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Abstract

We give an exposition of some topics pertaining to the moduli of vector bundles over algebraic curves.
This includes a construction of the moduli space of stable bundles using geometric invariant theory, a
proof of the Chern correspondence and a discussion of Donaldson’s proof of the Narasimhan-Seshadri
theorem.
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Introduction

Classification problems are arguably the most important ones in geometry, and the fact that the objects
which one is trying to classify are oftentimes identified canonically and bijectively with points in a
geometric space has been known for the majority of the 20th century. For example, Chow and van
der Waerden introduced the famous Chow variety, which may be thought of as the space of effective
cycles of a given codimension and degree over some projective space, in their 1937 paper [7]. This is
the idea of a moduli space, a space whose points are in natural bijection with the objects that one is
trying to classify.

There are various reasons a moduli space may not exist, for example a jump phenomenon is,
roughly speaking, when there are certain badly-behaved isolated objects. Such is the case for the
moduli problem of vector bundles. However, in his ICM talk in 1962 ([29]), Mumford first announced
the definition of a stable vector bundle on a given curve X over an algebraically closed field k of
characteristic zero, and declared that the space of stable bundles of signature (n, d) (i.e. rank n
and degree d) has the structure of a “natural” quasiprojective variety, say V s

n,d. Since then, stable
bundles have been studied extensively, for example in the case k = C, Narasimhan and Seshadri
defined a canonical bijection between the C-points of V s

n,0 and irreducible U(n) representations of
the fundamental group π1(X) ([31, Corollary 1]), and Seshadri later gave a complete and detailed
construction of the moduli space V s

n,d as well as its compactification ([40]).
Seshadri’s construction makes heavy use of Mumford’s geometric invariant theory (or GIT),

which at its core is a method for taking quotients in algebraic geometry, but finds fundamental appli-
cations in moduli theory. For example, it was used by Mumford ([28, §7.4]) to show that the coarse
moduli space of (complete nonsingular) curves of genus g is quasiprojective, which contributed to
him being awarded a Fields medal in 1974.

Since the introduction of the subject in 1965 (via [28]), GIT has been developed extensively, and
surprising links, for example to symplectic geometry, have been found. As a concrete example, the
Kempf-Ness theorem ([30, Theorem 8.3]) relates GIT quotients with symplectic quotients constructed
through symplectic reduction. In similar fashion, Donaldson found an infinite-dimensional analogue
of this ([8]) which gives a map between stable vector bundles and flat unitary connections, and this
turns out to give an alternative proof of the theorem of Narasimhan and Seshadri.

These ideas have now been extended to a great degree, for example stability has been defined not
just for coherent sheaves on a projective variety ([24]), but as far as for vector bundles on the Fargues-
Fontaine curve ([11, II.2.4]), and the correspondences between stable bundles, representations of the
fundamental group and flat connections have evolved into, for example, the Kobayashi-Hitchin cor-
respondence ([48]) and the non-abelian Hodge correspondence ([43]).

This thesis aims to present selected topics in the theory of the moduli of stable bundles over a
curve to the reader who is familiar with the basics of scheme theory. It is split into two parts, giving
an algebraic and an analytic construction of this moduli space.
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2 CONTENTS

In Part I, we will be taking a solely algebraic look at this problem, working over an algebraically
closed field k of characteristic zero and constructing the space algebraically. Chapter 1 introduces the
basics of moduli spaces and includes two detailed examples to illustrate the strategies and difficulties
one might encounter in this area of mathematics. One of these is a method of constructing the j-line
for elliptic curves (which, to the author’s knowledge, is not found in the literature) that additionally
serves to motivate GIT, the content of Chapter 2. We will only be looking at the very basics of GIT
in this thesis, sufficient for our applications, but this will include a proof of the Hilbert-Mumford
criterion for SLm which aims to combine the utility of the original abstract proof by Mumford ([28,
pp. 53-54]) with the intuition of the more elementary proof found in ([27, pp. 216-218]) to give a
less hands-on but still quite concrete and easy-to-understand proof. Finally, Chapter 3 constructs the
moduli space as the stable locus of a projective GIT quotient of a Quot scheme, but in contrast to
Seshadri’s construction, we will be using the construction of Le Potier-Simpson ([36], [42]).

In Part II, we adopt an analytic approach and work over C. We reinterpret the problem of classify-
ing vector bundles of a given signature as classifying holomorphic structures on a given smooth vector
bundle, and using the Chern correspondence, relate this to the space of unitary connections. We then
relate stability to flatness of the corresponding connection, giving an overview of Donaldson’s paper
[8] before finally constructing the character variety of the fundamental group as a topological space,
and using the correspondences to directly topologise the moduli space of stable bundles.

We will assume familiarity with the basic definitions and results of scheme theory, such as found
in chapters II and III of Hartshorne [17]. Key resources for Part I include the lecture notes by Hoskins
[20], which form the backbone of the entire part, the lecture notes by Le Potier [36], Mumford’s book
[28] and the standard references in algebraic geometry such as Hartshorne [17] and Vakil [49]. Part II
uses Well’s book [51], the book by Griffiths-Harris [13] and of course Donaldson’s paper [8]. Several
theses written by (former) students were also used by the author, their content inspiring several ideas
used across this thesis. These theses are [26], [34], [35], [38] and [45].



List of Notation and Conventions

X ,Y Spaces (usually schemes or manifolds).
A,B Rings (always commutative and with identity).
Adeg d,Mdeg d The degree d-component of a graded ring or module.
k A field.
X(A) The set of A-valued points (where A is a ring) of the scheme X .
Sch The category of schemes.
Sch/k The category of schemes over some field k.
FTSch/k The category of schemes of finite type over some field k.
Var/k The category of varieties over the field k.
Sets The category of sets.
OX , OY , OS Structure sheaves for locally ringed spaces X,Y or S.
E ,F ,G Sheaves (usually coherent or locally free) on some scheme/manifold.
Ep The stalk of the sheaf E at p.
OX,p The stalk of OX at p.
E ⊆ F E is a subsheaf of F .
E⊗r The r-fold tensor product of E .
Er The r-fold direct sum of E .
Hom(E ,F), End(E) The sheaf of homomorphisms from E to F (of endomorphisms of E).
Hom(E ,F), End(E) The group of homomorphisms from E to F (of endomorphisms of E)
E∨ The dual sheaf of the locally free sheaf E . Equal toHom(E ,OX).
Γ(U,F) The space of sections over the open set U of the sheaf F .
Γ(F) The space of global sections of the sheaf F .
L A line bundle/invertible sheaf.
L(D) The line bundle associated to a divisor D.
M̃ , M∼ The quasicoherent sheaf defined by the module M .
H i(X,F),H i(F) The i-th cohomology of the sheaf F (on the space X).
hi(F) The dimension, as a vector space, of the cohomology H i(F).
χ(F) The Euler characteristic of the coherent sheaf F .
SpecA The spectrum of the ring A.
ProjA The projective scheme associated to the graded ring A.
An Affine n-space over some field k that will be clear from context.
Pn Projective n-space over some field k that will be clear from context.
OPn(m) The m-fold tensor product of the twisting sheaf of Serre on Pn.
O(m), OX(m) The m-fold tensor product of some very ample line bundle (on X).
ωX The canonical bundle on X .
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4 CONTENTS

P The property of smoothness or holomorphicity.
E,F,G Smooth vector bundles.
TX The real smooth tangent bundle on X .
T 1,0
X , T 0,1

X The holomorphic and anti-holomorphic tangent bundles, respectively.
TX The holomorphic tangent bundle on X .
Ωp The sheaf of smooth p-forms on some manifold.
Ωp,q The sheaf of smooth (p, q)-forms on some manifold.
∂̄ The (0,1)-component of the exterior derivative.
∂ The (1,0)-component of the exterior derivative.
∇ A connection on some vector bundle.
ωα The local matrix of 1-forms associated to some connection.
Θ The curvature of some connection.
∂̄E , ∂̄E Dolbeault operators on some smooth bundle E.
∂E , ∂E The (1,0)-component of a connection on some smooth bundle E.
H i

DR(X) the i-th de Rham cohomology group of X .
vol The volume form on some manifold.
π1(X) The fundamental group of some connected manifold X .
⋆ The Hodge star (with respect to a given volume form).
diag(a1, ..., an) The diagonal matrix with entries the ai.
diag(a) The diagonal matrix with constant entry a of some rank clear from context.

In Part 1, our conventions will mostly follow Hartshorne [17], so in particular, rings will always
be commutative with identity and ring homomorphisms will take the identity to the identity. A
variety will mean an integral scheme, separated and of finite type over some base field k. A curve will
mean a variety of dimension one. One difference between this thesis and Hartshorne is that vector
bundles will be identified with their sheaf of sections (so for example, the tautological bundle on
Pn will be identified with OPn(−1)). In particular, the correspondence between vector bundles and
locally free sheaves will be covariant. We will completely use the terms “locally free sheaf” and
“vector bundle” interchangeably under this identification. We will also adopt the convention that the
productX×Y will always mean the fibred product over k, where k is some base field from context.

In Part II, our conventions will not follow any particular source. On a Riemann surfaceX , we will
adopt the usual orientation given by dx ∧ dy = idz ∧ dz̄ for any holomorphic coordinate z = x + iy.
Conjugation of g ∈ G by x ∈ G will mean gx ∶= x−1gx, where G is some group. By a path in X , we
will mean a continuous map γ ∶ [0,1]→X . Paths are usually piecewise smooth. To avoid confusion,
we will avoid using the term “curve”. A loop is a path that starts and ends at the same point. If γ1, γ2
are paths, then γ2 ⋅ γ1 will mean γ2 after γ1. Complex inner products will be linear in the first entry.

Finally, 0 is not a natural number.



Part I

Algebraic Theory
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Chapter 1

Moduli Theory

Commonly, the solution to a classification problem in geometry (especially algebraic geometry) in
which the variation between objects is “continuous” rather than discrete takes the form of a moduli
space which, roughly speaking, is a geometric space whose points are in bijection with equivalence
classes of the objects we are classifying. We begin with a very informal example, to illustrate the sort
of thing we are looking for:

Example 1.0.1. Consider the set of all circles in R2, up to equality. A circle is uniquely determined
by its centre and its radius, and hence the set of circles is in natural 1-1 correspondence with the
set M = R2 × R>0 (we are discounting circles of radius zero), with the R2-component representing
its centre and the R>0-component representing its radius. Written explicitly, we have a bijection
M → {circles in R2} given by

(a, b, r)↦ {(x, y) ∈ R2 ∣ (x − a)2 + (y − b)2 = r2},

and in particular we observe that continuous variation inM in some way is identified with continuous
variation of circles.

Now that we have a rough idea of what we are looking for, we make our informal definition:

Informal Definition 1.0.2. A naı̈ve moduli problem is a pair (M,∼) where M is a collection of
objects and ∼ is an equivalence relation onM. We will often just denote the problem byM, and we
often assume without loss of generality (for example, by replacingM byM/ ∼) that the equivalence
relation is equality. A naı̈ve moduli space ofM is a geometric space M equipped with a bijection
η ∶ (M/ ∼)→M .

Firstly, observe that “geometric space” is undefined in general, which is why this is an informal
definition. But even if we insist that a geometric space is a (smooth/Riemannian/Kähler) manifold
or a scheme (or a stack), this is still not a very useful notion to work with, since it is literally just
a question of cardinality; indeed, a moduli problem M with cardinality 2ℵ0 always has a moduli
space, and in fact any manifold or variety of positive dimension over C could be one such moduli
space! Hence we have to insist that η has to be “natural” in some way. We dedicate this chapter into
formalising and studying this last condition in the context of algebraic geometry.

Remark 1.0.3. We will also encounter naı̈ve moduli spaces which do not fall under this formalism; in
fact this is the entire content of Part II. In these cases, our construction will be very ad-hoc: we will
takeM as a set, and endow it with a “natural” (topological/smooth/variety etc.) structure, and define
our resulting naı̈ve moduli space M as the moduli space ofM.

7



8 CHAPTER 1. MODULI THEORY

1.1 The Functor of Points

Let X be a scheme over a base scheme T . We make the following definition:

Definition 1.1.1. Let S be another T -scheme. An S-valued point, or simply S-point of X is a T -
morphism p ∶ S →X . If S is affine, equal to SpecR then an S-valued point will be called anR-valued
point. The set of R-valued points of X will be denoted X(R).

This is perhaps a weird definition to make, since X already has an underlying topological space,
so we already have the notion of a “point” of X . To make some sense of it, we consider the following
examples:

Example 1.1.2. Let T = SpecA for some noetherian ringA, letR be anA-algebra, let I = ⟨f1, ..., fr⟩
be an ideal of A[x1, ..., xn] (the noetherian hypothesis is just so that I can be finitely generated), and
let X = SpecA[x1, ..., xn]/I . Then

X(R) = {a = (a1, ..., an) ∈ Rn ∣ fi(a) = 0 for all 1 ≤ i ≤ r}

(where, by abuse of notation, the equality above means “canonical identification”). Indeed, an element
of X(R) is just an A-algebra homomorphism A[x1, ..., xn]/I → R, and this is equivalent to giving a
tuple a = (a1, ..., an) such that fi(a) = 0 for all i, with the homomorphism given by xi ↦ ai.

Example 1.1.3. Retain the notation and hypothesis of the above example. In the special case A =
k for an algebraically closed field k and I is prime, the set X(k) is just the maximal ideals of
k[x1, ..., xn]/I , by Hilbert’s Nullstellensatz; so in other words X(k) is the object that is classi-
cally known as an “affine variety”, as defined in [17, I, 1] (in this thesis, a variety will be an integral
scheme, separated and of finite type over some algebraically closed field). In fact, given any scheme
Y of finite type over k, one can show that the k-points and closed points of Y (as a locally ringed
space) are in bijection, and we will be making use of this identification without further comment.

The set of S-valued points is (tautologically) the set Hom(S,X). As S varies, we get a con-
travariant functor Hom(−,X), known as the functor of points ofX . We will study this functor, firstly
showing that this determines X up to isomorphism. We work in an arbitrary category C, since our
proofs are no more difficult, but the important case is when C is the category of schemes of finite type
over a ground field k.

Proposition 1.1.4. Let X and Y be objects in a category C. Suppose α ∶ Hom(−,X)→ Hom(−, Y )
is a natural isomorphism (that is, a natural transformation with an inverse). Then X ≅ Y

Proof. Consider the map αX ∶ Hom(X,X) → Hom(X,Y ). Then αX(id) is a morphism from X
to Y . Denote this morphism by f . Now applying α to the map f ∶ X → Y we get the following
commutative diagram:

Hom(Y,X) Hom(X,X)

Hom(Y,Y ) Hom(Y,X)

f∗

αY αX

f∗
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where f∗ is the map u ↦ u ○ f . Consider g ∶= α−1Y (id) ∈ Hom(Y,X). The commutativity of the
diagram says that g ○ f = id. Now reversing the roles of X and Y will show that f ○ g = id too, hence
f is an isomorphism.

We now consider the functor category Fun(Copp,Sets), whose objects are contravariant functors
C → Sets and whose morphisms are natural transformations (this is also known as the presheaf
category on C; recall that a presheaf is just a contravariant functor C → Sets). There is a natural
functor C → Fun(Copp,Sets) which sends X to Hom(−,X) and X → Y to the obvious natural
transformation Hom(−,X) → Hom(−, Y ). This functor is known as the Yoneda embedding. The
name is justified by our first corollary to the following proposition:

Proposition 1.1.5 (Yoneda’s Lemma). Let C be a category, let F ∈ Fun(Copp,Sets) be a contravari-
ant functor from C into Sets and let A be an object in C. Then there is a canonical bijection between
the set of natural transformations Hom(−,A)→ F and F (A) given by α ↦ αA(id).

Proof. [20, p. 5].

Before we state our corollaries, recall that a functor F ∶ C→ C′ is fully faithful if for every pair of
objects A,B in C, the induced map HomC(F (A), F (B))→ HomC′(A,B) is a bijection.

Corollary 1.1.6. The Yoneda embedding is fully faithful.

Proof. For any given objects A and B, take F = Hom(−,B) in the above proposition. Then there is
a bijection between the set of natural transformations Hom(−,A) → Hom(−,B) and Hom(A,B),
given by α ↦ αA(id). Fix some α and write f ∶= αA(id). Applying the Yoneda embedding to
f ∶ A → B gives the natural transformation f∗ ∶ Hom(−,A) → Hom(−,B), where for an object X
and φ ∈ Hom(X,A), we have f∗X(φ) = f ○ φ. Taking X = A and φ = id, we observe

f∗A(id) = f ○ id = f = αA(id)

By Yoneda’s Lemma, this means f∗ = α. Conversely, given some f ∶ A → B, we see that f∗A(id) =
f hence the Yoneda embedding induces the bijection between Hom(A,B) and the set of natural
transformations Hom(−,A) → Hom(−,B) described in Yoneda’s Lemma. But the set of natural
transformations Hom(−,A) → Hom(−,B) is exactly the set of morphisms from Hom(−,A) to
Hom(−,B) in the functor category, and hence the embedding is fully faithful.

Remark 1.1.7. In fact, Proposition 1.1.4 follows easily from the above corollary too.

Corollary 1.1.8 (Cayley’s Theorem). Let G be a group. Then G is isomorphic to a subgroup of
Sym(G).

Proof. We can interpret G as a groupoid G with one object, say x, and automorphism group equal to
G. In other words, HomG(x,x) = G. Now HomG(−, x) is the image of x via the Yoneda embedding
in the functor category Fun = Fun(Gopp,Sets), and by the above corollary AutFun(HomG(−, x)) ≅
G. Now each such natural isomorphism induces a bijection of sets HomG(x,x) → HomG(x,x),
in other words an element of Sym(G), and this is clearly a group homomorphism. It is also in-
jective, since by Yoneda’s lemma, a natural transformation Hom(−, x) → Hom(−, x) is completely
determined by its value on x.
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Definition 1.1.9. A contravariant functor is representable if it is in the image of the Yoneda embed-
ding. More precisely, a functor F is representable if there exists an object X such that Hom(−,X) ≅
F as functors. If such an X exists, we say that X represents F .

Of course, a natural question to ask is whether every functor is representable. The answer is an
emphatic NO, and as we will see in the next few sections, finding a (fine) moduli space is equivalent to
finding a representative of a certain Set-valued contravariant functor from Sch. Such a representative
is unique, by Proposition 1.1.4.

1.2 Moduli Problems and Spaces

We will begin by stating our definition:

Definition 1.2.1. Let Sch/k be the category of schemes over a ground field k, and let C be a sub-
category of Sch/k (in this thesis, this will usually be the category FTSch/k of schemes of finite
type over k, or the category Var/k of varieties over k). A moduli problem is a contravariant functor
M ∶ C → Sets. An element of M(S) is known as an (equivalence class of) families over S and
M(S) is the set of families (up to equivalence) over X . For a morphism f ∶ T → S, the induced
morphismM(f) ∶M(S) →M(T ) is known as the pullback map. If Y is in the image ofM(f),
then we say Y is obtained by pullback through f . In the case T = Speck and f is a k-valued point
which we will denote p, we will write Xp ∈M(Speck) forM(p)(X), and we will call Xp the fibre
of X over p. We will often callM(Speck) the underlying naı̈ve moduli problem.

This is obviously a very general definition, but in practice our moduli problems will have a certain
“flavour” to them. This is probably best illustrated by an example:

Example 1.2.2. Consider the problem of classifying 1-dimensional quotient spaces of kn+1. We
will carefully turn this into a moduli problem: firstly, our naı̈ve moduli problem is simply the set of
surjective linear maps kn+1 → k, where two such maps are equivalent if and only if they have the
same kernel, or equivalently, φ ∼ ψ if and only if there is a fixed λ ∈ k∗ such that φ(v) = λψ(v) for
all v ∈ kn+1. This should be the set of families over Speck.

Now let S be a scheme over k. We will define a family over S to be a line bundle L equipped with
a surjection On+1

S → L. Two families are equivalent if and only if they have the same kernel. Now
given a morphism f ∶ T → S and a family L over S, we define the pullback to be f∗(L), and it is not
difficult to check that this satisfies the required conditions. Thus we defineM ∶ Sch/k → Sets as

M(S) ∶= {On+1
S → L}/ ∼

and
M(f ∶ T → S) ∶= (L↦ f∗(L)).

Now observe that if S = Speck, the trivial rank n + 1 vector bundle is exactly kn+1, and hence the
families over Speck are exactly the 1-dimensional quotient spaces of kn, which is what we expect.
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This sets the stage for what most of our moduli problems look like. Firstly, we will state what our
naı̈ve moduli problem is. A family over S will commonly be a morphism X → S (in this case, L is
a line bundle), sometimes equipped with some extra structure, such as a coherent sheaf (in this case,
a surjection On+1

S → L), satisfying some conditions (usually including some sort of flatness), and the
fibres Xp in our definition are literally just the fibres of the morphism.

Remark 1.2.3. This is not the usual definition for a moduli problem. A moduli problem is usually
defined as the data of a family over S for every S and a way to pull them back, to which we associate
the functor

M(S) ∶= {families over S}/ ∼
However, the author did not wish to define it this way, since using this definition it is not possible to
answer the question “what is not a moduli problem?”. As a consequence though, we gain a lot of
things we call “moduli problems”, which would otherwise not be the case.

We may now define our first formal notion of a moduli space, specifically a coarse moduli space:

Definition 1.2.4. Let M ∶ C → Sets be a moduli problem. A coarse moduli space for M is a
scheme M in C equipped with a natural transformation η ∶M → Hom(−,M), known as a moduli
transformation such that the following conditions hold:

(i) ηSpeck ∶M(Speck)→ Hom(Speck,M) is a bijection.

(ii) If N is another scheme and η′ ∶M → Hom(−,N) another natural transformation, there is a
unique morphism e ∶M → N such that

η′S(X) = e ○ ηS(X)

for any scheme S in C and family X over S. Note that this means M is unique.

We unpack this definition a little. Firstly, condition (i) states that ηSpeck induces a bijection be-
tween the k-points of M and the underlying naı̈ve moduli problem, which is as expected (one could
consider ηSpeck ∶M(Speck)→M(k) the underlying naı̈ve moduli space). The functorial condition
is a little more interesting: let S be a scheme in C. For a k-point p, we have the following diagram:

M(S) Hom(S,M)

M(Speck) Hom(Speck,M)

η

M(p) p∗

η

Let X be a family over S. Then we get a morphism ηS(X) ∈ Hom(S,M); call this f . The commu-
tativity of the diagram tells us that the fibre Xp over p ∈ S(k) is equal to the object inM(Speck)
corresponding to the point f(p) ∈ M(k). Finally, the universal property makes M initial with this
property, fixing it up to isomorphism.

Of course, a natural question to ask is whether or not either of the two conditions above are
obsolete. The answer is no, and we will see why in various contexts.
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Example 1.2.5. Let us now show that Pn is the coarse moduli space of Example 1.2.2. Let S be a
scheme, and letOn+1

S → L be a family, so in other words the images of ei ∈ Γ(S,OS) generate L. We
define ηS(L) as follows: let U = SpecA be a sufficiently small open affine subset of S, specifically
one such that L∣U ≅ OS ∣U . Then the images of ei in A via L generate A. Now let Ui = SpecA[e−1i ]
be the corresponding open affine subset, and we define a morphism Ui → Pn by composing the map
Ui → Speck[x0/xi, ..., xn/xi] ≅ An associated to the ring homomorphism xj/xi ↦ ej/ei ∈ A with
the inclusion An → Pn. It is not hard to check that this glues, and since the ei generate A, it follows
that the Ui cover U . Hence we have a morphism U → Pn. Now covering X with these open affines,
it is clear that this glues on overlaps, and hence we have a morphism ηS(L) ∶ X → Pn. The key
property of ηS(L) is that this is the unique morphism X → Pn such that ηS(L)∗(On+1

Pn → OPn(1))
is equal to our family; or more precisely the following diagram commutes:

On+1
S ηS(L)∗(On+1

Pn )

ηS(L)∗(OPn(1))

=

and the kernel of the diagonal morphism above is equal to ker(On+1
S → L). This is shown in the

proof of [17, II Theorem 7.1].
We now have to check that ηSpeck is bijective. Firstly, we show that it is surjective; so let

p = [p0 ∶ ... ∶ pn] be a k-point, and assume without loss of generality p0 ≠ 0. Then p factors
through the open affine subset Speck[x1/x0, ..., xn/x0] as the dual of the k-algebra homomorphism
k[x1/x0, ..., xn/x0]→ k sending xi/x0 ↦ pi/p0. Then it is clear from the definition of η in the above
paragraph that the family L ∶ ei ↦ pi/p0 satisfies η(L) = p. This proves that ηSpeck is surjective. To
prove that it is injective, suppose two families L ∶ ei ↦ pi and L′ ∶ ei ↦ p′i satisfy

[p0 ∶ ... ∶ pn] = ηSpeck(L) = ηSpeck(L′) = [p′0 ∶ ... ∶ p′n].

