
Introduction to Topological Quantum
Computation

Marc Lescano
Department of Mathematics
The University of Auckland

Supervisor: Pedram Hekmati Co-supervisor: Jurij Volčič
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Abstract

In 2008, Alexander Kitaev and Chris Laumann discovered a fault-tolerant quantum comput-
ing model —topological quantum computing. The model is predicated upon a quasiparticle
called an anyon, which is a two dimensional extension of fermions and bosons - exhibiting
exotic spin statistics. The mathematical habitat of these particles is called a unitary modular
tensor category (UMTC), encapsulating the representation of the adiabatic exchange operation
of such particles in what is called, the braid group. This dissertation introduces the physical
and mathematical realisation of anyons, other quantum computing models using adiabaticity
and holonomy to give intuition and motivation on how UMTCs model the braiding of anyons to
yield fault-tolerant topological quantum computations. Here, we show the usage of Fibonacci
anyons and Ising anyons as examples of how one may form quantum gates and make a universal
topological quantum computer.
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Introduction

Today, quantum computers (QCs) have become a well-funded field of research in mathematics,
physics, and engineering due to their overwhelmingly powerful potential in computational abil-
ity and efficiency. In contrast to classical computers, which typically compute in polynomial
time, QCs can execute computations and algorithms that would otherwise take until the end of
the universe to complete. This is due to the philosophically nonsensical, yet naively simple,
properties of the quantum world. Such properties include superposition and entanglement.

The concept of superposition relies entirely on the fact that the ones interacting with the
system — a collection of objects at a particular location at a given time, being the main point
of study — do not know in any way what state the system has chosen. Instead, we take the
collection of such possible outcomes for the system and assume it encompasses all such states,
with some states being more probable than others. Such a mathematical description of a quan-
tum system is referred to as a wavefunction. A classic example would be Schrödinger’s cat.
1

Similarly, classical bits are either 0 or 1. In quantum mechanics, we can assume that it can
be both at the same time. However, if one were to observe and/or make some perturbation in the
immediate surroundings of the QC, then the superposition property collapses. This is known
as wavefunction collapse, and it poses significant challenges for creating such a computer.

In this paper, we aim to introduce a fault-tolerant model of quantum computing discovered
by Kitaev and Laumann called topological quantum computing (TQC) [Kit97]. This model
uses a new type of particle called an anyon; a two-dimensional extension of the more com-
monly known particles, the fermion and boson. Anyons were mathematically discovered by
Wilczek [Wil91]. They were then physically observed by Stormer, Tsui and Laughlin in 1998
from the fractional quantum Hall effect [STG99]. Unlike its predecessors, anyons have frac-

1A nuclear isotope with a 1/2 chance of decaying in an hour is placed next to a Geiger counter. which is
connected to a contraption containing a vial of toxic bromine gas. Upon activation, the vial is dropped and released
inside a closed box containing a cat. There is no way for anyone to know if the cat is dead or alive with some special
tool, and so without opening the box, the cat has a 1/2 chance of being either dead or alive. Quantum mechanics
dictates that the cat is both dead and alive, at the same time.

1
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tional spin. Since these particles are only realisable on a plane, we can track how they exchange
with each other over time using the braid group.

We start by introducing the overarching postulates of quantum mechanics in the context of
discrete states. Realistically, when one engineers a quantum computer, one cannot ignore the
fact that the computer will interact with the system. Despite little description in this respect,
it would be unfair not to introduce how one accounts for this decoherence. Density states are
the formalism of experimental physicists and the engineers of this field, building actual quan-
tum computers for differing models [Pac12]. We then introduce an abstract structure called a
category. If group theory is the study of symmetry, category theory is the study of functions.
Here, one can study the similar relationships of abstract structures and the main map of con-
cern. Like groups and group homomorphisms, or topological spaces and the continuous maps
between them.

Secondly, we introduce physical ideas that regard the notions of anyons. In the theoretical
side of things, we look mainly towards the Aharonov-Bohm effect. Its importance is derived
from showing how, on a two-dimensional space, anyons are just a charge q and a flux ϕ. We
introduce other physical concepts from here, like the non-Abelian Berry phase. Together, these
physical ideas unveil how the spin exchange statistics of anyons behave - collecting phase fac-
tors of moduli one upon exchanging. These exchanges are captured in holonomy theory and in
turn, geometric phases.

Then, after introducing what quantum computing is in general, defining notions of a qubit
— the quantum bit — and the fundamental model of QC, namely the quantum circuit model
(QCM). Examples which are similar to topological quantum computing are then briefly intro-
duced, modelled from the properties of adiabatic evolution and holonomic parallel transport.
Such models are rightfully called adiabatic quantum computing and holonomic quantum com-
puting. Adiabatic evolution is essentially the evolution of a wavefunction formed entirely on a
degenerate ground state space, and the idea that one can evolve to stay in said space.

A world-line for our anyons restricted to a two-dimensional surface is a time-like curve in
R2+1. We then introduce the mathematical playground of anyons, known as unitary modular
tensor categories (UMTCs). These categories algebraically capture the fusing and braiding
operation of the anyons. Showcased to avoid and simplify a potential jumble of symbols, we
illustrate these operations in a graphical calculus, justified that we are merely illustrating the
anyon’s world lines. Turaev showed that UMTCs have a one-to-one correspondence to topo-
logical quantum field theories in (2 + 1) dimensions ((2 + 1)-TQFT) [Tur94]. Some examples
of UMTCs are provided, namely Fibonacci and Ising UMTCs.
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Briefly, we give a short description of what a quantum field theory is and, more importantly,
state the axioms that form an anomaly-free (2+1)-TQFT. In condensed matter physics, anyons
are physically realised in a phenomena called the fractional quantum hall effect. The Hall
effect forms a linear relationship between a metal plate with a current in a magnetic field. The
quantum Hall effect is a quantisation of this linear relationship, where the conductivity Rxy is
related to what is called the Landau level ν by

Rxy = ν−1 h

q2e
. (0.0.1)

Each ν gives a different anyon, each with its unique magnetic flux and charge. For ν =
5/2, 12/5, it is hypothesised that one may find Ising and Fibonacci anyons, respectively. The
state of matter that physically realises these anyons is called a fractional quantum hall liquid
(FQH liquid). Mathematically, we describe how, for an FQH liquid restricted onto a two-
dimensional surface, we can separate the properties of the surface according to its global and
local properties. This idea of separating the local and global properties is justified in the cate-
gorical language of anyons, as it is in the global factor of our space and in UMTCs that we can
conduct measurements of braiding and fusing.

Finally, we reach the pinnacle, describing what exactly topological quantum computing
is. Provided with examples using Fibonacci and Ising anyons. How then is this model fault-
tolerant? The problem of wavefunction collapse due to local interactions with the immediate
surroundings is a local operation. But in separating the surface and rewriting the surface as a
product of two spaces, containing the global and local properties, the local interactions are local
operations on the surface. Since we have built the habitat where anyons reside, in the space
concerning the global properties, such interactions are deemed irrelevant, i.e., fault-tolerant. A
physical attempt of engineering an actual QC uses a kind of particle called a Majorana fermion.
This particle is infact, modelled by Ising anyons.
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Chapter 1

Preliminaries

1.1 The Postulates of Quantum Mechanics

We shall introduce the postulates of quantum mechanics as given in [BD06]. With these postu-
lates, we can mathematically describe, and more importantly play, with our quantum systems.
Dirac notation will be utilised. The following postulates describe a quantum system.

Note that we present these postulates for discrete systems; for this paper, it will suffice.
Should one try to obtain a continuous definition, alongside some adjustments, one can swap
the discrete sums for integrals.

Let H be a topologically separable complex Hilbert space with an inner product ⟨ϕ |ψ⟩ .

Postulate 1.1.1. The state of an isolated physical system is mathematically represented by a
state vector ψ : R → H. This vector |ψ(t)⟩ belongs to a Hilbert space H, which one often
refers to as the state space.

Postulate 1.1.2. The Hilbert space of a composite system is the tensor product of the state
spaces, being Hilbert spaces, associated with the component systems. The component sys-
tems are the individual particles for a non-relativistic system consisting of a finite number of
particles.

In physics, it is common practice to notate the tensor product by disregarding it and write

|ψ⟩ ⊗ |ϕ⟩ = |ψ⟩|ϕ⟩ = |ψϕ⟩.

Definition 1.1.3. A state from a composite system is quantum entangled if it cannot be factored
as a tensor product of states from its constituents.

5
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Example 1.1.4. Let H = spanC(|0⟩, |1⟩) ⊗ spanC(|0⟩, |1⟩). Then the state |ψ⟩ = (|0⟩ ⊗
|0⟩)/

√
2+(|1⟩⊗ |1⟩)/

√
2 cannot be factored into the form |ϕ⟩⊗ |φ⟩, ergo quantum entangled.

The next lot of postulates introduces and develops the notion of measurement.

Postulate 1.1.5. Every measurable physical quantity A is described by some Hermitian oper-
ator A : H → H. The eigenvectors of A form an orthonormal basis for H, and the values in
the spectrum of A are the physical quantities one can measure.

The expectation value of a quantum system |ψ⟩ ∈ H, with respect to the observable A, can
be written as ⟨ψ⟩A = ⟨ψ|A|ψ⟩.

Definition 1.1.6. Let H = span({ψi}i∈N). We call elements of this Hilbert space |ψ⟩ ∈ H
wavefunctions. They take the form

|ψ⟩ =
∑
i∈N

ci|ψi⟩.

For this to be mathematically viable to allow for physical interpretation, we must normalise
the wavefunction such that |⟨ψ |ψ⟩|2 = 1.

Postulate 1.1.7. When the physical quantity A is measured on a system with the wavefunc-
tion |ψ⟩, the probability of obtaining an eigenvalue an or α - discrete and continuous spectra
respectively - of the corresponding observable A is given by the amplitude squared of the ap-
propriate wavefunction (projection onto the corresponding eigenvector)

P(an) = |⟨an |ψ⟩|2 ——Discrete, non-degenerate spectrum (1.1.1)

P(an) =
gn∑
i=1

|⟨ani |ψ⟩|2 ——Discrete, degenerate spectrum (1.1.2)

Where for each eigenvalue an of A, there are up to gn eigenstates.

Remark 1.1.8. For some Hilbert state space and |ψ⟩ a wavefunction, |ψ⟩ ∈ H∗ is a linear
functional mapping H → C with the property ⟨ψ| = |ψ⟩†. Then we define the density state as
p = |ψ⟩⟨ψ|. Physically, this formalism of states incorporates the environmental contribution -
as will be shown below. Regarding the experimental side of the paper (which will be slightly
talked about) the experimental formalism of quantum computing is spoken in the language of
density states.

Postulates 1.1.4 and 1.1.6 together form what is more commonly known as Born’s Rule.
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Postulate 1.1.9. (Wavefunction Collapse) If the measurement of the physical quantity A on
the system in the state |ψ⟩ yields some eigenvalue an, then the system’s state, immediately after
the measurement, is the normalised projection of |ψ⟩ onto the eigensubspace correlated with
the eigenvalue an - where Pn is the projection operator for an.

|ψ⟩ an−→ Pn|ψ⟩√
⟨ψ|Pn|ψ⟩

(1.1.3)

Remark 1.1.10. If the eigenvalue an has some degeneracy with orthonormal eigenstates, call
them {|ani⟩}mi=1, then the projection operation becomes

Pn =

m∑
i=1

|ani⟩⟨ani| (1.1.4)

The following postulate regards the time evolution of the quantum system. There are two
such postulates, but they are equivalent. Both are stated for their importance in quantum me-
chanics, but the latter will be used more.

Postulate 1.1.11. Let ψ : [0.∞) → H and H(t) : H → H is Hermitian. The time evolution for
some t > 0 of the state vector |ψ(t)⟩ is governed by the Schrödinger Equation,

iℏ
d

dt
|ψ(t)⟩ = H(t)|ψ(t)⟩ (1.1.5)

Postulate 1.1.12. The time evolution of a closed system is governed by a unitary matrix U(t) =
exp(iHt) on an initial state |ψ(t0)⟩.

|ψ(t)⟩ = U(t)|ψ(t0)⟩ (1.1.6)

The postulate regards the type of particles in everyday life. However, the extension of this
postulate allows this paper to delve into particles called anyons naively.

Postulate 1.1.13. For a system consisting of N identical particles, in a 3D space, the wave-
function is either symmetric or anti-symmetric, with respect to particle exchange. In this way,
we define the fundamental particles bosons and fermions.

Let |ψ⟩, |ϕ⟩ ∈ H be wavefunctions and let P : H → H by |x⟩ ⊗ |y⟩ 7→ |y⟩ ⊗ |x⟩. Then we
have:

P (|ψ⟩ ⊗ |ϕ⟩) = |ϕ⟩ ⊗ |ψ⟩—— Bosons (1.1.7)

P (|ψ⟩ ⊗ |ϕ⟩) = −|ϕ⟩ ⊗ |ψ⟩—— Fermions (1.1.8)
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In a many-body system, there are often too many parameters. Thus, making numerical
analysis, let alone closed-form analysis, impractical for making time-local deterministic calcu-
lations. However, if one treats the many-body system as one system, one can form a notion of a
ground state, and the first few excited states are easier to find. Therefore, we make a definition.

Definition 1.1.14. A quasiparticle is a low-lying excitation of a many-body system which ex-
hibits particle-like properties and can be mathematically treated as a particle.

1.2 Category Theory

Anyons, the necessary quasiparticles for topological quantum computation (TQC), exist in an
abstract structure called a ribbon fusion category (RFC). We follow the notes from [Awo10].

Definition 1.2.1. A category C contains a collection of objects Ob(C) (or just C0) and mor-
phisms (arrows) hom(C) which have the following properties

• For each morphism f , it has the following data:

dom(f) cod(f)

where for f : A→ B, A,B ∈ Ob(C), A = dom(f) and B = cod(f).

• Let f, g be morphisms in C such that f : A → B and g : B → C. Define a composition
operation ◦ : hom(C)× hom(C) → hom(C) such that (g ◦ f) : A→ C

A B

C

f

g
g ◦ f

• There is a morphism called the identity morphism 1A for each A ∈ Ob(C) such that
1A : A→ A.

• The composition operator is associative. That is, for any f, g, h morphisms in C, where
f : A→ B, g : B → C, h : C → D and A,B,C,D are objects ,

(h ◦ g) ◦ f = h ◦ (g ◦ f) (1.2.1)
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• The identity morphism behaves as a unit, that is, for a morphism f : A→ B,

f ◦ 1A = f = 1B ◦ f (1.2.2)

As intuition, some examples would be the collection of groups as objects and homomor-
phisms as our morphisms, the collection of topological spaces and continuous maps, and the
collection of rings and ring homomorphisms.

1.2.1 Functors and Morphisms

One can then consider a category where our objects are categories. The morphisms of this
category are called functors.

Someone interested in confusing people may ask: “Is there a way to go from one category
to another, preserving the morphisms?” There is!

Definition 1.2.2. Let C,D be categories. Then we define F : C → D so objects in C maps to
objects in D and morphisms in C map to morphisms to D such that:

• F (f : A→ B) = F (f) : FA→ FB

• F (1A) = 1A

• F (g ◦ f) = F (g) ◦ F (f)

Such an F is called a functor.

These levels of abstraction can continue. For instance, we define the following.

