homological
grading, for r ∈ R:

(C ⊗L D)r =
⊕

s1+s2=r

(Cs1 ⊗L Ds2).

Definition A.2.7. Let (C, ∂) be a graded chain complex over L. Let K be a field which
acts on L. Let W be a graded K-space. Then the tensor product of C and W is given by
the tuple (C ⊗K W , ∂ ⊗K 1) and for r ∈ R:

(C ⊗K W)r =
⊕
s+l=r

Cs ⊗K Wl.

Definition A.2.8. Let Q ≤ L be a subring. Let (C, ∂) be an R-graded chain complex over
Q. Moreover, assume L admits a grading

⊕
r∈R Lr so that, if q ∈ Q ∩ Lr, and s ∈ R:

qCs ⊂ Cs+r.

Then define the tensor product of C and L is given by the tuple (C⊗QL, ∂⊗1) and R-grading:

(C ⊗Q L)r =
⊕
s+l=r

Cs ⊗Q Ll.

A.3 Bigraded Chain Complexes

In this section we outline the general properties of bigraded chain complexes. Fix the fol-
lowing rings:

� L,R are unitary rings.

� S is an arbitrary ring.

In what follows, L will be the ring over which out chain complex is a module, R will record
our homological grading, and S will record our other grading.
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Definition A.3.1. An R, S-bigraded chain complex over L is a tuple (C, ∂) which satisfies
the following conditions.

1. C is an L-module.

2. ∂ is an endomorphism of C which squares to 0.

3. C splits as a direct sum
⊕

r∈R
s∈S

Cr,s.

4. The endomorphism ∂ is homogeneous of degree (−1, 0) with respect to the R, S-
bigrading. That is, ∂(Cr,s) ⊂ Cr−1,s.

We call the R-grading the homological grading of C.

Definition A.3.2. Let (C, ∂) be an R, S-bigraded chain complex. The homology of (C, ∂),
denoted H(C), is the L-module ker(∂)/im(∂). It is clear that we also get a splitting:

H(C) =
⊕
r∈R
s∈S

Hr,s(C),

if we set Hr,s(C) = ker(∂|Cr,s)/im(∂|Cr+1,s).

Definition A.3.3. Let C and D be bigraded chain complexes. An L-homomorphism f :
C → D is called a chain map if the diagram below commutes.

C C

D D

∂C

ff

∂D

If f also preserves the bigrading (that is: for all (r, s) ∈ R × S f(Cr,s) ⊂ Dr,s) we say f is
bigraded.

Note that a chain map will always induce a map on H(C), and if it is bigraded, then the
induced map on homology will be bigraded. If f : C → D is a chain map then we denote
the map it induces on hommology by H(f) : H(C) → H(D) or f∗ : H(C) → H(D).

Definition A.3.4. Let C,D be bigraded chain complexes and f : C → D be a chain map.
Let (m,n) ∈ R × S. Then f is homogeneous of degree (m,n) if, for each (r, s) ∈ R × S,
f(Cr,s) ⊂ Dr+m,s+n.

In particular, note that a map is graded if and only if it is homogeneous.

Definition A.3.5. A short exact sequence of bigraded chain complexes is a short exact
sequence of chain complexes:

0 C D E 0,
f g

where all the arrows are bigraded.
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Note that we can deal with short exact sequences with homogeneous arrows by applying
bigrading shifts.

Lemma A.3.1 (Bigraded Snake Lemma). Suppose we have a short exact sequence of bi-
graded chain complexes:

0 C D E 0.
f g

Then for r ∈ R and s ∈ S, we have a long exact sequence:

· · · Hr,s(C) Hr,s(D) Hr,s(E) Hr−1,s(C) · · · .
∂∗r+1,s Hr,s(f) Hr,s(g) ∂∗r,s

Equivalently, we can collect these into an exact triangle:

H(C) H(D)

H(E),

H(f)

H(g)∂∗

where ∂∗ is homogeneous of degree (−1, 0).

Proof. Note that, for each s ∈ S, A.3.1 restricts to a short exact sequence:

0 Cs Ds Es 0.

Applying to this short exact sequence for each s ∈ S completes the proof.

Definition A.3.6. Let f : C → D be a bigraded chain map. Then f is a quasi-isomorphism
if the induced map H(f) is an isomorphism of L-modules. Note that because the map is
bigraded, all of the restrictions H(f)|Hr,s(C) are also isomorphisms.