Then pip′j = p′ipj for all i, j, hence kerL = kerL′, so in particular L and L′ are equivalent, as desired.
Finally, we show the universal property, starting with existence. Let N be another scheme over

k and η′ ∶ M → Hom(−,N) another natural transformation. Applying to Pn, we obtain a map
η′ ∶ M(Pn) → Hom(Pn,N), and the natural family On+1

Pn → OPn(1) induces a map η′(On+1
Pn →

OPn(1)) ∶ Pn → N . We claim e ∶= η′(On+1
Pn → OPn(1)) satisfies the desired property. Indeed, let

S be any scheme, and chasing On+1
S → L a family. Then f = η(On+1

S → L) ∶ S → Pn satisfies
f∗(On+1

Pn → OPn(1)) = On+1
S → L. The following diagram commutes:

M(Pn) M(S)

Hom(Pn,N) Hom(S,N)

f∗

η′ η′

f∗
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and On+1
Pn → OPn(1) in the above diagram, we find

η′(On+1
S → L) = e ○ f = e ○ η(On+1

S → L),

as desired. Uniqueness is immediate, since any such e satisfies e ○ id = η′(On+1
Pn → OPn(1)).

We will now show that the second condition (the universal property) in the definition of a coarse
moduli space is not obsolete. To this end, we take inspiration from the exercise on [16, p. 4] and
consider the moduli problem of one-dimensional subspaces of k2, (which, if we consider the quotient
of such a one-dimensional subspace, is just the moduli problem above for n = 1), and suppose k is
algebraically closed. As we saw above, the moduli space for this problem is P1. However, observe that
there is a natural map from P1 = Projk[x0, x1] to the cuspidal cubic Y = Projk[x, y, z]/y2z = x3,
dual to the ring homomorphism x ↦ x20x1, y ↦ x30, z ↦ x31 (on the level of k-points this is just
[p ∶ q] ↦ [p2q ∶ p3 ∶ q3]). In particular, this map is bijective on k-points (in fact, a homeomorphism),
and so composing the η above with P1 → Y , we have a natural transformation M → Hom(−, Y )
such that the map M(Speck) → Y (k) is bijective. However, the cuspidal cubic is not the coarse
moduli space, because P1 is, and coarse moduli spaces are unique up to isomorphism.

In fact, Pn satisfies a stronger condition above, in that every family is a unique pullback ofOn+1
Pn →

OPn(1). This is formalised as follows:

Definition 1.2.6. Let M be a moduli problem. A scheme M is a fine moduli space for M if M
representsM.

Note that such an M is unique, by Proposition 1.1.4. Also, as expected, a fine moduli space is
also a coarse one:

Proposition 1.2.7. If M is a fine moduli space for M, then for any representation η ∶ M →
Hom(−,M), the pair (M,η) is a coarse moduli space.

Proof. The first condition in the definition is satisfied automatically. Now let N be another scheme
and η′ ∶ M → Hom(−,N) another natural transformation. Composing with η−1, we get a natural
transformation Hom(−,M)→ Hom(−,N). Since the Yoneda embedding is fully faithful (Corollary
1.1.6), this is induced by a unique e ∶M → N .

Definition 1.2.8. LetM be a moduli problem with coarse moduli spaceM and moduli transformation
η. A tautological family is a family X ∈ M(M) such that for every p ∈ M(k), we have Xp =
η−1Speck(p). If M is a fine moduli space, the family η−1M (id) is known as the universal family.

Proposition 1.2.9. Let X denote the universal family. Then it satisfies the following universal prop-
erty: if Y is a family over S then there exists a unique morphism f ∶ S →M such that Y =M(f)(X).
In particular, taking S = Speck, we see that X is tautological.

Proof. Since the moduli transformation η is an isomorphism and hence ηS is bijective, we see that Y
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corresponds uniquely to a morphism f ∶ S →M . The following diagram commutes:

Hom(M,M) Hom(S,M)

M(M) M(S)

f∗

η η

The result then follows by chasing id ∈ Hom(M,M) in the diagram.

In fact, it is not hard to show the converse is true: if X is a family over a coarse moduli space M
such that every family is pulled back from X in a unique way, then M is fine and X is universal.

Example 1.2.10. The family On+1
Pn → OPn(1) is universal for Example 1.2.5, as every family is

obtained uniquely by pullback from this family. In particular, Pn is fine.

Example 1.2.11. Consider the moduli problem of classifying curves isomorphic to P1, up to isomor-
phism. Of course, there is only one, namely P1 itself. We define a family of genus 0 curves over S to
be a flat proper morphism X → S such that for any p ∈ S(k) we have

Xp ∶=X ×S Speck ≅ P1

and if f ∶ T → S is a morphism and X → S is a family, we define f∗(X) =X ×S T . This defines our
moduli problem. By [18, Proposition 25.1] the coarse moduli space for this is just Speck, and it is
easy to see that P1 → Speck is the tautological family. However, there is no universal family, since
there exist nontrivial ruled surfaces ([17, V, 2]).

Remark 1.2.12. Note that proving Speck is the moduli space in the above example is actually non-
trivial. Indeed, it is obvious that the moduli space, if it exists, is a one-point scheme and is thus
necessarily equal to the spectrum of a local Artinian ring. However, in order to prove it is reduced,
one must make sure that every family over a local Artinian ring is trivial; this follows from [18,
Lemma 25.2].

1.3 Examples

We will now study in detail two examples of moduli problems and spaces. Both will illustrate inter-
esting phenomena, and discuss concepts which will be used as motivation later on in the thesis.

1.3.1 Conics in P2

Our first example is the problem of conics in P2 = Projk[x, y, z]. In particular, we are considering not
just the conic, but the embedding in P2 as well (some texts will refer to a moduli space parameterising
objects equipped with an embedding a parameter space, but we will not make that distinction here).
We will work with schemes of finite type over k, and further we make the assumption that k is
algebraically closed. To formalise:
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Definition 1.3.1. A conic is a closed subscheme of P2, cut out by a homogeneous polynomial of
degree 2 (in particular, we are allowing degenerate conics). Two conics are equivalent if and only
if they are equal as subschemes of P2. Now let S be a scheme of finite type over k. We define a
family of conics over S to be a closed subscheme X ⊆ P2 × S, flat over S via the projection, whose
scheme-theoretic fibres at k-points are conics in P2. Two families are equivalent if they are equal as
subschemes of P2 × S. Now let f ∶ T → S be a morphism and let X → S be a family over S. We
define the pullback of X along f is the fibred product of the following diagram:

f∗(X) ∶=X ×S T X

T S
f

The moduli problem of conics in P2 is the functorM ∶ FTSch/k → Sets defined by

M(S) = {families over S}

andM maps a morphism f ∶ T → S to f∗ ∶M(S)→M(T ).

The key theorem of this section is:

Theorem 1.3.2. The scheme P5 = Proj[a0, ..., a5] is a fine moduli space for the above moduli prob-
lem, and the family X ⊆ P2 × P5 cut out by the polynomial

a0x
2 + a1xy + a2y2 + a3yz + a4z2 + a5zx

is the universal family.

Following the approach outlined in the exercise [18, Ex. 1.1], we will prove this after some lem-
mas. This approach works for general degree d curves and P(

d+2
2
)−1 in place of P5, but for concreteness

we will work with d = 2. To begin, we have the following:

Lemma 1.3.3. Let S be a scheme of finite type over k, and let X ⊆ P2 × S be a family over S.
Then S can be covered by open affines {U = SpecA} such that the restricted family X ∣U ⊆ P2

A ∶=
ProjA[x, y, z] is cut out by a single homogeneous polynomial (that is, the homogeneous ideal corre-
sponding to X ∣U as a closed subscheme of P2

A is principal), necessarily of degree 2.

Proof. Write I for the sheaf of ideals of X . We have the following short exact sequence of sheaves
on P2 × S:

0→ I → OP2×S → OX → 0, (1.1)

where OX is considered an OP2×S-module. Let p be a k-point of S and let OS,p be the local ring
of p, with maximal ideal mp. Pulling back (1.1) along the morphism SpecOS,p → S and taking the
associated graded objects (see [17, p. 118]), we have the following sequence of graded OS,p[x, y, z]-
modules

0→ Ip → OS,p[x, y, z]→ Γ∗(OX)⊗OS,p → 0, (1.2)
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which is exact because SpecOS,p → S is just localisation on the level of rings. Now since X is flat
over S, it follows Γ∗(OX)⊗OS,p is flat over OS,p; in particular, we have

Tor
OS,p

1 (Γ∗(OX)⊗OS,p,OS,p/mp) = 0,

and so annihilating mp, the following sequence of graded OS,p/mp[x, y, z] ≅ k[x, y, z]-modules is
also exact:

0→ Ip ⊗ k → k[x, y, z]→ Γ∗(OXp)→ 0,

where Xp is the fibre over p. Since Ip ⊗ k is generated by its degree 2 component, Ip must be too,
and since S is of finite type over k, it follows that the local ring OS,p is noetherian, and hence Ip
is finitely generated as an OS,p[x, y, z]-module, and hence Ip,deg 2 is finitely generated as a OS,p-
module. Finally, since the OS,p/mp-module Ip,deg 2 ⊗ k = Ip,deg 2/mpIp,deg 2 is generated by a single
element, it follows by Nakayama’s lemma that Ip,deg 2, as an OS,p-module is also generated by a
single polynomial of degree 2.

Now let U ′ = SpecA′ ⊆ S be an open affine subset. Since S is of finite type over k, its closed
points are dense, so we may assume U ′ contains p, so that mp may be considered a maximal ideal of
A′ and OS,p = A′mp

. Then, analogous to (1.2), we have the following short exact sequence of graded
A′[x, y, z]-modules:

0→ IA′ → A′[x, y, z]→ Γ∗(OX ∣U ′ )→ 0, (1.3)

Now as established, Ip is generated by a polynomial of the form

f = s0
t0
x2 + s1

t1
xy + ... + s5

t5
zx,

where si, ti ∈ A′ and ∏ ti ∉ mp, and hence by the universal property of localisation, the pullback of
(1.2) from (1.3) along A′ → OS,p factors uniquely through A′ → A = A′[∏ t−1i ] and it is clear that IA
is generated by f , as desired.

Now that we know that any family is locally cut out by a single polynomial, the plan of attack
is clear: we map the coordinates of P5 to the coefficients of our polynomial. In order for this to be
possible, we present the next result:

Lemma 1.3.4. Let A be a finitely generated k-algebra, and suppose X ⊆ P2
A is a flat family over

A cut out by f = s0x2 + ... + s5zx ∈ A[x, y, z]deg 2. Then s0, ..., s5 generate A. Conversely, given
s0, ..., s5 that generate A, the subscheme X ⊆ P2

A cut out by f is a flat family (and hence X is flat
over P5).

Proof. Observe that for every d ≥ 0 the A-module (A[x, y, z]/f)deg d must be flat. In particular, the
map

I ⊗ (A[x, y, z]/f)deg 2 → (A[x, y, z]/f)deg 2
is injective, where I = ⟨s0, ..., sn⟩. This means s0 ⊗ x2 + ... + s5 ⊗ zx = 0 in I ⊗ (A[x, y, z]/f)deg 2,
or in other words there is some λ ∈ I such that (1 − λ)f = 0 in A[x, y, z]. Now if I ≠ A, then it is
contained in some maximal ideal, say m, and localising A at m, we deduce (1 − λ)f = 0 in Am. But
1−λ is a unit in Am and hence f = 0 in Am, which is absurd. Hence I = A. The converse is clear.
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In particular, the si ∈ A may be considered as global sections of SpecA, which generate the
structure sheaf, and hence by Example 1.2.5, this corresponds uniquely to a morphism SpecA → P5

such that OP5(1) pulls back to OSpecA, and ai ∈H0(P5,OP5(1)) pull back to si. It is then clear that
the family X pulls back to the family ProjA[x, y, z]/⟨f⟩.

Proof of Theorem 1.3.2. Let S be a scheme, and X ⊆ P2 × S a family. Cover X with open affine
subsets Ui = SpecAi such that X ∣Ui ∶=X ×S Ui ⊆ P2

Ai
is cut out by a single polynomial. Then by our

previous discussions, we have a unique collection φi ∶ Ui → Pn such that φ∗i (X) = X ∣Ui , and hence
it suffices to show that these glue. To this end, suppose Ui and Uj are two open sets as above, and
suppose X ∣Ui and X ∣Uj are defined by fi and fj . Then the restriction of X ∣Ui and X ∣Uj to Ui ∩ Uj

agree; in other words they are the same subscheme of P2 × Uij . But that means the images of fi and
fj agree in Aijk[x, y, z] for any affine open Uijk = SpecAijk ⊆ Ui ∩ Uj , and hence φi and φj also
agree, which means the φi glue, as desired.

Remark 1.3.5. Note that we are crucially not defining conics up to abstract isomorphism (or even up
to projective automorphisms); indeed consider the following family over A1:

X = Projk[t, x, y, z]/⟨tyz − x2⟩→ A1 = Speck[t],

where k[t, x, y, z] is graded in x, y, z (in other words, t is degree 0). Flatness, which is equivalent to
torsion-freeness, is obvious. For every nonzero λ ∈ A1(k), the fibre Xλ is a nondegenerate parabola
defined by λyz = x2, and in particular is isomorphic to P1 via the 2-uple embedding followed by
scaling. However, the fibre X0 is the degenerate conic defined by x2 = 0, which is clearly not
isomorphic to the P1 (indeed, the former is not reduced but the latter is). This is an example of a jump
phenomenon, which is an obstruction to the existence of a moduli space: if a coarse moduli space
M exists, there would be a morphism A1 → M which maps each nonzero k-point of A1 to some
s ∈ M(k), but maps 0 to some s′ ≠ s. In particular, the preimage of the closed point s would be a
dense and proper subset, which is clearly impossible, and hence no coarse moduli space exists.

This is now a good time to show that the first condition in the definition of a coarse moduli space
is also not obsolete, which we take from the exercise [16, Ex. 1.7]. Consider the moduli problem
of reduced conics in P2, up to isomorphism, and make the further assumption chark ≠ 2. As
we know from the above remark, the family Projk[t, x, y, z]/⟨xy − tz2⟩ over Speck[t] exhibits a
jump phenomenon, and so there is no coarse moduli space. However, we claim that M = Speck,
with the natural transformation η sending a k-scheme S to the morphism S → Speck is a natural
transformation which satisfies property (ii) of the definition of a coarse moduli space. However,
ηSpeck is not injective, since the nondegenerate conic and the union of two lines are both reduced
conics (in fact, the only two), but Hom(Speck,Speck) = {id}. Since any scheme with property (ii)
is unique, this gives another proof that this moduli problem has no coarse moduli space.

LetN be a scheme equipped with a natural transformation η′ of our moduli problem into Hom(−,N).
We want to show that there exists a unique e ∶ Speck → N such that η′(S) = e○η(S) for any relevant
scheme S. Uniqueness is obvious, indeed, any such e must also satisfy this property for families of
nondegenerate conics, and since a family of nondegenerate conics is a family of nonsingular complete
rational curves, uniqueness is guaranteed by Example 1.2.11. We now prove existence, that is, this
e above does satisfy the required property. Let S be a scheme and let X ⊆ P2 × S be a family. As
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above, let U = SpecA be a sufficiently small affine open subset of S, so that X ∣U is cut out by a
single polynomial f = s0x2 + ... + s5zx ∈ A[x, y, z]deg 2 (the difference is here we only care about
X up to isomorphism). Firstly, observe that the degenerate locus of U (that is, the locus where very
fibre is degenerate) is closed; indeed it is defined by the vanishing of the determinant of the following
matrix:

⎛
⎜
⎝

2s0 s1 s5
s1 2s2 s3
s5 s3 2s4

⎞
⎟
⎠
.

In particular, the nondegenerate locus of U , call it U ♭ is open and (applying this to every irreducible
component) dense, and taking the union across all such U , it follows that the nondegenerate locus
of S, say S♭ is dense. Now by Example 1.2.11, we have η′(X ∣S♭) = e ○ η(X ∣S♭), and since S♭ is
dense and the image of S♭ in N is a closed point, and moreover η′(X ∣S♭) = η′(X)∣S♭ it follows that
η′(X) = e ○ η(X) too, as desired.

We conclude with a remark. Observe that a family of conics (in the original problem of) may
alternatively be thought of as a family of quotients (or equivalently subsheaves) of OP2 . Indeed, a
conic may be identified with its coherent sheaf of ideals I ⊆ OP . What distinguishes conics (or
indeed degree d curves for any d > 0), is their Hilbert polynomial, a concept which will be discussed
in Chapter 3. In general, given any projective variety X , a coherent sheaf F on X and a numerical
polynomial P ∈ Q[z] (that is, P (n) ∈ Z for all n ∈ Z), there exists a fine moduli space, known as the
Quot scheme of F , often denoted QuotPX(F), parameterising quotients of F with Hilbert polynomial
P . If X = Pn and F = OPn , then the Quot scheme is called a Hilbert scheme; and in particular we
have proven that the Hilbert scheme of P2 with Hilbert polynomial P = 2z + 1 ∈ Q[z] is P5.

1.3.2 Elliptic Curves

Recall our general method in the previous example: we found a candidate space and a candidate
universal family X → M , showed that for a general X → S, there is locally a unique morphism for
an open subscheme U ⊆ S such that X ×S U is pulled back from X, and finally we showed that these
glue. This approach is illustrative of a typical approach for constructing moduli spaces, with some
simplifications of course. The first and most obvious is that a moduli space need not be fine, and thus
finding a candidate universal family is not always possible. Instead, what often happens is that we
look for a locally versal family, that is, an overparameterised (i.e. there are repeated elements) family
X0 → T with the property that for a general X → S, there is an open cover {Ui} of S and for each
Ui a (not necessarily unique, hence “versal” as opposed to “universal”) morphism φi ∶ Ui → T such
that X ×S Ui is the pullback of X0 via φi. One then needs to find a way to contract the isomorphic
fibres of T , which then defines a coarse moduli space. We will illustrate this technique now, in the
context of elliptic curves. Throughout this section, we fix an algebraically closed ground field k of
characteristic neither 2 nor 3.

Definition 1.3.6. An elliptic curve is a complete nonsingular curve X over k of genus 1, equipped
with a distinguished point p0 ∈ X(k). A family of elliptic curves over a scheme S of finite type
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over k is a scheme X equipped with a flat morphism X → S and a section s ∶ S → X such that
for any p ∈ S(k), the fibre Xp is genus 1 curve, which is an elliptic curve with distinguished point
p∗s ∶ Speck → Xp. Two families over S are equivalent if they are isomorphic as S-schemes. It is
clear how families pull back along morphisms of finite type, and so we have the moduli problem of
elliptic curves, which we will denoteM1,1 ∶ FTSch/k → Sets.

A detailed study of elliptic curves will take us too far afield, so we will focus solely on the study of
their moduli space, and for that all we need to know is that for any family (X → S, s), there exists an
open affine cover {Ui = SpecAi} of S such that X ∣Ui can be embedded inside P2

Ai
with an equation

of the form y2z = x3 + axz2 + bz3 (called a Weierstrass cubic) for a, b ∈ Ai, with ∆ ∶= 4a3 + 27b2 a
unit in Ai (∆ is called the discriminant), and s is the constant section [0 ∶ 1 ∶ 0] ∈ X ∣Ui ⊆ P2

Ai
(see

p. 47]Script). Conversely, any Weierstrass cubic with an invertible discriminant is a family of elliptic
curves. In particular, the family over R ∶= k[a, b,∆−1] defined by the above equation, call it X0, is a
locally versal family.

The next question to ask is when are two curves in Weierstrass form equivalent. It turns out that
after an elementary (but tedious) calculation, two families ProjA[x, y, z]/⟨y2z−(x3+p1xz2+q1z3)⟩
and ProjA[x, y, z]/⟨y2z − (x3 +p2xz2 + q2z3)⟩ are isomorphic if and only if there is some invertible
u ∈ A∗ such that p1 = u4p2 and q1 = u6q2 ([41, III, Table 1.2] presents this for individual curves,
but the calculation could easily be adapted for families), with an isomorphism of the form x ↦
u2x, y ↦ u3y (of course, one direction of this is easy, the hard part is showing that any isomorphism
is of this form). In particular, there is a k∗ action on SpecR via automorphisms, dual to the ring
homomorphism

u ⋅ a = u4a, u ⋅ b = u6b,
such that the the orbit of a k-point p consists exactly the points q whose fibre is isomorphic to the
fibre at p.

Lemma 1.3.7. Let η′ ∶M1,1 → Hom(−,N) be a natural transformation. Then

η′(X0) ∶ SpecR → N

is k∗-invariant.

Proof. This follows since the k∗ action on SpecR lifts to X0, and moreover X0 and u ⋅ X0 are
equivalent for all u ∈ k∗.

Our plan of attack is thus clear: we find a scheme M equipped with a natural transformation
η ∶ M1,1 → Hom(−,M) such that η(X0) is initial with respect k∗-invariant morphisms in some
sense. Since any family X → S induces a local morphism to SpecR, one should expect that such an
(M,η) satisfies property (ii) in the definition of a coarse moduli space, and one can then hope that
property (i) is satisfied.

In our quest to find such an M , we make the following definition:

Definition 1.3.8. Let X = Projk[x, y, z]/⟨y2z − (x3 + pxz2 + qz3)⟩ be an elliptic curve. The j-
invariant of X is the quantity

j = 1728 4p3

4p3 + 27q2 .
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Note that this only depends on the isomorphism class of X .

Lemma 1.3.9. The map X ↦ j is a bijection between isomorphism classes of elliptic curves and
k = A1(k).

Proof. We follow the proof in [41, pp. 51-52]. Let X and Y be elliptic curves given by the respective
equations y2z = x3 + p1xz2 + q1z3 and y2z = x3 + p2xz2 + q2z3 and suppose they have the same
j-invariant, that is,

4p31(4p32 + 27q22) = 4p32(4p31 + 27q21).

Then rearranging we find
p31q

2
2 = p32q21.

Now if p1 = 0, whence j = 0, q1q2 ≠ 0, p2 = 0, we find that taking u = (q1/q2)1/6 (any 6-th root will
do) we have

0 = p1 = u4p2 = 0, q1 = (
q1
q2
)q2 = u6q2

as desired. Otherwise, p1 ≠ 0, hence j ≠ 0, p2 ≠ 0, we have

q21 = (
p1
p2
)3q22,

and thus one of the square roots of (p1/p2)3, call it (p1/p2)3/2, satisfies

q1 = (
p1
p2
)(3/2)q2.

Now take u to be any 6-th root of (p1/p2)3/2 (and hence u is a 4-th root of p1/p2), and thus we have

q1 = u6q2 , p1 =
p1
p2
p2 = u4p2,

as desired. This proves injectivity.
To prove surjectivity, let j ∈ k be given. If j = 0, then p = 0, q = 1 will do. Otherwise, take p = 1,

and since k is algebraically closed, there will be a solution for q.

Lemma 1.3.10. Let A be a ring, let k∗ act on R dually to the action on SpecR, and let φ ∶ A→ R a
k∗-invariant ring homomorphism. Then φ factors uniquely through through the inclusion k[j] → R
given by

j ↦ 1728
4a3

4a3 + 27b2 .

Proof. Uniqueness is obvious, since k[j] → R is injective. To prove existence, grade the ring R =
k[a, b,∆−1] with a ∈ Rdeg 2, b ∈ Rdeg 3, and hence observe ∆ = 4a3 + 27b2 ∈ Rdeg 6. Now observe
that u acts on the degree d component of R by u ⋅ f = u2df . In particular, an element f ∈ R is fixed
by the k∗ action (which preserves the grading) if and only if f is degree 0, and hence it suffices to
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identify k[j] (or more precisely the image of the inclusion of k[j]) with Rdeg 0. To this end, firstly
observe that clearly k[j] ⊆ Rdeg 0. For the other inclusion, suppose f ∈ Rdeg 0. Then we may write

f =∑
i≥0

∑
2m+3n=6i

cmn
ambn

∆i
,

where cm,n ∈ k, and all but finitely many vanish. Now since 2m + 3n = 6i, it follows that n is even
and m is a multiple of 3, hence we can write n = 2n′, m = 3n′. Thus

f =∑
i≥0

∑
m′+n′=i

cm′n′
a3m

′

b2n
′

∆i
=∑

i≥0
∑

m′+n′=i
cm′n′(

a3

∆
)m′(b

2

∆
)n′ =∑

i≥0
∑

m′+n′=i
cm′n′(

a3

∆
)m′(−4a

3

27∆
)n′

and observe

(a
3

∆
)m′(−4a

3

27∆
)n′ = (−1)n′

1728i × 4m′ × 27n′ j
i,

and so defining

ci ∶=
1

1728i
∑

m′+n′=i
cm′n′

(−1)n′

4m′ × 27n′

we find
f =∑

i≥0
cij

i ∈ k[j]

as desired.

Corollary 1.3.11. More generally, if S ⊆ k[j] is a multiplicative subset, and φ ∶ A → S−1R is a
k∗-invariant homomorphism, then φ factors through S−1k[j]→ S−1R.