Definition 1.2.3. Let C,D, be categories and F,G : C → D be functors. We define a natural
transformation ϑ : F → G as a family of arrows in D

(ϑC : FC → GC)C∈C0 (1.2.3)

such that, for f : C → C ′ a morphism in C, we have that ϑC′ ◦F (f) = G(f) ◦ ϑC and the
following diagram commutes:

FC FC ′

GC GC ′

Ff

ϑC ϑC′

Gf
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Definition 1.2.4. Let F,G be functors. A natural isomorphism is a natural transformation
ϑ : F → G that is an isomorphism in the functor category F (C,D).

One can use the following lemma to characterise the notion of a natural isomorphism.

Lemma 1.2.5. A natural transformation ϑ : F → G is a natural isomorphism if and only if,
for all C ∈ C0, ϑC : FC → GC is an isomorphism.

The following proof was left as an exercise.

Proof. Let F,G be functors and ϑ : F → G be a natural transformation.

(⇒): Let ϑ : F → G be a natural isomorphism. Then there is a φ : G → F such that
ϑ−1 = φ. Then since φ is a family of natural transformations (φC : FC → GC)C∈C0 , we have
that for any C ∈ C0, φC = ϑ−1

C : F → G. So we have that ϑC ◦ φC = 1GC , φC ◦ ϑC = 1FC
and since C ∈ C0 is arbitrary, this holds for all C ∈ C0.

(⇐) : Fix C ∈ C0, let ϑC : FC → GC be an isomorphism. Then there, is a two-sided
morphism φC : GC → FC such that φC = ϑ−1

C . We want to show now that φC is a natural
transformation. Since ϑ is natural, we have that ϑC′ ◦ F (f) = G(f) ◦ ϑC for any C ∈ C0. By
pre-composing and post-composing accordingly, we have F (f) ◦ϑ−1

C = ϑ−1
C′ ◦G(f). Observe

that ϑ−1
C = φC . So we are left with F (f) ◦φC = φC′ ◦G(f) and the collection of all such φC

is a natural transformation φ. By construction, we have that φ ◦ ϑ = 1F and ϑ ◦ φ = 1G; thus
φ is a two-sided inverse of ϑ, i.e., ϑ is a natural isomorphism.

1.2.2 Types of categories

Definition 1.2.6. A fusion category C is a rigid semisimple C-linear monoidal category with
finitely many isomorphism classes of simple objects such that the monoidal unit is simple.

That is, a fusion category is a category where the following properties hold:

Definition 1.2.7. A monoidal/tensor category is a category equipped with

• the functor, often called the tensor product,

⊗ : C × C → C (1.2.4)

• the unit object 1 ∈ C,

• the associator a, which is a natural isomorphism such that, for all x, y, z ∈ C0,

ax,y,z : ((x⊗ y)⊗ z)
∼=−→ (x⊗ (y ⊗ z)) (1.2.5)
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• the left unitor λ, which is a natural isomorphism such that, for all x ∈ C0,

λx : 1⊗ x
∼=−→ x (1.2.6)

• the right unitor ρ, which is a natural isomorphism such that, for all x ∈ C0,

ρx : x⊗ 1
∼=−→ x (1.2.7)

Which allow the following diagrams to commute

• the triangle identity

(x⊗ 1)⊗ y x⊗ (1⊗ y)

x⊗ y

ax,1,y

ρx ⊗ 1y 1x ⊗ λy

• the pentagon identity

(w ⊗ x)⊗ (y ⊗ z)

w ⊗ (x⊗ (y ⊗ z))

w ⊗ ((x⊗ y)⊗ z)(w ⊗ (x⊗ y))⊗ z

((w ⊗ x)⊗ y)⊗ z

a
w,x,y⊗z

1w ⊗ ax,y,z

aw,x⊗y,z

aw,x,y ⊗ 1z

aw
⊗x
,y
,z

Definition 1.2.8. A right rigid monoidal category C is one where every object x in the category
has a right dual x∗ and is equipped with the natural isomorphisms evx : x ⊗ x∗ → 1 and
coevx : 1 → x∗ ⊗ x such that

(evx ⊗ 1x)⊗ (1x ⊗ coevx) = 1x (1x ⊗ coevx∗)⊗ (evx∗ ⊗ 1x) = 1x∗ (1.2.8)
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The definition of a left rigid monoidal category follows mutatis mutandis.

Definition 1.2.9. A monoidal category that is left and right rigid is called rigid.

Definition 1.2.10. A semisimple C-linear category is a category in which all objects in the
category can be expressed as a direct sum of simple objects, given that the direct sum exists
- this is semisimple property. For all objects x, y ∈ C0, the hom-set between two objects,
Hom(x, y) ∼= Cd - where d is the number of morphisms between two objects - this is C-
linearity.

Remark 1.2.11. Let C be a category. Then an object x ∈ C0 is simple, if and only if,
Hom(x, x) ∼= C.

The developments to ribbon fusion categories, pivotal categories and the like, all the way
to a unitary modular tensor category, will be done in Chapter 4 to marry the physics and the
mathematics together to motivate the entire process.



Chapter 2

Geometrical and Topological Phases

2.1 Phase factors from Gauge Fields

The Aharonov-Bohm effect (ABE) describes a phase shift when the charged particle circulates
a magnetic flux tube, inaccessible to the particle.

2.1.1 Charged particle in a magnetic field

Let A : R3 → R3 be the magnetic vector potential and define the magnetic field B as

B = ∇× A. (2.1.1)

In fact, we can introduce an ω : R3 → R such that

B = ∇× (A +∇ω) = ∇× A. (2.1.2)

This holds due to the identity ∇ × ∇ω = 0. The fact that B is invariant by our choice of
ω is called a gauge invariance, and A is called a gauge field. On that note, if there are two
magnetic vector potentials A and A′ that both yield the same magnetic field upon being curled
upon, then they are gauge equivalent.

Consider a particle with charge q at position r = (x, y, z) moving along a looping trajectory
in a magnetic field. The non-relativistic Hamiltonian operator is given by:

HA = − ℏ
2m

(
∇− i

q

cℏ
A
)2
. (2.1.3)

This is the minimal coupling prescription; a Hamiltonian used in the context of electromag-
netism. Suppose we have an eigenbasis |ψ(r)⟩ from our Hamiltonian operator when A = 0.

13
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By perturbing the system with a magnetic vector potential, one can show that

|ψA⟩ = exp

i q
cℏ

r∫
r0

A(r′) · dr′
 |ψ⟩, (2.1.4)

where r0 is an arbitrary reference point and the integral is evaluated along a path from r0 to
r. We take |ψ⟩ to be in the ground state. As the particle moves, it obtains a momentum, thus
it acquires kinetic energy. If it moves fast enough, it acquires too much energy and goes into
an excited state. Hence, we assume that the particle moves adiabatically, i.e., slow enough so
as to stay in the ground state. If the particle moves in a loop C instead, then the wavefunction
obtains a phase

φ =
q

cℏ

∮
C

A · dr. (2.1.5)

Invoking Stokes’ theorem, the phase can be written as

φ =
q

cℏ

∫∫
S(C)

(∇× A) · ds =
q

cℏ

∫∫
S(C)

B · ds︸ ︷︷ ︸
ϕ, Magnetic flux

=
q

cℏ
ϕ. (2.1.6)

Where dr is an elementary segment of the loop C, S(C) is a surface enclosed by C and ds is
a surface element of S(C) and ϕ is the magnetic flux of the magnetic field B going through
S(C). In natural units, ℏ = c = 1, one has

φ = qϕ. (2.1.7)

Observe that φ is gauge-invariant under A. Also, observe that ϕ depends on the geometry of
our loop C, but is invariant under deformations of C that keep the ϕ fixed.

2.1.2 Aharonov-Bohm Effect

Consider the same system as in section 2.1.1. Restrict the particle with charge q on an infinites-
imally thin plane (x, y, 0) ∈ R3. The magnetic field is confined to an infinitely long, infinitely
thin and impenetrable tube that is orthogonal to the plane. Then a vector potential that matches
is:

A(r) =
(
−yΦ
2πr2

,
xΦ

2πr2
, 0

)
(2.1.8)

Using Equation 2.1.2, one yields

B(r) = ∇× A(r) = ẑΦδ(r) (2.1.9)
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x

y

z

C

Figure 2.1: Visual aid for the setup of the ABE. The blue arrows indicate the magnetic field and
the red line pointing upwards indicates the magnetic field. The black dot being the particle, is
shown to traverse around the magnetic field. The magnetic field going through the loop forms
a flux ϕ.

Where |r| = r. Consequently, the magnetic field is null everywhere except r = 0 and the
vector potential is parallel to the plane. Since this is a spatial restriction to the scenario before,
all the equations prior still hold. Since the magnetic field is confined in a tube, we refer to the
magnetic field by its flux ϕ. Every circulation the particle of charge q undertakes, a integer
multiple of a phase factor φ = qϕ is accumulated. That is, following from equations 2.1.4 and
2.1.7,

|ψA⟩ = einqϕ|ψ⟩, n ∈ N. (2.1.10)

Observe that the overall phase factor is dependent only on the winding number, charge and
flux. That is, the shape of the path is irrelevant.

The main idea with the ABE is that potentials, in quantum mechanics and quantum field
theory, are more fundamental than the fields themselves. The charged particle, as it travels in
its loop, interacts with the vector potential in a region with no magnetic field. As loops around
the flux are equivalent up to homotopy, Peshkin and Tonomura observed the ABE by making
a loop large enough to observe in a macroscopic world, thus proving this phenomenon in 1989
[Ton89].

2.1.3 Anyons and the Aharonov-Bohm Effect

Definition 2.1.1. An anyon is a quasiparticle that is confined to a plane characterised by the
duple (q, ϕ), where ϕ is the flux and q is the charge such that

|ψ1ψ2⟩ = e2iφ|ψ2ψ1⟩. (2.1.11)



16 CHAPTER 2. GEOMETRICAL AND TOPOLOGICAL PHASES

Here, we assume φ = qϕ is non-trivial, i.e., φ ̸= 0, π.

Suppose we have two anyons of identical charge and flux. One needs only to consider the
fundamental group of the punctured disk, i.e., Z and this can faithfully describe the statistics
of the particles. We discuss this more in Chapter 4.

As a thought experiment, consider a configuration in which two anyons are next to each
other. Then if one anyon, say anyon a, circles the other anyon b, then a obtains a phase factor.
But since the flux of a circled the charge of b, then the system overall obtains 2 phase factors.

By using Maxwell’s equations and Coulomb’s law, one can use the charges of the anyons
to show that the angular momentum from the electric field is JE = qΦ

2πc ϕ̂. The total angular
momentum is then J = nℏϕ̂+ JE — the left term is the canonical angular momentum. If there
is no contribution from the canonical angular momentum, i.e., we set n = 0, then since spin is
intrinsic then it must be that the spin of the particle is

s =
qΦ

2π
. (2.1.12)

Here, s is the effective, non-trivial spin — holds only when either q or Φ is fractionalized.

2.2 Geometric phases and Holonomies

In 1984, Michael Berry showed that there are physical cases where gauge transformations can-
not remove non-dynamic phase factors - implying that a physical intuition is required for such
phase factors.

2.2.1 Spin-1/2 Particles in a Magnetic Field

Consider a magnetic field B(θ, ϕ), with direction parameterised by the longitudinal and az-
imuthal angles ϕ and θ, and with a constant non-zero magnitude B. We place a particle of
spin 1/2 at the origin, orienting the spin vector to be parallel to the magnetic field. Note,
the magnetic field is here for the sole purpose of controlling the orientation of the spin. The
Hamiltonian for such a particle interacting with the magnetic field is

H = −σ ·B(θ, ϕ) = −σ · n̂(θ, ϕ)B (2.2.1)

where n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) gives the direction of the magnetic field, and σ are
the usual Pauli spin matrices. Another way to write the Hamiltonian is

H = −U(θ, ϕ)σ2U†(θ, ϕ)B = U(θ, ϕ)H0U(θ, ϕ) (2.2.2)
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where H0 = −σ2B and U ∈ SU(2) such that

U(θ, ϕ) =
(

cos θ2 −e−iϕ sin θ
2

eiϕ sin θ
2 cos θ2

)
. (2.2.3)

The eigenstates and eigenvalues E↑ and E↓, for some orientation of B(θ, ϕ), are

|↑ (θ, ϕ)⟩ = U(θ, ϕ)|↑⟩, E↑ = B (2.2.4)

|↓ (θ, ϕ)⟩ = U(θ, ϕ)|↓⟩, E↓ = −B (2.2.5)

Prepare a system with an initial direction of the magnetic field at some (θ, ϕ), and a particle
in its up state |↑ (θ0, ϕ0)⟩. When we change the orientation magnetic field slow enough, the
system will adapt to this change as |↑ (θ, ϕ)⟩. This is true provided adiabatic movement. This
was given by Born and Fock in 1928 [Max28]. When the magnetic field returns to its original
direction, the Hamiltonian is as what it was before. Using the Schrödinger equation and given
that the Hamiltonian is identical when the particle returns to its initial state, up to a phase factor,
one has

eiϕ = e
∮
C A·dreiE↑T (2.2.6)

With
Aµ = ⟨↑|U†(θ, ϕ)

∂

∂λµ
U(θ, ϕ)|↑⟩ (2.2.7)

where A is the Berry connection, playing a similar role to the magnetic vector potential. In-
dexed by µ = 1, 2, λµ = {θ, ϕ}, and C is a cyclic path with T as the total time evolution.

The first term, the geometrical phase, regards the path spanned in the parametric space.
More importantly, it is independent on H0. The second term depends on E↑. If we add a con-
stant to the Hamiltonian, we can omit this term.

We are now in a position to find the geometric phase. We have it that

Aθ = ⟨↑|U†(θ, ϕ)
∂

∂θ
U(θ, ϕ)|↑⟩ = 0 (2.2.8)

and
⟨↑|U†(θ, ϕ)

∂

∂ϕ
U(θ, ϕ)|↑⟩ = i

2
(1− cos θ) (2.2.9)

For the down state, the derivation follows mutatis mutandis but with an additional factor of −1.
The field strength is given by the curvature of the vector potential

Fθϕ = ∂θAϕ − ∂ϕAθ =
i

2
sin θ (2.2.10)
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Using Stokes’ Theorem, it yields

ϕg = −i
∮

A · dr = −i
∫ ∫

S(C)
F · ds =

1

2

∫ ∫
S(C)

dθdϕ sin θ =
1

2
Ω(C) (2.2.11)

where Ω(C) is the solid angle of the loop spanned on the unit sphere, by the normal vector.
Let A be the Berry connection and |Ψ⟩ be gauge transformed by:

A(θ, ϕ) → A(θ, ϕ)−∇ω(θ, ϕ), (2.2.12)

|Ψ(θ, ϕ)⟩ → eiω(θ,ϕ)|Ψ(θ, ϕ)⟩ (2.2.13)

where ω(θ, ϕ) is a scalar function. The Berry phase ϕ = ϕg is gauge invariant. If the vector
potential has no force, i.e., F = 0 for all ϕ ∈ [0, 2π) and θ ∈ [0, π), then we say that the
potential is a pure gauge.

Consider the geometry of the space of states |Ψ⟩ parameterised by λµ. Take B, the mag-
nitude of the magnetic field, as the radius of the sphere on which we define Ω. If B = 0, then
the up and down states are degenerate. We require such points to create non-trivial curvature
in the Hilbert space.

Similarly, but not completely identical, the process to achieve the geometrical phase is
equivalent to that mentioned with the ABE, yielding the phase factor. However, the same topo-
logical properties hold. The distinction between the two phases is the choice of coordinates. In
the ABE, the coordinates are Cartesian. Here, they are spherical, with the property that one can
create sufficiently complex Hamiltonians so that the coordinates of a quasiparticle form this
parametric space.