In general, quasi-isomorphisms are sufficient to study bigraded chain complexes. How-
ever, in practise it can sometimes be difficult to directly prove a map is a quasi-isomorphism,
so we introduce some homotopy theory of chain complexes. We start with the basic definition
of homotopy, and then build up to homotopy equivalence and cones in the usual manner.

Definition A.3.7. Let f, g : C → D be chain maps who are both homogeneous of degree
(m,n). Then we say f is chain homotopic (or more often just homotopic) to g if there exists
an L-homomorphism h : C → D which is homogeneous of degree (m+ 1, n) and satisfies:

f − g = ∂DH +H∂C .

If f is homotopic to g we write f ≃ g. Upon inspection of the right hand side of the equation,
it is immediate that this means H(f)−H(g) = 0, as ∂DH ⊂ im∂D and if x ∈ ker(∂C), then
H∂C(x) = 0. So if two maps are chain homotopic, they induce the same maps on homology.

This suggests the following definition.
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Definition A.3.8. Let C and D be bigraded chain complexes. Suppose f : C → D and
g : D → C are bigraded chain maps with:

gf ≃ 1C ,

and,
fg ≃ 1D.

Then we say C is homotopy equivalent to D.

Keeping the remarks above in mind, gf ≃ 1C and fg ≃ 1D imply that, on the level of
homology f and g are true inverses for oneanother. Thus if C is homotopy equivalent to D,
it is immediate that C is quasi-isomorphic to D. Finally, we introduce a tool which allows
us to study homogeneous chain maps f : C → D as chain complexes.

Definition A.3.9. Let C,D be bigraded chain complexes. Let f : C → D be a chain
map which is homogeneous of degree (m,n). The mapping cone of f , denoted Cone(f) or
Cone(f : C → D) (depending on how much context we need), is the bigraded chain complex
(Cone(f), ∂f ), where:

� Cone(f) = C ⊕D.

� ∂f (c, d) = (−∂C(c), ∂D(d) + f(c)).

� The bigrading is given by:

Cone(f)r,s = Cr−m−1,s−n ⊕Dr,s.

Note that the bigrading condition is chosen to ensure that ∂f is homogeneous of degree
(−1, 0).

Associated to a cone, we have a short exact sequence:

0 D Cone(f) C 0i p

Where i is the canonical inclusion of D into Cone(f) and p is the canonical projection of
Cone(f) onto C. These are all homogenous chain maps, so splitting ?? along the bigrading
and applying the bigraded snake lemma, we obtain the long exact sequence:

· · · Hr+1,s(D) Hr+1,s(Cone(f)) Hr−m,s−n(C) Hr,s(D) · · · .H(i) H(p) H(f)

Or, if the reader prefers it, an exact triangle:

H(C) H(D)

H(Cone(f)).

H(f)

H(p) H(i)

From exactness, it is immediate that H(Cone(f)) = 0 if and only if f is a quasi-isomorphism.
We enshrine this in a lemma.
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Lemma A.3.2. A bigraded chain map f : C → D is a quasi-isomorphism if and only if
H(Cone(f)) = 0.

The long exact sequence of a cone also proves the following lemma.

Lemma A.3.3. If f : C → D is an injective, homogeneous chain map, then Cone(f) is
quasi-isomorphic to D/f(C).

Proof. This is proven in [27, Lemma A.3.9]. The basic idea is to form the short exact
sequence:

0 C D D/f(C) 0.
f q

Then one can apply A.3.1 to form a long exact sequence and relate that to the long exact
sequence of Cone(f).

Definition A.3.10. Let (C, ∂C) and (D, ∂D) be a pair of bigraded chain complexes. Then
we form their tensor product of L by the tuple (C ⊗LD, ∂C ⊗L 1 + 1⊗L ∂D), and bigrading,
for r ∈ R and s ∈ S:

(C ⊗L D)r =
⊕

s1+s2=r
l1+l2=s

(Cs1,l1 ⊗L Ds2,l2).

Definition A.3.11. Let (C, ∂) be a bigraded chain complex over L. Let K be a field which
acts on L. Let W be a bigraded K-space. Then the tensor product of C and W is given by
the tuple (C ⊗K W , ∂ ⊗K 1) and for r ∈ R, s ∈ S:

(C ⊗K W)r =
⊕
s+l=r
p+q=s

Cs+p ⊗K Wl+q.