Finally, we may construct our moduli space. Let X → S be a family of elliptic curves. Cover S
with open affine subsets Ui = SpecAi such that

X ∣Ui = ProjAi[x, y, z]/⟨y2z − (x3 + aix + bi)⟩

for ai, bi ∈ Ai. Then we have a morphism fi ∶ SpecAi → SpecR = Speck[a, b,∆−1] for each i dual
to the homomorphism of rings by a↦ ai, b↦ bi such that X ∣Ui is the pullback of X0 along this map.
Composing this with π ∶ SpecR → Speck[j], we have a map SpecAi → Speck[j].

Lemma 1.3.12. The fi glue into a morphism ηS(X) ∶ S → Speck[j] which does not depend on
our choice of cover {Ui}. Moreover, the map (X → S) ↦ ηS(X) is a natural transformation
η ∶M1,1 → Hom(−,Speck[j]).

Proof. Let Ui, Uj as above be given. Then the restriction of X ∣Ui and X ∣Uj to any affine open subset
Uijk = SpecAijk ⊆ Ui ∩Uj agree, and so there is some unit u ∈ A∗ijk such that

ai = u4aj , bi = u6bj



22 CHAPTER 1. MODULI THEORY

in Aijk. In particular, if φi ∶ k[j]→ Aijk is the dual homomorphism to fi∣SpecAijk
and similarly with

φj , we find

φi(j) =
4a3i

4a3i + 27b2i
=

4a3ju
12

(4a3j + 27b2j)u12
=

4a3j

4a3j + 27b2j
= φj(j),

as desired. Since we can cover the overlap with such Uijk, and since the Ui cover S, we have a
morphism S → Speck[j]. Moreover, by the same argument, if we choose a different cover then we
get the same morphism, because the Weierstrass cubics will differ between the covers by a unit as
above. The fact that this induces a natural transformation is just a lot of obvious checking.

And finally, we have:

Theorem 1.3.13. The pair (Speck[j], η) is a coarse moduli space forM1,1.

Proof. We need to check that the two conditions in the definition of a coarse moduli space are satis-
fied. Condition (i) is just Lemma 1.3.9, and hence we just have to check that η satisfies the required
universal property. So let η′ ∶M1,1 → Hom(−,N) be another natural transformation. By Lemma
1.3.7, the map η′(X0) ∶ SpecR → N is k∗-invariant, and so the idea is to now apply Lemma 1.3.10
and Corollary 1.3.11 to show that η′(X0) factors through SpecR → Speck[j], and that this factori-
sation is functorial and unique.

First, we claim that any k∗-invariant morphism φ ∶ SpecR → N factors uniquely through π ∶
SpecR → Speck[j]. To see this, we will first find a suitable open cover of Speck[j] on which we
locally define the map. Let {Ui = SpecAi} be an open affine cover for N . Then their preimages
{φ−1(Ui)} cover SpecR, and moreover are k∗-invariant. In particular, if Ii ⊆ R is the ideal of the
closed subset SpecR∖φ−1(Ui), then Ii must also be k∗-invariant, and moreover∑ Ii = R. We claim
∑(Ii ∩ k[j]) = k[j]. To see this, let E ∶ R → R denote the k[j]-module homomorphism sending
∑d∈Z fd for homogeneous fd (via the grading in the proof of Lemma 1.3.10) of degree d to f0 ∈ k[j]
(this is known as the Reynolds operator of this action). Since ∑ Ii = R, we have 1 = ∑ fi for fi ∈ Ii,
and all but finitely many fi are zero, and hence

1 = E(1) = E(∑ fi) =∑E(fi) ∈∑(Ii ∩ k[j])

as claimed. In particular, if Vi = Speck[j]∖V (Ii ∩k[j]), then it follows that the Vi cover Speck[j].
Now observe that π−1(Vi) = φ−1(Ui), and since φ′(X0) is k∗-invariant, by Corollary 1.3.11

(since every open subset of Speck[j] is a distinguished open affine subset) there exists a unique map
e♯i ∶ Ai = ON(Ui)→ OSpeck[j](Vi) such that the following diagram commutes:

Ai OSpecR(φ−1(Ui))

OSpeck[j](Vi)

φ♯

e♯i
π .
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Thus dual to each e♯i is a morphism of affine schemes ei ∶ Vi → Ui. It is clear they glue, and hence
we have a morphism e ∶ Speck[j]→ N which commutes with φ. This proves existence. Uniqueness
follows from the uniqueness of the e♯i . This proves the claim.

Now as mentioned, η′(X0) is k∗-invariant, and as above we have a morphism e ∶ Speck[j]→ N .
We now show that e is the unique morphism such that η′ = e ○ η. Uniqueness follows from the claim
above, since any such e must be compatible with the k∗-invariant η′(X0). To show that e does satisfy
the required property, let X → S be a family over S. Then we may cover S with open affine subsets
Ui = SpecAi such thatX ∣Ui is the pullback ofX0 via some fi ∶ Ui → SpecR. The following diagram
commutes:

SpecR

Ui N

Speck[j]

η′(X0)

π

fi

η(X ∣Ui
) e

and by the previous lemma, the η(X ∣Ui) glue to a global morphism η(X) ∶ S → Speck[j], and hence
we have η′(X) = e ○ η(X), as desired.

Finally, to kill any false hope that may have brewed, we have the following result:

Proposition 1.3.14. The moduli problem of elliptic curves does not have a fine moduli space.

Proof. Let A = k[t, t−1] and consider the two families X = ProjA[x, y, z]/⟨y2z − (x3 + tz3)⟩ and
Y = ProjA[x, y, z]/⟨y2z − (x3 + z3)⟩ over SpecA. Then j is constant, and equal to 1728 in both
families, and hence if Speck[j] is a fine moduli space with universal family X, then both families
should be isomorphic to (j ↦ 1728)∗(X). But these families are not isomorphic, otherwise there
would be some invertible u ∈ k[t, t−1] satisfying t = u6, which is not possible. Hence Speck[j] is
not a fine moduli space, and since any fine moduli space is a coarse moduli space, and coarse moduli
spaces are unique, there is no fine moduli space.

We conclude this chapter with a remark. Observe that a key step in this proof is showing that
π ∶ SpecR → Speck[j] is the initial k∗-invariant morphism from SpecR. In the language to be de-
veloped, this is a categorical quotient, and more generally, one can show that the categorical quotient
of the action of a group acting on the base of a locally versal family parameterising isomorphic fibres
will satisfy property (ii) in the definition of a coarse moduli space. In our case, it just so happened that
an orbit space exists, and hence property (i) is also satisfied, but this is not always the case; indeed in
the language to be developed, this is a consequence of the fact that every k-point in SpecR is stable.
These concepts, as well as the general methodology for taking quotients in algebraic geometry, forms
the basis of the subject of geometric invariant theory, which is the topic of the next chapter.
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Chapter 2

Geometric Invariant Theory

We begin with a motivating example:

Example 2.0.1. Let k be an algebraically closed field and let k∗ act on k2 by λ ⋅ (p, q) ∶= (λ−1p, λq).
The orbits consist of the axes without the origin, the origin and for every t ∈ k∗ the curve xy = t. If
we consider the orbit space, it resembles k, indeed each nonzero t will represent the curve xy = t;
however where the origin should be, we find three orbits, one of which is closed and two of which
has closure equal to the union of the three orbits. But if the orbit space of k2 = A2(k) was given the
structure of a scheme (i.e. we have a morphism A2 → Y and the map of k-valued points is a bijection
between orbits of k2 and Y (k)), then it cannot be separated over k, and hence no variety (integral
scheme, separated and of finite type over k) could be an orbit space.

But observe that if we consider the action restricted to k2 ∖{(0,0)}, the orbit space is canonically
identified with k ∖ {0}, which are the k-valued points of the variety Speck[t, t−1].

This raises the question, what is the “best” approximate quotient of an action and what sort of
properties does it have? And can we always throw away “bad” orbits, like the restriction of k2 to
k2 ∖ {(0,0)}, so that an orbit space does exist? Geometric invariant theory allows us to answer these
questions under certain circumstances.

Being a vast and difficult subject, however, we do not have the time to develop the subject in detail.
Our focus will be on the action of affine algebraic groups (to be defined) on quasi-projective varieties
over k. For a full account, see [28]. Our exposition roughly follows the one found in [20].

2.1 Algebraic Groups and Actions

We begin by formalising the notion of a group action, since the notion of an abstract group acting on
a set is not sufficient for our purposes. Indeed, a morphism of schemes is not determined by where it
sends its points (for example, there are two endomorphisms of the one-point scheme Speck[ε]/ε2),
and even if we define an action of some G on some X as a group homomorphism into AutX , it
is possible for G to have some scheme-theoretic structure (as in differential geometry where there
is a concept of a Lie group), which will not be picked up if we treat G as a collection of points.
Hence we need the stronger notion of an algebraic group acting on a scheme. We will begin with
a very elementary approach to the subject, laying out all the formalisms, and doing calculations and
examples extremely naı̈vely and from scratch.

Definition 2.1.1. An algebraic group over k, also known as a group scheme over k is a scheme
G over k equipped with a k-point e ∶ Speck → G, known as the identity element and morphisms

25
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µ ∶ G × G → G and ι ∶ G → G known as multiplication and inversion respectively such that the
following three diagrams commute:

(i) (Associativity)

G ×G ×G G ×G

G ×G G

id×µ

µ×id µ

µ

(ii) (Identity)

Speck ×G G ×G G × Speck

G

e×id

≅ µ

id×e

≅

(iii) (Inverse)
G G ×G G

Speck G Speck

ι×id

µ

id×ι

e
e

An algebraic group G is affine if G is an affine scheme.

Remark 2.1.2. There are subtle variations in the definition of the terms “algebraic group” and “group”
scheme from one source to another (indeed, they are usually different!). For example, algebraic
groups are sometimes required to be of finite type over k, the definition of a group scheme is usually
a “group-valued functor represented by a scheme” (which we will make sense of very shortly), and
sometimes algebraic groups are required to be varieties. However, since we will only ever deal with
algebraic groups which are affine varieties, these subleties do not matter in this thesis.

It is important to emphasise that while an algebraic group does have the structure of a group, in this
thesis they will not be considered groups; instead they will be thought of as group-valued functors,
since their functor of points factors through the category of groups. Indeed, for any scheme S, the set
Hom(S,G) has a group structure, with group operation

(f ∶ S → G) ⋅ (g ∶ S → G) ∶= (µ ○ (f, g) ○∆ ∶ S → G)

where ∆ is the diagonal map. The identity morphism is the composition S → Speck
eÐ→ G where

the first map is the unique morphism S → Speck, and the inverse of f ∶ S → G is simply ι ○ f . In
particular, using Yoneda’s lemma, one may show that all of the statements deduced from the usual
group axioms (uniqueness of identity and inverses, compatibility of inversion with homomorphisms,
etc.) are valid for algebraic groups.
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Now observe that since G has a scheme structure, the group operations induce co-operations of k-
algebras. In fact, ifG is affine, we may completely work with k-algebras, since there is an equivalence
of categories. In this case, we will call Γ(G,OG) the associated co-group.

Example 2.1.3. Let G = Speck[t, t−1], whose k-points are of course canonically identified with k∗.
Now k∗ obviously has a canonical multiplication which makes it a group; we will now extend this
to an algebraic group structure on G. Note that since a morphism of varieties is detemined by its
k-points ([17, II Proposition 2.6]), this extension is unique, if it exists. Define the co-multiplication

µ♯ ∶ k[t, t−1]→ k[t, t−1]⊗ k[t, t−1]
t↦ t⊗ t

Using the identification k[t, t−1]⊗k[t, t−1] ≅ k[t±11 , t±12 ], we may write this in the more familiar way
as t↦ t1t2. Taking Spec, we get a morphismG×G→ G, and we observe the induced map of k-points
is simply (p, q) ↦ pq as expected. Then the co-identity is the k-algebra map k[t, t−1] → k given by
t ↦ 1, and co-inversion is the endomorphism t ↦ t−1. We check the group axioms by checking the
co-axioms on the co-group: note that

(id⊗µ♯) ○ µ♯(t) = t⊗ t⊗ t = (µ♯ ⊗ id) ○ µ♯(t)

and extending algebraically this proves associativity. To check identity, we observe

(e♯ ⊗ id) ○ µ♯(t) = 1⊗ t ≅ t ≅ t⊗ 1 = (id⊗e♯) ○ µ∗(t)

as desired, where, by abuse of notation, ≅ denotes the image of 1 ⊗ t under the isomorphisms k ⊗
k[t±1] ≅ k[t±1] ≅ k[t±1]⊗ k. Finally, we check inversion:

(ι♯ ⊗ id) ○ µ♯(t) = 1 = e♯(t)

and similarly in the other direction. Thus we have our expected group axioms.

Henceforth, we will denote Speck[t, t−1] by Gm (note that m stands for multiplication, not for
any specific number).

Before stating our next example, a few comments about notation are in order. We will use GLn(R)
to denote the (abstract) group of invertible n-by-n matrices over R, and we will use V to describe the
vector space kn. In particular, these are not schemes. We will use An to describe the variety/scheme
Speck[x1, ..., xn], and we will use GLn or GLV to describe the variety/scheme, which is defined
below.

Example 2.1.4. Observe GLn(k)may be identified as the k-points of the affine scheme Speck[xij ,1 ≤
i, j ≤ n,det(xij)−1], which we will denote GLn. Co-multiplication is given by

µ♯(xij) ∶=
n

∑
k=1

xik ⊗ xkj

or, once again, making the identification

k[xij ,1 ≤ i, j ≤ n,det(xij)−1]⊗k[xij ,1 ≤ i, j ≤ n,det(xij)−1] ≅ k[xij , yij ,det(xij)−1,det(yij)−1]
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this is just the familiar

µ♯(xij) =
n

∑
k=1

xikykj

Similarly, the co-identity is given by e♯(xij) ∶= δij . The co-inversion is a little difficult to write
explicitly, but ι♯(xij) is the i, j-th entry of the n-by-nmatrix (xkℓ)1≤k,ℓ≤n, which may be shown to be
algebraic. Once again, we can check the group axioms for this by checking the co-group co-axioms:

(µ♯ ⊗ id)(µ♯(xij)) = (µ♯ ⊗ id)(∑
k

xik ⊗ xkj)

=∑
k

∑
ℓ

xiℓ ⊗ xℓk ⊗ xkj

=∑
k

∑
ℓ

xik ⊗ xkℓ ⊗ xℓj

= (id⊗µ♯)(∑
k

xik ⊗ xkj)

= (id⊗µ♯)(µ♯(xij))

proves associativity and

(e♯ ⊗ id)(µ♯(xij)) = (e♯ ⊗ id)(∑
k

xik ⊗ xkj) =∑
k

δik ⊗ xkj =∑
i

1⊗ xij ≅ xij

and similarly proves identity. We will not prove inversion, but it follows from the properties of
multiplying matrices. SLn and PGLn are defined similarly.

Observe that the group of invertible n-by-n matrices is also identified with the group of R-valued
points of GLn, hence both interpretations of the notation GLn(R) agree.

Example 2.1.5. Let G be a finite group. We will endow G with a natural algebraic group structure.
Write n ∶= ∣G∣. By Corollary 1.1.8, we may embed G into Sn, the symmetric group on n letters,
and Sn, in turn, embeds into GLn(k) via permutation matrices. We therefore may interpret G as a
discrete, closed subscheme of GLn, and the group axioms inherit from the group axioms in GLn.

Next we will discuss algebraic group actions.

Definition 2.1.6. Let G be an algebraic group and X a scheme over k. An action of G on X is a
morphism σ ∶ G ×X →X such that the following diagrams commute:

(i) (Associativity)

G ×G ×X G ×X

G ×X X

idG ×σ

µ×idX σ

σ
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(ii) (Identity)

Speck ×X G ×X

X

e×idX

≅ σ

Example 2.1.7. The most straightforward example is G acting on itself via the map µ. Associativity
and identity follow directly from the corresponding group axioms.

Let G act on X . We observe a few things: passing to k-points, the group G(k) acts (as an abstract
group, in the usual sense) on X(k). Any k-point g ∶ Speck → G induces an automorphism of X
given by σ(g × id), which we will denote σg (on the level of X(k), this is simply multiplication by
g). Similarly, any k-point p ∶ Speck →X induces a morphism G→X .

Now assuming G and X are both affine, equal to SpecR and SpecA respectively, the action
induces a co-action homomorphism of k-algebras σ♯A → R ⊗A. However, the group G(k) also has
an induced action (in the usual sense) on A via automorphisms: indeed, an element g of G(k) is dual
to a ring homomorphism g♯ ∶ R → k, and thus composing with the co-action homomorphism we have
an automorphism of A:

A→ R⊗A→ k ⊗A ≅ A.
However, since the scheme-ring duality is contravariant, the composition works in the opposite direc-
tion. Hence the action is given by

g ⋅ f = (g♯)−1 ○ σ♯.
It is easy to check that on k-points, the action is given by

g ⋅ f(p) = f(g−1 ⋅ p).

Example 2.1.8. Consider the action described in Example 2.0.1. We will extend this to an algebraic
group action of Gm on A2. The associated coordinate rings are k[t±1] and k[x, y]. We now define
the co-action σ♯ ∶ k[x, y]→ k[t±1]⊗ k[x, y] by x↦ t−1 ⊗x and y ↦ t⊗ y; it is not hard to check the
axioms and to show that this induces the action in the aforementioned example. Now we compute the
action of Gm(k) on k[x, y]: let λ ∈ k∗ ≅ Gm(k) be given. This induces the map k[t±1] → k defined
by t↦ λ, hence we have

σ♯λ(x) = λ−1 ⊗ x = 1⊗ (λ−1x) ≅ λ−1x
and

σ♯λ(y) = λ⊗ y = 1⊗ λy ≅ λy
which is easily seen to be a group action.

Example 2.1.9. We consider the natural action of GLn(k) (the group of invertible n-by-n matrices)
on V = kn. We will lift this to an algebraic group action of GLn on An. The coordinate rings are
k[xij ,det(xij)−1] and k[v1, ..., vn]. We define the co-action

σ♯ ∶ k[v1, ..., vn]→ k[xij ,det(xij)−1]⊗ k[v1, ..., vn]
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by

σ♯(vi) ∶=
n

∑
j=1

xij ⊗ vj

and for a k-point g = (gij) ∈ GLn(k) (which is induced by xij ↦ gij), we have the following
automorphism σ♯g of k[v1, ..., vn]:

σ♯g(vi) =∑
j

gij ⊗ vj =∑
j

1⊗ gijvj ≅∑
j

gijvj

and in order for it to be a group action, we have to take the inverse of this map.

Definition 2.1.10. Let G and H be algebraic groups. A homomorphism of algebraic groups is a
morphism of schemes f ∶ G→H such that the following diagram commutes:

.

G ×G G

H ×H H

µG

f×f f

µH

(2.1)

A homomorphism ρ ∶ G → GLn will be called a representation. Composing this with the action on
An, we see that ρ induces an action of G on An and hence of G(k) on V = kn.

Example 2.1.11. Let G, H be any affine algebraic groups. Then the trivial group homomorphism
G→H is the morphism of schemes

G Speck H.
eH

Clearly (2.1) commutes.

Example 2.1.12. Consider the representation ρ ∶ Gm → GL2 induced by

ρ∗(xij) = δijt2i−3.

Composing this with the natural action of GL2 on A2 described in Example 2.1.9 we obtain the action
in Example 2.1.8.

Note that the image of the induced morphism k∗ → GL2(k) in the above representation is con-
tained in the subgroup of diagonal matrices. This is no coincidence, as we will see below. This result
is hugely important, and as we will soon see, representations of Gm play a critical role in our further
discussions (for example, in our analysis of stability). For now, we end with the following theorem:

Theorem 2.1.13. Let ρ ∶ Gm → GLn be a representation. Then there is a decomposition

kn =∶ V = ⊕
m∈Z

Vm

where
Vm ∶= {v ∈ V ∣ λ ⋅ v = λmv, ∀λ ∈ k∗}

is known as the m-th weight space of the action.

Proof. [50, Section 4.6]
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2.2 Reductive Groups and the Affine GIT Quotient

In this section, we will conduct a study on reductive groups and their action on affine schemes, and
in the sequel we will be exclusively looking at the action of reductive algebraic groups. The reason
for this is that the reductive hypothesis gives us many useful finiteness conditions. We will begin by
studying the algebraic properties of the action of a reductive algebraic group on an affine scheme, and
then translate these into geometric properties. First, the definition:

Definition 2.2.1. A group G is (linearly) reductive over k if, for every representation ρ ∶ G →
GLn(k), we can decompose V = kn into irreducible subrepresentations (i.e. G-invariant subspaces).
An algebraic group is reductive if its group of k-valued points is.

Example 2.2.2. If G is a finite group, then it is reductive if chark does not divide ∣G∣, by Maschke’s
Theorem.

Example 2.2.3. As we saw in Theorem 2.1.13, Gm is reductive. Indeed, given a representation
ρ ∶ Gm → GLV , we have a weight space decomposition V = ⊕Vi and any subspace of each Vi is a
subrepresentation.

Example 2.2.4. In characteristic zero, it is well known that many “familiar” algebraic groups (such
as GLn,SLn,PGLn) are reductive.

Now letG be a reductive group with a representationG→ GLV (k), where V is finite-dimensional,
and let V G ⊆ V be the subspace where G acts trivially; it is clear that this is a G-invariant subspace.
Then by reductivity, we have a decomposition V = V G ⊕W for some subrepresentation W .

Lemma 2.2.5. The W above is unique.

Proof. Suppose V = V G ⊕W = V G ⊕W ′. By reductivity, we may decompose W as W = ⊕Wi,
where eachWi is an irreducible subrepresentation. Let w ∈Wi, so that w = v0+w′ for some w′ ∈W ′.
Since w,w′ ∉ V G, it follows that there is some g ∈ G which acts nontrivially on w; thus g(w)−w ≠ 0.
But g(w) = v0 + g(w′) and hence

g(w) −w = g(w′) −w′ ∈Wi ∩W ′ ∖ {0}.

Since Wi is irreducible, it follows that Wi ⊆ W ′. Since this holds for each Wi, it follows W ⊆ W ′,
and reversing their roles, we obtain W ′ ⊆W as well, as desired.

Definition 2.2.6. Let G be an (abstract) group and let ρ ∶ G → GLV (k) be a representation. The
Reynolds operator of ρ, denoted Eρ, is defined to be the projection onto V G. By the above lemma,
this is well-defined. If G is an algebraic group, and ρ ∶ G → GLV is a representation, then the
Reynolds operator of ρ is the Reynolds operator of ρ(k) ∶ G(k)→ GLV (k).

We saw an example of a “Reynolds operator” in the proof of Theorem 1.3.13, where we projected
onto our ring of invariant elements. This type of argument is very useful for showing something is
invariant, since we need only exhibit it in the form Eρ(v), and so we would like to adapt this concept
into infinite dimensions in certain circumstances; in particular for the induced action on the coordinate
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ring of an affine scheme. To this end, let G = SpecR be an affine algebraic group acting on an affine
scheme X = SpecA over k. Then as mentioned, there is an induced action of G(k) as an abstract
group on A via k-algebra automorphisms, which must a-priori be k-linear. In particular, we have the
following:

Lemma 2.2.7. Every element of A is contained in a finite-dimensional G(k)-invariant subspace. In
particular, we have

A = limÐ→Vr
where the limit is taken across all G(k)-invariant subspaces of A.

Proof. Following [28, p. 26], recall that the action induced by g ∈ G(k) is given by composing the
co-action homomorphism σ♯ ∶ A → R ⊗ A with the dual k-algebra homomorphism g♯ ○ ι♯ ∶ R → k
induced by the inverse of g. Now fix some f ∈ A, letR∗ denote the vector space Hom(R,k) (which is
essentially justG(k)), and let V be the image of the map α ∶ R∗ → A sending u to (u⊗ idA)(σ♯(f)).
We claim V satisfies our desired properties. To see this, observe firstly that by the identity axiom of
group actions, the co-identity homomorphism e♯ ∈ R∗ satisfies α(e♯) = f , and so f ∈ V . To see that
this is finite dimensional, simply observe that if σ♯(f) = ∑hi ⊗ fi then V ⊆ span{fi}. Finally, to see
that V is G(k)-invariant, observe that by co-associativity, we have

σ♯(α(u)) = (u⊗ σ♯)(σ♯(f)) = ((u⊗ idR⊗ idA) ○ (µ♯ ⊗ idA) ○ σ♯)(f),

hence for any u′ ∈ R∗, we have

u′ ⋅α(u) = (u⊗u′⊗ idA)○ (µ♯⊗ idA)(σ♯(f)) = (((u⊗u′)○µ♯⊗ idA)○σ♯)(f) = α((µ♯)∗(u⊗u′))

where (µ♯)∗(u⊗ u′) ∈ R∗ is the map h↦ (u⊗ u′)(µ(h)), as desired.

Corollary 2.2.8. Every finite dimensional subspace is contained in a finite dimensionalG(k)-invariant
subspace.