2.2.2 Non-Abelian Geometric Phases

Previously, for our minimal coupling prescription Hamiltonian, our solutions were a product
of a complex phase on the eigenbasis of the unperturbed system. In particular, if we keep
making the particle loop around, we can just keep multiplying by the exponential term. Since
it is a complex number, it commutes - the order in which the particle traverses is irrelevant.
This means our phase is abelian. Now, we introduce the notion of a Berry phase to introduce
the non-Abelian phase. We can also use operators which correspond to the system’s evolution
given that it is an adiabatic and cyclic process.

2.2.2.1 Holonomy

Definition 2.2.1. A unitary evolution, manifested mathematically as a a time-dependent unitary
operator U(t), is isospectral if the spectrum of U(t) is constant.
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Consider a parametric space M = {λµ : µ = 1, . . . , d} with λµ being the parameters, and
the D-dimensional Hamiltonian

H(λ(t)) = U(λ(t))H0U†(λ(t)). (2.2.14)

Here U(λ(t)) ∈ U(D) is a time-dependent unitary rotation. The parameters λµ can be con-
trolled externally as they are classical parameters. We assume that the ground state of H0

consists of an n-dimensional degenerate subspace, H0 = {|Ψα⟩ : α = 1, . . . , n}, with E0 = 0,
and ∆E = E1 separating the subspace from the excited states. We also ensure that the veloci-
ties of the parameters abide by the adiabatic requirement.

Observe that as the particle travels along C in M the parametric space, it is equivalent to a
unitary matrix ΓA(C) acting on the initial state. That is,

|Ψ(C)⟩ = ΓA(C)|Ψ(0)⟩, (2.2.15)

where |Ψ(C)⟩, |Ψ(0)⟩ ∈ H0, ΓA(C) is the non-abelian geometric phase. This is also known
as a holonomy, defined as

ΓA(C) = P exp

(∮
C

A · dλ
)

(2.2.16)

where P is a path ordering. The path ordering is essential in quantum field theory since our
parameters are dependent on time, such that

P exp

(∮
C

A · dλ
)

=

∞∑
n=0

1

n!

∫
· · ·
∫

︸ ︷︷ ︸
n times

dλ1 . . . dλnA(λ(t1)) . . . A(λ(tn)) (2.2.17)

The time ordering symbol rearranges the multiplication order according to the time. Notice
there is no i as it is absorbed into A. So A is an anti-Hermitian operator defined as

(Aµ)
αβ = ⟨Ψα| U†(λ)

∂

∂λµ
U(λ) |Ψβ⟩ (2.2.18)

This is the non-abelian generalisation of the Berry phase. Note that if the matrix is 1× 1, then
we have the Berry phase given prior. This was discovered by Wilczek and Zee in 1984 [WZ84]
and the derivation can be found in [Pac12]

2.2.3 Properties of geometric evolutions

Since the geometric evolutions resemble interactions with gauge fields, they should (and they
do) have gauge-invariants. These evolutions are parametrised by loops C; C thus inherits holo-
nomic properties. More so, the structure of the parametric space M determines the form of the
connection A.
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2.2.3.1 Gauge Transformations

Consider a Hamiltonian with isospectral transformations as in Equation 2.2.2:

H(λ) = U(λ)H0U†(λ) (2.2.19)

and, for g(λ) ∈ U(n) a gauge transformation, the unitary transformation is

U(λ) → Ug(λ) = g−1(λ)U(λ)g(λ) (2.2.20)

leaves the Hamiltonian H(λ) invariant. For non-trivial transformations, this only happens if
g(λ) is acting exclusively on H0, the degenerate ground state-space of the Hamiltonian. On
this subspace, the transformation should act trivially. I.e., for all λ ∈ M we have

g−1(λ)H0g(λ) = H0. (2.2.21)

In the perspective of U(λ), the action of g(λ) is simply the reparametrisation of the λ’s. Thus
one yields the following gauge transformations due to their commutativity:

A → Ag = g−1Ag + g−1dg. (2.2.22)

For the holonomy,
ΓA → ΓAg = g−1ΓAg. (2.2.23)

Thus, in these new coordinates due to transformation,

|Ψ⟩ → |Ψg⟩ = g−1|Ψ⟩ (2.2.24)

Implying that the action of holonomic evolution on a state has a coordinate-free formalisation.

2.2.3.2 Loop parametrisation

Let λ0 be a point in M. Then Lλ0 = L is the space of all loops fixed at λ0. That is, for any
C ∈ L, C(0) = C(T ) = λ0.

Proposition 2.2.2. L fixed at λ0 ∈ M is a group with the binary operation defined as:

(C2 · C1)(t) = θ

(
1

2
− t

T

)
C1(2t) + θ

(
t

T
− 1

2

)
C2(2t− T ) (2.2.25)

for any C1, C2 ∈ L.
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Heuristically, we have that closure follows from the fact that the step functions make it
so each loop is traversed entirely, and the other loop has no contribution when one loop is at
focus. The identity loop is C0(t) = λ0 for all t. The inverse of a loop C ∈ L is the same loop,
but traversed oppositely. That is, C−1(t) = C(T − t). Associativity in this setting asks effec-
tively,”does it matter if we post-concatenate or pre-concatenate with the product C1 ·C2 ·C3?”
In which case, it does not.

Let ΓA(C) = P exp
(∮
C A · dλ

)
. Then consider C1, C2 ∈ L. Then

ΓA(C1 · C2) = P exp

(∮
C1·C2

A · dλ
)

= P exp

(∮
C1

A · dλ+

∮
C2

A · dλ
)

= P exp

(∮
C1

A · dλ
)
·P exp

(∮
C2

A · dλ
)

= ΓA(C1)ΓA(C2)

So ΓA(C) is a group homomorphism. Moreover, ΓA(C0) = 1, ΓA(C
−1) = Γ−1

A (C) and for
f : [0, T ] → [0, T ] monotone, we have ΓA(C ◦ f) = ΓA(C)

2.2.3.3 Holonomies as Unitary Matrices

Definition 2.2.3. From the path dependence of the holonomies, we have it that Hol(A) =
ΓA(L) ≤ U(n). This subgroup is called the holonomy group of the connection A. When
Hol(A) = U(n), then A is an irreducible connection.

To consolidate whether this is the case, consider the curvature, ie., the effective magnetic
field F from the connection A with

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (2.2.26)

If all Fµν can span the whole U(n) algebra, then we say A is irreducible [Nak03]. This ques-
tion of irreducibility is correlated with the universality of quantum computers. If a quantum
computer uses holonomies to perform computations, we need to know if we can build any
algorithm by simply combining different holonomic ”paths” (or sequences of them).

Definition 2.2.4. For a given model of quantum computing. If, by some change in parameters
unique to the model, it is possible to create any quantum gate, then we say that the model is
universal.

This is not to be confused with a universal set of gates.
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We now provide a few properties. Given that the holonomies act on the degenerate space
of ground states, regarding time evolution under adiabatic processes, if certain states are not
involved in the system, then the holonomy ΓA(L) will act trivially on it. I.e., if U ∈ U(n) acts
trivially on an element of the degenerate subspace, then so will the correlated holonomy.

Suppose that we remove the adiabatic requirement. Then the connection A is not projected
to any subspace of states, from the Hamiltonian. Therefore, it is a pure gauge that gives the
trivial holonomy group. Only when A is non-trivially projected to a subspace of states, give
rise to a non-trivial geometric phase.

2.2.4 Anyons and Geometric Phases

In this chapter, we introduced the ABE, giving a mathematical foundation to understand the
abelian phase. We can generalise our understanding of the phase with the Berry phase to intro-
duce the non-Abelian phase. These notions of phase are well-founded in TQC as braiding. In
this setting, however, the obtained holonomy depends on the path the particle traverses. One
can, in fact, form a model of quantum computing using holonomies. By changing the loop,
we obtain different holonomies, i.e., we obtain different unitary matrices. This model we call
universal. That is, we need only change or alter the loops that the anyon spans. These loops
are unique parameters to the model, yielding desired gates and algorithms.

Regarding adiabaticity, the idea is that for a fixed Hamiltonian, we can make the anyon
travel along the ground state at a slow enough rate, keeping our anyon in the degenerate ground
state. Instead of making the anyon travel in a fixed Hamiltonian, we slowly change the Hamil-
tonian by slowly changing a certain parameter (say λ ∈ [0, 1]). In this new parameterised
Hamiltonian H(λ), we define a degenerate ground state space for all λ — this is our compu-
tational space. In fact, by constructing a parameterised Hamiltonian with such a ground space,
we can set the initial state as an eigenstate of the initial Hamiltonian and our solution to be an
eigenstate of the final Hamiltonian. This model of quantum computing is in fact, universal, as
we shall see in Chapter 3.

What is captured here that is carried over in TQC is the notion of our anyons braiding each
other to obtain a phase. Instead of the phase being dependent on (say) the path, as in the Berry
phase, the phase is entirely intrinsic to what type of anyon we are dealing with. As with the
abelian phase, it is path independent, but with non-abelian phases. Furthermore, a method of
fault-tolerant quantum computing is the energy gap. This gap must be non-zero and we assure
that we do not cross this gap by moving our anyons along the path adiabatically. We also want
an efficient mechanism for anyonic statistics that can be physically interpreted in topological
systems.



Chapter 3

Quantum Computation

Modern computational models are based on the universal (classical) Turing machine; concep-
tualised by Alan Turing in 1937. Such a machine can simulate any other machine capable of
carrying out an algorithmic process. The idea of a quantum Turing machine was proposed by
David Deutsch (1985). Around the same time, Feynman — wanting to simulate quantum sys-
tems using classical Turing machines — proposed that such a machine would be more effective
than the classical kind.

Instead of the classical bit, we have a qubit; a linear superposition of |1⟩ and |0⟩. Quantum
mechanics also allows superpositions of multiple qubits and entangled states. Such properties
dramatically increases the dimension of the encoding space.

Evolution/manipulation of qubits is done by quantum gates. These gates are unitary oper-
ations, performing any desired state transformation.

The problem is physically making them. One needs to be very accurate when initializing
states, acting quantum gates and obtaining a final state. Errors can come in from inaccuracies
in performing such actions, or environmental perturbations. Shor, 1995, and Steane, 1996,
theoretically proposed a quantum error correction model - correcting errors to perform mean-
ingful quantum computations. But this model is still technologically unrealizable as of this
date. Hence, the motivation to propose a model for quantum error correction.

Some models include those that are founded on adiabatic transitions [Far+01], geometric
phases [ZR99], and main model of concern for this paper, topological evolutions [Kit97].

In this chapter, we wil follow from [Pac12].

23
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3.1 Qubits and their manipulations

3.1.1 Quantum Bits

Definition 3.1.1. A qubit is the Hilbert space H = spanC(|0⟩, |1⟩) and a qubit state is a
wavefunction |ϕ⟩ ∈ H. A qudit is the Hilbert space Hd = spanC(|0⟩, |1⟩, . . . , |d⟩) and a qudit
state is a normalized wavefunction in said space.

Qubits are written as a linear superposition of 0 and 1 by

|ψ⟩ = a0|0⟩+ a1|1⟩ (3.1.1)

where |a0|2+ |a1|2 = 1. One can compose qubits together to yield the following wavefunction:

|ψ⟩ =
∑

i1,...,in∈Zn
2

ai1,...,in |i1, . . . , in⟩. (3.1.2)

Here, |i1, . . . , in⟩ = |i1⟩ ⊗ · · · ⊗ |in⟩ with complex coefficients.

Corollary 3.1.2. A tensor product of qubits has 2n basis vectors. So for each new qubit, the
dimension grows exponentially. Classical computers have dimension 2n. Making precise the
fact that quantum computers operate at exponential time as opposed to classical computers in
polynomial time.

An immediate consequence of this is that tensoring is the emergence of entangled qubit
states. An example is the following maximally entangled qubit state:

|ψ⟩ = 1√
2
(|00⟩+ |11⟩) (3.1.3)

3.1.2 Decoherence and mixed states

For motivation: when the quantum state of a system is not exactly known, then classical prob-
abilities mix with the amplitudes of the quantum states. Quantum decoherence is the effect
of the quantum system interacting with the surroundings, resulting in the system leaking its
quantum properties.

If we omit the environmental contributions in the quantum system, we have a system sub-
ject to unitary evolutions. If we do take such contributions into account, then the evolutions of
the system are non-unitary. Such systems are described by so-called density matrices.



3.1. QUBITS AND THEIR MANIPULATIONS 25

Consider an orthonormal basis of states {|ψi⟩} of some system. Then we have the density
matrix given by

ρ =
∑
i,j

pij |ψi⟩⟨ψj | (3.1.4)

Where probability that the state |ψi⟩ occurs is pii. Implying that
∑
pii = 1, giving tr(ρ) = 1.

The expectation value of an operator O with respect to ρ is

⟨O⟩ = tr(ρO) =
∑
i

pi⟨ψi|O|ψi⟩ (3.1.5)

These matrices give the most general description of a quantum system. For a system in some
pure state |ψ⟩,

ρ = |ψ⟩⟨ψ| (3.1.6)

On the experimental aspect of quantum computing, the most common formalism uses den-
sity matrices. This is due to the natural interaction of the qubits with the immediate surround-
ings and environment. This is a major contributor to error.

Analogous to 1.1.3, if the density matrix cannot be written like (3.1.6), then we say the
system is in a mixed state.

Example 3.1.3. Recall that a qubit is a Hilbert space over C spanned by |0⟩ and |1⟩. Then
take the pure state

|ψ⟩ = 1√
2
(|0⟩+ eiθ|1⟩)

So for θ ∈ [0, 2π), the density matrix is

ρ =
1

2

(
1 e−iθ

eiθ 1

)
As the system evolves, the state ρ will evolve and it will interact with the immediate surround-
ings. Then the phase θ is perturbed uniformly over the interval [0, 2π). The measurement that
one observes is the expected value. But the average of a collection of points that lie on the
circle is 0. So we yield

ρ =
1

2

(
1 0
0 1

)
. Observe that this is not a pure state. Suppose |ψ⟩ = A|0⟩ + B|1⟩, A,B ∈ C. Then the off
diagonals are A†B and B†A. If the expected value was 0, then it implies that A or B is zero.
For our chosen pure state, this is clearly not he case. In fact, this means that the density matrix
no longer corresponds to a wavefunction. Rather, it reflects the classical scenario in which
there is a 1/2 chance of either measuring |0⟩ or |1⟩.
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Remark 3.1.4. If the computational state becomes mixed due to the interactions with the en-
vironment (or from lack of knowledge about the control procedure thereof) then we will yield
erroneous results in our quantum computations.

3.1.3 Quantum Gates and Projectors

Quantum gates in general are 2× 2 unitary matrices.

Example 3.1.5. Examples of quantum gates are the three Pauli spin matrices. Observe that

the matrix σx =

(
0 1
1 0

)
is the classical NOT gate, so |0⟩ σx

−→ |1⟩ and |1⟩ σx

−→ |0⟩

Example 3.1.6. (Hadamard Gate) A more quantum mechanically relevant gate is the Hadamard
gate

H =
1√
2

(
1 1
1 −1

)
(3.1.7)

, where

|0⟩ H−→ 1√
2
(|0⟩+ |1⟩) |1⟩ H−→ 1√

2
(|0⟩ − |1⟩)

If we want to create entanglement between two qubits, we can introduce the following col-
lection of gates denoted with CU . Such gates treat one qubit as a controller, and the other the
target. Where if we act a gate from CU on |0⟩, then nothing happens and if it acts on |1⟩, a
unitary transformation is acted upon the state. There are known as control gates.