Definition A.3.12. Let Q ≤ L be a subring. Let (C, ∂) be an R, S-bigraded chain complex
over Q. Moreover, assume L admits a bigrading

⊕
r∈R Lr so that, if q ∈ Q∩Lr,s, a ∈ R and

b ∈ S:
qCa,b ⊂ Ca+r,b+s.

Then define the tensor product of C and L is given by the tuple (C⊗QL, ∂⊗1) and bigrading:

(C ⊗Q L)r,s =
⊕
p+q=r
a+b=s

Cp,a ⊗Q Lq,b.

A.4 Graded, Filtered Chain Complexes

As above, we begin this section by fixing some notation. Let L and R be unitary rings,
and (P,≤) be a partially ordered ring. L will be our coefficient ring, R will record the
homological grading, and (P,≤) will induce a filtration. To place a P -filtration on a chain
complex (and work with it in the finitely generated case) we need the following definitions.

Definition A.4.1. Let (P,≤) be a partially ordered set. We say C ⊂ P is a closed region
if it id downwardly closed with respect to ≤. That is, if x ∈ C, and y ≤ x, then y ∈ C. We
collect these subsets into CR(P ).
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When doing computations, generally we will only be able to deal with a particular type
of closed region.

Definition A.4.2. Let (P,≤) be a partial order, and p ∈ P . Then the simple region
corresponding to p is the closed region {q ∈ P : q ≤ p}. We denote this set Rp. Clearly
Rp ∈ CR(P ).

Definition A.4.3. Let (P,≤) be a partial order, and R be a closed region. We say R is
semi-simple if thereis some finite set {p1, . . . , pn} ⊂ P for which R = Rp1 ∪Rp2 ∪ · · · ∪Rpn .

These are in a certain sense the computable closed regions. We are now prepared to
discuss chain complexes.

Definition A.4.4. AnR-graded P -filtered chain complex over L is a tuple (C, ∂, {FR}R∈CR(P ))
which satisfies the following.

1. C is an L-module.

2. ∂ : C → C is an L-homomorphism which squares to 0.

3. C splits as a direct product
⊕

r∈RCr, we call this the homological grading.

4. {FR}R∈CR(P ) is a collection of L-submodules of C for which
⋃
R∈CR(P ) FRC = C and⋂

R∈CR(P ) FRC = ∅. That is, the P -filtration exhausts C.

5. If R, S ∈ CR(P ) with R ⊂ P , then FRC ⊂ FSC.

6. The differential ∂ is compatible with the grading and the filtration. That is, if FRCr =
Cr ∩ FRC, then for all r ∈ R, and R ∈ CR(P ), then ∂(RCr) ⊂ FRCr−1.

We will often just refer to these as graded, filtered chain complexes or even filtered complexes,
if the various rings are clear from context.

Definition A.4.5. Let (C, ∂, {FRC}R∈CR(P )) be a graded, filtered chain complex. Then the
homology of this chain complex is the graded, filtered L-module H(C) := ker(∂)/im(∂), with
grading and filtration given by:

� Hr(C) := ker(∂|Cr)/im(∂|Cr+1).

� FRH(C) := ker(∂|FRC)/im(∂|FRC).

Graded, filtered chain complexes admit very similar morphisms to bigraded chain com-
plexes. The main difference between the two structures is that quasi-isomorphisms are much
weaker in the filtered setting.

Definition A.4.6. Let C and D be filtered chain complexes, and f : C → D be an L-
homomorphism. Then f is a chain map if the following diagram commutes:

C C

D D.

∂C

ff

∂D

If, for each r ∈ R, f(Cr) ⊂ Dr, then we say f is graded. If, for each R ∈ CR(P ), f(FRC) ⊂
FRD, then we say f is filtered.
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Note that any chain map f induces an L-homomorphism on homology denoted H(f) or
f∗. Moreover, this assignment is functorial. Up until not, we have not used the ring structure
on P . This is nessecary for the following definition.

Definition A.4.7. Let f : C → D be a chain map of filtered complexes. Let (m,n) ∈ R×P .
Then f is homogeneous of degree (m,n) if, for each R ∈ CR(P ) and r ∈ R, we have:

f(FRCr) ⊂ FR+mDr+n.

Definition A.4.8. A short exact sequence of filtered chain complexes is a short exact se-
quence of chain complexes:

0 C D E 0.
f g

Where C,D,E are filtered complexes and f, g are graded and filtered.

As in the bigraded setting, filtration and grading shifts can be used to extend this to
homogeneous chain maps.