Proof. Apply the above argument to every element in a basis.

Definition 2.2.9. LetG be an affine reductive algebraic group acting on an affine schemeX = SpecA.
The Reynolds operator of this action is the k-linear mapE ∶ A = limÐ→Vr → A induced by the Reynolds
operator on each Vr. By the universal property of direct limits and the above lemma, it is well-defined.
The ring of invariants, denoted AG is the image of E.

Proposition 2.2.10 (Reynolds identity). Let a ∈ AG and r ∈ A. Then we have

E(ar) = aE(r).

In particular, the Reynolds operator is an AG-module homomorphism.

Proof. Firstly, let V be an irreducible finite dimensional subrepresentation. Then aV is also irre-
ducible, and v ↦ av is a k[G(k)]-module homomorphism (where k[G(k)] is the group algebra), and
thus by Schur’s lemma, is either trivial or an isomorphism.
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Now let V be a finite-dimensional subrepresentation of A containing a, r,E(ar), and E(r), and
let V = ⊕m

i=0 Vi be an irreducible decomposition, with V0 the subrepresentation of invariants. Then
we may write r = ∑ ri, and hence

E(ar) = E(a∑ ri) = ar0 +∑
i≠0
E(ari).

Now for each i ≠ 0, either aVi = 0 or aVi ≅ Vi in which case vi ↦ avi is an isomorphism. In the
former case, ari is already zero, in the latter case, there is some g such that g(ri) − ri ≠ 0 and hence

g(ari) − ari = ag(ri) − ari = a(g(ri) − ri) ≠ 0,

whence E(ari) = 0, and hence
E(ar) = ar0 = aE(r)

as desired.

Corollary 2.2.11. Let G be a reductive algebraic group acting on an affine scheme X = SpecA.

(i) If B is an AG-algebra, then there is an induced action on B′ ∶= A⊗AG B, and B is the ring of
invariants of B′, with the induced action.

(ii) If {Ii} is a collection of invariant ideals of A, then

(∑ Ii) ∩AG =∑(Ii ∩AG).

(iii) If I is an invariant ideal of A, then the ring of invariants of A/I is AG/(AG ∩ I).

Proof. We follow [28, pp. 28-29]. Firstly, note by the existence of the Reynolds operator E on A
as an AG-module homomorphism, we have the decomposition A = AG ⊕A′ as AG-modules, where
A′ = kerE. Hence

B′ = (AG ⊕A′)⊗AG B = B ⊕A′ ⊗AG B,

which means B is a subring of B′ and so the statement makes sense. Now observe that E induces a
B-module homomorphism E′ ∶ B′ → B′ sending ∑(ai + ri)⊗ bi, where ai ∈ AG, ri ∈ A′, to ∑aibi.
The action of G(k) on B′ is given by g ⋅∑ai⊗ bi = ∑ g(ai)⊗ bi. It is not hard to check that E′ is the
Reynolds operator of the induced action, and that imE′ = B. This proves (i).

To prove (ii), firstly note that clearly ∑(Ii ∩ AG) ⊆ (∑ Ii) ∩ AG. To prove the other inclusion,
note that if ∑ fi ∈ (∑ Ii) ∩AG, then

∑ fi = E(∑ fi) =∑E(fi).

It therefore suffices to prove that E(Ii) ⊆ Ii. To this end, let f ∈ Ii. Then f is contained in some
finite-dimensional subrepresentation V , and V ∩Ii is finite-dimensional and G(k)-invariant. Thus by
reductivity, we may decompose V ∩ Ii into subrepresentations V ∩ Ii = (V ∩ Ii)G ⊕W , and hence

E(f) = f − πW (f) ∈ Ii
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as desired.
Finally, to prove (iii), observe that the action on A/I is given by g ⋅ f̄ ∶= (g ⋅ f), where f̄ ∶= f

mod I . It is clear that the Reynolds operator on A/I is given by

Ē(
n

∑
i=0
āi) ∶= E(

n

∑
i=0
āi) = ā0,

where a0 ∈ AG, and from this the result is immediate.

Henceforth, we will assume chark = 0. Arguably the most important result about reductive groups
acting on affine schemes is the following:

Theorem 2.2.12. Let G be a reductive algebraic group acting on an affine scheme X = SpecA of
finite type over k, so that G(k) acts on A via automorphisms. Then the ring of invariants AG is a
finitely generated k-algebra.

Proof. Following [22, pp. 92-93], firstly, we claim AG is noetherian. To this end, let I1 ⊆ I2 ⊆ ... be
a chain of ideals in AG. Then I1 ⊗AG A ⊆ I2⊗AG ⊆ ... is an increasing chain of ideals in A, which
terminates since A is noetherian. Thus there is some n0 ∈ N such that Ii ⊗AG A = Ii+1 ⊗AG A for all
i ≥ n0. But observe that for any ideal I ⊆ AG, we have

I =∑
f∈I

fAG =∑
f∈I
(fA ∩AG) = (∑

f∈I
fA) ∩AG = (I ⊗AG A) ∩AG

and so
Ii = (Ii ⊗AG A) ∩AG = (Ii+1 ⊗AG A) ∩AG = Ii+1

for all i ≥ n0 too, proving the claim.
Now we first prove this result in the case X = An = Speck[x1, ..., xn]. Since G(k) acts via au-

tomorphisms, the action must preserve the graded pieces of the natural grading on A = k[x1, ..., xn],
and thus AG will also be graded. It is clear that the irrelevant ideal AG

+ = AG ∩A+ generates AG, and
by the above claim, AG

+ is finitely generated, proving the result for An.
Finally, we prove the general case, following [28, p. 29]. Let f1, ..., fn be generators of A as a k-

algebra, let V be a finite-dimensionalG(k)-invariant subspace containing them, and letR ∶= Sym(V )
be the symmetric algebra on V , which is a polynomial ring. Then the action on A induces an action
on R and there is a natural surjective equivariant map φ ∶ R → A. Clearly kerφ is invariant, and thus
by Corollary 2.2.11 (iii), we have AG = RG/(RG ∩kerφ). Since the action on R preserves its degree
1 component, it follows that this is linear and hence algebraic (i.e. G acts on SpecR as an algebraic
group on a scheme), thus by the previous paragraph RG is finitely generated. The result then follows
from the observation that if {v1, ..., vm} generate RG, then {φ(v1), ..., φ(vm)} generate AG.

We are now in a position to construct the quotient:

Definition 2.2.13. Let X be an affine variety, and G a reductive algebraic group acting on X . The
affine GIT quotient is the map φG ∶ X → SpecAG induced by the inclusion AG → A. We denote
SpecAG by X //G.
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Observe that this map is G-invariant, in the sense that the following diagram commutes:

G ×X X

X X //G

σ

πX φG

φG

Indeed, one can check this on the level of rings, and this follows since AG are exactly the elements
f ∈ A such that σ♯(f) = 1⊗ f . In fact, the affine GIT quotient satisfies a stronger property, which we
will formalise:

Definition 2.2.14. Let G be an algebraic group acting on a scheme X of finite type over k. An
FTSch/k-categorical quotient of this action is a G-invariant k-morphism of finite type φ ∶ X → Y
such that if φ′ ∶ X → Z is another such G-invariant morphism then there exists a unique f ∶ Y → Z
such φ′ = f ○ φ.

As the reader may have guessed, the affine GIT quotient is an FTSch/k-categorical quotient,
which we will now prove in conjunction with other important properties:

Theorem 2.2.15. The affine GIT quotient satisfies the following:

(i) The map φG is surjective on k-points.

(ii) For any open subset U ⊆ X //G, the map OX//G(U) → OX((φG)−1(U)) is an isomorphism
onto OX((φG)−1(U))G.

(iii) The image of every G(k)-invariant closed subset is closed.

(iv) If W1 and W2 are disjoint, G(k)-invariant and closed, then there exists f ∈ AG such that for
any p1 ∈W1(k) and p2 ∈W2(k), we have f(p1) = 0 and f(p2) = 1.

(v) φG is affine.

(vi) φG is an FTSch/k-categorical quotient.

Proof. We follow [20, p. 31] and [28, p. 28]. Let p ∈ (X //G)(k) be a k-point with maximal ideal
m. We claim m⊗AG A is a proper ideal in A. Indeed if not, then 1 = ∑ fi ⊗ ai where fi ∈ m, ai ∈ A,
and so

1 = E(1) =∑E(fi ⊗ ai) =∑ fiE(ai) ∈ m,

a clear contradiction. In particular, m ⊗AG A is contained in a maximal ideal m′ in A associated to
some q ∈X(k), and it thus follows that φG(q) = p as desired. This proves (i).

(ii) follows directly from (i) in Corollary 2.2.11.
To prove (iii), let W be an invariant closed subset corresponding to an invariant ideal I ⊆ A, and

suppose for contradiction its image is not closed. We first claim that there must be a closed point in
φG(W )∖φG(W ). To this end, recall that by Chevalley’s theorem on constructible sets ([15, Théorèm
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1.8.4]), the image φG(W ) is contructible (i.e. a finite union of locally closed subsets), and hence its
complement in its closure φG(W ) ∖ φG(W ) is also constructible. Let U ∩ V be a nonempty locally
open subset of φG(W )∖φG(W ), where U is open and V is closed (both inX), and let p ∈ U ∩V . We
claim that U ∩ V must contain some closed point of {p}. Indeed, V clearly does, and observe that if
U does not, then all the closed points of {p} are contained in the complement X ∖U , which is closed.
But this means the closure of these closed points is also contained in X ∖U , and since SpecAG is of
finite type over k, these closed points are dense in {p} ([17, II Ex. 3.14]), so in particular p ∉ U , a
clear contradiction. This proves the claim, and thus we may find some q ∈ φG(W )(k)∖φG(W )(k).
Write W ′ ∶= (φG)−1(q), and observe that W ′ is closed, invariant and nonempty by (i). Denote its
ideal by I ′ ⊆ A. By property (ii) of Corollary 2.2.11, it follows that

(I + I ′) ∩AG = I ∩AG + I ′ ∩AG,

and translated into geometric language, this says that

φG(W ∩W ′) = φG(W ) ∩ {q} = {q}.

In particular, this means thatW ∩W ′ ≠ ∅, contradicting the fact that q is contained in the complement
of φG(W ). This proves (iii).

To prove (iv), let I1, I2 be the ideals corresponding toW1,W2 respectively. The assertion that they
are disjoint is equivalent to the statement I1 + I2 = A, whence

AG = (AG ∩ I1) + (AG ∩ I2).

Let f ∈ AG ∩ I1 be such that 1 − f ∈ AG ∩ I2. Then for any p1 ∈ W1(k), p2 ∈ W2(k), we have
f(p1) = 0 and 1 − f(p2) = 0, as desired.

(v) follows directly from the definition.
Finally, the proof of (vi) is essentially the second and third paragraphs of the proof of Theorem

1.3.13. Let f ∶ X → Z be another G-invariant morphism, and let {Ui = SpecAi} be an open affine
cover of Z. Then as in the aforementioned proof, we can cover X //G with open subsets {Vi} such
that (φG)−1(Vi) = f−1(Ui) and by (ii) above, the restricted map f ∣f−1(Ui) factors uniquely through
φG∣(φG)−1(Vi) ∶ (φ

G)−1(Vi)→ Vi, and one can check these glue into a global morphism.

Before we look at some examples, we will need to take a closer look at the action of G(k) on
X(k). To this end, we first make the following definition:

Definition 2.2.16. Let G be a reductive group acting on X , and let p ∈X(k). The orbit of p, denoted
G ⋅ p, is the set {g ⋅ p ∣ g ∈ G(k)} ⊆ X(k). The stabiliser of p, denoted Gp is the fibred product
G ×X Speck, given by the following diagram:

G ×X Speck Speck

G X

p

σ(id×p)
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In fact, since X is a variety, we can say more: since G ⋅ p is just the set-theoretic image of the
morphism σ(−, p) ∶ G → X in X(k), and by Chevalley’s theorem is a constructible subset of X(k)
(where X(k) is identified as the closed points of X and thus given the induced topology). So we can
write

G ⋅ p =
n

⋃
i=1
(Ui ∩ Vi),

where Ui is open and Vi is closed, and we may assume without loss of generality Vi = Ui ∩ Vi, the
closure of Ui ∩ Vi. Since closure commutes with unions, it follows

G ⋅ p =⋃Vi.

Now observe that U = (⋃Ui) ∩G ⋅ p is a dense open subset of G ⋅ p (because U ∩G ⋅ p necessarily
contains each Ui ∩ Vi = Vi and ⋃Vi = G ⋅ p itself is closed), and since

G ⋅ p = ⋃
g∈G(k)

g ⋅U

it follows that G ⋅ p is itself locally closed. Since k is algebraically closed, we may thus identify G ⋅ p
as the set of closed points of a closed subset of an open subscheme, and equipping it with the reduced
closed subscheme structure of this open subscheme, we give G ⋅ p the natural structure of a scheme.
By abuse of language, we will use the word “orbit” to denote both the set G(k) ⋅ p ⊆ X(k), and the
scheme described above. It will either be clear from context, or unimportant which is meant.

Our next result is valid for any variety X , not just affine varieties.

Proposition 2.2.17. LetX be a variety and given any k-point p ∈X(k), the morphism σ(−, p) ∶ G→
G ⋅ p is flat. In particular, we have

dimG = dimGp + dimG ⋅ p.

Moreover, σ(−, p) is proper if and only if G ⋅ p is closed and Gp is proper over k.

Proof. [20, p. 19] and [28, pp. 10-11]

With this in mind, we are now ready to describe the points of the action of G:

Definition 2.2.18. A point p ∈ X(k) is polystable if G ⋅ p is closed. Furthermore p is stable if it is
polystable, and dimGp = 0. An orbit is (poly)stable if one (equivalently all) of its points is.

With the terminology developed, we are ready to study our first example:

Example 2.2.19. Recall Example 2.0.1. As remarked, the orbits consist of the axes without the
origin, the origin and for every u ∈ Gm(k) the hyperbola xy = u. Clearly the “typical” orbits are the
hyperbolas, which are closed, and the stabiliser for each such point is trivial, hence they are stable.
The origin itself is polystable, but not stable, and the axes are neither stable nor polystable. We note
two things: firstly that the stable points form an open subset and secondly that the closure of the union
of the two non-closed orbits are G-invariant, and their intersection contains a single polystable orbit
(the origin).
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Now it is easy to see that the ring of invariants is k[x, y]Gm = k[xy], hence the GIT quotient is

A2 = Speck[x, y]→ Speck[xy] = A1,

where the map sends each stable orbit {xy = u} to u ∈ k ≅ A1(k) and the three orbits that are not
stable, which intersect each other, to the origin. However, even though this is an FTSch/k-categorical
quotient (which will henceforth just be referred to as a categorical quotient), it is not an orbit space
(since there are three orbits which are merged), but note that if we restrict to the open subset of stable
points (A2)s ∶= A2 ∖ {xy = 0}, the quotient is in fact an orbit space. Indeed, the restricted quotient is
just

(A2)s = Speck[x, y, (xy)−1]→ k[(xy)±1] = A1 ∖ {0}

and the set-theoretic fibre of each u ∈ k∗ is just the hyperbola {xy = u}.

In fact, this example demonstrates very typical behaviour of the affine GIT quotient, which we will
deduce as consequences of Theorem 2.2.15. Firstly observe that since the quotient φG ∶ X → X //G
is, in fact, a quotient, orbits in X(k) are contracted to points in X // G, and in particular, property
(iii) of Theorem 2.2.15 implies that orbit closures are contracted to a point. By property (iv), the
converse is also true: two points are mapped to the same point if and only if their orbit closures
intersect. By the same property, it follows that the set-theoretic fibre (i.e. preimage) of every p ∈ Y (k)
contains a unique polystable orbit. In particular, every equivalence class of orbits (the relation being
intersection of closure) contains a unique polystable orbit, and thus the set Y (k) is in canonical 1-1
correspondence with the polystable orbits of X .

The final observation in the above example (about restricting to the stable locus) is formalised
thus:

Definition 2.2.20. Let G be a reductive algebraic group acting on a scheme X . A G-invariant mor-
phism X → Y is a geometric quotient if all the properties of Theorem 2.2.15 are satisfied, and
moreover Y (k) is an orbit space of the G(k)-action on X(k).

Theorem 2.2.21. Let G be a reductive affine algebraic group acting on an affine variety X . Then the
set of stable k-points are the k-points of a (possibly empty) open subscheme Xs, and the restricted
map

Xs →Xs //G

is a geometric quotient.

Proof. This follows the proof in [20, p. 19, 32]. Firstly, we claim that the set of points p such that
dimGp > 0 is closed. Indeed, consider the following diagram:

S = (G ×X) ×X×X X X

G ×X X ×X

φ

∆

(σ×πX)
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where ∆ ∶ X → X ×X is the diagonal map and S is the fibred product of the diagram. Now observe
that the k-points of S are exactly the pairs (g, p) such that g ⋅ p = p. By Chevalley’s semicontinuity
theorem ([15, Théorème 13.1.3]), the subset

V ∶= {(g, p) ∈ S(k) ∣ dimGp = dimSp > 0}

is closed. Now define T to be the fibred product S ×G×X X given by the following diagram:

T S

Speck ×X ≅X G ×Xe×id

and observe that V pulls back to the set {(e, p) ∣ dimGp > 0}. Since X is separated over k, the
diagonal is a closed immersion, and in particular it is proper. It thus follows that T → X is a closed
map, which proves the claim.

Now let p be a stable point. We will find an open neighbourhood of stable points containing p.
Observe that V , which we saw was closed, and is clearly G-invariant, is disjoint from p, and hence
by property (iv), p and V are mapped to disjoint sets in the GIT quotient. In particular, there is
some invariant f ∈ AG, such that f(V ) = 0, and f(p) ≠ 0 (for example, suppose take 1 − F where
F ∈ AG vanishes exactly on φG(p)). We claim that the k-points of Xf are stable. Indeed, since
Xf(k) ∩ V = ∅, it suffices to show that the orbits of Xf are closed. So fix some q ∈ Xf(k), suppose
for contradiction its orbit is not closed. Since G ⋅ q is open and dense in G ⋅ q, its complement in G ⋅ q
must be of smaller dimension, and moreover contains a polystable orbit, say G ⋅ r. It must therefore
be that dimGr > 0 by, so r ∈ V , and hence f(r) = 0. But since f is G-invariant and does not vanish
on q, it does not vanish anywhere on G ⋅ q, which is a contradiction. It thus follows that the k-points
of Xf are all stable, and hence we conclude that Xs is open.

Finally, we prove that this is a geometric quotient. To this end, we simply need to show that the
set-theoretic fibre of each k-point in Xs //G is a single stable orbit. But this is obvious; indeed for
each p ∈ Xs, the set-theoretic fibre (φG)−1(φG(p)) contains a unique polystable orbit, which must
be G ⋅ p. If it contains any other orbit, say G ⋅ q, then G ⋅ p ∩ G ⋅ q is nonempty, and since G ⋅ q is
G-invariant, it follows G ⋅ p is in the complement of G ⋅ q in G ⋅ q, and hence has dimension strictly
less, which contradicts the fact that p is stable.

Example 2.2.22. We are now ready to revisit the elliptic curves example from last chapter, and
assimilate it into our new framework. In the previous chapter, we saw how k∗ = Gm(k) acted on
S = Speck[a, b,∆−1]. This can be formalised as an algebraic action σ ∶ Gm × S → S as dual to the
homomorphism σ♯ ∶ k[a, b,∆−1] → k[t±1]⊗ k[a, b,∆−1] given by a ↦ t4 ⊗ a, b ↦ t6 ⊗ b. To check
that this is a group action, observe that

((id♯G⊗σ♯) ○ σ♯)(a) = t4 ⊗ t4 ⊗ a = ((µ♯ ⊗ id♯S) ○ σ♯)(a)

and similarly with b, and
((e♯ ⊗ id♯S) ○ σ♯)(a) = 1⊗ a.
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Let (p, q) ∈ S(k) be a k-point. Then the orbit of (p, q) is {(u4p, u6q) ∣ u ∈ k∗}, which is exactly
the set of k-points of the closed subscheme Speck[a, b,∆−1]/⟨p3y2 − q3x3⟩. In particular, every
orbit is closed and stable. Now as we calculated in chapter 1, the GIT quotient is Speck[j], and as
we just saw, this is an orbit space since every k-point of S is stable. In particular, this tells us the
following: the fact that S → Speck[j] is a categorical quotient, combined with Lemma 1.3.7 means
that Speck[j] satisfies the universal property (ii) in the definition of a coarse moduli space, and the
fact that this is an orbit space means property (i) is also satisfied. This demonstrates the usefulness of
geometric quotients.

However, the affine GIT quotient is slightly oversimplified, since every p ∈ X(k) has an image.
In particular, no orbits are thrown away; simply merged. As we will see shortly, things are more
complicated in the projective case.

2.3 The Projective GIT Quotient

Our next task is to extend the notion of a GIT quotient to a projective variety. There are, however,
more issues, the first and perhaps most obvious is that a projective scheme does not have a canonical
homogeneous coordinate ring; such a coordinate ring is induced by a projective embedding. Indeed,
even in the case of X = P1, we may embed X in P2 in the obvious way, with resulting coordinate
ring k[x0, x1], or via the 2-uple embedding, with resulting coordinate ring k[y0, y1, y2]/⟨y0y2 − y21⟩,
but these rings are not isomorphic, since the former is a UFD but the latter is not.

But even if we have an embedding X ⊆ Pn, such that X = ProjS, this is not enough, because the
action does not lift canonically to S; indeed:

Example 2.3.1. Let X = Pn. Let Gm act on X as follows: for any λ ∈ Gm(k), p = [p0 ∶ ... ∶ pn] ∈
X(k), we define

λ ⋅ p ∶= [λ−1p0 ∶ λp1 ∶ ... ∶ λpn]
which extends uniquely to an algebraic action. We embed X in itself via the identity, with resulting
coordinate ring S = k[x0, ..., xn]. However, the action of G may be lifted to one on S in many ways;
for example

λ ⋅ x0 ∶= λ−1x0, λ ⋅ xi ∶= λxi
and

λ ⋅ x0 ∶= x0, λ ⋅ x∶ = λ2xi.

just to name two.

We must therefore choose a lift of the action, which is accomplished as follows: recall that a
projective embedding is equivalent to picking a very ample line bundle L, and the resulting coordinate
ring of this embedding is

S =⊕
r≥0

H0(X,L⊗r).

The idea is to lift our action of X to one on L, so that the action is linear in some sense. This is
encapsulated in the following definition:
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Definition 2.3.2. Let σ ∶ G × X → X be an algebraic group action on a projective scheme X .
A linearisation of this action is a line bundle L and an isomorphism Φ ∶ σ∗(L) ≅ π∗X(L), where
πX ∶ G×X →X is the projection onto the second factor, such that the following diagram commutes:

(σ ○ (idG ×σ))∗L (πX ○ (idG ×σ))∗L (σ ○ π23)∗L

(σ ○ (µ × idX))∗L (πX ○ (µ × idX))∗L (πX ○ π23)∗L

(idG ×σ)∗Φ

=

=

π∗23Φ

(µ×idX)∗Φ =

(2.2)

where π23 ∶ G ×G ×X → G ×X is the projection onto the last two factors. A linearisation is very
ample if L is. By abuse of language, we will often refer to L itself as the linearisation.

We unwrap this definition. Of course, for any g ∈ G(k), we may pull back L along the isomor-
phism σg ∶ X → X . The linearisation Φ allows us to identify L before and after the pullback. More
precisely: for any open subset U ⊆ X where L is trivial, we identify L∣U ≅ OU . Now fix a k-point
g of G. Then σ∗gL(U) ≅ OX(gU) and π∗XL(U) ≅ OX(U). In particular, we have the following
isomorphism:

σ∗gL(U) ≅ OX(gU) π∗XL(U) ≅ OX(U),Φ (2.3)

and thus, Φ may be thought of as defining a way to “shift” L by g.
We now make sense of (2.2) a little. Firstly, observe that these are morphisms of sheaves on

G ×G ×X , all of which are pullbacks of L by various maps. The equalities follow from the axioms,
for example σ ○ (idG ×σ) = σ ○ (µ × idX) is just the associativity axiom of group actions. Without
explicitly stating the equalities, the commutativity says

(µ × idX)∗Φ = π∗23Φ ○ (idG ×σ)∗Φ (2.4)

which we make sense of as follows: Let (g, h) be a k-point in G × G. Then as in (2.3), the map
(µ × idX)∗Φ induces a map

σ∗ghL(U) ≅ OX(ghU)→ π∗XL(U) ≅ OX(U).

Now (σ ○ π23)(g, h,−) = σh, and so π∗23Φ induces a map

σ∗hL(U) ≅ OX(hU) π∗XL(U) ≅ OX(U)

and finally since (σ ○ (idG ×σ))(g, h,−) = σg ○ σh, the pullback (idG ×σ)∗Φ induces a map

σ∗g (σ∗hL)(U) ≅ OX(ghU) σ∗hL(U) ≅ OX(hU)

Put together, this means the following diagram commutes:

σ∗ghL L

σ∗hL
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so in particular G(k) acts on L via automorphisms.
Of course, this means that G(k) also acts on all tensor powers of L, and in the case L is very

ample, taking global sections shows that G(k) acts on the graded homogeneous coordinate ring S =
⊕r≥0H

0(X,L⊗r), and moreover it is not hard to see that this action preserves the grading.