Let H be spanned by {|00⟩, |01⟩, |10⟩, |11⟩} over C. Control gates take the form diag(12, U),
where U ∈ U(2).

Example 3.1.7. (controlled-NOT gate, (CNOT)) Take U = σx, such that

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.1.8)

Example 3.1.8. (controlled-phase gate (CP)) Take U = diag(1,−1), such that

CNOT =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (3.1.9)
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To remark, CU gates are unitary. Also, due to the “controlled” nature of the gates, one can
generate entangled states.

Example 3.1.9. Let |ψ⟩ = 1√
2
(|0⟩+ |1⟩)⊗ |0⟩ = 1√

2
(|00⟩+ |10⟩). Then

CNOT|ψ⟩ = 1√
2
(|00⟩+ |11⟩). (3.1.10)

Observe that this is a maximally entangled state of two qubits.

Another useful gate from classical machines is the SWAP gate such that |ij⟩ SWAP−−−→ |ji⟩.

We can also have multi-qubit gates with more than one target and/or control qubit. When
we say we can realise a set of gates, it means that we can apply them to any qubits we want -
in the system.

Besides unitary operators, we can also have projectors. This is a set of operators {Pi} such
that

P 2
i = Pi and PiPj = 0, i ̸= j. (3.1.11)

These operators give back the component attached to each state. They are used as mathematical
tools for measuring qubits.

Example 3.1.10. Consider the following operator

P0 = |0⟩⟨0| =
(
1 0
0 0

)
. (3.1.12)

For wavefunctions of the form |ψ⟩ = a0|0⟩ + a1|1⟩, one yields |a0|2 = tr(|ψ⟩⟨ψ|P0). For
P1 = |1⟩⟨1| then, we have P1 = 12 − P0.

Example 3.1.11. For a projection across a more general direction, we have P = |ψ⟩⟨ψ| with
|ψ⟩ = cos θ|0⟩+ eiθ sin θ|1⟩. The identity operator is as follows

1 =
N∑
n=1

|ψn⟩⟨ψn|, (3.1.13)

where {|ψn⟩, n ∈ N≤N} is a complete orthonormal set of basis states.

Example 3.1.12. Let P = |0⟩⟨0|+|1⟩⟨1| and |ψ⟩ = a0|0⟩+a1|1⟩+a2|2⟩, |a1|2+|a2|2+|a3|2 =
1, then rank(P ) = 2 such that

P |ψ⟩ = a0|0⟩+ a1|1⟩√
|a1|2 + |a2|2
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Example 3.1.13. Let P = |ψ⟩⟨ψ| with wavefunction |ψ⟩ = |00⟩+|11⟩√
2

. Then any two-qubit state
is projected onto this maximally entangled state.

Another application for using projector operators is to mathematically define Hamiltonians
with a very specific property(s).

Example 3.1.14. Let |ψ0⟩ be a ground state for some Hamiltonian H. Suppose we know a set
of Hermitian projectors {Pi} for i ∈ N≤k. These projectors project onto subspaces which are
not orthogonal to each other. If they all share a common state, namely the ground-state |ψ0⟩
such that Pi|ψ0⟩ = |ψ0⟩ for all i, then the Hamiltonian takes the form

H = −
k∑
i=1

(1− Pi), (3.1.14)

where the |ψ0⟩ is the ground state with null-energy as its eigenvalue.

3.2 Quantum Circuit Model

We present the overarching model of quantum computing. It is the main goal of one who for-
mulates a model of quantum computing to show its equivalence to this model.

In classical computation, information is represented with either a 0 or a 1 called bits. A
gate is just a function f : Z2 → Z2. One can take multiple bits into consideration and gener-
alize to functions of the form f : Zn2 → Zm2 . A composition of such gates is referred to as a
circuit and the act of giving an input and yielding an output is called a computation.

We can alter this idea to that of quantum computers. First we have qubits being superpo-
sitions of |0⟩ and |1⟩ i.e., qubit states. Then we have unitary matrices acting on our qubits,
these are the quantum gates. Then a product of quantum gates leads to a quantum circuit,
and the actual act of giving and receiving a qubit state from our quantum circuit is a quantum
computation. The question however, is how does one physically realize this.

3.2.1 Algorithms and Quantum Universality

Definition 3.2.1. An algorithm in quantum computing is a methodical sequence of quantum
gates on a qubit state with the goal of solving a specific problem.

What one wants would be a finite set of unitary matrices such that any algorithm can be
built. For that matter, we first want that any quantum gate can be built given our finite set of
matrices. So we want a notion of universality. For n qubits, we define the following.
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Definition 3.2.2. A set of quantum gates {Ui}i∈I ⊂ U(2n) is called universal if it is able to
approximate any Ũ ∈ U(2n) by matrix multiplication within some error δ > 0, that is,

|Uik1Uik2 . . . Uikm − Ũ | < δ (3.2.1)

for some elements Uik1Uik2 . . . Uikm in the set.

In practice, it suffices to do analysis on SU(2n) as measured states in quantum computing
are identical up to a phase factor. The following theorem, corollary, and their respective proofs
are keys to proving universality for models of quantum computing.

Theorem 3.2.3. (Solovay-Kitaev) Let G be a finite set of elements in SU(2) such that ⟨G⟩ is
dense in SU(2). For any ε > 0, there is a c > 0 so that for any U ∈ SU(2), there is a product
of elements V ∈ H of length O(logc(1/ε)) such that ∥V − U∥ < ε.

Proof. Given in [Kit97].

Corollary 3.2.4. The Solovay-Kitaev theorem can be extended to G ⊂ SU(d).

Proof. Given in [BG21].

We provide some well-known algorithms in quantum computing, one of which is Shor’s
factoring algorithm. It allows one to determine the prime factors of any integer inO((log(N))3).
This was given in 1997 by Shor. This algorithm is especially important because most encryp-
tion methods rely heavily on prime factorisation such as RSA-encryption. As of now, there
exists no efficient classical algorithm capable of finding prime factors. [Sho97]. Another algo-
rithm is Grover’s searching algorithm. As opposed to the linear time dependence on classical
computers, Grover’s algorithm allows one to find the correct answer in O(

√
N) [Gro96].

3.2.2 Computational Complexity

To recap, there are two classes of problems with classical computers. Suppose we have a prob-
lem with some computational input size. If the problem can be solved in polynomial time, it
is considered a P problem. The other class is consists of problems that can be solved only
in exponential time. A larger class of problems are those whose solutions can be verified in
polynomial time, but do not necessarily have an algorithm that can solve them in polynomial
time. Such problems are called NP.

With the mathematical formulation of quantum computers, we have a new class of prob-
lems — those that are polynomially easy to solve with a quantum computer, BQP. However,
the non-emptiness of this class has been proven difficult to answer. To do so requires a quantum
computer, which is still under development. The relationship of BQP type problems with other
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classes has also proven to be difficult to establish. For instance, are NP problems also BQP
problems?

3.3 Other Computational Models

As we have seen, one can form an algorithm by implementing fixed unitary matrices repre-
senting time evolutions via fixed quantum gates in sequence, as given in the quantum circuit
model. Surprisingly, this is not the only way to form a quantum algorithm. This is due to the
exotic properties of quantum mechanics.

Some models are of importance to us due to their similarities and capabilities of intertwin-
ing with topological properties to form new computational methods. Some include adiabatic
quantum computation from Farhi et al. in 2001 [Far+01] and holonomic quantum computation
from Zanardi and Rasetti in 1999 [ZR99].

3.3.1 Adiabatic Quantum Computation

In this setting, we process algorithms using the adiabatic process. We take a Hamiltonian with
a non-degenerate ground state and some energy gap to the first excited state. We encode infor-
mation in the initial ground state and as time progresses for the Hamiltonian, the final ground
state yielded is the desired result from the algorithm.

The way to make this process adiabatic is through the rate at which we change the param-
eter to reach the final ground state. The rate of change of the state of the qubit with respect
to time corresponds to a kinetic energy, and this must be very small relative to the energy gap
to the first excited state. In this way, the initial states traverse to the final state entirely in the
ground state.

To be more precise, consider the initial and finial Hamiltonians Hi and Hf and define a
parametrised Hamiltonian H(λ) as follows:

H(λ) = (1− λ)Hi + λHf , (3.3.1)

where λ ∈ [0, 1] is monotonic in time, like λ = t/T . Hi is a simple and known so |ψi⟩ is
the initial state and Hf is formed such that |ψf ⟩ is the final state that is the desired result of
the algorithm. The requirement of adiabaticity is that the particle moves slowly enough to not
become excited. But if the Hamiltonian changes, then the energy gap changes as well. So
we require instead the Hamiltonian to transition slow enough such that the energy gap is kept
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relatively constant. One way of keeping this is to make T big.

An important remark is that the energy gap between the ground state of H and the first
excited state must always be non-zero for any λ ∈ [0, 1]. With our time-dependent state, we
require that |ψ(0)⟩ = |ψi⟩. Due to adiabaticity, for some large enough T , we have that |ψ(T )⟩
is close to |ψf ⟩ — our target state.

Example 3.3.1. Consider the following initial and final Hamiltonians, respectively

Hi = −σz ⊗ 1− 1⊗ σz with our ground state |ψi⟩ = |00⟩ (3.3.2)

Hf = −σz ⊗ σz − σx ⊗ σx with our ground state |ψf ⟩ =
1√
2
(|00⟩+ |11⟩) . (3.3.3)

Define then the parametrised Hamiltonian to be

H(λ(t)) := (1− λ)(−σz1 − σz2) + λ(−σz1σz2 − σx1σ
x
2 ). (3.3.4)

By increasing λ slowly from 0 to 1 relative to the smallest energy gap ∆E from H(λ), we
get |ψi⟩ into a maximally entangled |ψf ⟩. One can show that for all values of λ ∈ [0, 1], we
have that ∆E ̸= 0 as required.

Proof. We proceed like a usual eigenvalue and eigenvector problem. Hence

H = (1− λ)


−2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

+ λ


−1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 −1

 =


−2 + λ 0 0 −λ

0 λ −λ 0
0 −λ λ 0
−λ 0 0 2− 3λ


for λ ∈ [0, 1]. We have our eigenstates of H(λ) as(

2− 2λ+
√
5λ2 − 8λ+ 4

λ
, 0, 0, 1

)
,(

2− 2λ−
√
5λ2 − 8λ+ 4

λ
, 0, 0, 1

)
,

(0,−1, 1, 0),

(0, 1, 1, 0)

with respective eigenvalues −
√
5λ2 − 8λ+ 4−λ,

√
5λ2 − 8λ+ 4−λ, 2λ, 0. Observe that

the first eigenstate is the ground state (unnormalized). Normalizing, we have that |ψ(λ)⟩ =
f(λ)√

(f(λ))2+1
|00⟩+ 1√

(f(λ))2+1
|11⟩ - where f(λ) = 2−2λ+

√
5λ2−8λ+4
λ . When λ→ 0+, f(λ) →
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∞. Hence |ψ(λ → 0)⟩ = |00⟩ = |ψi⟩ as expected. We also have f(1) = 1 which gives
|ψ(1)⟩ = (|00⟩+ |11⟩)/

√
2 also as required.

Notice that the corresponding eigenvalue is bounded above by −1 and the other eigenvalues
are bounded below by 0. Hence there is always a non-zero energy gap for all λ ∈ [0, 1].

Instead of being measured in terms of the number of quantum gates used, the computational
complexity of an adiabatic quantum computation is measured in terms of the overall time of
the evolution T . This T is naturally dependent on how many qubits are used n.

Using algorithms such as Grover’s algorithm, Roland and Cerf showed that the energy gap
can decrease at some point in the transition [RC02]. For such moments, it is imperative that
the transition be slowed down to be sure that adiabaticity is preserved throughout.

This form of quantum computation is indeed equivalent to the circuit model [Aha+05]. That
is, algorithms that can be expressed in the circuit model can be realised in adiabatic quantum
computation. Known algorithms for quantum computers are transcribed into a Hamiltonian
like in 3.3.1.

When we come to discuss topological quantum computation (TQC), one may realise the
similarity whereby we construct our computational space with a constant energy gap, and the
quasiparticle’s coordinates give the control parameters λ of the Hamiltonian. In TQC, we
require that the anyons are evolved adiabatically so that they do not leave the degenerate ground
state.

3.3.2 Holonomic Quantum Computation

From chapter two, recall that we obtained unitary transformation from holonomies along loops
in the parametric space of some quantum system. The fundamental idea of holonomic quantum
computation (HQC) is then that we use these holonomies as our quantum gates.

Consider a quantum system governed by a parametrised Hamiltonian H(z), where z is
from our parametric space which we take to be C2. Quantum logic gates are given as non-
Abelian geometric phases which act on the degenerate ground state of H(z). For one-qubit
holonomic gates, we use a three-level system such that |α⟩, where α = 0, 1, 2, is subject to the
Hamiltonian

H(z) = U(z)H0U(z)† where we define H0 =

0 0 0
0 0 0
0 0 1

 (3.3.5)
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where U(z) ∈ U(2) is an arbitrary unitary matrix defined to be

U(z) = U1(z1)U2(z2), (3.3.6)

and for each α, we have Uα(zα) = exp(zα|α⟩⟨2| − zα|2⟩⟨α|). The non-trivial transformations
governed by H0 which are isospectral, are parametrized by the rotations of states between |0⟩,
|2⟩ and |0⟩, |1⟩. Here, α = 0, 1 and zα = θαe

iϕα . For some α = 0, 1, we look at the parameters
of zα which can be written as a duple (θα, ϕα). Let C be a loop in this parametric space. The
following holonomies are yielded:

ΓA(C) = P exp

(∮
C

A · dλ
)

where (Aµ)αβ = ⟨α| U†(λ)
∂

∂λµ
U(λ) |β⟩ (3.3.7)

Where P is the path-ordering symbol, α, β ∈ {0, 1} and λµ ∈ {θ1, θ2, ϕ1, ϕ2}. The con-
nection A is a vector, where the components are matrices. Since it is irreducible, the holonomy
ΓA(C) generates the whole group [Pac12].

The loop integral inside the exponent is of most importance here,∮
C
A · dλ =

∮
Aλµdλ

µ. (3.3.8)

In general, connection components do not commute, therefore one cannot simply evaluate
the exponential because of the path-ordering symbol P. However, one can consider specific
loops which bypass this issue.

First, we choose a loop C which lies on the plane (λ1, λ2). Then we choose the position of
the plane such that A · dλ = Aλ

2
dλ2. That is, Aλ

1
= 0. Therefore, the two components of A

commute, and hence we can drop the path-ordering symbol. This, however, does not mean that
the curvature Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] is null, and it is this that gives the non-trivial
holonomy.

Using the hamiltonian in 3.3.5, we choose the following loops and their induced holonomies.
Let C1 ∈ (θa, ϕa) with a = 1, 2 so

ΓA(C1) = exp(−iΣ1σ
3
α) (3.3.9)

where σ3α = |α⟩⟨α|, α = 0, 1 and Σ1 is the area enclosed by C1 when projected onto a
sphere with coordinates 2θa and ϕa. Then for C2 ∈ (θ1, θ2) with ϕ1 = ϕ2 = 0, we have

ΓA(C2) = exp(−iΣ2σ
2) (3.3.10)
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where σ2 = −i|0⟩⟨1| + i|1⟩⟨0| and Σ2 is the area enclosed by C2 when projected onto
a sphere with coordinates θ1, θ2. With this, we have enough freedom to create any arbitrary
one-qubit gate [ZR99].