Lemma A.4.1 (Filtered Snake Lemma). Suppose we have a short exact sequence of filtered
chain complexes:

0 C D E 0.
f g

Then for each r ∈ R and each R ∈ CR(P ), there is a long exact sequence:

· · · Hr(FRC) Hr(FRD) Hr(FRE) Hr−1(FRC) · · · .
FR∂

∗
r1 FRHr(f) FRHr(g) FR∂

∗
r

Or, equivalently, an exact triangle:

H(C) H(D)

H(E),

H(f)

H(g)∂∗

Where ∂∗ is homogeneous of degree (−1, 0).

Proof. As in the bigraded setting, for each R ∈ CR(P ), A.4.1 restricts to:

0 FRC FRD FRE 0.

Applying A.3 to each of these short exact sequences completes the proof.

Having defined the various types of morphisms between filtered chain complexes, we now
discuss a few types of equivalence, along the lines of bigraded chain complexes.

Definition A.4.9. Let f : C → D be a filtered, graded chain map. We say that f is a quasi-
isomorphism if the induced map H(f) : H(C) → H(D) is an isomorphism of L-modules.
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As we noted above, quasi-isomorphisms are much weaker in the filtered setting than they
are in the graded setting. In the graded setting, a quasi-isomorphism f : C → D of bigraded
complexes induces isomorphisms on each Cr,s. This is not the case if C and D are filtered.

Example A.4.1. Let L = Z/2Z, R = L, and P = Z. In a linear order like Z, closed regions
are determined by their unique maximum element. Thus we form the triple:

(Z∞, 0, {FnZ∞}n∈Z),

which has trivial homological grading Z∞
0 = Z∞, and filtration given by:

FnZ∞ := {x ∈
⊕
i∈Z

Z : xi = 0 for i ≤ n}}.

Then if we define the shift map f : Z∞ → Z by f((xn)) = (xn−1). This is clearly filtered,
and is an ismorphism of chain complexes, so a quasi-isomorphism. However, f does not map
FnZ∞ surjectively onto itself in Z∞, so f does not induce isomorphisms on filtration levels.

One way to solve this is to work with graded objects, but for our purposes these will be
difficult to work with. Fortunately, homotopy theory in this settining in nearly identical to
the bigraded setting.

Definition A.4.10. Let C,D be filtered chain complexes. A pair of chain maps f, g : C → D
which are homogeneous of degree (m,n) are filtered chain homotopic if there exists an L-
homomorphism H : C → D which is homogeneous of degree (m + 1, n), and satisfies the
following:

f − g = ∂DH +H∂C . (A.1)

We call H a filtered chain homotopy from f to g, and if such an H exists we write f ≃ g.
As noted above, if f ≃ g then H(f) = H(g).

Because A.1 is checked pointwise, A.1 restricts to, for R ∈ CR(P ) and r ∈ R:

f |FRCr − g|FRCr = ∂DH|FRCr +H∂C |FRCr .

Hence H(f ||FRCr) = H(g|FRCr). This suggests chain homotopies are the correct way to think
about equivalence for filtered chain complexes.

Definition A.4.11. Let C,D be filtered chain complexes. If there are graded, filtered chain
maps f : C → D and g : D → C for which gf ≃= 1C and fg ≃ 1D, then we say C is filtered
homotopy equivalent to D.

Clearly if C is filtered homotopy equivalent to D, for each R ∈ CR(P ) and r ∈ R,
H(FRCr) ∼= H(FRDr). Next, we discuss mapping cones in the filtered setting.

Definition A.4.12. Let C,D be filtered chain complexes, and f : C → D be a chain map
which is homogeneous of degree (m,n). Then the filtered mapping cone or just mapping cone
of f , denoted Cone(f), is specified by the triple:

(Cone(f), ∂f , {FRCone(f)}R∈CR(P )).

The terms in this triple are given by:
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1. Cone(f) = C ⊕D.

2. ∂f (c, d) = (∂C(c), ∂D(d) + f(c)).

3. Cone(f)r := Cr−m−1 ⊕Dr.

4. FRCone(f) = FR−n ⊕FRD.

It is straightforward to check that this specifies a graded, filtered chain complex. We
have analogues of A.3.2 and A.3.3 for filtered chain complexes.

Lemma A.4.2. Let C,D be filtered chain complexes, and f : C → D be a graded, filtered
chain map. If H(Cone(f)) = 0 then f is a quasi-isomorphism.

Proof. The argument is formally similar to the way we proved A.3.2. Form the same short
exact sequence, note all the maps are filtered, and apply A.4.1.