Example 2.3.3. There is a natural linearisation of the action described in Example 2.3.1 on OX(1).
To see this, we first note that both σ∗(OX(1)) and π∗X(OX(1)) are abstractly isomorphic toOGm×X(1).
We define the isomorphism σ∗(OX(1))→ π∗X(OX(1)) to be x0 ↦ t−1x0 and ti ↦ txi for i ≠ 0.

Once again, we check that this is in fact a linearisation. Clearly it is an isomorphism, so it suffices
to show that (2.4) holds. To this end, we first observe that the various pullbacks of OX(1) to Gm ×
Gm ×X are abstractly isomorphic to the OGm×Gm×X -module OGm×Gm×X(1), and since

f∗(OGm×X(1)) = OGm×Gm×X ⊗f−1OGm×X
f−1(OGm×X(1))

where f ∶ Gm ×Gm ×X → Gm ×X is any map, we may write its elements as sums of f ⊗ g ⊗ hxi,
where f, g ∈ OGm and h ∈ OGm×X (the X component of OGm×Gm×X is absorbed by h). With this in
mind, we compute:

(µ × idX)∗Φ(1⊗ 1⊗ x0) = 1⊗ 1⊗ t−1x0 = t−1 ⊗ t−1 ⊗ x0

and similarly for any other xi. We also have

(idG ×σ)∗Φ(1⊗ 1⊗ x0) = 1⊗ 1⊗ t−1x0 = t−1 ⊗ 1⊗ x0

and finally
π∗23Φ(t−1 ⊗ 1⊗ x0) = t−1 ⊗ t−1 ⊗ x0

as desired.
Now the homogeneous coordinate ring of this embedding is just

S =⊕
r≥0

H0(X,OX(1)⊗r) = k[x0, ..., xn]

as expected, and there is an induced action of Gm(k) on S given by λ ⋅ x0 = λ−1x0 and λ ⋅ xi = λxi
for i ≠ 0, and in particular observe that this action preserves the grading on S.

Now we may define our quotient. We fix the following data: let X be a projective variety, G
a reductive affine algebraic group, G × X → X an action, L a very ample linearisation and S =
⊕r≥0H

0(X,L⊗r) the homogeneous coordinate ring. We denote SG the subring of invariant elements
of S, and we write S+ for the irrelevant ideal ⊕r>0 Sdeg r, and similarly write SG

+ for the SG-ideal
S+ ∩ SG.

Definition 2.3.4. A k-point p is semistable (with respect to L) if there is a homogeneous invariant σ ∈
SG of positive degree such that σ(p) ≠ 0, or equivalently p ∈ Xσ(k) where Xσ = SpecS[σ−1]deg 0.
If p is not semistable, then it is unstable. The semistable locus, denoted Xss is the open subscheme
X ∖V (SG

+ ), where V (SG
+ ) is the closed subset associated to the homogeneous ideal ⟨SG

+ ⟩ in S. Note
that the homogeneous elements of SG

+ generate this ideal, so it is in fact homogenous. We say p is
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polystable if it is semistable, and its orbit is closed in the semistable locus. Furthermore, p is stable if
it is polystable, and additionally its stabiliser has dimension zero. The projective GIT quotient is the
map

Xss →X //L G ∶= ProjSG

induced by the inclusion SG ⊆ S.

Let us compare the affine and projective GIT quotients. The main difference is that in the affine
case, every k-point has an image in the quotient; in other words every point is “semistable”; this
is obviously not so in the projective case. Their similarities are, however, much more abundant: if
σ ∈ SG

+ is homogeneous, it is not hard to check that Xσ = SpecS[σ−1]deg 0 is invariant, and that the
restriction of the projective GIT quotient toXσ is just the affine GIT quotientXσ → SpecS[σ−1]Gdeg 0,
and since Xss is covered by these affine open subsets, it follows that the projective GIT quotient is
just a collection of affine GIT quotients glued together. One can check that the statements of Theorem
2.2.15 hold (indeed, statements (i) - (v) are local on the target, and (vi) can be checked using the same
argument), and in particular the projective GIT quotient is a categorical quotient for the restricted
action G ×Xss → Xss. By a similar argument to the affine case, it can also be shown that the stable
locus is open and that the restriction to the stable locus is a geometric quotient.

Example 2.3.5. Retain the notation and hypotheses in Example 2.3.3. It can be shown ([28, p. 37])
that the ring of invariants SG is just k[x0x1, ..., x0xn]. It follows that p = [p0 ∶ ... ∶ pn] is semistable
if and only if p0 is nonzero, and some other pi for i > 0 is nonzero. In particular, the semistable locus
can be identified with An ∖ {0}. Now on the semistable locus, the action is just multiplication by λ2,
so every point is polystable, the orbit just being the line passing through our point and the origin in
An, minus the origin itself. In fact, every point is stable, since the action is free. Of course, this makes
sense because our projective GIT quotient is just

Pn−1 = Projk[x0x1, ..., x0xn]

and this is a geometric quotient.

Example 2.3.6. Of course, there is another linearisation on OX(1) given by x0 ↦ x0 and xi ↦ t2xi
for i > 0. Clearly k[x0] is the ring of invariants, so the projective GIT quotient with respect to this
linearisation is simply Speck. Indeed, the semistable locus is the open set given by x0 ≠ 0, which
is isomorphic to An. With this interpretation, the action of Gm is just scaling, and the closure of
every orbit contains the origin in An (or equivalent the point [p0 ∶ 0 ∶ ... ∶ 0] ∈ Pn), which is the
unique polystable orbit of this linearisation. In particular, the stable locus is empty. This shows that
projective GIT is heavily dependent on our choice of linearisation. However, we will often fix a single
linearisation to work with, and the problem of choosing different linearisations will not be discussed
in this thesis.

2.4 The Hilbert-Mumford Criterion

As we have just seen, stability is very important. However, with our definition, it is rather difficult
to calculate. In this section, we will develop the Hilbert-Mumford criterion, which gives a numerical
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criterion for stability in terms of 1-parameter subgroups. We begin with a closer examination of our
current definition for stability, which requires the following definition:

Definition 2.4.1. Let X be a projective scheme and let L be a very ample line bundle. Write S for
the homogeneous coordinate ring

S ∶=⊕
r≥0

H0(X,L⊗r).

We define the affine cone of X to be the affine scheme X̃ ∶= SpecS.

To make sense of the affine cone, firstly recall that L embeds X as a closed subscheme of Pn,
where n = h0(X,L)−1 = dimH0(X,L)−1. The k-points of Pn are just the 1-dimensional subspaces
of kn+1, and thus the k-points of X may be interpreted as a collection of lines through the origin in
kn+1. The k-points of X̃ may, in turn, be thought of as the union of these lines. For example, the
affine cone of Pn is just An+1.

There is a well-defined notion of an origin, which corresponds to the irrelevant ideal S+, which is
clearly maximal, and there is a natural map SpecS∖{0}→ ProjS, which we define as follows: let f ∈
Sdeg 1. Then there is an inclusion S[f−1]deg 0 ⊆ S[f−1], which induces a morphism SpecS[f−1] →
SpecS[f−1]deg 0. Since L is very ample, it follows S is generated by a finite set of these f ∈ Sdeg 1 as
a k-algebra, and so Xf = SpecS[f−1]deg 0 cover SpecS ∖ {0}. On the level of k-points, this is just
(p0, ..., pn)↦ [p0 ∶ ... ∶ pn].

Now supposeX is a projective variety, and letG be a reductive affine algebraic group acting onX .
Further, let L be a very ample linearisation, and let S be the homogeneous coordinate ring. We claim
the the linearisation naturally induces an action on the affine cone. Indeed, by the adjunction property
of pullbacks and pushforwards, there is a natural map (the unit map of the adjunction) L→ σ∗σ∗(L).
Taking global sections, we have

H0(X,L)→H0(G ×X,σ∗(L)) ≅H0(G ×X,π∗X(L)) ≅H0(G,OG)⊗H0(X,L)

where the final isomorphism comes from the Künneth formula ([44, Lemma 33.29.1]). We can check
that this induces a map σ̃∗ ∶ S → OG(G)⊗ S which satisfies the co-action axioms; and in particular
this induces a group action G × X̃ → X̃ . Moreover, since the co-action homomorphism is linear on
H0(X,L), by linear algebra this means that G acts linearly (i.e. via a representation G→ GLn+1) on
X̃ .

Example 2.4.2. Recall Example 2.3.3. The induced action on X̃ = An+1 is just

λ ⋅ (p0, ..., pn) = (λ−1p0, λp1, ..., λpn)

on the level of k-points. More rigorously, the co-ordinate rings are k[t±1] and k[x0, ..., xn], and
co-action homomorphism is given by x0 ↦ t−1 ⊗ x0 and xi ↦ t⊗ xi for i > 0.

We now present our first criterion for stability:

Theorem 2.4.3 (Topological criterion for stability). LetX be a projective variety, letG be a reductive
affine algebraic group with a linearisation on the very ample line bundle L, and let S denote the
resulting coordinate ring.
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(i) A k-point p is semistable if and only if for any lift p̃ ∈ X̃(k), the closure of the p̃ orbit in X̃ ,
G ⋅ p̃, does not contain the origin.

(ii) A k-point p is polystable if and only if the orbit of any of its lifts is closed in X̃ .

(iii) A k-point p is stable if and only if for any lift p̃ its orbit is closed in X̃ and dimGp̃ = 0.

Proof. Fix a k-point p and a lift p̃. If p is semistable, then there is some r > 0 and σ ∈ SG
deg r such

that σ(p) ≠ 0. Let f = σ − σ(p̃). Then f is invariant, and hence constant on G ⋅ p̃. Observe that
f(0) = σ(0)−σ(p̃) = −σ(p̃) (since σ is homogeneous of positive degree, it follows σ(0) = 0), which
means that there is some function which vanishes on G ⋅ p̃ but not 0, and hence 0 is not in the orbit
closure of p̃. Conversely, suppose 0 is not in the orbit closure of p̃. Then G ⋅ p̃ and the origin are both
G-invariant closed subsets of X̃ , and it can be shown ([28, Corollary 1.2]) there is some invariant
f ∈ S such that f(0) = 0 for all g ∈ G(k) but f(g ⋅ p) ≠ 0. Clearly then f has no degree zero
component. Now let f = ∑i>0 fi be the homogeneous decomposition of f , with fi of degree i. In
particular, some fr must not vanish on p̃, and since G preserves each homogeneous component of S,
it follows that fr is invariant, and hence fr(p) ≠ 0, so p is semistable. This proves (i).

To prove (ii), firstly suppose p is semistable (if it is not, then it cannot be polystable, and the
closure of its orbit contains the origin). Then p ∈ Xσ(k) for some invariant homogeneous σ of
positive degree. Observe then that Xσ is G-invariant, and so G ⋅ p ⊆ Xσ(k). Now pick a lift p̃ of p,
and consider the closed subscheme V = SpecS/⟨σ − σ(p̃)⟩ of X̃ , which clearly contains the orbit
G ⋅ p̃. Now the map X̃ ∖ {0} → X restricts to a map φ ∶ V ↦ Xσ, which is a morphism of affine
schemes, induced by the canonical ring homomorphism

S[σ−1]deg 0 → S/⟨σ − σ(p̃)⟩,

f

σ
↦ f

σ(p̃) ,

and since the homomorphism is surjective, the morphism φ is finite, and hence closed. In particular,
if G ⋅ p̃ is closed in X̃ , then it is closed in V , and hence G ⋅ p is closed in Xσ. Conversely, suppose
G ⋅ p is closed in Xσ, and let V be as above. We claim the preimage of G ⋅ p in V is equal to
G ⋅ p̃. To this end, firstly observe that clearly G ⋅ p̃ is contained in φ−1(G ⋅ p) ∩ V (k), so suppose
q̃ ∈ φ−1(G ⋅ p) ∩ V (k), and we may suppose without loss of generality φ(q̃) = p. Then q̃ and p̃ lie
in the same fibre over p and thus, considered as points in an ambient An(k) = kn, differ by a scalar
multiple, say q̃ = up̃, u ∈ Gm(k), and so

σ(p̃) = σ(q̃) = σ(up̃) = udegσσ(p̃),

whence u = 1, as claimed. In particular, this meansG ⋅ p̃ is closed in V , and hence inX(k) as desired.
This proves (ii).

Finally, to prove (iii), it suffices to show that if p is polystable then dimGp = 0 if and only if
dimGp̃ = 0. Clearly dimGp̃ ≤ dimGp, and so it suffices to show that if dimGp̃ = 0 then dimGp = 0.
To this end, observe that finite morphisms are stable under base change ([14, Proposiion 6.1.5]), and
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hence the leftmost down arrow below is also finite:

Gp̃ G × V V

Gp G ×Xσ Xσ.

φ

This completes the proof.

The main issue with the above is that it is oftentimes very difficult to compute the closure of an
orbit, and in fact it may even be unknown what the homogeneous coordinate ring of our linearisation
is in the first place! Hence we will require a more computation-friendly criterion. This is the Hilbert-
Mumford criterion, which relates stability to 1-parameter subgroups, which we will now define:

Definition 2.4.4. Let G be an algebraic group. A 1-parameter subgroup, or just 1-PS, is an algebraic
group homomorphism λ ∶ Gm → G.

Now let X be a scheme, separated over k and let f ∶ Gm → X be any morphism. Then by the
valuative criterion for separation, f has at most one extension to a morphism f ♯ ∶ A1 → X . If this
extension does exist, we define the limit of f at 0, denoted limt→0 f(t), to be

lim
t→0

f(t) ∶= f ♯(0).

If this extension does not exist, we say the limit does not exist.

The idea is to reinterpret stability in terms of whether or not certain limits exist (which, in practice,
usually amounts to checking if negative powers of t turn up in an expression). However, since we will
only ever take G = SLm for some m ∈ N in practical applications in this thesis, and since this case is
easier to prove, we will henceforth assume G = SLm. It is worth noting that this method works for
GLm as well.

Theorem 2.4.5. Let SLm act on a projective variety X with a very ample linearisation L embedding
X in Pn. Let p ∈X(k).

(i) p is stable if and only if for any lift p̃ and nontrivial 1-PS λ ∶ Gm → SLm, the limit

lim
t→0

λ(t) ⋅ p̃

does not exist.

(ii) p is semistable if and only if for any p̃ and 1-PS λ ∶ Gm → SLm, we have

lim
t→0

λ(t) ⋅ p̃ ≠ 0.

Before we give the proof, we require the following result:
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Lemma 2.4.6 (Iwahori’s Decomposition Theorem). Let R be a DVR with valuation v, fraction field
K and uniformiser ϖ. Then given any M ∈ SLm(K), there exists A,B and Λ = diag(ϖr1 , ...,ϖrm)
such that

M = AΛB.

Proof. Following [27, p. 215], we induct on m, with m = 1 being trivial. Firstly, denote the entries
of M by mij . Multiplying left and right by permutation matrices we may assume

v(m1,1) ≤ v(mij)

for all i, j, and multiplying by diagonal elements of SLm(R∗), where R∗ is the group of units in R,
we may assume m1,1 =ϖv(m1,1). Now considering only the top and left entries, we have

⎛
⎜⎜⎜⎜
⎝

1 0 ... 0
−m2,1

m1,1
1 ... 0

... ...
−mm,1

m1,1
0 ... 1

⎞
⎟⎟⎟⎟
⎠
M

⎛
⎜⎜⎜⎜
⎝

1 −m1,2

m1,1
... −m1,m

m1,1

0 1 ... 0
... ...
0 0 ... 1

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

m1,1 0 ... 0
0
... M ♭

0

⎞
⎟⎟⎟
⎠
,

where M ♭ is some (m − 1) × (m − 1) matrix, and the result follows from the inductiive hypothesis
applied to M ♭.

Proof of Theorem 2.4.5. Inspired by [27, pp. 216-218], we begin with some generalities. Since the
action of SLm on X̃ ⊆ An+1 is linear, there is a representation ρ ∶ SLm → GLn+1. The diagonal
subgroup T ≅ (Gm)m of SLm, induces a weight-space decomposition

V = kn+1 = ⊕
γ∈Zm

Vγ ,

where if γ = (r1, ..., rm), then
diag(t1, ..., tm) ⋅ v =∏

i

trii ⋅ v

for all v ∈ Vγ . To see this, observe we can apply the usual weight space decomposition of Theorem
2.1.13 to each Gm component of T (which will look like diag(1, ..., ti, ...,1)), and take refinements
as i moves up, noting that if diag(1, ..., ti, ...,1) ⋅ v = trii v and diag(1, ..., tj , ...,1) ⋅ v = trjj v then
diag(1, ..., ti, ..., tj , ...,1) ⋅ v = trii t

rj
j v. In particular, we have a basis {eγ,i} of V where eγ,i ∈ Vγ .

Now to prove (i), we will first show that if a 1-PS attains a limit then p is not stable. To this end,
suppose we have a 1-PS λ ∶ Gm → SLm and suppose limt→0 λ(t) ⋅ p̃ = q̃ for some q̃ ∈ X(k). If
q̃ ∉ (SLm) ⋅ p̃ we are done, otherwise we observe that the action of λ fixes q̃, hence imλ ⊆ (SLm)q̃.
But since λ is nontrivial and Gm is connected, it follows that (SLm)q̃, and hence (SLm)p̃ cannot be
finite.

Conversely, suppose that p is not stable. Then either dim(SLm)p̃ > 0 or (SLm) ⋅ p̃ is not closed.
In the first case, note that since (SLm)p̃ is affine (it is the fibred product of two affine schemes over
an affine scheme) of positive dimension, it is not proper over Speck, and similarly, if (SLm) ⋅ p̃ is
not closed, then the map SLm → X̃ given by multiplication by p̃ is not closed. In either case, by
the noetherian version of the valuative criterion for properness ([44, Lemma 32.15.1]), there exists a
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DVR, say R with residue field k, uniformiser ϖ, fraction field K ⊇ k with the property R = k ⊕ϖR
(in particular there is a subring k[ϖ±1] ⊆ K isomorphic to k[t±1]), and an element M ∈ SLm(K) ∖
SLm(R) such that M ⋅ p̃ specialises to some q̃ (that is, the image of M ⋅ p̃ in V ∶= kn+1 is q̃), for
which we will adopt the notation M ⋅ p̃ → q̃. In the former case, this q̃ is just p̃; in the latter it is
some point in the boundary. Applying Iwahori’s theorem, this means we can write M = AΛB where
Λ = diag(ϖr1 , ...,ϖrm) and moreover Λ is nontrivial, since M is not contained in SLm(R). In
particular, we have

(AΛB) ⋅ p̃→ q̃.

We note that by definition A specialises to a matrix of determinant 1, and since matrix multiplication
commutes with ring homomorphisms (and group actions are associative), it follows ΛB ⋅ p̃→ q̃. Now
using the basis {eγ,i} constructed in the beginning of the proof, we may write

B ⋅ p̃ =∑ bγ,ieγ,i ∈ Rn, (2.5)

and the statement ΛB ⋅ p̃ = q̃ implies that for each γ = (a1, ..., am), we have

vR(ϖ∑airibγ,i) ≥ 0, (2.6)

where vR is the valuation. In particular, this is saying that if vR(bγ,i) = 0 then ∑airi ≥ 0. But that
means that for any bγ,i ≠ 0, where bγ,i is the image of bγ,i in the residue field k, we have

vR(ϖ∑airibγ,i) ≥ 0 (2.7)

and in particular, it follows that ΛB ⋅ p̃, where B is the reduction of B mod ϖ, has a specialisation,
or more precisely, it is of the form

ΛB ⋅ p̃ = u +ϖv ∈ V ⊗R, (2.8)

where u ∈ V , v ∈ V ⊗R. Furthermore, we note that since Λ ∈ SLm(k[ϖ±1]), it follows that ΛB ⋅ p̃ is
actually contained in V ⊗ k[ϖ] ≅ V ⊗ k[t]. Now using the isomorphism k[t±1] ≅ k[ϖ±1], the image
of Λ ∈ SLm(k[ϖ±1]) in SLm(k[t±1]) is the matrix

λ = diag(tr1 , ..., trm) ∈ SLm(k[t±1]),

and (2.8) may be reinterpreted as saying

λB ⋅ p̃ = u + tv ∈ V ⊗ k[t]

for some u ∈ V, v ∈ V ⊗ k[t]. But the morphism Gm = Speck[t±1] → SLm induced by λ is a 1-PS,
and it thus follows that B

−1
λB is a 1-PS with limit

lim
t→0

B
−1
λ(t)B ⋅ p̃ = B−1u

as desired.
Finally, to prove (ii), observe that if limt→0 λ(t) ⋅ p̃ = 0 for some 1-PS λ then 0 is in the closure of

(SLm) ⋅ p̃, whence p is unstable. Conversely, if 0 is in the closure of (SLm) ⋅ p̃, then similar to above,
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by the valuative criterion of properness there is some M ∈ SLm(K) ∖ SLm(R) such that M ⋅ p̃ → 0,
and reasoning exactly as before, we deduce the analogue of (2.5), but since ΛB ⋅ p̃ → 0 this time,
strict inequality holds in (2.6), and hence (2.7) too. It thus follows that the ΛB ⋅ p̃ → 0, and thus
B
−1
λB ⋅ p̃→ 0 too, as desired.

In summary, we have shown that stability and semistability (although not polystability) are en-
coded in whether the induced limits of 1-PS’s exist. Our final task is to find a numerical criterion that
tells us whether these limits do indeed exists. To this end, we have the following definition:

Definition 2.4.7. Let G be a reductive affine algebraic group acting on X ⊆ Pn, with a linearisation
onOX(1). Then we have a linear action of G on X̃ ⊆ An+1. Now given a 1-PS λ ∶ Gm → G, we have
a weight space decomposition

kn+1 =∶ V =⊕
r∈Z

Vr.

Choose a basis {ei} for V such that λ ⋅ ei = λriei for all λ ∈ Gm(k). Now let p ∈ X(k), and let
p̃ ∈ X̃(k) be a lift. We may write p̃ = ∑piei. The Hilbert-Mumford weight of λ at p with respect to
OX(1), denoted µOX(1)(p, λ), is the integer

µOX(1)(p, λ) ∶=max{−ri ∣ pi ≠ 0}.

Note that this does not depend on the choice of p̃ nor the basis.

We prove a very useful property of the Hilbert-Mumford weight:

Lemma 2.4.8. For any g ∈ G(k), we have µOX(1)(p, λ) = µOX(1)(gp, gλg−1).

Proof. Observe that if v ∈ Vi, then for any u ∈ Gm(k) we have

gλ(u)g−1(gv) = gλ(u)v = guiv = uigv.

Hence writing p = ∑piei and applying this to each piei we deduce the result.

Of course, it is a simple observation that if µOX(1)(p, λ) < 0, then all the ri are positive, and we
have limt→0 λ(t) ⋅ p̃ = 0. If µOX(1)(p, λ) = 0, then all the ri are nonnegative, and hence the limit
limt→0 λ(t) ⋅ p̃ exists, but may not be zero. In summary, we have:

Theorem 2.4.9 (The Hilbert-Mumford Criterion for SLm). Let SLm act on a projective variety X
and suppose we have a very ample linearisation on OX(1). Let p be a k-point. Then p is semistable
if and only if µOX(1)(p, λ) ≥ 0 for all nontrivial 1-PS λ, with stability holding if and only if the
condition holds with strict inequality.

Proof. This follows directly from Theorem 2.4.5 and the above observation.

Remark 2.4.10. The Hilbert-Mumford criterion is true for general reductive algebraic groups, not just
for SLm. In fact, our argument could easily (in fact, almost word-for-word) be adapted for GLm too.
However, the general statement requires a stronger version of Iwahori’s decomposition theorem, such
as [1, Theorem 1.1], which is valid for reductive algebraic groups in general, but requires our DVR
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be complete, and replaces the diagonal Λ with an element of G(K) of the form SpecK → Gm → G,
where the second arrow is some 1-PS, and the first is dual to t↦ϖ as before. The argument is similar
to the one given here, although differences include taking R to be a complete DVR in the valuative
criterion of properness (which is always possible, since we can just replace R by its completion) in
order to invoke the general Iwahori decomposition and replacing the matrix arguments with more
abstract arguments (although they achieve the same effect). The complete proof can be found in [28,
pp. 53-54].

Now that the tools have been developed, we conclude this chapter with a revisit to a previous
example, to see if our new tools can shed more light.

2.5 Conics Revisited

Recall that in the conics example in Chapter 1 (§1.3.1), we remarked (Remark 1.3.5) that it is crucial
we are not defining conics up to projective transformations, since we get jump phenomena. Now that
we have developed the techniques of GIT, we will try to fit this within our framework. We begin with
a formal definition of our problem:

Definition 2.5.1. Let k be an algebraically closed field of characteristic zero. The moduli problem of
conics in P2 up to projective transformations is the functor

M♭ ∶ FTSch/k → Sets, S ↦ {families over S}/AutS(P2 × S).