If we have m subsystems, then this corresponds to having m qubits. Therefore, one finds it
sensible to think that having a rotation between two qubits would, in turn, correspond to having
a two-qubit gate.

Example 3.3.2. Suppose we want to make a rotation between the states |11⟩ and |22⟩. Then we
employ U(z) = exp(z|11⟩⟨22| − z|22⟩⟨11|) where z = θeiϕ. With this, we have the following
connection components

Aθ = 0, Aϕ = diag(0, 0, 0,−i sin2 θ) (3.3.11)

with the following vectors {|00⟩, |10⟩, |01⟩, |11⟩} as the basis. 1

Proof. Observe that U(z) is unitary since by expanding the exponential, we have

U †(λ) = e−A = U−1(λ)

whereA = z|11⟩⟨22|−z|22⟩⟨11|. Then observe thatU(λ) acts trivially on {|00⟩, |01⟩, |10⟩}
and non-trivially on |11⟩. So the connection components for θ and ϕ is zero everywhere, ex-
cept for A4,4

ϕ . We compute this by hand giving, ⟨11|U †(λ) = cos θ⟨11| − e−iϕ sin θ⟨22| and

∂ϕU(λ) = ie−iϕ sin θ|22⟩. Hence A4,4
ϕ = ⟨11|U †(λ)∂ϕU(λ)|11⟩ = −i sin2 θ.

Now, let C be a loop on the θ, ϕ-plane such that we have the following holonomy

ΓA(C) = diag(1, 1, 1, eiΣ), Σ =

∫
D(C)

sin(2θ) dθdϕ (3.3.12)

Then if Σ = π one has that the holonomy becomes the controlled-phase gate (CP-gate). By
using CP-gates between any two qubits, and with the ability to form any one-qubit gate, we can
have universality. This model was first presented by Pachos [Pac00]. A physical realization of
this system using trapped ions was proposed by Duan et al. [DCZ01].

Realizing that both holonomic and adiabatic quantum computation require adiabaticity of
the system, holonomic quantum computation is used in a degenerate space of states — to which
this degeneracy allows for an interpretation of quantum gates. That is, it resembles the circuit
model. To relate this to TQC, one can recognize that TQC is effectively HQC whose adiabatic

1This matrix acts also on tensor products including |2⟩. Realistically, this should form a 9× 9 matrix with basis
vectors as a tensor product of |0⟩, |1⟩, and |2⟩. But we fix only said basis vectors as it is the computational space,
so we disregard the basis vectors {|02⟩, |20⟩, |21⟩, |22⟩, |12⟩}.
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evolutions have topological properties. However, holonomic quantum computation depends
entirely on the path whereas TQC should not.
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Chapter 4

Anyons and Categories

In chapters two and three, we introduced physical concepts and applied them in a way that
allows one to model a quantum computer. In particular, these models are very similar to TQC
in the sense that TQC effectively involves anyons confined to a two-dimensional surface, so
when the anyons adiabatically evolve to exchange each other, they are forming braids in their
spacetime. For this half of the dissertation, we build the categorical theory to understand and
correlate it with topological quantum field theory (TQFT) and apply it to introduce what ex-
actly a TQC is and provide a few different models according to the type of chosen anyon.

This chapter, in particular, aims to categorically build up to a unitary modular tensor cate-
gory (UTMC). They are the natural algebraic description of anyons. Here, one can analyse the
braiding character of these anyons with more mathematical rigour. The proof to show a one-
to-one correspondence for (2+1)-TQFTs and UMTCs can be found in Turaev’s book [Tur94].

This chapter is heavily based on chapter 4 in [Wan10]. However, this chapter is written in
a way so one may see the deep connection between the two structures.

4.1 Fusion Categories and Label Sets

Previously, we have shown Let C be a category and L be a subset of simple objects - we call
this the label set. From L, we equip it with the properties of a fusion category as per definition
1.2.6. Each a ∈ L is called an anyon species that is uniquely determined by its charge and flux.
More plainly, these are our anyons - up to isomorphism. From here, we can formally define the
following.

Definition 4.1.1. A label set L is a finite set with

37
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1. A fusion rule ⊗ : L × L → NL0 where NL0 is the set of all maps from L to N0. We write
the fusion rule as follows:

a⊗ b =
⊕
c∈L

N c
abc, (4.1.1)

where a natural number N c
ab = (a ⊗ b)(c) is assigned as a coefficient for each c ∈ L

such that the fusion operator is associative.

2. There is a unique unit 1 ∈ L and a notion of an antiparticle i.e., for all a ∈ L there is an
a∗ ∈ L satisfying the following conditions:

N1
ab = N1

ba = δba∗ , (4.1.2)

N c
1a = N c

a1 = δac, (4.1.3)

that the fusion rule must abide by, where the δ symbol denotes the Kronecker delta.

For the physical intuition, suppose we have two anyons of some charge x and y. Then the
physical idea of fusing such anyons is simply placing these two particles in a potential box and
treating the box as a particle whose constituents are the two particles.

Following the definitions of a fusion category, recall that we have the associator, a nat-
ural isomorphism. Analogously, we can define the following. First, let a, b ∈ L. Then if
there is a c ∈ L such that N c

ab ̸= 0, the triple (a, b, c) ∈ L3 is admissible. Next, the sex-
tuple (a, b, c, d, n,m) ∈ L6 is admissible if (a, b,m), (m, c, d), (b, c, d) and (a, n, d) are all
admissible. So we make the following definition.

Definition 4.1.2. For a label set L and a fusion rule, we define the 6j-symbol F : L6 → C. The
sextuple input must be admissible. Denote this 6j-symbol as F abcd;nm, where F abcd is a matrix,
with entries n and m ranging over all labels. If the input is not admissible, then one simply
yields 0. We also require that F abcd satisfies the pentagon axiom: for all a, b, c, d, e, f, p, q,m ∈
L, ∑

n

F bcdq;pnF
and
f ;qeF

abc
e;nm = F abpf ;qmF

mcd
f ;pe . (4.1.4)

In practice, we simply refer to F abcd as the F -matrix and if it has inputs n,m ∈ L, then
F abcd;nm is a 6j-symbol. Should a label set exist with a 6j-symbol, we call L a 6j-symbol system.

Definition 4.1.3. A 6j-fusion system is a 6j-symbol system satisfying the following:

1. The triangle axiom: If 1 ∈ {a, b, c}, then F abcd = 1.

2. Rigidity: For any a ∈ L, let Ga
∗aa∗
a∗ be the inverse of F a

∗aa∗
a∗ . With an (m,n)-entry,

Ga
∗aa∗
a∗;mn, then Ga

∗aa∗
a∗;mn = F aa

∗a
a;mn.
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Definition 4.1.4. Let F and F ′ be fusion systems from the label set L. They are considered
gauge equivalent should there be a gauge transformation f : L3 → C by (a, b, c) 7→ fabc
satisfying the following:

1. (a, b, c) is admissible iff fabc ̸= 0,

2. f1aa = fa1a = 1 for all a ∈ L,

3. and the rectangle axiom: for all a, b, c, d, n,m ∈ L

f bcn f
an
d F abcd;nm = F ′abc

d;nmf
ab
m f

mc
d (4.1.5)

Definition 4.1.5. 1. An automorphism of a fusion rule is a label permutation α satisfying

N
α(x)
α(y)α(z) = Nx

yz (4.1.6)

2. For two 6j systems that have a common label set, they are equivalent if they are gauge
equivalent up to label permutation.

Theorem 4.1.6. We have the following identification:

1. 6j-fusion systems, up to equivalence, have a 1−1 correspondence with fusion categories
- up to C-linear monoidal equivalence.

2. (Ocneanu Rigidity) There are only finitely many equivalence classes of fusion categories,
given a fusion rule on a label set.

Proof. For (1) refer to [YAM02] and for (2) the proof is in [FLW00; FLW02].
With this theorem, one can identify a 6j-fusion system with a fusion category. Ultimately,

this is progress to convince one that the mathematical habitat of anyons is in category theory.

Definition 4.1.7. Let L be a label set. Then we define |L| to be the rank.

Definition 4.1.8. A braiding on a 6j-symbol system with label set L, is a function L3 → C
taking (a, b, c) 7→ Rabc , such that

1. Rabc ̸= 0 if (a, b, c) is admissible

2. The hexagon axiom is satisfied, that is: For all a, b, c, d, e,m ∈ L,

(Race )±1F bacd;em(R
ab
m)±1 =

∑
n

F bcad;en(R
an
d )±1F abcd;nm. (4.1.7)

This is analogous to the categorical definition of a braided fusion category, in that we have
the following.
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Definition 4.1.9. A fusion category is braided if it is equipped with a natural isomorphism
cxy : x⊗ y → y ⊗ x and c satisfies the Hexagon axiom.

Despite this realisation that anyons live in fusion categories such that they are the simple
objects in our label set, one can exploit this notion of fusion and braiding by instead drawing
the paths of the anyons. Physically motivated by observing that this is equivalent to considering
the world line of the anyons in (2 + 1). This is similar to Feynman’s rules and his diagrams
and Dyson’s mathematical formalism for said rules in quantum field theory.

4.2 Graphical Calculus of Fusion Categories

Let C be a fusion category and let L be the label set from C. Then since C is C-linear, the
Hom-sets for any fusion are isomorphic to an finite dimensional vector space over C. Let
a, b, c, d ∈ L and assume appropriate admissibility. Hom(d, a ⊗ b ⊗ c) is spanned by the
intermediate anyons formed depending on which order one decides to associate the product. In
other words,

|b, c→ n; ν⟩ = F abcd;mn|a, b→ m;µ⟩. (4.2.1)

Here, a, b, c, d, n,m ∈ L and µ ∈ {1, . . . , Nab
m } and ν ∈ {1, . . . , N bc

n }.

If we interpret time passing upwards, we can unfuse an anyon into a fusion product (as L
is semi-simple) and graphically illustrate this as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b c

n

d

= F abcd;mn

∣∣∣∣∣∣∣∣∣∣∣∣∣

a b c

m

d

But Hom(d, (a⊗ b)⊗ c) = Hom(d, a⊗ b⊗ c) = Hom(d, a⊗ (b⊗ c)). The first equality is
the left state and the middle equality is the right state that is being acted upon by the F -matrix.
Here, it is much easier to see exactly what the F -matrix is. It is a change of basis matrix,
according to the association.

Regarding right rigidity, for x ∈ L we choose bx ∈ Hom(1, x⊗ x∗) and dx ∈ Hom(x∗ ⊗
x, 1) which can be categorically identified as the coevx and evx natural isomorphisms respec-
tively.
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x x∗

x∗ x

Suppose we have a morphism f : a ⊗ b → x ⊗ y ⊗ z, where a ⊗ b, x ⊗ y ⊗ z ∈ L. Then
we can illistrate this as

f

x y z

a b

Suppose we have the morphism f : x → y. We can define the dual of this morphism as
f∗ : y∗ → x∗ or illustratively:

f

So one observes that ∗ is a contravariant functor, that is for F : C → D a functor, a con-
travariant functor is simply G : C → Dop. Where the opposite category Dop is defined so
D0 = Dop

0 and more importantly, for any morphism f ∈ D1 with (say) f : X → Y , then one
has f ′ ∈ Dop

0 such that f ′ : Y → X .

Notice that this is in the context of right rigidity. In order to define left rigidity, we cannot
simply change all the words in the right rigidity definition to obtain a left rigidity definition.
We must first have a notion of a quantum trace so that we can define left rigidity.

Definition 4.2.1. (Pivotal and Spherical) Let C be a fusion category and x, y ∈ L.

1. If we have the isomorphisms ϕx : x→ x∗∗ with the property that

(a) ϕx⊗y = ϕx ⊗ ϕy,

(b) f∗∗ = f for any f : x→ y,

then we say that C is pivotal.

2. We define a left and right trace in a pivotal category, but they are not necessarily equal.
Let f : x→ x.

Trr(f) = dx∗ ◦ (ϕx ⊗ 1x∗) ◦ (f ⊗ 1x∗) ◦ bx (4.2.2)
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1
bx−→ x⊗ x∗

f⊗1x∗−−−−→ x⊗ x∗
ϕx⊗1x∗−−−−−→ x∗∗ ⊗ x∗

dx∗−−→ 1

Trl(f) = dx ◦ (dx∗ ⊗ f) ◦ (1x∗ ⊗ ϕ−1
x ) ◦ bx∗ (4.2.3)

1
bx∗−−→ x∗ ⊗ x∗∗

1x∗⊗ϕ−1
x−−−−−−→ x∗ ⊗ x

dx∗⊗f−−−−→ x∗ ⊗ x
dx−→ 1

The graphical calculus for the right trace follows:

1

bx

x x∗

x x∗

x∗∗ x∗
dx∗

1

f ⊗ 1x∗

ϕx ⊗ 1x∗

or simply:

f

and the graphical calculus for the left trace follows mutatis mutandis.

3. If, for all f morphisms Trr(f) = Trl(f), then we say that the category is spherical.

If there is a braiding in the fusion category, then in the graphical calculus for cx,y : x⊗y →
y ⊗ x, we have

y

y

x

x

One can also look at the notions of being braided and spherical from a 6j-fusion system
perspective.

Proposition 4.2.2. Let C be a fusion category.
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1. The associated 6j-fusion system is pivotal if there is ta that we can choose to be some
root of unity such that for any a ∈ L, ta satisfies the following pivotal axioms:

t1 = 1, (4.2.4)

ta∗ = t−1
a , (4.2.5)

t−1
a t−1

b tc = F a,b,c
∗

1;a∗c F
b,c∗,a
1;a∗a F

c∗,a,b
1;a∗c , (4.2.6)

for each (a, b, c) ∈ L3 admissible. These ta will be called the pivotal coefficients.

2. The pivotal structure is spherical if all ta = ±1.

Definition 4.2.3. A ribbon fusion category (RFC) is one that is braided and spherical.

Among all the immense load of definitions, one can characterise a ribbon fusion category
more nicely.

Proposition 4.2.4. A RFC with multiplicity-free fusion rule is a collection of numbers {F abcd;mn}, {Rabc }, {ti =
±1} satisfying the pentagon, triangle, rigidity, hexagon and pivotal axioms.

4.3 Unitary Fusion Categories

We denote right rigid isomorphisms with bx and dx and left rigid isomorphisms b′x and d′x for
birth and death respectively.

Definition 4.3.1. Let C be a fusion category.

1. A conjugation on C is an assignment to each f ∈ Hom(x, y) a morphism, namely f̄ ∈
Hom(y, x) which is conjugate, linear, and satisfies the following:

f = f, f ⊗ g = f ⊗ g, f ◦ g = g ◦ f. (4.3.1)

2. A RFC C is Hermitian if there is a conjugation assignment for which

(a) bx = d′x and dx = b′x,

(b) cx,y = c−1
x,y,

(c) θx = θ′x.

3. A RFC C is unitary if C is Hermitian and Tr(f ◦ f̄) ≥ 0 for every f ∈ Hom(x, y).
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Where if we define ψx : x∗∗ → x, then θx = ψxϕx where ϕx being a twist in the graphical
calculus.

Recall that an object x ∈ L is simple if and only if Hom(x, x) ∼= C. The idea here is
that we can make a morphism (say) g ∈ Hom(1, 1) ∼= C and since the identity is simple, we
can establish a corresponding complex number so g = ⟨g⟩1g, where ⟨g⟩ ∈ C. This scalar is
invariant under Reidermeister moves of the second and third kind.