Note that there is a slight deviation from A.3.2 here. For each R ∈ CRP , A.3 restricts
to:

0 FRD FRCone(f) FRC 0.

So if H(Cone(f)) = 0, then each f |FRC is a quasi-isomorphism. Thus, A.4.1 confirms that
the converse to this lemma does not hold.

Lemma A.4.3. Let f : C → D be a filtered, graded, injective chain map. Then there exists
a filtered quasi-isomorphism from Cone(f) to D/f(C).

Proof. Again, this is formally equivalent to the proof of A.3.3. The only additional thing to
check is that all morphisms are graded and filtered, which is immediate.

Definition A.4.13. Let (C, ∂C) and (D, ∂D) be a pair of filtered chain complexes. Then
we form their tensor product over L by doing this for the underlying graded complexes, and
then extending the filtration by setting:

FR(C ⊗L D) =
∑

R1,R2∈CR(P )
R1∪R2=R

(FR1C)⊗L (FR2D).

Definition A.4.14. Let (C, ∂) be a filtered chain complex over L. Let K be a field which
acts on L. Let W be an R, P -bigraded K-space. Then the tensor product of C and W is
constructed by first taking the tensor product of the underlying graded chain complex and
vector space, and then extending the filtration by setting:

FR(C ⊗L W) =
∑

R′∈CR(P ),p∈P
R′+p=R

(FR′C)⊗ (Wp).

Definition A.4.15. Let Q ≤ L be a subring. Let (C, ∂) be an R-graded, P -filtered chain
complex over Q. Moreover, assume L admits a bigrading

⊕
r∈R
p∈P

Lr,p so that, if q ∈ Q ∩ Lr,p,
s ∈ R and R ∈ CR(P ) :

qFRCs ⊂ FR+pCs+r.
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Define the tensor product of C and L over Q by doing this for the underlying graded complex
and ring, and then extending the filtration by setting:

FR(C ⊗Q L) =
∑

S∈CR(P ),p∈P
p+S⊂R

FSC ⊗Q Lp.

We finish off this chapter by discussing the case where P = Z2. In this case, the closed
regions look like unions of the following set, translated around the plane.

(0, 0)

Moreover, we can work interchangeably with our Z2-filtration, or with a pair of Z-filtrations.
For k ∈ Z, define closed regions {i ≤ k} := {(i, j) ∈ Z2} and {j ≤ k} := {(i, j) ∈ Z2 : j ≤ k}.
Then we can use the to define Z-filtrations F1

nC := F{i≤n}C and F2
nC := F{j≤0}C. Moreover,

we can recover the Z2-filtration by setting, for each R ∈ CR(Z2):

FRC =
∑

(i,j)∈R

F1
i C ∩ F2

jC.
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[3] P. S. Ozsváth and Z. Szabó, “Holomorphic disks and knot invariants,” Advances in
Mathematics, vol. 186, no. 1, pp. 58–116, 2004.

[4] J. Rasmussen, “Floer homology and knot complements,” Harvard University, 2003.

[5] P. Ghiggini, Knot Floer homology detects genus-one fibred knots, 2008. [Online]. Avail-
able: http://www.jstor.org/stable/40068151 (visited on 11/28/2023).

[6] Y. Ni, “Knot Floer homology detects fibred knots,” Inventiones mathematicae, vol. 170,
no. 3, pp. 577–608, Sep. 2007. doi: 10.1007/s00222-007-0075-9. [Online]. Available:
https://doi.org/10.1007%2Fs00222-007-0075-9.

[7] A. Juhász, “Floer homology and surface decompositions,”Geometry & Topology, vol. 12,
no. 1, pp. 299–350, Mar. 2008. doi: 10.2140/gt.2008.12.299. [Online]. Available:
https://doi.org/10.2140%2Fgt.2008.12.299.

[8] A. Juhász, “The sutured Floer homology polytope,” Geometry & Topology, vol. 14,
no. 3, pp. 1303–1354, May 2010. doi: 10.2140/gt.2010.14.1303. [Online]. Available:
https://doi.org/10.2140%2Fgt.2010.14.1303.

[9] R. Lipshitz, “A cylindrical reformulation of Heegaard Floer homology,” Geometry &
Topology, vol. 10, no. 2, pp. 955–1096, Aug. 2006. doi: 10.2140/gt.2006.10.955.
[Online]. Available: https://doi.org/10.2140%2Fgt.2006.10.955.
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