Note that M♭ is essentially the same problem, the only difference being that the equivalence
relation on our families have changed. In particular, Lemmas 1.3.3 and 1.3.4 still hold, and thus while
the family X in the statement of Theorem 1.3.2 is no longer universal, it is still a locally versal family.

Now observe that SL3 acts on P5 (which parameterises X) by acting inversely in the usual way
on the variables x, y, z. More precisely, the usual action composed with inversion SL3 ×P2 → P2

induces the following diagram:

(SL3 ×P2 × P5) ×P2×P5 X X

SL3 ×P2 × P5 P2 × P5

and it is clear that (SL3 ×P2 ×P5)×P2×P5 X is a family of conics over SL3 ×P5, and since P5 is a fine
moduli space for the moduli problem of conics in P2, this is equivalent to a morphism SL3 ×P5 → P5.
One can check that this is a group action, and acts on k-points as described, and clearly two fibres
in X are equivalent if and only if they lie over points in the same orbit. This action has an obvious
linearisation onOP5(1), and thus induces an action SL3 ×A6 → A6. So now we ask: what do stability
semi-stability look like in this context? The first is very easy to answer: since dimSL3 = 8 and
dimP5 = 5, for purely dimensional reasons no point is stable. We will now look at semistability.
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To begin, observe that we may scale the x, y, z uniformly (i.e. multiply them by the same scalar)
as we please, hence we may scale any GL3(k) operation on the x, y, z so that it ends up in SL3(k).
For example, in order to interchange x, y, even though the usual permutation matrix

A =
⎛
⎜
⎝

0 1 0
1 0 0
0 0 1

⎞
⎟
⎠

has determinant −1, we may multiplyA by −1 so that the resulting determiant is 1, and we end up with
the desired operation. In particular, we may use any GL3(k) operation, and we will do so without
further comment.

Next observe that we may regard the equation f = s0x2 + ... + s5zx of any conic as a quadratic
form Q on V = k3, and hence we have an associated symmetric bilinear form β with the matrix

J =
⎛
⎜
⎝

2s0 s1 s5
s1 2s2 s3
s5 s3 2s4

⎞
⎟
⎠
.

Note that J(x, y, z)t is just the Jacobian of f . We can interpret β as a map β ∶ V → V ∗. Observe that
X = Projk[x, y, z]/⟨f⟩ is nondegenerate if and only if β is injective.

Theorem 2.5.2. A conic X over k is semistable with respect to the linearisation of the SL3 action if
and only if X is nondegenerate.

Proof. Let X be a conic defined by some f ∈ k[x, y, z]deg 2 and let Q and β ∶ V → V ∗ be as above.
Suppose firstly X is denerate, and let v0 ∈ kerβ ∖ {0}. Let v1, v2 be orthogonal to each other (that
is, β(v1, v2) = 0) so that {v0, v1, v2} is an orthogonal basis for V , and define a 1-PS as follows:
let g ∈ SL3(k) be (a scale of) the element sending (v0, v1, v2) to (e1, e2, e3), and define the 1-PS
λ ∶ Gm → SL3 represented as

g−1 diag(t2, t−1, t−1)g ∈ SL3(k[t±1]).

Then one can check that g ⋅ f = ay2 + bz2, for some a, b ∈ k, and

(gλ(u)g−1)⋅(g⋅X) = diag(u2, u−1, u−1)⋅Projk[x, y, z]/⟨ay2+bz2⟩ = Projk[x, y, z]/⟨u2ay2+u2bz2⟩

for any u ∈ Gm(k), and thus

µ(X,λ) = λ(g ⋅X,gλg−1) = −2 < 0

whence X is unstable, as desired.
Conversely, suppose X = Projk[x, y, z]/⟨f⟩ is unstable. Then there is some 1-PS λ ∶ Gm → SL3

such that µ(X,λ) < 0. The observation that stability is only dependent on the orbit combined with
Lemma 2.4.8 allows us to suppose without loss of generality that λ diagonal, and hence represented
by some

diag(tr1 , tr2 , tr3) ∈ SL3(k[t±1]),
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where r1 + r2 + r3 = 0, and we may furthermore assume without loss of generality r1 ≤ r2 ≤ r3. Write
f = s0x2 + s1xy + s2y2 + s3yz + s4z2 + s5zx and observe that

λ(u) ⋅ f = s0u−2r1x2 + s1u−r1−r2xy + s2u−2r2y2 + s3u−r2−r3yz + s4u−2r3z2 + s5u−r3−r1zx.

In order for µ to be negative, it follows that all the powers of u in the above expression with nonvan-
ishing coefficient must be strictly positive. With this in mind, observe that since r1 < 0 and r3 > 0, it
must be that s4 = 0. Here we have a trichotomy about the sign of r2: if r2 = 0, then it follows r1 = −r3
and s3 and s5 are both 0. We then see

detJ = 2s2s25 = 0.

Now supposing that r2 > 0, it once again follows s3 = 0 and also s2 = 0, and so detJ = 0. Finally, if
r2 < 0, then since r2 < r3, it follows −r2 − r3 < −2r2 < 0 and hence we must have s3 = 0 one final
time. Similarly, it follows −r3 − r1 = r2 < 0 and so s5 = 0, whence detJ = 0 too. This completes the
proof.

Since any two nondegenerate conics are equivalent, it follows that P5 //OP5(1)
SL3 = Speck.

Remark 2.5.3. We can make a little tweak to this situation as follows: firstly note that every quadratic
form is diagonalisable ([39, IV, Theorem 1]), and so we may assume every conic is of the form
Projk[x, y, z]/⟨px2+qy2+rz2⟩. Then analogously, the space of diagonal forms has a natural locally
versal family parameterised by P2 = Projk[a, b, c] with the family cut out by ax2 + by2 + cz2. Then
we need only consider the diagonal G2

m ⊆ SL3 (we only need two copies of Gm because the third
diagonal entry is given by the reciprocal of the product of the first two, since we are working with SL3)
acion on P2, with the obvious linearisation on OP2(1), and with respect to this linearisation, doing
the exact same calculation we find that nondegenerate conics are in fact stable, not just semistable
(and in fact, stability and semistability coincide). Of course, the GIT quotient will be the same in both
cases.

This innocuous calculation and result is an illustration of how geometric invariant theory is com-
monly used. Let M be a moduli problem, and suppose X → S is a locally versal family. Then
if an algebraic group G acts on S parameterising equivalent families, restricting to the stable locus
(possibly with respect to a very ample linearisation L) can filter out “bad” points; this is particularly
useful ifM has a jump phenomenon, as we have just seen. Moreover, it is not uncommon for stability
to coincide with a “natural” condition on the underlying naı̈ve moduli problem ofM (for example,
nonsingularity in the above case). And furthermore, the GIT quotient Ss → Ss //L G is a geometric
quotient, so first and foremost it is a categorical quotient, and one can use the fact X → S is locally
versal to build a natural transformation η ∶M→ Hom(−, Ss //LG) which will satisfy property (ii) in
the definition of a coarse moduli space. Moreover, since it is an orbit space, property (i) will also be
satisfied, and in particular, we can salvage a coarse moduli space of “stable” objects even if we have a
jump phenomenon. In the next chapter, we will apply this idea to construct the moduli space of stable
vector bundles.



Chapter 3

Stable Vector Bundles and their Moduli

In this chapter, we will combine everything we have learnt so far with a study of vector bundles to
construct the moduli space of stable vector bundles. Let X be a fixed complete nonsingular curve of
genus g over an algebraically closed field k of characteristic zero, equipped with a very ample line
bundle OX(1).

3.1 Stable and Semistable Bundles

To motivate the definitions that follow, we begin by stating our moduli problem.

Definition 3.1.1. The moduli problem of vector bundles of signature (n, d) on X (see Definition
A.1.7) is the functor Vn,d ∶ Var/k → Sets defined as follows: for any variety S/k, we define a family
of vector bundles over S to be a coherent sheaf E on X × S, flat over S such that for any s ∈ S(k),
the fibre Es defined to be the pullback of E along the map s × id ∶ Speck ×X → S ×X is a locally
free sheaf of signature (n, d) on X . Two families E ,F are equivalent if and only if there exists some
line bundle L on S such that

E ≅ F ⊗ π∗SL.

We may also pull back families in the obvious way, and clearly equivalent families are pulled back to
equivalent families. We then define Vn,d to be

Vn,d(S) ∶= {families over S}/ ∼ .

Of course, there are some interesting choices we have made, which we will briefly justify now,
but will become clearer as more details are presented. Firstly, the reason we work with varieties is
that Grauert’s theorem ([17, III Corollary 12.9]) is needed in the argument, and Grauert’s theorem
requires an integrality condition. Of course, we could just work with integral schemes of finite type
over k (note that we are constrainted to be working with schemes of finite type, since this is as far
as our work on GIT takes us), but working with varieties seems more natural. Also, the equivalence
relation may seem unusual, the reason for this is that we will have a GLN (where N is some constant
which will be defined later) action on some base space, and this extra condition allows us to work
with SLN instead, so we have an extra hypothesis to use.

However, even in the simple case of signature (2,0)-bundles over P1 = Projk[x, y], there is a
jump phenomenon:

53
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Example 3.1.2. We consider the following family E over the affine line A1 = Speck[t]: let U0 (resp.
U1) be the open subset where x (resp. y) does not vanish. Then we glue O2

U0×A1 and O2
U1×A1 on the

overlap via the transition function

g0,1 ∶= (
x
y t

0 y
x

) ∈ GL2(k[t,
y

x
,
x

y
]) = GL2(Γ(U0 ∩U1,OA1×P1)).

More precisely, on U0 we have the standard basis r1, r2 ∈ Γ(U0,O2
U0×A1), and on U1 the standard

basis s1, s2 ∈ Γ(U0,O2
U1×A1). We then define an isomorphism sending s1 ↦ (x/y)r1 and s2 ↦

tr1 + (y/x)r2, and define E to be the gluing of the two sheaves on the overlap via this isomorphism.
Since E is locally free, it is flat over A1 × P1 and by the transitivity of flatness is also flat over A1.

Now we claim that the fibre E0 is isomorphic to OP1(−1) ⊕ OP1(1), but every other fibre is
isomorphic toOP1 ⊕OP1 (and of course, these are not isomorphic, the latter has a nowhere-vanishing
global section, but the former does not). To see this, first observe that clearly when t = 0, the transition
map is just diag(y/x,x/y), which is the transition map ofOP1(−1)⊕OP1(1). However, for a nonzero
λ, we will define an isomorphism φ ∶ Eλ → OP1 ⊕OP1 as follows: let e1, e2 be the standard basis of
OP1 ⊕OP1 . We define φ to be the map

r1 ↦
y

x
e1 − e2, r2 ↦ −λe1

on U0 and

s1 ↦ e1 −
x

y
e2, s2 ↦ −λe2

on U1. To see that these glue, observe that s1 = (x/y)r1 and s2 = λr1 + (y/x)r2 on the overlap, and
so

φ(s1) = φ(
x

y
r1) = e1 −

x

y
e2, φ(s2) = φ(λr1 +

y

x
r2) = λ(

y

x
e1 − e2) − λ

y

x
e1 = −λe2,

as expected. Finally, observe that φ maps local free generators to local free generators, and so is an
isomorphism.

In fact, we can generalise this example: observe that for any λ ∈ k above there is a short exact
sequence

0→ OP1(−1)→ Eλ → OP1(1)→ 0,

with the only split fibre being at λ = 0. In particular, the Eλ are canonically identified with elements of
the group Ext1(OP1(1),OP1(−1)), and this idea is what we use to generalise the example. Firstly, let
us look explicitly at how the Ext1 group parameterises extensions, using Čech cohomology. Suppose
we have a short exact sequence of vector bundles

0→ E → F → G → 0. (3.1)

Since these sheaves are locally free, there is an open affine cover {Uα} on which the restricted se-
quence does split, so let us choose a collection of splittings {fα ∶ G∣Uα → F ∣Uα}. On overlaps, we
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have two splittings and we see that their differences fαβ ∶= fα − fβ have image in E ∣Uα∩Uβ
, and sat-

isfy a cocycle condition, and in particular the {fαβ} form a Čech 1-cocycle for the sheafHom(G,E)
with respect to the cover {Uα}, and hence define an element of H1(X,Hom(G,E)) ≅ Ext1(G,E).
Moreover, it is not hard to check that a different choice of splittings gives a cohomologous cocycle,
and thus the class δF ∶= [{fαβ}] ∈ H1(X,Hom(G,E)) depends only on F . Moreover, if (3.1) does
split then δF = 0, and conversely as can easily be seen.

Even more explicitly, let us compute some transition functions of F . Let {eα1 , ..., eαrkE} denote a
frame for E on Uα (or equivalently the image of the standard basis of Γ(Uα,OX)rkE in Γ(Uα,E)) via
a choice of local trivialisation), let {eαβ ∈ GLrkE(Γ(Uα ∩Uβ,OX))} denote the transition functions
satisfying

eβj =∑(eαβ)ije
α
i

on overlaps, and we similarly define {gα1 , ..., gαrkG}, and {gαβ}. Now letting {fα ∶ G∣Uα → F ∣Uα}
denote a choice of local splittings as before, the set

{eα1 , ..., eαrkE , fα(gα1 ), ..., fα(gαrkG)}

forms a frame for F on Uα. The ei are related as before, but observe that on Uαβ we have

fβ(gβj ) = fα(g
β
j ) − fαβ(g

β
j ) = (∑

i

(gαβ)ij(fα(gαi ))) − fαβ(g
β
j ),

and so the transition matrix is of the form

(eαβ −[fαβ]αβ
0 gαβ,

)

where [fαβ]αβ is the matrix of fαβ ∈ Hom(G∣Uαβ
,E ∣Uαβ

) with respect to the bases {eβi },{fβ(gi)β}.
With this in mind, we have the following result:

Theorem 3.1.3. Suppose there is a vector bundle F of signature (n, d) which fits in a short exact
sequence

0→ E → F → G → 0

that does not split. Then Vn,d does not have a coarse moduli space.

Proof. Fix a sufficiently fine open cover {Uα} and frames and transition maps retaining the notations
as above. We now build a family {Ft} parameterised by A1 = Speck[t] by gluing the frames via the
transition function

(eαβ −t[fαβ]αβ
0 gαβ

) .

Observe that the fibreF0 clearly splits, but we claim that all the other fibres are isomorphic toF = F1.
Indeed, fixing λ ∈ k∗, we define a map φ ∶ F ↦ Fλ sending fα(gαi ) to itself, but eαi to λeαi . To see
that these glue, note that the eαi will clearly not cause problems, and observe

φ(fβ(gβj )) = φ((∑
i

(gαβ)ij(fα(gαi ))) − fαβ(g
β
j )) = (∑

i

(gαβ)ij(fα(gαi ))) − λfαβ(g
β
j ) = fβ(g

β
j ).

It is clear this is an isomorphism, and that both bundles do not split, and hence there is a jump
phenomenon, and so Vn,d has no coarse moduli space.
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Remark 3.1.4. To tease our eventual defection into the analytic theory, we will give an alternative
description of the Ext1 group in the special case k = C using Dolbeault cohomology. In this case,
X(C) is just a compact Riemann surface, and there is a natural equivalence of categories between
holomorphic vector bundles on X(C) and algebraic vector bundles on X (in fact, this equivalence
extends to coherent sheaves), so we identify them. Now a holomorphic vector bundle may be thought
of as a smooth vector bundle E equipped with a Dolbeault operator ∂̄E ∶ Ω0(E)→ Ω0,1(E) (this will
be elaborated upon in the next chapter), where Ω0(E) is the space of global E-valued 0-forms and
similarly with Ω0,1(E), and using ∂̄E we may build a complex of abelian group Ω0,q(E)→ Ω0,q+1(E)
which are the global sections of an acyclic resolution of E, so in particular its cohomology H0,q

∂̄E
(E)

is canonically isomorphic to the sheaf cohomology Hq(X,E) (see [23, Corollary 2.6.25] for details).
In particular, in the above situation, there is an isomorphism Ext1(G,E) ≅ H1(X,Hom(G,E)) ≅
H0,1

∂̄
Hom(G,E)

(Hom(G,E)), where E,G are the underlying smooth bundles of E ,G and Hom(G,E)
is the bundle of smooth homomorphisms from G to E. To give an explicit isomorphism, firstly
observe that the sequence

0→ E → F → G→ 0

splits smoothly, so we have a splitting map f ∶ G → F . Composing with ∂̄F and projecting onto E,
we have a map fromG to Ω0,1(E); i.e. an element β ofH0,1

∂̄
Hom(G,E)

(Hom(G,E)), and one can check

this process defines the isomorphism. β is called the second fundamental form of the extension, and
will be important in the next chapter.

And this unfortunately kills any hope of finding a moduli space. However, as with the conics
revisited example in the previous chapter, one could hope that a stability condition, similar to nonde-
generacy of conics in that example, will fix this problem. We will dedicate the rest of this chapter to
showing that this is indeed the case. To define this stability condition, which we will just call stability,
we first make the following definition

Definition 3.1.5. Let E be a vector bundle. The slope of E , denoted µ(E), is defined to be

µ(E) ∶= deg E
rkE

Lemma 3.1.6. Let
0→ E → F → G → 0

be a short exact sequence of vector bundles. Then µ(E) ≤ µ(F) if and only if µ(G) ≥ µ(F), with
equality holding in one if and only if in the other.

And finally, the definition:

Definition 3.1.7. Let E be a vector bundle. Then E is stable (resp. semistable) if for every proper
subbundle F , we have

µ(F) < µ(E)
(≤)

E is polystable if it is a direct sum of stable bundles of the same slope.
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A family of (semi)-stable vector bundles over a variety S over k is a family of vector bundles
whose fibres are all (semi)-stable. The moduli problem of stable vector bundles of signature (n, d) is
the functor Vsn,d taking a variety S to the set of families of stable vector bundles of signature (n, d)
parameterised by S. Note that we do not define the moduli problem of semistable vector bundles.

Observe that we can alternatively define stability in terms of quotient bundles: by Lemma 3.1.6,
E is (semi)-stable if and only if for every quotient bundle G we have:

µ(E) < µ(G)
(≤)

Let us mention some basic properties of stability:

Lemma 3.1.8. Let E be a vector bundle.

(i) E is (semi)-stable if and only if E ⊗L is (semi)-stable for every line bundle L.

(ii) If rkE = 1 (i.e. E is a line bundle) then E is always stable.

(iii) If E ′ is another vector bundle then E ⊕E ′ is not stable. It is semistable only if µ(E) = µ(E ′)
and both are semistable.

(iv) If φ ∶ E → F is a nonzero morphism of vector bundles, and both bundles are semistable, then
µ(E) ≤ µ(F). If both are stable, then equality occurs if and only if φ is an isomorphism.

(v) If E is stable, then it is simple (that is, End(E) = k).

(vi) E is semistable if and only if for any subsheaf F we have µ(F) ≤ µ(E). Stability holds if and
only if strict inequality holds.

Proof. Note that every subbundle of E ⊗L has the form F ⊗L (indeed, if G is any subbundle of E ⊗L
we take F = G ⊗L∨). Now observe

µ(F ⊗L) = degF + rkF degL
rkF = µ(F) + degL

and similarly for µ(E ⊗L) and hence

µ(E ⊗L) − µ(F ⊗L) = µ(E) − µ(F)

which proves (i). (ii) is trivial. To prove (iii), suppose without loss of generality µ(E) ≤ µ(E ′). Now

µ(E ⊕E ′) = deg(E) + deg(E ′)
rk(E) + rk(E ′) ≤ µ(E

′)

hence E ⊕E ′ is not stable. If it is semistable, then equality must hold above, and clearly both must
both be semistable, which proves (iii).
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To prove (iv), observe that by Proposition A.1.17, the map φ factors as follows:

0 E ′ E E ′′ 0

0 F ′′ F F ′ 0

φ (3.2)

where E ′ ≅ kerφ, E ′′ ≅ imφ and rkE ′′ = rkF ′, deg E ′′ ≤ degF ′. Since E and F are both semistable,
it follows

µ(E) ≤ µ(E ′′) ≤ µ(F ′) ≤ µ(F). (3.3)

Moreover, if are both are stable and φ is not an isomorphism, then either the inclusion F ′ ⊆ F is
proper, whence µ(F ′) < µ(F), or the inclusion E ′ ⊆ E is proper, whence µ(E) < µ(E ′′).

To prove (v), suppose φ ∶ E → E is an endomorphism. If φ is zero, we are done. If not, we
must have equality in (3.3), and by the stability of E we have E = E ′′ = imφ, so in particular φ is
an isomorphism. We have proven that any nonzero endomorphism of E is an isomorphism. Now fix
some p ∈X(k); we have an induced map of fibres Ep /mp Ep → Ep /mp Ep, and since k is algebraically
closed, this map has an eigenvalue, say λ. But φ − λ ∶ E → E is no longer an isomorphism, hence
must be zero, and thus φ = λ as desired.

Finally, to prove (vi), suppose E is semistable and let F be a subsheaf of E . Then applying
Proposition A.1.17 to the inclusion F ⊆ E , we deduce there is a subbundle F ′ of E with deg(F ′) ≥
deg(F) and rk(F ′) = rk(F), and hence µ(F) ≤ µ(F ′) ≤ µ(E). If E is stable, then the inequality is
strict. The converse is trivial.

As a first application, we will show that the jump phenomenon cannot happen when we restrict to
stable bundles.

Proposition 3.1.9. Let S be a variety over k, let p ∈ S(k) be a k-valued point, and let E ,F be two
families of vector bundles of signature (n, d) parameterised by S. Suppose Es ≅ Fs for all points
p ≠ s ∈ S and suppose further both Ep and Fp are stable. Then Ep ≅ Fp.

Proof. Following [18, p. 193], recall that the function

s↦ dimk(s)H
0(Hom(Es,Fs)),

where k(s) is the residue field of s ∈ S, is upper semicontinuous, by the semicontinuity theorem ([17,
III Theorem 12.8]). Since Es ≅ Fs, it follows that dimk(s)H

0(Hom(Es,Fs)) > 0 for all s ≠ p, and
hence dimkH

0(Hom(Ep,Fp)) ≠ 0, so in particular there is a nonzero homomorphism Ep → Fp.
Since both are stable of the same signature, this homomorphism must be an isomorphism, by (iv) of
Lemma 3.1.8.

We now give an explicit description of stability for vector bundles on P1.

Example 3.1.10. It is well-known that every vector bundle on P1 is a direct sum of line bundles (
[36, Lemma 4.4.1]), and moreover every line bundle is of the form OP1(n). Thus we may write any
vector bundle E on P1 as

E =⊕
n∈Z
OP1(n)rn ,



3.1. STABLE AND SEMISTABLE BUNDLES 59

where OP1(n)rn means rn direct copies of OP1(n), and all but finitely many of the rn are zero. In
this situation, stability has a very easy description: the only stable bundles are line bundles by (ii) in
the above lemma, semistable and polystable bundles coincide and they all look like OP1(n)r, and as
soon as two distinct summands OP1(n) and OP1(m) turn up the bundle is unstable.

We consider the above example in greater detail. Given a bundle E = ⊕n∈ZOP1(n)rn , where
n1 < ... < nℓ are the indices where rni ≠ 0, it is very tempting to build a filtration out of it, and indeed
there is a very natural and reasonable way to do so, namely:

0 ⊆ E1 = OP1(nℓ)rnℓ ⊆ E2 =
ℓ

⊕
i=ℓ−1

OP1(ni)rni ⊆ ... ⊆ Eℓ =
ℓ

⊕
i=1
OP1(ni)rni = E .

Note that this has the nice property that every quotient (i.e. each E i /E i−1) of the filtration is semistable,
and it is ordered such that µ(E i+1 /E i) > µ(E i /E i−1). In fact, it is also easy to see that this is the
unique filtration such that these hold. To generalise:

Proposition 3.1.11. Let E be a vector bundle on X . Then there exists a unique filtration

0 = E0 ⊆ E1 ⊆ .... ⊆ Er = E

with the property that each E i /E i−1 is semistable and µ(E i+1 /E i) > µ(E i /E i−1) for each relevant i.

Before we prove this, we extract the following lemma:

Lemma 3.1.12 ([36], Lemma 5.4.1). Let E be a vector bundle on X . Then the set of degrees of
subsheaves of E is bounded above.

Proof of Proposition 3.1.11. If E is semistable we are done. If E is a line bundle then it is stable
and we are done. We now induct on the rank. Suppose E is unstable. By the above lemma, the
slopes of subbundles of E is bounded above, so we choose a maximal slope µ and among these a
maximal rank subbundle E1 with slope µmax. It is clear that E1 is semistable, and moreover we
claim E /E1 has no nontrivial subbundle of slope µmax. Indeed, if it has such a subbundle, say F ,
then by the correspondence theorem applied locally (it is not hard to check that we can do this and
patch everything together), F corresponds to a subbundle F1 sitting strictly between E1 and E , which
contradicts the maximality of E1.