Definition 4.3.2. Let C be an RFC and L a strict label set of C0.

1. Let x ∈ L. Then we can define the quantum dimension of an anyon species as

d(x) = dx = TrL(1x). (4.3.2)

2. Define the global quantum dimension of the category C as

D =

√∑
i∈L

d2i , (4.3.3)

we take D > 0 if D ∈ R, without loss of generality.

3. For all i, j ∈ L, we define S̃ = (s̃ij)

i j

s̃ij =

.

4. S̃ is the modular S̃-matrix, and S = 1
D S̃ is the modular S-matrix.

5. If detS ̸= 0, then the RFC is modular.

Lemma 4.3.3. Let C be a ribbon fusion category.

1. Let f : V →W and g : W → V . Then Tr(f ◦ g) = Tr(g ◦ f).

2. Let f, g ∈ End(C0). Then we have that Tr(f ⊗ g) = Tr(f)Tr(g).

Proof. From the isotopic invariance of the graphical calculus of the trace function and a corol-
lary - both in Turaev - we are able to make the following equalities
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1. Consider Tr(f◦g) and its graphical calculus. Then by isotopic invariance of the graphical
calculus of the trace function [Tur94], i.e., we can rotate the loop such that we have the
following:

f

g
∼

f

g

The latter graphical calculus shows Trr(g ◦ f). But since C is spherical, the left and right
traces are equal. So Tr(f ◦ g) = Trr(g ◦ f) = Tr(g ◦ f).

2. By corollary in [Tur94], we have that

fg ∼ gf

Lemma 4.3.4. For any x, y, z ∈ L such that (x, y, z) is admissible, we have that

dxdy =
∑
z

N z
xydz. (4.3.4)

Proof. Knowing that 1x⊗1y = 1x⊗y, and from Lemma 4.3.3, this lemma immediately follows.

A result that immediately follows is that d1 = 1. As it turns out, from [Wan10] that for
UMTCs with rank 4 or less, so there are at most 4 simple objects including the identity or there
is four anyon species in the label set, that one has a TQFT for each UMTC of rank four or less.

4.4 Examples

A modular category is a specific type of RFC which satisfies a couple more axioms. However,
in this setting they are effectively equivalent and for all practical purposes, we will treat them
as such - modulo said axioms. Recall that another name for monoidal categories are tensor
categories.
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τ τ τ τ

a
b

τ
τ τ τ τ

a e

τ

τ τ τ τ

e
d

τ

τ τ τ τ

c
d

τ

τ τ τ τ

c
b

τ

F aτττ ;be

F ττττ ;ad

F τττb;ac

F τcττ ;bd

F τττd;ce

Figure 4.1: Visualisation of the pentagon axiom used to calculate the non-trivial F -matrix. The
equation that this graphical calculus represents is in Equation 4.4.3

4.4.1 Fibonacci Anyons

Upon classification, the smallest non-trivial UMTC is the Fibonacci UMTC. Let L = {1, τ} be
our label set and define our fusion rules as 1⊗1 = 1, 1⊗τ = τ⊗1 = τ and τ⊗τ = τ2 = τ⊕1.
By inductively fusing τ with itself, one finds the formulae

τn = Fn−21⊕ Fn−1τ, (4.4.1)

where Fn is the nth entry in the Fibonacci sequence {1, 1, 2, 3, 5, . . . }, hence the name. The
quantum dimension of τ immediately follows from τ ⊗ τ = 1⊕ τ and Lemma 4.3.4 whereby
one finds dτ = ϕ = 1+

√
5

2 .

In Pachos, one finds the working for F and R-matrices with Ising anyons, not Fibonacci
[Pac12]. As a completed exercise, we provide the construction of the F and R-matrices for
Fibonacci anyons.

First, given the fusion rules for Fibonacci anyons and their respective N c
ab values, we as-

sume the that for our F -matrix F abcd , if a or b or c is 1, then the matrix is the scalar 1 for
admissible sextuples in L6. Similarly, if we have three τ anyons fusing to give the vacuum,
then F τττ1 = 1 ∈ R. On the other hand, entries like F τ1ττ ;1τ is 0 since it is not admissible.
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We take the pentagon expression where the bottom-most and top-most points are all τ . Let
α, β, γ, δ ∈ L be the end split points, ε ∈ L be the starting point, and a, b, c, d ∈ L be the
intermediate splits. Then the pentagon axiom reads as

Fαβeε;adF
aγδ
ε;be =

∑
c∈L

F βγδd;ceF
αcδ
ε;bdF

αβδ
b;ac (4.4.2)

F ττeτ ;adF
aττ
τ ;be =

c=1︷ ︸︸ ︷
F τττd;1eF

τ1τ
τ ;bdF

τττ
b;a1 +

c=τ︷ ︸︸ ︷
F τττd;τeF

τττ
τ ;bdF

τττ
b;aτ . (4.4.3)

See that F τ1ττ ;bd = 0 as it is not admissible if b = 1 and d = τ . So with that in mind, a non-trivial
combination of a, b, d, e ∈ L is d = a = τ and b = e = 1. Then 4.4.3 reduces to

F11 = Fτ1F1τ . (4.4.4)

To make it easier to read, set notate F ττττ ;xy = Fxy. Together with 4.4.4 and acknowledging that
F -matrices are unitary (so FF † = 1, we have the following system of equations:

|F11|2 + |F1τ |2 = 1,

F11Fτ1 = −F1τFττ ,

|F11Fττ − F1τFτ1| = 1,

F11 = Fτ1F1τ .

(4.4.5)

Which gives us, up to an arbitrary phase,

F ττττ =

(
ϕ−1 ϕ−1/2

ϕ−1/2 −ϕ−1

)
. (4.4.6)

where ϕ is the golden ratio. Next we want to find the R-matrix. We do so mutatis mutandis
first by finding the trivial braiding Rτ1τ = R1τ

τ = 1, then with the hexagon axiom and set the
outer points α = β = γ = ε = τ .

Rαβc F βαγε;ac R
αβ
a =

∑
b∈L

F γαβε;ab R
γb
ε F

αβγ
ε;bc , (4.4.7)

Rτττ FacR
ττ
a = Fa1R

τ1
τ F1c + FaτR

ττ
τ Fτc. (4.4.8)

The R-matrix is non-trivial only when we braid the fusion τ ⊗ τ . So we find that R should be
2 × 2 and diagonal since the fusion can only have 1 or τ as outcomes. Respectively, we set
a = c = 1, then set a = 1, c = τ and since Rττ is unitary, we get the following equations

(Rττ1 )2ϕ−1 = ϕ−2 +Rτττ ϕ
−1,

Rττ1 Rτττ ϕ
−1/2 = (1−Rτττ )ϕ−3/2,

|Rττ1 Rτττ | = 1.

(4.4.9)
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Figure 4.2: [Tre+08]Visual aid for the hexagon diagram. Note that the top points from left
to right are α β γ and on the bottom, it starts at ε. From the left-most point going down via
an F -matrix, the equality is justified by observing that there is topological invariance when γ
crosses first β then α; this is the same as just crossing the fused anyon b.

This yields the matrix

Rττ =

(
Rττ1 0
0 Rτττ

)
=

(
e4πi/5 0

0 e−3πi/5

)
. (4.4.10)

4.4.2 Ising Anyons

A better well known UMTC is the Ising UMTC. Let L = {1, σ, ψ} be the label set and define
the non-trivial fusion rules as ψ⊗ψ = 1, σ⊗ σ = 1⊕ψ and σ⊗ψ = σ. From Lemma 4.3.3,
we can construct a system of equations to solve for the particles dimensions.

dσ =
√
2 dψ = 1 (4.4.11)

In the similar way as in the Fibonacci UMTC, we use the pentagon axiom, and then the hexagon
axiom to solve for the F and R matrices:

F σσσσ =
1√
2

(
1 1
1 −1

)
, Rσσ = eiπ/8

(
1 0
0 i

)
. (4.4.12)



Chapter 5

Anyons in Topological Quantum Field
Theory

In quantum field theory (QFT), our particles exist in 3 spacial and 1 temporal coordinates, or
a (3 + 1)-dimensional Lorentzian manifold which we interpret as spacetime. Anyons, parti-
cles which exhibit exotic spin statistics, only exist in (2 + 1)-dimensional manifolds 1. In this
chapter, we wish to give a small overview of QFT, introduce topological quantum field theory
(TQFT) and relate this theory to familiar concepts to understand how anyons are represented
on surfaces.

We will heavily follow the notes from chapter 5 and 6 from [Wan10].

5.1 Quantum Field Theory (an overview)

Nearly a century after Newton discovered mechanics by standard calculus and forces, Lagrange
and Hamilton reformulated classical mechanics via a variational approach. Such formalisms
allowed for physicists such as Feynman and Schwinger to quantise the fields in our standard
model - thus the birth of QFT and quantum electrodynamics (QED). One approach is to use the
Schwinger Action principle but here, we shall depend more heavily on Feynman’s formalism
using his path integral.

The idea is to take a classical system, then, via some quantisation procedure, one can obtain
a corresponding quantum system; however, this procedure is often not obvious.

1Because 3 spacial coordinates makes loops around a point puncture equivalent, by homotopy, to the trivial loop
and 1 spacial coordinate lacking degrees of freedom for anyons to be useful in any form.

49



50 CHAPTER 5. ANYONS IN TOPOLOGICAL QUANTUM FIELD THEORY

In the language of physics, suppose we have a system consisting of n particles in some
space X . The positions of the n particles are points in the configuration space Cn(X) ⊂ Xn.
Then the joint trajectory of our particles is represented as a curve in Cn(X). The Hamiltonian
and Lagrangian formalisms of classical field theory, and QFT after quantisation, are defined on
the cotangent and tangent bundles of the configuration space with coordinates (q, p) and (q, q̇)
— respectively. The proportionality constant between the momentum and velocity in their re-
spective formalisms is referred to as the particle’s rest mass. Both formalisms are equivalent
in the classical setting for particles with non-zero rest mass via a Legendre transformation.
However, in QFT and/or for particles with no rest mass (like photons), such a transformation
might not be as straightforward or even impossible. An example would be TQFTs under the
Lagrangian formalism.

For the Lagrangian formalism, we define a Lagrangian density to be a linear functional on
the tangent bundle of our configuration space L : TCn(X) → R. The dynamics of the system
is governed by a functional called the action — denoted by S which assigns a real number to
paths γ : I → R in our configuration space.

S[γ] :=

∫
I
L(γ̇)dt (5.1.1)

In physics, we want paths which minimise this action - the least action principle. So in this
sense, we set δS = 0, the variation of S, and one yields the Euler-Lagrange equation.

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0 (5.1.2)

To quantize this formalism, we use the Feynman path integral. Suppose we have a particle
travelling from point xa to xb in some time t subject to a Hamiltonian H. Then the amplitude,
a number correlated to how likely a specific path will be taken, is

U(xa, xb; t) = ⟨xb|e
−i
ℏ Ht|xa⟩ (5.1.3)

Set ℏ = 1. Then we can define the path integral to be the sum over all possible paths the
particle could take to get from the initial to the final point.∑

all paths

eiS(γ) −→
∫

all paths
eiS(γ) Dγ (5.1.4)

Since there is an uncountable and infinite number of paths, we can change the discrete sum into
an integral, with Dγ as the measure for the paths. Note that this measure is often not rigorously
defined. For all practical purposes, we set A(γ) to be the action S(γ). Quantisation is done
this way as it preserves the classical symmetries and highlights the close relationship between
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QFT and statistical mechanics. 2

For field theory, we consider the following. Let X be a (d + 1)-dimensional spacetime
manifold and let Φ(X) be a space of data defined locally on X . We refer to elements of Φ(X)
as field configurations. Some examples include Φ(X) being the space of all smooth maps
ϕ : X → Rm and Φ(X) the space of all smooth functions ϕ : X →M , M a fixed Riemannian
n-manifold. Next, for every x ∈ X we choose some Fx : Φ(X) → C so that Fx(Φ) depends
only on the behaviour of ϕ in some neighbourhood which contains our point x. Following from
our previous examples, we can have Fx(ϕ) = ϕ(x) and Fx(ϕ) = (f ◦ϕ)(x), where f : M → C
is fixed.

If we wish to quantize a theory, we require a probability measure on our space Φ(X) so that
we can evaluate the expectation value ⟨Fx⟩ and correlation functions ⟨Fx1 . . . Fxk⟩ of our ob-
servables (locally) at the points x1, . . . , xk. These correlation functions, also known as Green’s
functions, contain all the physics in our theory. Should one find a probability measure, then
when we evaluate the path integral with this measure over Φ(X), we are able to extract phys-
ically meaningful results - which is why the path integral is important. However, constructing
such a measure turns out to be a very difficult task. 3

5.2 Axioms of TQFT

In normal quantum field theory, one usually forms their theories in Fock spaces and Grassman
algebras, to allow for mathematical manipulations of bosons and fermions with commutating
and anti-commutating relations, all respectively. In TQFT, we want to find surfaces and some-
how encode information on these surfaces such that one can exploit topological properties of
these surfaces.

We introduce, heuristically, the modular functor V which maps compact and oriented sur-
faces to finite-dimentional vector spaces. For disjoint unions of such sufaces X1, X2, one
has

V (X1 ⊔X2) ∼= V (X1)⊗ V (X2) (5.2.1)

Orientation reversal is mapped such that for X a compact and oriented surface, denote −X as
the same X with opposite orientation, and

V (−X) = V (X)∗. (5.2.2)

2To highlight the importance of this path integral, the path integral in QFT is analogous to the partition function
in statistical mechanics and the equations of motion from classical mechanics.

3Its importance is ranked analogous to using the Schrödinger Equation to find the wavefunction of a system and
Newton’s second law or the Euler-Lagrange equation to find the equations of motion for a classical system.
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For the trivial case, namely the empty set, ∅ V7−→ C. We have another functor, the partition
functor Z such that for a compact and oriented surface X with a boundary, we have Z(X) ∈
V (∂X).

Definition 5.2.1. Let X be an oriented 3-manifold with boundary Y = ∂X . A Lagrangian
subspace λ is a maximal isotropic subspace of H1(Y ;R) with respect to intersection pairing
of H1(Y,R).

We extend the category of surfaces (bordisms) to labelled extended surfaces.

Definition 5.2.2. Let C be a strict fusion category, Y an oriented surface, and λ a Lagrangian
subspace of H1(Y ;R). Define a labelled extended surface as a triplet (Y ;λ, l), where l is an
assignment of U ∈ C0 to each boundary circle.

We want to introduce a notion of gluing our surfaces. Let γ1, γ2 be connected compo-
nents of ∂Y and let ϕi : R → γi be diffeomorphisms, for i = 1, 2, and label each γ1, γ2 with
U,U ′ ∈ C0 respectively. Define gl : γ1 → γ2 by x 7→ (ϕ2 ◦ r ◦ ϕ−1

1 )(x) where r is an invo-
lution. We define a gluing Ygl as the factor space of Y by the identification of gl : γ1 → γ2.
gl is a diffeomorphism which preserves orientation, boundary parametrisation, and labelling.
Such diffeomorphisms are called labelled diffeomorphisms and they are the morphisms of the
category of oriented labelled extended surfaces denoted by X 2,e,l.

Given a particular partition function for some model of a (2+1)-TQFT, one would require
invariance under gauge transformations. An example of such a transformation is the Lorentz
transformation. However, this invariance is not intrinsically guaranteed. Rather, it is invariant
up to some complex scalar which we refer to as an anomaly. We define an anomaly for a TQFT
as a root of unity κ = eiπc/4 where c ∈ Q mod 8 is referred to as the central charge. So if
our TQFT is anomaly-free, then c ≡8 0. For our purposes, assume we have done the necessary
steps of extending our bordisms to obtain an anomaly-free TQFT.

Definition 5.2.3. ((2 + 1)-TQFTs) Let C be a strict fusion category with a strict label set
Lstr. An anomaly-free (2 + 1)-TQFT is a pair of functors (V,Z) where V : X 2,e,l → Vecfd,
the category of finite dimensional vector spaces. V is commonly referred to as the modular
functor. Let X be an oriented 3-manifold and λ a Lagrangian subspace. Then we equip X
with an extended boundary (∂X, λ) such that Z(X;λ) ∈ V (∂X;λ). If Y = ∂X , then we
can extend the surface with the canonical Lagrangian subspace λX and we can simply write
Z(X) ∈ V (∂X). We refer to Z as the partition functor.

We have that V must satisfy the following axioms:

1. Disk axiom:

V (D; (l, 1′)) ∼=

{
C l = 1

0 else
(5.2.3)



5.2. AXIOMS OF TQFT 53

2. Annulus axiom

V (A; a, b′) ≃

{
C a = b

0 else
(5.2.4)

For a, b ∈ Lstr.

3. Disjoint union axiom:

V (Y1 ⊔ Y2;λ1 ⊕ λ2, l1 ∪ l2) ∼= V (Y1;λ1, l1)⊗ V (Y2;λ2, l2), (5.2.5)

where the isomorphism is associative and compatible with actions from the mapping
class group.

4. Duality axiom:
V (−Y ; l) ∼= V (Y, l̂)∗ (5.2.6)

Where the isomorphisms are compatible with actions from the mapping class group, ori-
entation reversal. From here, we can state more properties of the disjoint union axiom:

(a) For f : (Y1; l1) → (Y2; l2), let f̄ : (−Y1; l̂1) → (−Y2; l̂2). One has that for x ∈
V (Y1; l1), y ∈ V (Y2; l2), that ⟨x, y⟩ =

〈
V (f)x, V (f̄)y

〉
.

(b) If α1⊗α2 ∈ V (Y1⊔Y2) and β1⊗β2 ∈ V (−Y1⊔−Y2), then ⟨α1 ⊗ α2, β1 ⊗ β2⟩ =
⟨α1, β1⟩ ⟨α2, β2⟩

5. Gluing axiom. Let Ygl be an extended surface yielded from gluing two boundaries to-
gether from an extended surface Y . Then we have

V (Ygl) ∼=
⊕
l∈L

V (Y ; (l, l̂)) (5.2.7)

Where l ∈ L and the isomorphism is associative and compatible with actions from the
mapping class group and duality as given: For⊕

j∈L
αj ∈ V (Ygl; l)

⊕
j∈L

βj ∈ V (−Ygl; l̂)

Then for each l ∈ L, there is sj ∈ R× such that〈⊕
j∈L

αj ,
⊕
j∈L

βj

〉
=
∑
j∈L

sj ⟨αj , βj⟩

Additionally, Z must obey the following axioms:
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1. Disjoint union axiom: Let X1, X2 be disjoint, and oriented 3-manifolds. Then

Z(X1 ⊔X2) = Z(X1)⊗ Z(X2) (5.2.8)

2. Naturality axiom: LetX1, X2 be oriented 3-manifolds with extended boundaries (∂X1, λ1),
(∂X2, λ2), and f : (X1, (∂X1, λ1)) → (X2, (∂X2, λ2)) a diffeomorphism. Then we
have V (f) : V (∂X1) → V (∂X2) by Z(X1, λ1) 7→ Z(X2, λ2).

3. Gluing axiom: Let X is an oriented 3-manifold and Y1, Y2 ⊂ ∂X be disjoint and ex-
tended by λ1, λ2 ⊂ λX respectively. Let f : Y1 → Y2 be an orientation-reversing diffeo-
morphism mapping λ1 to λ2. Then for the isomorphism

V (∂X) ≃
∑
l1, l2

V (Y1; l1)⊗ V (Y2; l2)⊗ V (∂X\(Y1 ∪ Y2); (l̂1, l̂2)) (5.2.9)

yielding
Z(X) =

⊕
l1, l2

∑
j

αjl1 ⊗ βjl2 ⊗ γj
l̂1, l̂2

(5.2.10)

Moreso, if the diffeomorphism f : Y1 → Y2 glues said surfaces along some boundary
component to form a manifold Xf , then

Z(Xf ) =
∑
j, l

〈
V (f)αjl1 , β

j
l2

〉
γj
l̂1, l̂2

(5.2.11)

4. Mapping Cylinder Axiom: Let Y be closed, extended by λ and Y × I extended by λ ⊕
(−λ). Then

Z(Iid, λ⊕ (−λ)) =
⊕
l∈L(Y )

idl (5.2.12)

where Iid is the mapping cylinder of id : Y → Y and idl is the identity in V (V ; l) ⊗
V (Y ; l)∗.

Example 5.2.4. The fusion process is encoded in a pair of pants, with legs labelled as a and b
and the hip labelled as c. Given the Lagrangian subspace λP , we have then the following space
V (P ; (a, b, ĉ), λP ). From a construction using the disk, annulus and gluing axioms above, one
has that

V (P cab; (a, b, c
′)) ∼=

{
C N c

ab > 0

0 N c
ab = 0

(5.2.13)

Proposition 5.2.5. Some fundamental results that fall out of these axioms.

1. V (S2) ∼= C



5.3. ANYONS AND TOPOLOGY 55

2. dim(V (T 2)) is the number of labels

Proof. As an exercise we give the proofs:

1. Recall that S2 = D ∪D D. So from the gluing and disk axiom, we have

V (S2) ∼= V (D ∪D D) ∼= V (D) ∼= C. (5.2.14)

2. Take a pair of pants with label (a, b, c′) and suppose we glue the boundaries a and c
together. Then we have made T 2 with punctures with labelling (n, b′), for n ∈ Lstr.
Then suppose we take the hip of another pair of pants with label (x, y, z′) and glue now
the boundaries of x and c together. Then we have T 2 with punctures with labelling (n, b′)
and (m,x′) and observe that there are two such labels. Inductively then, one can do this
to construct any T 2 and for k gluing of pairs of pants, one has k labels.

Let a, b, c ∈ Lstr. Then we define/denote the following vector spaces. Va = V (B2; a),
Vab = V (A; (a, b̂)) and V c

ab = V (P cab) where P cab is a pair of pants with labels a, b at the legs
and c at the hip.

5.3 Anyons and Topology

Let X be a space consisting of n particles. If n particles are pairwise distinct and cannot
coincide in space, i.e., the particles are hardcore, then our configuration spaceCn(X) is written
as the n-fold Cartesian product of X

Cn(X) = Xn\∆ (5.3.1)

Where ∆ = {(x1, . . . , xn) : xi ̸= xj , for some i ̸= j}
If the particles are now identical, then we can construct the configuration space up to per-

mutation. That is:
Cn(X) = (Xn\∆)⧸Sn. (5.3.2)

Suppose now that X = Rm. Let L be the Hilbert space in which we describe the particle’s
quantum states. Let H be our Hamiltonian with λi as our eigenvalues. Set 0 = λ0 < λ1 < . . .
and deconstruct our Hilbert space as L =

⊕
i Li where Li is an eigenspace associated with λi.

L0 is the ground state and Li, for any i > 0, are called excited states.

Suppose we can write the ground state as L0
∼= Vn ⊗W where Vn carries all the global

properties of our configuration space and W contains all the local properties about each par-
ticle. One way to reinterpret this is Vn contains all the global degrees of freedom and local
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degrees of freedom are contained in W , about the particle’s positions. An example would be
the number of particles there are, which is global degree of freedom, as any local operation
does not change this fact. In some sense, it is global because one must alter the whole system
for this degree of freedom to change. Suppose also that there exists a physical mechanism, like
an energy difference ∆λ = λ1 that protects encoded global properties onto Vn.

Let p1, . . . , pn be the positions of n particles in Vn with global properties. These properties
will be encoded into a state vector |ψ0(pi)⟩ ∈ Vn. Then suppose we let the system evolve such
that the particle returns to its initial position after some time t. Call this state |ψ1(pi)⟩ ∈ Vn. If
Vn is given an orthonormal basis {ei = |ψ0(pi)⟩}n1 then we can rewrite our final state vector as
a linear combination of that basis:

|ψ1(pi)⟩ =
n∑
j=1

aji|ψ0(pi)⟩. (5.3.3)

Suppose that our global properties are topological and that the particles traverse in a loop b in
the configuration space Cn(Rm) as given in 5.3.2; then the unitary matrix U(b) = (aij) associ-
ated with this loop depends solely on the homotopy class of b. Therefore, one yields a unitary
projective representation of the fundamental group of our configuration space, π1(Cn(Rm)) →
U(Vn). We refer to this as the statistics of the particles.

Definition 5.3.1. Let X = Rm have n hardcore particles. Then we can represent the statistics
of these particles by ρ : π1(Cn(Rm)) → U(Vn), where Vn is a Hilbert space. If dim(Vn) = 1,
then the anyon is abelian. Otherwise, the anyon is non-abelian.

For n particles, it is well-known that

π1(Cn(Rm)) =


1 m = 1,

Bn m = 2,

Sn m = 3,

(5.3.4)

Where Bn is the braid group of order n, and Sn is the symmetry group of order n. Since our
anyons reside only in TQFT’s with 2 spatial coordinates, then by setting m = 2, it is clear that
the braid group represents anyonic statistics.

5.4 Fractional Quantum Hall Effect

In a physical sense, imagine the page as a metal plate. Then, suppose one connects the top and
bottom of the page with wires that are connected to a battery such that the flow of electrons
goes up the page. Then suppose there is a magnetic field B pointing out of the page. Then by
the Lorentz force F = q(v × B + E), the flow of electrons get perturbed by the magnetic field
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and organize themselves such that the left side of the page accumulates in electrons; becomes
negatively charged and the right side thus becomes positively charged. This is the classical
Hall effect.

A property that is greatly affected by this is the resistivity of the metal. Physicists such
as Hall found that the resistance is linearly dependent on the strength of the magnetic field.
However, quantisation has a significant effect when the magnetic field becomes too large, ≥ 30
Tesla. The relationship they found was the following:

Rxy = ν−1 h

q2e
(5.4.1)

Where h is Planck’s constant, qe is the charge of the electron, Rxy is the resistance of the metal
plate where we take the plate to be the xy−plane, and we to refer to ν as the Landau level.
Stormer, Tsui and Laughlin found particles that resided with ν ∈ {1/3, 2/5, 5/2, and more};
were then awarded Nobel prizes in 1998 for this [STG99]. Wilczek independently mathemat-
ically discovered these particles and coined the name anyons [Wil91]. All in all, different
large magnetic field strengths gave different resistances, in turn gave different Landau levels ν.
Formally, we state:

Definition 5.4.1. An anyon is a quasi-particle found from electrons, confined on a plane, inter-
acting according to the fractional quantum hall effect, yielding some charge q with a magnetic
flux ϕ. Anyons are characterised by their unique Landau level ν.

Currently, there are up to 50 different values of ν experimentally found. Ising anyons and
Fibonacci anyons are conjectured to be at Landau levels of 5/2 and 12/5 respectively. These
electrons, exhibiting exotic physical and topological properties are a new state of matter called
fractional quantum hall liquids (FQH liquid) - as ν is expressed as a fraction. As far as it
is understood, this is the only way to make such a state of matter which exhibits the fractional
quantum hall effect.

5.4.1 Topological properties of FQH liquids

Let Σ be a closed and oriented surface and suppose we confine a FQH liquid on Σ. For the
system governed by the Hamiltonian H, let L(Σ) form a Hilbert space consisting of the lowest
energy states of the Hamiltonian. Suppose that L(Σ) = V (Σ) ⊗ V local(Σ), where V local(Σ)
contains the local information similar to how we deconstructed L0 with W . Here, V (Σ) is
degenerate and the dimension of V (Σ) is a quantum number measuring the degeneracy of this
Hilbert space. In the thermodynamic limit, i.e., T → 0, FQH liquids have an energy gap, so
there is a requirement for stability in the sense of adiabaticity. A key feature for FQH liquids
is that the Hamiltonian is a constant. By appropriate normalising, we can just take H = 0 -
which is required for TQFT [Wan10]. The excitations of FQH liquids are the quasi-particles
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which we call anyons. Evolution is induced through the system by making topological changes.

Let Σ be a surface, L(Σ) a Hilbert space and suppose that at points p1, p2, . . . we have
well-separated, localised elementary excitations. Small neighbourhoods around said points
in L(Σ) form a Hilbert space. Again, we suppose we can decompose the Hilbert space as
L(Σ; pi) = V (Σ; pi) ⊗ V local(Σ; pi). If we then look at the boundary formed by removing
the associated neighbourhood for each pi, we label with the associated anyon and we yield the
Hilbert space V (Σ; p1, . . . , pn). An example of a topological change would then be actions
from mapping class groups of Σ, preserving labelling and boundaries. Funnily enough, if we
take a disk with n punctures, we get Bn - the braid group of order n.

If we braid these anyons adiabatically, to ensure that we stay within the ground states, we
yield unitary transformations from t0 to t1. It then becomes clear that V (Σ; p1, . . . , pn) is a
projective representation of the mapping class group of the surface Σ. [Wan10; Kit97] So an
anyonic system gives a way to assign anyons at p1, . . . , pn to a Hilbert space V (Σ; p1, . . . , pn)
of topological ground states of a constant Hamiltonian, and braidings with mapping classes
of V (Σ; p1, . . . , pn). To encapsulate the relationship better, we provide a table as found in
[Wan10]

UMTC anyonic system
simple object anyon
label anyon type or topological charge
tensor product fusion
fusion rules fusion rules
triangular space V c

ab or V ab
c fusion/splitting space

dual antiparticle
birth/death creation/annihilation
mapping class group representations anyon statistics
non-zero vector in V (Y ) ground state vector
unitary F -matrices recoupling rules
twist θx = e2πisx topological spin
tangles anyon trajectories



Chapter 6

Topological Quantum Computing

Every anyonic model consisting of non-abelian anyons can form a model of a quantum com-
puter. What makes this topological is the construction of a quantum gate as being unitary
representation of the braid group.

In the quantum circuit model (QCM), it is often convenient to regard our Hilbert spaces Vn
as having some sort of tensor product decomposition. Surprisingly, this is an inconvenience in
TQC to the point where, if one forces such a decomposition, error arises. Suppose Vn has a
tensor product decomposition. Then dim(Vn) is of the form kn, k ∈ N. In TQC, this is not
guaranteed. Moreso, finding a model that satisfies this is rare.

We will heavily follow from the notes in Chapter 7 in [Wan10]. For a given UMTC, let Lstr

be the strict label set. Then for simpler UMTCs, one can perform inductive calculations on the
given fusion rules to yield the dimensions of V a

n;x, x, a ∈ Lstr.Let UL : (C2)⊗n → (C2)⊗n a
quantum circuit, ι : (C2)⊗n → V a

n;x be an embedding, and ρ : Bn → U(2n) be a representation,
where Bn is the braid group of order n. If we want quantum universality, we want to find

a
x x x x

. . .

n︷ ︸︸ ︷
V a
n;x =

Figure 6.1: Diagramatic aid for how we arrange our n anyons, being the x species. Fusing
them together, the anyons fuse to form a species of an anyon a

59
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b ∈ Bn such that the following diagram commutes.