Now by the inductive hypothesis, E /E1 has a filtration

0 ⊆ (E /E1)2 ⊆ ... ⊆ (E /E1)n = E /E1,

and it is not hard to see that this lifts. Indeed, (E /E1)i is a subbundle of E /E1 and applying the
correspondence theorem locally and patching together, we find an E i such that E1 ⊆ E i ⊆ E and
E i /E1 = (E /E1)i. Since (E i /E i+1) = (E /E1)i/(E /E1)i+1 it follows that this filtration satisfies the
desired properties.

To prove uniqueness, suppose (E i)ni=1 and (E ′i)mi=1 are two filtrations satisfying the property. Let
µ = µ(E1) and let µ′ = µ(E ′1). Supposing without loss of generality µ ≥ µ′, we consider the map
E1 → E → E /E ′m−1. By assumption, µ ≥ µ′ > µ(E /E ′m−1) and since both bundles are semistable, by
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(iv) of Lemma 3.1.8 it follows the map is zero; in particular, E1 is contained in E ′m−1. But applying
the same argument inductively with E ′m−i in place of E and E ′m−i−1 in place of E ′m−1, we deduce E1
is contained in E ′1. Now if µ > µ′, then by the same argument E1 = 0 which obviously cannot happen,
and thus µ = µ′ and E1 is contained in E ′1. But reversing the roles of E1 and E ′1 we deduce E ′1 is
contained in E1 and thus they are equal. The result then follows by inductively applying the argument
to (E i /E1) and (E ′i /E ′1).

Definition 3.1.13. The filtration defined above is known as the Harder-Narasimhan filtration of E .

We conclude this section by zooming in on a particular µ ∈ Q, and studying the category Vss(µ)
of semistable vector bundles of slope µ. In particular, we have the following result:

Theorem 3.1.14 (Seshadri). The category Vss(µ) is abelian.

Proof. Being a subcategory of the abelian category of coherent sheaves onX , the Hom-sets naturally
inherit an abelian group structure and the composition law clearly distributes over addition; moreover
it is clear finite direct sums exist. Now observe that if φ ∶ E → F is a morphism in Vss(µ), then
Proposition A.1.17 combined with Lemma A.1.16 tell us that imφ is a subbundle and has slope µ
as well, whence kerφ has slope µ. Clearly both are semistable, and hence Vss(µ) has kernels and
cokernels. That every monomorphism (which is just an injective morphism, which can be seen in
the supercategory of coherent sheaves) is the kernel of its cokernel and that every epimorphism is the
cokernel of its kernel are immediate, and that every morphism can be factored into an epimorphism
followed by a monomorphism is just the Proposition A.1.17-Lemma A.1.16 combination again.

And finally, we observe that for any object E in Vss(µ), every increasing and decreasing filtration
terminates (we say Vss(µ) is noetherian and artinian), and in particular one can show that a Jordan-
Hölder filtration (that is, a filtration 0 = E0 ⊆ E1 ⊆ ... ⊆ Er = E such that every E i /E i−1 has no
nontrivial subobject of Vss(µ) i.e. is stable) exists, and the Jordan-Hölder theorem, which states that
the quotients are unique up to permutation and isomorphisms ([40, Theorem 2.1]).

Example 3.1.15. Of course, on P1 the only semistable bundles are of the form OX(d)n, and so its
Jordan-Hölder filtration is of the form

0 ⊆ OX(d) ⊆ OX(d)2 ⊆ ... ⊆ OX(d)n.

Example 3.1.16. In fact, one can define an equivalence relation on semistable bundles by asserting
E ∼ F if and only if they have equivalent Jordan-Hölder filtrations (that is, the quotients are isomor-
phic up to permutation). Of course, within each class one finds a unique representative, which is the
polystable bundle built by taking the direct sum of each stable quotient. Note the similarity between
this and the equivalence of semistable orbits in the context of the previous chapter.

3.2 Constructing the Moduli Space

We will now construct the moduli space of stable bundles of signature (n, d). To simplify matters,
we will assume g ≥ 1. Indeed, if g = 0, then the result is trivial: since every vector bundle over P1 is
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a direct sum of line bundles, the only stable bundles on P1 are line bundles, thus V s
1,d = Speck and

V s
n,d = ∅ if n > 1.

We will now suppose g ≥ 1. Our approach is similar to the elliptic curves example in Chapter
1: we find a locally versal family equipped with a group action, and we show that the GIT quotient
is the moduli space. In contrast to the aforementioned example, we do not find a locally versal first
and then attach a group action; instead we find a scheme parameterising a family that contains every
semistable bundle (known as a bounded family), but also parameterising things we do not want. We
define the action first and then construct the locally versal family as the stable locus of this action. In
order to construct the bounded family, we will first require the Riemann-Roch theorem:

Theorem 3.2.1 (Riemann-Roch for Vector Bundles). Let F be a vector bundle on X of signature
(n, d). Then

χ(F) = d + n(1 − g),
where χ(F) ∶= ∑∞i=0(−1)ihi(F) = h0(F) − h1(F) is the Euler characteristic of F .

Proof. We induct on n. For n = 1, the result is classical, and is proven in, for example, [17, pp.
295-296]. Now supposing true up to some n − 1, suppose F has rank n. Let L be a line subbundle of
maximal degree (which exists because of [36, Lemma 5.4.1]). Then we claim F/L must be locally
free. Indeed, we may apply Proposition A.1.17 taking φ in the proposition statement to be the inclu-
sion L ⊆ F , so that there is a nonzero map L→ F ′ (where F ′ is as in the proposition statement). But
both these bundles are line bundles, and hence are stable, and so degL ≤ degF ′, and since L is of
maximal degree, equality must hold, and hence F/L = F ′′ is locally free as claimed. Now applying
the inductive hypothesis we have

χ(F) = χ(L) + χ(F/L) = degL + 1 − g + (d − degL) + (n − 1)(1 − g) = d + n(1 − g)

as desired.

Corollary 3.2.2 (Classical Riemann-Roch Theorem). For any line bundle L of degree d, we have

h0(L) − h0(L∨ ⊗ ωX) = d + 1 − g,

where ωX is the canonical bundle (which is just the cotangent bundle in this case). In particular, the
degree of the canonical bundle is 2g − 2.

Proof. Combine the above theorem and the Serre duality theorem ([17, III, Corollary 7.7]).

The importance of the Riemann-Roch theorem is that it allows us to relate the quantities we are
interested in. More precisely, by the Serre vanishing theorem, for any coherent sheaf F , and any
ample line bundle L, we have H i(X,F ⊗ L⊗m) = 0 for any sufficiently large m and any i > 0.
Moreover, by the definition of ampleness, we know that F ⊗L⊗m is generated by global sections, for
any sufficiently large m. In particular, if F is locally free then the Riemann-Roch theorem tells us
exactly how many global sections generate F ⊗ L⊗m. The main issue is that the “sufficiently large”
criterion depends on F and L. This is remedied by the following result:

Lemma 3.2.3. Let E be a semistable vector bundle of signature (n, d).
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(i) If d > n(2g − 2) then H1(X,E) = 0.

(ii) If d > n(2g − 1) then E is generated by global sections.

Proof. This follows the proof given in [20, p. 68]. Suppose for contradiction H1(X,E) ≠ 0. By the
Serre duality theorem, we have

H1(X,E) ≅H0(X,E∨⊗ωX) = Hom(E , ωX),

where ωX is the canonical bundle (which is just the cotangent bundle here). This means that there is
a nonzero homomorphism φ ∶ E → ωX . Now by Lemma 3.1.8 (iv), we have

2g − 2 = n(2g − 2)
n

< d
n
= µ(E) ≤ µ(ωX) = 2g − 2

which is a contradiction. This proves (i).
To prove (ii), we note that since the local ring of the generic point is a field, we need only check the

stalk is generated by global sections at closed points, or equivalently k-points, since k is algebraically
closed. So let p be a k-point, with local ringOX,p and maximal ideal mp. The compositionOX(U)→
OX,p → OX,p/mp induces the following short exact sequence of sheaves:

0→ Ip → OX → kp → 0,

where kp is the skyscraper sheaf k sitting over p, and Ip is the kernel. Since E is locally free, tensoring
is exact, and moreover since it is of rank n, and kp is a skyscraper sheaf, it follows kp⊗E ≅ kp⊗On

X ≅
knp . Thus tensoring the above with E we have

0→ Ip ⊗ E → E → knp → 0. (3.4)

Now we claim that Ip ≅ L(−p), where L(−p) is the line bundle associated to the divisor −p (see
Appendix B). To see this, let U = SpecA be an open affine subset. If p ∉ U , then Ip∣U = OX ∣U .
Otherwise, p is cut out by some f ∈ A, and hence Ip∣U = fOX ∣U . But this is exactly the definition of
L(−p), as claimed. Now observe that Ip⊗E = E ⊗L(−p) is semistable and has degree n(2g −2) and
thus by part (i) we have H1(X,E ⊗L(−p)) = 0. Now taking cohomology of (3.4), it follows we have
a surjection

H0(X,E)→H0(X,knp ) = kn.

Finally, we apply Nakayama’s lemma on the local ring OX,p to deduce that the map H0(X,E)→ Ep
is surjective too.

The consequence of the above lemma combined with the Riemann-Roch theorem is that every
semistable vector bundle of signature (n, d) for d sufficiently large is a quotient of Od+n(1−g)

X . Now
it just so happens that there is a scheme, known as the Quot scheme that is a fine moduli space
parameterising quotients of a given coherent sheaf, with certain constraints.
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3.2.1 The Quot Functor and its Scheme

To define the moduli problem the Quot scheme represents, we first require the following result.

Proposition 3.2.4. Let Y be a projective variety, let F be a coherent sheaf on Y and let O(1) be a
very ample line bundle. For any m ∈ Z, write F(m) ∶= F ⊗O(m) ∶= F ⊗O(1)⊗m. Then there is a
polynomial P ∈ Q[z] such that

P (m) = χ(F(m))
for all m ∈ Z.

Proof Sketch. Embed Y into some projective space via O(1). We use without proof the following
two facts:

(i) If F ∶ Z → Z is a function and there is a polynomial Q ∈ Q[z] such that F (m) − F (m − 1) =
Q(m) for all m ∈ Z, then there is some polynomial P ∈ Q[z] such that P (m) = F (m) for all
m ∈ Z ([17, I Proposition 7.3 (b)]).

(ii) There is some f ∈ H0(Y,O(1)) such that multiplication by f induces an injective homomor-
phism of sheaves F(−1)→ F ([49, p. 489]).

With these in mind, we induct on r = dimSuppF . If r = 0, then F is supported on a discrete
subset, and hence tensoring with O(1) does nothing, and so P is constant, equal to χ(F). Now
supposing true for some r ≥ 0, we suppose dimSuppF = r + 1, and write M for the graded module
M ∶= ⊕m∈ZH

0(X,F(m)), so that M̃ ≅ F ([17, II. Proposition 5.15]). We note that the map
M(−1) → M given by multiplication by f as in fact (ii) above induces the following short exact
sequence of sheaves

0→ F(−1)→ F → G → 0

where G is the cokernel. We claim that SuppG is contained in the hyperplane {f = 0} of our
ambient projective space. Indeed, on any open affine subset U = SpecA of Y , we have SuppG ∩
U = V (AnnH0(U,G∣U)), and by assumption f ∣U annihilates H0(U,G∣U), which proves the claim.
But note that by the same reasoning, SuppF is not contained in {f = 0}, since by assumption
multiplication by f is injective, and since SuppG ⊆ SuppF , that means dimSuppG < r + 1, and
thus by the inductive hypothesis we know there is some Q ∈ Q[z] such that Q(m) = χ(G(m)) for
all m ∈ Z, and so the result follows from the additivity of the Euler characteristic on short exact
sequences combined with fact (i) above.

Definition 3.2.5. The polynomial P above is known as the Hilbert polynomial of F with respect to
O(1).

Example 3.2.6. Take Y = Pr, take F = OY and take O(1) to be the usual twisting sheaf of Serre.
Observe that if m ≥ 0 then h0(O(m)) = (m+rr

), and hi(O(m)) = 0 for all i > 0, and hence

P = (z + r
r
) ∶= 1

r!

r

∏
i=1
(z + i) ∈ Q[z],

since P (m) and (m+rr
) agree on infinitely many values.
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Example 3.2.7. Let E be a vector bundle of signature (n, d) on X . By the Riemann-Roch theorem
we know

χ(E(m)) = d + nmdegOX(1) + n(1 − g),
and so E has Hilbert polynomial P = d + ndegOX(1)z + n(1 − g) ∈ Q[z] with respect to OX(1).
Conversely, if F is a vector bundle with Hilbert polynomial P = d+ndegOX(1)z+n(1−g) ∈ Q[z],
then χ(F) = d+n(1−g) and χ(F(1)) = d+ndegOX(1)+n(1−g), and so we know rk(F) = n by
Corollary A.1.14 and deg(F) = d by Riemann-Roch. In particular, the data of the Hilbert polynomial
on E (with respect to OX(1)) is equivalent to the data of the signature of E .

A key property of the Hilbert polynomial is the following:

Theorem 3.2.8. Let T → S be a projective morphism of noetherian schemes, and let F be a coherent
sheaf on T , flat over S. Then the map

s↦ χ(Fs) =
∞
∑
i=0
(−1)i dimk(s)H

i(S,Fs),

whereFs is the fibre ofF over s ∈ S and k(s) is the residue field of s is locally constant. In particular,
the Hilbert polynomials of Fs all agree on a connected component.

Proof. [49, p. 669]

Next, we define the following moduli problem:

Definition 3.2.9. LetF be a coherent sheaf on a projective variety Y with equipped with a very ample
line bundle O(1), and let P ∈ Q[z] be a numerical polynomial. For any scheme S of finite type over
k, a family of quotients of F with Hilbert polynomial P parameterised by S is a coherent sheaf G on
S × Y , flat and with proper support over S, equipped with a surjective map FS → G, where FS is the
pullback of F to S ×X via the projection, such that all closed fibres Gp are coherent quotient sheaves
of F with Hilbert polynomial P . Two families over S are equivalent if they have the same kernel. It
is clear how families pull back, and so we have a functor

QuotPY (F) ∶ FTSch/k → Sets,

sending a scheme S to the equivalence classes of families over S.

Theorem 3.2.10 (Grothendieck). The QuotPY (F) functor is representable by a projective variety
over k.

Definition 3.2.11. Let P ∈ Q[z] be a numerical polynomial. The quot scheme of F with respect to
P , denoted QuotPY (F), is the fine moduli space of QuotPY (F). A Hilbert scheme is a Quot scheme
of the form QuotPPn(OPn), which we will simply denote HilbPn .

The idea of the construction, which can be found in [33], is to define an injective natural trans-
formation from QuotPY (F) into a certain Grassmannian functor, and show that this defines a scheme
structure. However, this construction is beyond the scope of this thesis, so we will be content with
our examples from Chapter 1, where we showed that Quot1Speck(kn+1) = Pn and Hilb2z+12 = P5.
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The importance of the Quot scheme is as follows: by Lemma 3.2.3, it follows that all semistable
vector bundles of signature (n, d) with d > n(2g − 1), (an assumption we will fix from now) on are
found in the universal family over the scheme

Q = QuotPX(ON
X),

where N ∶= d+n(1− g) and P is the polynomial P (z) = d+nz degOX(1)+n(1− g). However, Q
also parameterises other quotients, which we would like to ignore. It turns out there is an SLN action
on Q and a linearisation such that if d is large enough, the (semi)stable points are exactly locally free
(semi)stable quotients where the induced map of global sections is an isomorphism, and in particular
taking the stable locus of the projective GIT quotient will yield a coarse moduli space. We will give
the construction below, following [20, pp. 68–84]. Various proofs below are based on ones found in
the quoted citation, so we will not cite them individually.

3.2.2 The SLN action on Q and its Stability

To define this SLN -action, observe that since Q is a fine moduli space, a morphism SLN ×Q → Q is
exactly a family of quotients of ON

X parameterised by SLN ×Q. To this end, observe that the group
SLN(Γ(SLN ,OSLN

)) of Γ(SLN ,OSLN
) = k[xij , 1 ≤ i, j ≤ N]/⟨det(xij)−1⟩-valued points of SLN

is just the abstract group of automorphisms SLN → SLN , and is dual to the group of automorphisms
of k[xij , 1 ≤ i, j ≤ N]/⟨det(xij) − 1⟩. Now SLN(Γ(SLN ,OSLN

)) may also be seen as the group of
Γ(SLN ,OSLN

)-linear automorphisms of the module Γ(SLN ,OSLN
)N , and thus by extension the free

sheaf of rankN on SLN . Thus the inversion morphism SLN → SLN corresponds to an automorphism
ι of Γ(SLN ,OSLN

)N , specifically given by the inverse of the matrix (xij), and thus for any k-point
(gij) ∈ SLN(k), the fibre of this morphism is exactly (gij)−1 ∈ SLN(k).

Now let U ∶ ON
Q×X → E denote the universal family on Q = Quot

d+nz degOX(1)+n(1−g)
X (ON

X), and
let π with subscripts denote the projection from SLN ×Q×X onto the subscripts. Now we define the
action σ ∶ SLN ×Q→ Q as the morphism associated to the family

π∗Q×X(U) ○ π∗SLN
(ι) ∶ ON

SLN ×Q×X → π∗Q×X(E ).

One can check that this is indeed a group action.
The next question to ask is what this does to k-points. Let (g, p) be a k-point in SLN ×Q (by

abuse of notation, we identify p with its fibre in its universal family). Then one can check that σ(g, p)
is the quotient

σ(g, p) = p ○ g−1,

where g acts on ON
SLN ×Q×X in the obvious way; indeed, pulling ι back via g ∶ Speck → SLN is just

the map g−1 ∶ kN → kN , and thus pulling π∗SLN
(ι) back via g×id× id ∶ Speck×Q×X → SLN ×Q×X

is just g−1 ∶ ON
Q×X → ON

Q×X . Finally, pulling the universal quotient back via p, we obtain the required

σ(g, p) = p ○ g−1.

The key theorem to be proven is the following:
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Theorem 3.2.12. Fix n and let d be sufficiently large (depending on n). Then there exists a very
ample linearisation L of this SLN action such that a k-point q ∶ ON

X → E of Q is semistable if and
only if E is a semistable vector bundle and H0(q) is an isomorphism.

The rest of this subsection will be dedicated to its proof. To begin, we will need to study the 1-PS’s
of this action. So let λ ∶ Gm → SLN be a 1-PS, and as before, we have a weight space decomposition

kN = V =⊕
r∈Z

Vr.

Write V≤r = ⊕s≤r Vs, so that we have a filtration V≤r ⊆ V≤r+1. Now if q ∶ ON
X → E is a k-point in Q,

write
E≤r ∶= im q∣V≤r⊗kOX

and
Er ∶= E≤r /E≤r−1 .

We are now in a position to state:

Proposition 3.2.13. There exists a natural number M0 > 0 such that for any M ≥M0, there is a very
ample linearisation LM of this SLN action, depending on M , such that for a k-point q ∶ ON

X → E
and 1-PS λ ∶ Gm → SLN inducing a weight space decomposition and filtration as above, we have

µLM (q, λ) =∑
r∈Z

PE≤r(M) −
dimV≤r
N

P (M),

where PE≤r is the Hilbert polynomial of E≤r and P is the Hilbert polynomial d + nz degOX(1) +
n(1 − g) of E .

Proof. [20, p. 76].

Thus the way forward is clear: we assume M is sufficiently large and use this expression for
the weight and the Hilbert-Mumford criterion to calculate the stability of this linearised action,
and eventually relate it to the usual vector bundle stability. To begin, let us investigate the sum
∑r∈Z PE≤r(M) − dimV≤r

N P (M). Suppose the weights of λ are labelled r1 < ... < rm. Then for any
r < r1, it follows V≤r = 0 whence E≤r = 0 too, hence

PE≤r(M) −
dimV≤r
N

P (M) = P0(M) −
0

N
P (M) = 0.

Similarly, if r > rm, then it follows E≤r = E and dimV≤r = N , and thus we also have

PE≤r(M) −
dimV≤r
N

P (M) = P (M) − N
N
P (M) = 0.

In particular, we do get a finite sum. Now for any r such that ri ≤ r < ri+1, it follows V≤ri = V≤r,
hence E≤r = E≤ri , and thus

∑
ri≤r≤ri+1

PE≤r(M) −
dimV≤r
N

P (M) = (ri+1 − ri) (PE≤ri (M) −
dimV≤ri
N

P (M))
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whence

µLM =∑
r∈Z

PE≤r(M) −
dimV≤r
N

P (M) = ∑
1≤i≤m−1

(ri+1 − ri) (PE≤ri (M) −
dimV≤ri
N

P (M)) .

From this and the above proposition, we deduce:

Proposition 3.2.14. Let q ∶ ON
X → E be a k-point in Q. Then q is semistable with respect to LM if

and only if for any subspace V ′ ⊆ V we have

PE ′(M) −
dimV ′

N
P (M) ≥ 0. (3.5)

where E ′ = im q∣V ′⊗OX
. Stability holds if and only if the inequality is strict.

Proof. Firstly, suppose the inequality holds. Now let λ be a 1-PS with weights r1 < ... < rm. Now
observe that for any 1 ≤ i ≤m − 1, we have

PE≤ri (M) −
dimV≤ri
N

P (M) ≥ 0,

hence
µLM (q, λ) = ∑

1≤i≤m−1
(ri+1 − ri) (PE≤ri (M) −

dimV≤ri
N

P (M)) ≥ 0,

and semistability follows from the Hilbert-Mumford criterion. If strict inequality holds in (3.5), then
strict inequality holds above, and thus stability holds, as desired.

Conversely, suppose there is some V ′ ⊆ V such that the strict reverse inequality holds in (3.5). Fix
a complement W such that V = V ′⊕W , and define the 1-PS λ to act with equal weight r1 on V ′ and
r2 > r1 on W (since we may scale bases as we want, this is always possible). Then

µLM (q, λ) = (r2 − r1) (PE≤r1 (M) −
dimV≤r1

N
P (M)) = (r2 − r1)(PE ′(M) −

dimV ′

N
P (M)) ≤ 0.

and hence q is unstable. If no strict reverse inequality holds, but equality holds, then q is semistable,
but not stable.

Note that this is starting to look like our notion of stability already, since we are relating quantities
of E to quantities of subsheaves of E . For example, if q ∶ ON

X → E is a point, E is locally free and E ′
is one such subsheaf and H1(X,E ′) = 0, then the Riemann-Roch theorem tells us that the degree of
E ′ cannot be too small. And in fact, we can already concretely deduce:

Corollary 3.2.15. Let q ∶ ON
X → E be a semistable k-point in Q with respect to a sufficiently large

M . Then E is a locally free sheaf.

Proof. Choose M ≥ M0, and such that P (M) > N2. Firstly suppose E is not locally free. Then E
is not torsion free, so let F be a nonzero torsion subsheaf of E . Then F is supported on a discrete
set, since we are on a curve, and so H0(F) ≠ 0. Now let V ′ ∶= H0(q)−1(H0(F)) and let E ′ =
im q∣V ′⊗OX

. Since q is surjective, it follows that E ′ is a subsheaf of F and hence is also torsion. But
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then E ′ has constant Hilbert polynomial (since it is supported on a discrete set, twisting does nothing),
and moreover h1(E) = 0 for dimension reasons ([17, III, Theorem 2.7]), and so

0 < PE ′(M) = h0(E ′) ≤ N ≤
P (M)
N

< dimV ′

N
P (M).

Hence E is unstable.

We now take a closer look at the sheaves E ′ ∶= im q∣V ′⊗OX
. In particular, we want to know

what proportion of subsheaves they make up, and whether they have special properties among the
subsheaves. To this end, we have the following result:

Proposition 3.2.16. The set of Hilbert polynomials {PE ′}, where E ′ ∶= im q∣V ′⊗OX
, taken across all

q ∶ ON
X → E and V ′ ⊆ V is finite.

Proof Sketch. Let 1 ≤ r ≤ N . It suffices to show that the set {PE ′}dimV ′=r is finite. To this end,
recall that the Grassmannian Grr,N is a fine moduli space parameterising injections kr → kN , and so
there is a universal family U ⊆ ON

Grr,N
, where U is the universal bundle, which has rank r ([12, 8.4]).

Pulling this back via the projection πGrr,N ∶ Grr,N ×Q ×X → Grr,N , and composing this with the
pullback of the universal family on Q via πQ×X ∶ Grr,N ×Q×X → Q×X we have a restricted family
of sheaves

E ′ ∶= imπ∗Q×XU ∣U⊗OGrr,N ×Q×X
⊆ E ,

and it is easy to see that given V ′ ∈ Grr,N(k), which we treat as a subspace of kN , and q ∶ ON
X → E , the

fibre E ′(V ′,q) of E ′ via the projection πGrr,N ×Q ∶ Grr,N ×Q ×X → Grr,N ×Q is just E ′ = im q∣V ′⊗OX
.