(C2)⊗n V a
n;x

(C2)⊗n V a
n;x

ι

UL ρ(b)

ι

This task is very difficult. In practice, it is easier to find a finite set of b ∈ Bn such that the dia-
gram commutes with some precision. For non-abelian anyons, one can guarantee universality
by finding a braid group representation, for a finite set of braids in Bn, whose image is dense
in SU(V a

n;x). But first we require some basis to make such representations make sense. The
basis is derived from the fusion trees in V a

n;x, - provided admissibility.

xxx

1

· · ·

x

a
yi3yi2yi1 yin

It is a matter of convention to have the vacuum state on the left, excluded from the total number
of anyons. In Chapter 4, this diagram would have been drawn with a 1 on the far left vertex
and the x anyons being drawn diagonally, meeting the line from 1 to a. Here, we draw it
horizontally as it is easier to see the bit structure. Note that time would thus flow right to left
as opposed to down to up in Chapter 4. Some examples from prior known UMTCs can follow

6.1 Ising Quantum Computation

The content here is heavily based from [FG10]. Recall that LIsing = {1, σ, ψ} and the main
fusion rule of concern is σ ⊗ σ = σ2 = 1 ⊕ ψ. Due to the dimension of the Ising anyon σ to
be

√
2; in taking repetitive products of σ, we will have computational spaces with dimensions

of powers of 2. So one might have hope in finding this model to be universal. Given the other
fusion rule ψ ⊗ σ = σ ⊗ ψ = σ, the general formula for σn is

σn =

{
2

n−1
2 σ n odd

2
n−2
2 (1⊕ ψ) n even

(6.1.1)
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For the Hilbert space

a = 1 or ψ
σ σ σ σ

. . .

n︷ ︸︸ ︷
V a
n;σ = V a

n

From 6.1.1, the dimensionality of V a
n follows to be

dim(V a
n ) =

{
2

n−2
2 n even

2
n−1
2 n odd

(6.1.2)

To form our computational space, we choose n to be even with a = 1 and thus define the basis
we want to do computations on to consist of vectors of the form:

e1σa1σa2σ...σ1 =

σσσσσ

1

· · ·

σ

1.σa2σa1σ σ

Here, ai is either 1 or ψ. For a single qubit, we take 4 anyons (the last being 1) and choose
|0⟩ = e1σ1σ1 and |1⟩ = e1σψσ1. Let ρ : B3 → U(2) be the representation by

ρ(σ1) = ρ(σ3) = eiπ/8
(
−1 0
0 i

)
, ρ(σ2) =

e−πi√
2

(
1 i
i 1

)
. (6.1.3)

With these representations, we have the following (Clifford) gates

H =
1√
2

(
1 −1
1 −1

)
= ρ(σ1σ2σ1) —— Hadamard Gate (6.1.4)

S =

(
1 0
0 i

)
= ρ(σ−1

1 ) —— Phase Gate (6.1.5)

X =

(
0 1
1 0

)
= ρ(σ2σ2) —— Pauli x (6.1.6)

Y =

(
0 −i
i 0

)
= ρ(σ1σ1σ

−1
2 σ−1

2 ) —— Pauli y (6.1.7)

Z =

(
1 0
0 −1

)
= ρ(σ1σ1) —— Pauli z (6.1.8)
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If one were to have 2 qubits, then we require 6 anyons (the last being 1) and we choose the
basis |00⟩ = e1σ1σ1σ1, |01⟩ = e1σψσ1σ1, |10⟩ = e1σ1σψσ1, and |11⟩ = e1σψσψσ1. Then for
ϱ : B5 → U(4),

ϱ(σ1) = e
iπ
8 diag(−1,−1, i, i) (6.1.9)

ϱ(σ2) =
e

iπ
8

√
2


1 0 i 0
0 1 0 i
i 0 1 0
0 i 0 1

 (6.1.10)

ϱ(σ3) = e
iπ
8 diag(−1, i, i,−1) (6.1.11)

ϱ(σ4) = −e
iπ
8

√
2


1 i 0 0
i 1 0 0
0 0 1 i
0 0 i 1

 (6.1.12)

ϱ(σ5) = e
iπ
8 diag(−1, i− 1, i) (6.1.13)

And, up to some phase factor, one can write that the CNOT gate and CZ gate, where Z is the
z-Pauli matrix, is:

ϱ(σ−1
3 σ−1

4 σ−1
5 σ3σ4σ3σ1) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 —— CNOT (6.1.14)

ϱ(σ1σ
−1
3 σ5) = diag(1, 1, 1,−1) —— CZ (6.1.15)

Now, despite all these representations for our gates, the Ising anyonic model for quantum com-
puting is not universal. In our basis, the image of the representation of braids into the unitary
matrices is Z

n
2
−1

2 ⋊ Sn [Wan10; FG10].

6.2 Fibonacci Quantum Computation

Recall the following setup for the Fibonacci model. LFib = {1, τ} with τ ⊗ τ = τ2 = 1 ⊕ τ .
We enumerate our well-loved Fibonacci sequence as (Fn)n∈N0

:= (1, 1, 2, 3, 5, . . . ). Given the
general formula from 4.4.1, the dimensionality for our space consisting of n τ type anyons is

dim(V a
n ) =

{
Fn−2 a = 1

Fn−1 a = τ
(6.2.1)

where F−1 = 0. Recall that the dimensionality should be the power of some integer. But the
Fibonacci sequence does not contain many such numbers, if any - let alone small ones. We
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define the notion of leakage as when gates act on the space, but somehow manage to escape the
space. If we require the quantum circuit model to be modelled in the model, we must choose a
computational subspace. We choose the entirety of V 1

n to be such space - that way there is no
leakage into a superspace.

a = 1
τ τ τ τ

. . .

n︷ ︸︸ ︷
V a
n;τ = V a

n

For one qubit, we choose the basis for V 1
4 to be |0⟩ = e1τ1τ1 and |1⟩ = e1τττ1 with the

following braid representations

ρ(σ1) =

(
e

−4πi
5 0

0 e
3πi
5

)
, ρ(σ2) =

(
ϕ−1e

−4πi
5 ϕ−1/2e

−3πi
5

ϕ−1/2e
−3πi

5 ϕ−1

)
(6.2.2)

For n qubits, we choose our computational subspace to be V 1
2n+2 and denote a qubit state

i1i2 . . . in to be e1τai1τai2τ ...ain1 where a0 = 1 and a1 = τ . The following theorem follows
from the Solovay-Kitaev Theorem and from [FLW00; FLW02]

Theorem 6.2.1. Let UL : (C2)⊗n → (C2)⊗n be a quantum circuit in SU(2n) and δ > 0. Then
there is a b ∈ B2n+2 such that |ρ(σ)− UL| < δ, and σ can be computes by a Turing machine
in time O(nk 1

δm ), for some k,m ∈ N.

For 2 qubits, we require 6 anyons on a 4-dimensional subspace of V 1
6
∼= C5. If a gate acts

on a subspace of the whole computational space, then we indeed risk leakage. Take 3 qubits,
i.e., V 1

8
∼= C8. As the model is universal, take the CNOT gate to act on the first 6 anyons. That

is, on the first two qubits. Then there is a leak between V τ
6 and V 1

6 . To get around this, one
may introduce the Jones Representation. This yields a stronger density result, which allows us
to approximate pairs (A,B) ⊂ SU(5) × SU(8) in the Jones representation of V 1

6 ⊕ V 1
6 . In

this setting, if we use the gate CNOT ⊕ 1, then there is no leakage.

6.3 Fault Tolerance

Error arises in QC due to the decoherence of our qubits. That is a given model of QC (except
TQC), the evolution of our computational space is encoded onto local degrees of freedom of
the system. Take HQC for example. Suppose the loop C in the parametric space M encloses
an area, and hence forms a flux ϕ. Perturbations in the loop are allowed in HQC provided that
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approximately the same flux is yielded, so approximately the same phase is also yielded. But
for a big enough perturbation, this fails. So if, for a given model of QC, one were to engineer
the model physically, then the system couples to other unwanted things, such as the environ-
ment. These types of couplings form errors in our quantum computations.

In our topological model, the degrees are freedom are non-locally encoded onto our sur-
faces, so they are insensitive to local perturbations. The information is then encoded in the
non-local degrees of freedom, and so is automatically protected against errors caused by local
interactions with the environment. As Kitaev himself writes, this is ”fault tolerance guaranteed
at the hardware level with no further need of quantum error correction”, [Kit97].

6.4 Recent Advancements

On February 2025, a team from Microsoft released a paper discussing a new quantum central
processing unit (CPU) that they have engineered called Majorana 1 [Aas+25]. They used
properties from superconductors to create a type of particle called a Majorana fermions. These
fermions are laid out on wires and it turns out that they exhibit topological properties, such as
fault-tolerance, to carry out computations - modelled using Ising anyons . We present a very
brief overview of how superconductors are used to model Ising anyons to carry out quantum
computations.

6.4.1 Majorana Fermions in Superconductors

6.4.1.1 Majorana Fermions

To introduce Majorana fermions, we will be using the language of spinors. Physically, Majo-
rana fermions are defined by the property that they are their own anti-particle. For a more com-
prehensive description of these fermions, refer to Chapter 36 of [Sre07]. Let ψ : R1+1 → C2

be a left-handed spinor field. The Lagrangian density for ψ is

L[ψ] = iψ†(σ̄µ∂µ)ψ − m

2
(ψψ + ψ†ψ†), (6.4.1)

where m ∈ R is the mass of the particle. The equations of motion that correspond to Equation
6.4.1 according to the least action principle are:(

mδa
c −iσµaċ∂µ

−iσ̄µȧc∂µ mδȧċ

)(
ψc
ψ†ċ

)
= 0. (6.4.2)

Note that each entry in the matrix is a 2 × 2 complex matrix, indexed by a and c, and the
Majorana field Ψ :=

(
ψc ψ†ċ)T has four entries. We can condense this by defining the γ
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matrices:

γµ :=

(
0 σµaċ

σ̄ȧcµ 0

)
=

(
0 σµ

σ̄µ 0

)
. (6.4.3)

So we can rewrite Equation 6.4.2 in the following form, commonly known as the Dirac equa-
tion:

(−iγµ∂µ +m)Ψ = 0. (6.4.4)

Now, consider two left handed spinor fields ψ1, ψ2 : R → R with the Lagrange density as:

L[ψ] =
∑
i=1,2

ψ†
i (σ̄

µ∂µ)ψi −
m

2
(ψiψi + ψ†

iψ
†
i ). (6.4.5)

This Lagrangian is invariant under the following SO(2) transformation,(
ψ1

ψ2

)
→
(

cosα sinα
− sinα cosα

)(
ψ1

ψ2

)
, (6.4.6)

where α ∈ R. We get an equivalent description by defining χ, ξ : R → C by

χ =
1√
2
(ψ1 + iψ2), (6.4.7)

ξ =
1√
2
(ψ1 − iψ2). (6.4.8)

The Lagrangian density, in terms of these new fields, is now

L = iχ†σ̄µ∂µχ+ iξ†σ̄µ∂µξ −m(χξ + ξ†χ†), (6.4.9)

and similarly, we can obtain equations of motion like in equation 6.4.2:(
mδc

a −iσµaċ∂µ
−iσ̄µȧc∂µ mδȧc

)(
χc
ξ†ċ

)
= 0. (6.4.10)

Here, we yield the Dirac field Φ :=
(
χc ξ†ċ

)T . Observe that the SO(2) transformations act
on χ and ξ as follows:

χ→ e−iαχ, (6.4.11)

ξ → e+iαξ. (6.4.12)

Define an operator called the charge conjugation operator C which satisfies the property:

χC(x) = C−1χ(x)C = ξ(x), (6.4.13)

ξC(x) = C−1ξ(x)C = χ(x). (6.4.14)
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Additionally, it follows from Equations 6.4.7 and 6.4.8 that we can write Majorana fields in
terms of the Dirac fields by

ψ1 =
1√
2
(χ+ ξ), (6.4.15)

ψ2 =
−i√
2
(χ− ξ). (6.4.16)

In this way, it is clear that these Majorana fields satisfy the property that they are their own
anti-particle. That is, ψCi = ψi, for i = 1, 2. In a physical interpretation, Dirac fields represent
Dirac fermions (spin 1/2 particles such as electrons), and Majorana fields represent Majorana
fermions.

6.4.1.2 Superconductors

Physically, a superconductor is a material that conducts electricity with no electrical resistance
when below a certain “critical temperature”. In this discussion, we are concerned with how one
prepares the superconductor to physically realise Majorana fermions (MFs), which are compu-
tationally modelled by Ising quantum computation. A more detailed description of the physical
mechanisms behind this discussion is provided here [Lut10].

By some physical mechanism consisting of a quasiparticle called a phonon, one can couple
electrons in superconductors to form a Cooper pair. A hole is another type of quasiparticle,
representing the absence of an electron. They are usually depicted as positrons — the anti-
particle of an electron. By coupling a hole with a Cooper pair in a superconductor, the hole
can be occupied by either electron in the Cooper pair. So overall, we have an “electron” from
fusing two electrons with a hole. But we do not know which electron occupied the hole. For
either electron then, it is in an equal superposition of fusing with the hole, or not. We can
“correspond” the state of not fusing with the hole with ξ and the state of fusing with the hole
with χ. That way, it is clear to see that we have made two MFs.

Moreover, MFs in this setting are modelled by Ising anyons, where we take the MFs to be
the Ising anyon σ. Recall that MFs are their own anti-particle. So they can fuse to the vacuum.
But we have also demonstrated that they can fuse to form a Dirac fermion. This is well-aligned
with the non-trivial fusion rule for Ising anyons, σ2 = 1 ⊕ ψ. We assign the fusion of two
MFs to the vacuum anyon 1 with |0⟩, and |1⟩ for a Dirac fermion ψ. In Chapter 6 of [Pac12],
they demonstrate that one can derive the F and R matrices given in Equation 4.4.12 using the
Kitaev honeycomb model.

A more primitive model than the honeycomb model is the Kitaev toy model [Kit01]. Con-
sider five MFs, each coupled to another MF due to their prior coupling as Cooper pairs. In this
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Figure 6.2: Visual description of Kitaev’s toy model. The black dots represent MFs and the
boxes around them show which MFs are paired together to form an ordinary Dirac fermion, an
electron.

Figure 6.3: A rearangement of the boxes from Figure 6.2

model, we have the following arrangements of both fermions, illustrated in Figure 6.2. Then
by “pushing the arrangements of boxes across” 1, we are able to isolate two MFs on either
side and fuse them - as illustrated in Figure 6.3. In having multiple of these arrangements,
we can take the MFs on either side and exchange them, adiabatically, to yield quantum gates.
For example, consider two lots of the arrangement given in 6.3, placed on a line. Then if we
adiabatically exchange the two adjacent MFs, as in 6.4, then in fact this braiding corresponds
to the Hadamard gate H as given in Equation 3.1.6 [Lut10].

1This model is subject to the BCS Hamiltonian. Cooper pairs correspond to ground states in the BCS Hamilto-
nian, but the electron that MFs fuse to are an excited state. This inaccuracy allows us to shift the boxes [Zag12].

Figure 6.4: Time passes from the bottom going up. Enumerate the points left to right, (1 −
2, 3 − 4). Label the fusion of the left pair as A, and the right pair as B. At the top we yield
(1− 3, 2− 4), due to the braiding in the middle.
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