In particular, every such im q∣V ′⊗OX
where dimV ′ = r is a fibre of this sheaf at some k-point. It thus

suffices to show that the set of Hilbert polynomials of fibres over E ′ is finite.
To this end, observe that even though E ′ may not be flat, it can be shown ([36, Lemma 4.4.8]) that

we can cover Grr,N ×Q by a finite collection {Si} of locally closed subvarieties such that E ′∣Si×X is
flat over Si, and hence by Theorem 3.2.8, it follows that the E ′∣s all have the same Hilbert polynomial
on each Si. Since there are finitely many Si, the result follows.

Let q ∶ ON
X → E is a k-point in Q; let us now examine explicitly the Hilbert polynomials PE ′ . If

E ′ is torsion-free (hence locally free) of signature (n′, d′) then we know

PE ′ = d′ + n′ degOX(1)z + n′(1 − g).

If E ′ is not torsion-free, let F ′ ⊆ E ′ be its torsion subsheaf, so that E ′ /F ′ is locally free of signature
(n′, d′). Now the Hilbert polynomial ofF ′ is constant, equal to h0(F ′), and so the Hilbert polynomial
of E ′ is

PE ′ = d′ + h0(F ′) + n′ degOX(1)z + n′(1 − g).
In particular, the Hilbert polynomial of E ′ has degree at most one, and its leading coefficient is the
rank of its torsion-free part, which is at most n. Thus given E ′, we can choose a sufficiently large M ′

0

such that the inequality (3.5) holds for any M >M ′
0 if and only if

rkE ′ ≥ ndimV ′

N
, (3.6)
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where by abuse of notation rkE ′ is the rank of the torsion-free part of E ′. Moreover, note that this
M ′

0 depends only on PE ′ and dimV ′, and since there are finitely many such pairs, we can choose this
sufficiently large to work for all E ′. With this in mind, we can deduce the following:

Corollary 3.2.17. Let M >M ′
0 and q ∶ ON

X → E be a k-valued point in Q, semistable with respect to
LM . Then H0(q) is an isomorphism.

Proof. We begin with injectivity. Let V ′ = kerH0(q). Then E ′ = im q∣V ′⊗OX
= 0, and so

0 = PE ′(M) ≥
dimV ′

N
P (M),

whence dimV ′ = 0, as desired.
To prove surjectivity, observe that by the Riemann-Roch theorem, it suffices to show thatH1(X,E) =

0, whence h0(E) = N = dim imH0(q). So suppose for contradiction H1(X,E) ≠ 0; then by the
Serre duality theorem there is a nonzero map φ ∶ E → ωX . Let F denote the image of this map. We
claim h0(kerφ) ≠ 0. Indeed, since F injects into ωX , it follows that h0(F) ≤ g, and hence

h0(kerφ) ≥ h0(E) − h0(F) ≥ d + n(1 − g) − g > n(2g − 1) + n(1 − g) − g = ng − g ≥ 0,

as claimed. Now let V ′ ∶=H0(q)−1(H0(X,kerφ)), and let E ′ ∶= im q∣V ′⊗OX
≠ 0, so that E ′ ⊆ kerφ.

By the previous discussion, we have

rkE ′ ≥ ndimV ′

N
,

and since rkkerφ ≥ rkE ′, we have

rkkerφ = n − 1 ≥ ndimV ′

N
≥ n(N − g)

N
= n(1 − g

N
).

But that would imply d ≤ n(2g − 1) after a rearrangement, which contradicts our choice of d.

Our next job is to relate stability of Q as above back to vector bundle stability. In particular,
we need to rephrase usual vector bundle stability (involving degree and rank invariants) in terms of
cohomology. To begin, we have the following useful bound:

Lemma 3.2.18. Let E be a semistable vector bundle of signature (n, d) and slope µ. Then

h0(E)
n
≤ [µ + 1]+ ∶= sup{0, µ + 1}. (3.7)

Proof. We induct on the degree. Firstly, if d < 0, we claim H0(X,E) = 0. Indeed, if not, let
s ∈ H0(X,E) be nonzero. Then by Remark A.1.11, there exists a line subbundle L isomorphic to
the subsheaf generated by s. In particular, L has a nonzero global section. But by semistability,
degL < 0, which contradicts Lemma A.1.15. Thus H0(X,E) = 0 as claimed. Now, suppose d ≥ 0
and supposing this has been proven for all smaller values, we fix some p ∈ X(k) and as in the proof
of Lemma 3.2.3, we have the following short exact sequence

0→ L(−p)→ OX → kp → 0.
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Tensoring with E and taking cohomology, we obtain

h0(E) ≤ h0(E ⊗L(−p)) + n,

and finally, observing that
deg(E ⊗L(−p)) = d − n < d

by Corollary A.1.14 and applying the induction hypothesis, we obtain

h0(E)
n
≤ h

0(E ⊗L(−p))
n

+ 1 ≤ [d − n
n
+ 1]+ + 1 = [µ + 1]+

as desired.

We now give another criterion for vector bundle (semi)-stability.

Proposition 3.2.19 (Le Potier’s Theorem). Let n ∈ N be fixed, let d > gn2 + n(2g − 2) and let E be a
vector bundle of signature (n, d) and slope µ. Then E is semistable if and only if for every subsheaf
F of rank n′ we have

h0(F) ≤ n
′

n
h0(E). (3.8)

Strict inequality holds if and only if E is stable.

Proof. Firstly suppose E is unstable, and let F be a semistable subbundle of signature (n′, d′) such
that µ(F) > µ(E) (for example, we can take F to be the first term in the Harder-Narasimhan filtration
of E). Now observe that

d′ > µn′ ≥ n′(gn + 2g − 2) > n′(2g − 2),

so in particular H1(X,F) = 0 by Lemma 3.2.3. Thus by the Riemann-Roch theorem we have

h0(F) = d′ + n′(1 − g) = n′(µ(F) + 1 − g) > n′(µ(E) + 1 − g) = n
′

n
(d + n(1 − g)) = n

′

n
h0(E).

If E is strictly semistable, then we repeat the argument with F of equal slope and deduce equality in
(3.8).

Conversely, suppose E is semistable. Let F be a subsheaf of signature (n′, d′) and let (Fi)mi=0 be
the Harder-Narasimhan filtration of F . Observe that

h0(F) =
m

∑
i=1
h0(Fi) − h0(Fi−1) ≤

m

∑
i=1
h0(Fi/Fi−1) ≤

m

∑
i=1

rk(Fi/Fi−1)[µ(Fi/Fi−1) + 1]+,

and furthermore note that µ(F1) ≥ µ(Fi/Fi−1) by the construction of the Harder-Narasimhan filtra-
tion. In particular, since E is semistable we have µ(Fi/Fi−1) ≤ µ and applying this to the above we
have

h0(F) ≤
m

∑
i=1

rk(Fi/Fi−1)[µ(Fi/Fi−1) + 1]+ ≤ (n′ − 1)(µ + 1) + [µ(F/Fm−1) + 1]+.
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Now if µ(F/Fm−1) < µ − gn, then

h0(F) < (n′ − 1)(µ + 1) + (µ − gn + 1) ≤ n′(µ + 1) − gn′ = n
′

n
(d + n(1 − g)) = n

′

n
h0(E),

since H1(X,E) = 0 by Lemma 3.2.3. Otherwise, if µ(F/Fm−1) ≥ µ − gn > 2g − 2, we claim that
H1(X,F) = 0, whence

h0(F) = d′ + n′(1 − g) ≤ n
′d

n
+ n′(1 − g) = n

′

n
(d + n(1 − g)) = n

′

n
h0(E). (3.9)

In fact, we will show inductively that each H1(X,Fi) = 0. Firstly note that µ(F1) ≥ µ(F/Fm−1) >
2g − 2 (with equality holding on the left if and only if F is semistable) whence H1(X,F1) = 0 by
Lemma 3.2.3. Now supposing we have shown H1(X,Fi−1) = 0, we observe that H1(X,Fi/Fi−1) =
0 too, by the same reasoning as before, and thus by the long exact sequence of cohomology applied
to

0→ Fi−1 → Fi → Fi/Fi−1 → 0

we deduce that H1(X,Fi) = 0 too.
Finally, suppose equality in (3.8) holds for some F . We will prove E is strictly semistable. Let

(Fi)mi=0 be the Harder-Narasimhan filtration of F , and note that by the above, equality cannot hold if
µ(F/Fm−1) < µ − gn, so µ(F/Fm−1) ≥ µ − gn, and hence H1(X,F) = 0. Since equality holds in
(3.8), it must be that µ(F) = µ = µ(E), as can clearly be seen in (3.9). This completes the proof.

And finally, we conclude the subsection with the promised result:

Theorem 3.2.20. Let n ∈ N be fixed, let d > gn2 + n2(2g − 1) ≥ sup{n(2g − 1), gn2 + n(2g − 2)},
write N ∶= d + n(1 − g), let P ∈ Q[z] be the polynomial

P ∶= d + nz degOX(1) + n(1 − g),

and finally let Q = QuotPX(ON
X). Then there exists an M0 such that for any M ≥ M0, a k-point

q ∶ ON
X → E of Q is semistable with respect to the linearised SLN -action on LM if and only if E is a

semistable locally free sheaf and H0(q) is an isomorphism. Moreover, q is stable if and only if E is
stable.

Proof. We choose M0 sufficiently large such that:

(i) The conclusion of Proposition 3.2.13 holds.

(ii) The conclusion of Corollary 3.2.15 holds.

(iii) The inequality (3.5) for M >M0 holds if and only if the inequality (3.6) holds.

Then we know from Corollaries 3.2.15 and 3.2.17 that if q is semistable then E is locally free and
H0(q) is an isomorphism. To show that E is in fact semistable, letF be a subsheaf of E . If h0(F) = 0,
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we are done; otherwise, let V ′ ∶= H0(q)(H0(F)) and let E ′ ∶= im q∣V ′⊗OX
, and suppose E ′ has

signature (n′, d′). By Proposition 3.2.14 combined with (iii) above, we have

n′ ≥ ndimV ′

N
,

and noting that n′ ≤ rkF , h0(E) = N and dimV ′ = h0(F), we find

h0(F) = dimV ′ ≤ n
′

n
h0(E)

and hence E is semistable by Proposition 3.2.19. If q is stable, then E is stable too, by running the
above argument, replacing the inequalities with strict ones.

Conversely, suppose E is semistable andH0(q) is an isomorphism. Now let V ′ ⊆ kN be a nonzero
subspace, let E ′ ∶= im q∣V ′⊗OX

and suppose E ′ has signature (n′, d′). Then we know

n′ ≥ nh
0(E ′)
N

= ndimV ′

N

and so q is semistable. Now if E is stable, we run the argument through with strict inequality and
deduce strict inequality.

3.2.3 Putting it all together

So now we have an open subscheme Q(s)s whose k-points are exactly q ∶ ON
X → E (semi)-stable

vector bundles of our given signature (n, d), where d > gn2 + n2(2g − 2) (indeed, it is easy to see
that tensoring with a line bundle of degree one is a natural isomorphism of functors between Vsn,d and
Vsn,d+n, so we may assume without loss of generality d is sufficiently large). In particular, we may
take the projective GIT quotient Qss → Qss //LM

SLN =∶ V ss
n,d to obtain a categorical quotient, and

moreover we have the geometric quotient Qs //LM
SLN =∶ V s

n,d. What remains is to complete the
argument and show that V s

n,d is in fact the moduli space for stable bundles of signature (n, d). To
begin, we have the following:

Lemma 3.2.21. Let η ∶ Vsn,d → Hom(−,N) be a natural transformation. Then

ηQs(E ∣Qs) ∶ Qs → N

is SLN -invariant.

Proof. Let σ ∶ SLN ×Qs → Qs denote the action. This is just saying that the families σ∗(E ∣U)
and π∗Q(E ∣U) are equivalent, which is obvious because they differ by the inverted universal ON

SLN

automorphism on SLN , which is an isomorphism.

Lemma 3.2.22. The scheme Qs along with the family E ∣Qs is locally versal.
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Proof. Let E be a family of stable bundles over a variety S. By Grauert’s theorem ([17, III Corollary
12.9]), the pushforward πS∗ E is locally free. Moreover, by Lemma 3.2.3 and our assumption on d,
for any s ∈ S(k) we have h0(X,Es) = N , and thus Grauert’s theorem combined with Nakayama’s
lemma tells us that it is in fact locally free of rankN . Now let U be an affine open subset where πS∗ E
is free, so that there is an isomorphism ON

U ≅ πS∗ E ∣U . Pulling this back via πS ∣U and composing
with the counit map of the pullback-pushforward m adjunction, we have a map

ON
U×X π∗SπS∗ E ∣U E ∣U .≅

Since every fibre Es is generated by global sections, by Nakayama’s lemma applied to every stalk of
S ×X we find that E is generated by global sections too, and since πS∗ E =H0(S ×X,E)∼, it follows
the above map is surjective, and in particular determines a morphism into Q, with image in Qs by
assumption, such that E ∣U is equal to the pullback of E ∣Qs .

In particular, if we can use the fact that E ∣Qs is locally versal to build a natural transformation
η ∶ Vsn,d → Hom(−, V s

n,d), then we automatically get a coarse moduli space by virtue of the fact that
Qs → V s

n,d is a geometric quotient. So naturally we have:

Theorem 3.2.23. Let E be a family over S and let {Uα = SpecAα} be an affine open cover, where
each Uα is small enough to determine a morphism to Qs. Let φα ∶ Uα → Qs denote the morphism
determined on Uα. Let ψ ∶ Qs → V s

n,d denote the GIT quotient. Then the ψ ○ φα glue to form a
functorial morphism η ∶ S → V s

n,d. In particular, V s
n,d is the coarse moduli space for Vsn,d.

Proof. Let Uα, Uβ as above be given, and let Eα and Eβ denote the pullback of E ∣U via φα and φβ re-
spectively. By assumption, their restriction to the overlap are equivalent, so given an affine open sub-
setUαβγ = SpecAαβγ ofUα∩Uβ , there is someL onUαβγ such that Eα ∣Uαβγ

≅ Eβ ∣Uαβγ
⊗π∗SL. Since

the map H0(ON
Qs×X) → H0(E ∣Qs) is an isomorphism, this means that identifying H0(Eα ∣Uαβγ

)
with H0(ON

Uαβγ×X), there is some g−1 ∈ GLN(Aαβγ) that takes H0(ON
Uαβγ
) ≅ H0(Eα ∣Uαβγ

) to
H0(Eβ ∣Uαβγ

). Dividing g by its determinant (and replacing L), we may assume g ∈ SLN(Aαβγ).
But since Eα ∣Uαβγ

and Eβ ∣Uαβγ
⊗ π∗SL are actually isomorphic, this means that

g ⋅ Eα ∣Uαβγ
= Eβ ∣Uαβγ

⊗ π∗SL.

But that means ψ ○ φα and ψ ○ φβ agree on Uαβγ (since φα and φβ differ by g), and since the Uαβγ

cover the overlap, this means ψ ○ φα and ψ ○ φβ agree, and so we have a well-defined morphism
to V s

n,d. The fact that it is functorial is easily checked, and the fact that it is a coarse moduli space
follows from the fact that ψ is a geometric quotient.



74 CHAPTER 3. STABLE VECTOR BUNDLES AND THEIR MODULI



Part II

Analytic Theory

75





Chapter 4

The Narasimhan Seshadri Theorem

In Part I, we have contructed the moduli spaces V s
n,d as a projective GIT quotient. In Part II, we

will give another naı̈ve moduli space construction for the underlying naı̈ve problem of Vsn,0 in the
special case k = C. Specifically, if X is a compact connected Riemann surface of genus g (which
may be identified with the C-points of a nonsingular projective curve over C) which we will fix in
this chapter, one can identify stable vector bundles of degree zero on X with two other spaces, the
basic result being the following:

Theorem 4.0.1 (Narasimhan-Seshadri, 1965). Let X be a compact Riemann surface of genus g and
suppose g ≥ 2. Then there is a bijection between V s

n,0 and irreducible representations π1(X)→ U(n)
up to conjugation.

This is first given as Corollary 1 of [31]. Since then, Donaldson gave a different proof in [8] by
studying unitary connections, and using the Riemann-Hilbert Correspondence (described in §B.3).
His result is stated as follows:

Theorem 4.0.2 (Donaldson, 1983). An indecomposable holomorphic bundle E over X with a hermi-
tian metric h is stable if and only if there is a unitary connection on the underlying smooth bundle E
giving rise to E with curvature equal to a constant multiple of the volume form. Such a connection is
unique up to isomorphism.

Remark 4.0.3. Note that the degree is not mentioned in Donaldson’s result. However, we will show
that a connection satisfying the property in the theorem statement is flat if and only if E is degree
zero.

In this chapter, we will use these bijections to give the space of stable bundles a topological
structure, inherited from the space Hom(π1(X), U(n))/ ∼. It turns out that this second structure is
homeomorphic to V s

n,0(C), the latter given the usual complex topology, but very unfortunately we
will not be proving this.

Of course, since we are moving into analytic territory, some comments are in order. Open and
closed will always mean with respect to the usual complex topology. We will make use of the corre-
pondence between vector bundles and locally free sheaves (of an appropriate structure sheaf) without
comment, and we will also use without comment the correspondence between holomorphic vector
bundles on X and algebraic vector bundles on the nonsingular curve which defines X .
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4.1 Holomorphic Structures on a Smooth Bundle

The goal of this section is to study the space of holomorphic bundles that restrict to a given smooth
bundle. Indeed, as we will see, the degree of a holomorphic bundle is actually a smooth invariant,
and in fact, along with the rank, completely classifies E! Thus Vn,d(C), the isomorphism classes of
all holomorphic bundles with signature (n, d), is equal to the set of holomorphic structures on E, up
to isomorphism. It turns out that this space is, in turn, canonically identified with the space of unitary
connections (to be defined) on E, and this correspondence, known as the Chern Correspondence,
gives us a tool to turn the study of holomorphic bundles into the study of connections.

4.1.1 The Chern Correspondence

Recall some notation. Let Ωp,q
X denote the sheaf of smooth (p, q)-forms on X , and let

Ωp,q
E ∶= Ω

p,q
X ⊗E.

Note that Ω0
E ∶= Ω

0,0
E is isomorphic to the sheaf of sections of E.

Definition 4.1.1. A Dolbeault operator on E is a homomorphism of abelian sheaves (in particular,
NOT as OX -modules)

∂̄E ∶ Ω0
E → Ω0,1

E

such that for any smooth f ∈ C∞(U) and local section s ∈ Ω0
U , we have

∂̄E(fs) = ∂̄(f)⊗ s + f∂̄E(s).

Example 4.1.2. Let E be the trivial bundle E = X × Cn. Then the usual ∂̄ operator is a Dolbeault
operator.

Example 4.1.3. Let ∇ be any connection on E. Composing ∇ with the projection to its (0,1)-
component we obtain a Dolbeault operator. This is often known as the (0,1)-component of ∇.

Example 4.1.4. Let E be a holomorphic bundle whose underlying smooth bundle isE. We may think
of E asE equipped with a collection of distinguished local frames, which we deem to be holomorphic.
Then there is a natural Dolbeault operator, known as the canonical Dolbeault operator, characterised
by ∂̄E(s) = 0 for any homomorphic section s. To see that this is well-defined, let u ∶ U → E be
a smooth section. Covering U with sufficiently small open subsets {Uα} we may assume there are
local holomorphic frames {(si)α}. Now we can write uα ∶= u∣Uα = ∑aisi where sα = (si)α is a
holomorphic frame on Uα and a = (ai) is smooth. Then we see

∂̄E(uα) = ∂̄E(∑aisi) =∑ ∂̄(ai)⊗ si
Repeating on Uβ with local holomorphic frame tβ = (ti)β such that uβ = ∑ biti we have ∂̄E(uβ) =
∑ ∂̄(bi)⊗ ti. Now if g = gαβ is the transition map, letting gij denote the i, j-th entry of g, we observe

∑
j

∂̄(bj)⊗ tj =∑
j
∑
i

∂̄(bj)⊗ (gijsi) =∑
i
∑
j

∂̄(gijbj)⊗ si =∑
i

∂̄(ai)⊗ si

as desired (note that since g is holomorphic we have ∂̄(g) = 0) and hence by the sheaf axioms this
defines ∂̄E(u) uniquely.
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Caution 4.1.5. It is important to note that this Dolbeault operator on E is in fact dependent on the
choice of holomorphic frames, and not just the isomorphism class of E . Indeed, we will see very soon
that there are different Dolbeault operators which can give rise to isomorphic holomorphic bundles,
and in fact we will describe exactly when two distinct Dolbeault operators give rise to the same
holomorphic bundle.

In fact, the converse of the above example is true for Riemann surfaces: if ∂̄E is a Dolbeault opera-
tor and there exists an open cover Uα with frames sα such that ∂̄E(sα) = 0, then it is not hard to show
that the transition maps are holomorphic and hence the {sα} define a holomorphic structure on E.
Such a Dolbeault operator is said to be integrable. It can be shown ([2, p.555]) that every Dolbeault
operator on a Riemann surface is integrable. Hence Dolbeault operators parameterise holomorphic
structures on E (however, we will soon see that they actually over-parameterise holomorphic struc-
tures).

Next we recall the following definition:

Definition 4.1.6. A Hermitian metric on E, denoted h is the assignment of a complex inner product
hp(⋅, ⋅) ∶ E2

p → Ep to every p ∈ X such that for any smooth sections s, t we have that p ↦ hp(s, t) is
smooth. A hermitian bundle is a vector bundle E equipped with a hermitian metric. A morphism of
hermitian bundles is a smooth morphism of bundles φ ∶ E → F such that hF (φ(s), φ(t)) = hE(s, t)
for any sections s, t if E. A hermitian automorphism is known as a unitary gauge transformation,
and the group of all such automorphisms is known as the unitary gauge group.

A frame (si)α is unitary if h(si, sj) = δij . A unitary connection is a connection ∇ such that

dh(s, t) = h(∇s, t) + h(s,∇t)

for any smooth sections s, t. Given a local frame (si)α on Uα, we define the local matrix of h,
denoted hα such that (hα)ij ∶= h(si, sj).

Lemma 4.1.7. Let ∇ be a connection. Then ∇ is a unitary connection if and only if for any unitary
frame (si)α, the local 1-form ωα is skew-Hermitian.

Proof. Suppose ∇ is unitary. Note that for any i, j, we have

0 = dh(si, sj) = h(∑
k

(ωα)kisk, sj) + h(si,∑
k

ωα)kjsk) = (ωα)ij + (ωα)ji

and thus (ωα)ij = −(ωα)ji as required.

Conversely, suppose ωα is skew-Hermitian and let s = ∑aisi and t = ∑ bisi be local sections.
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Then we can check

h(∇(s), t) + h(s,∇(t)) = h(∇(∑aisi),∑ bisi) + h(∑aisi,∇(∑ bisi))
= h(∑

i

daisi + ai∑
j

(ωα)ijsj ,∑
i

bisi)

+ h(∑
i

aisi,∑
i

dbi + bi∑
j

((ωα)ij , sj))

= (∑
i

bidai + aidbi) + (∑
j
∑
i

ai(ωα)ijbj) + (∑
j
∑
i

aj(ωα)ijbi)

= (∑
i

bidai + aidbi) + (∑
j
∑
i

ai(ωα)ijbj) − (∑
j
∑
i

aj(ωα)jibi)

=∑
i

bidai + aidbi

= dh(s, t)

as desired.

It can be shown by a partition of unity argument ([51, III Theorem 1.2]) that hermitian metrics
exist on any bundle. Similarly, a standard Gram-Schmidt argument will show that smooth unitary
frames always exist locally, and finally, we will show that unitary connections always exist:

Theorem 4.1.8 (Chern Correspondence). Let E be a holomorphic vector bundle, let ∂̄E be a Dol-
beault operator on E giving rise to E , and h a hermitian metric. Then there is a unique unitary
connection ∇ on E with (0,1) component ∂̄E . Moreover, if (si)α is a local holomorphic frame, then
this connection is described by ωα = (∂hα)h−1α

Proof. We first prove uniqueness. Suppose ∇ is such a connection, and let (si)α be a holomorphic
frame defined on Uα. Then the corresponding matrix of 1-forms ωα satisfies

∇(si) =∑
j

(ωα)ijsj .

Observe that since all the si are holomorphic, all the entries of ωα must be of type (1,0). Now we
compute:

dh(si, sj) = h(∇si, sj) + h(si,∇sj)
= h(∑

k

(ωα)iksk, sj) + h(si,∑
k

(ωα)jksk)

=∑
k

(ωα)ikh(sk, sj) + (ωα)jkh(si, sk)

But dh(si, sj) = ∂(hα)ij+∂̄(hα)ij , and thus comparing types we must have (∂hα)ij = ∑k(ωα)ik(hα)kj
and letting i, j vary, we observe

ωαhα = ∂hα
as required. This proves uniqueness.
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To prove existence, we define the connection to be ωα ∶= (∂hα)h−1α for any holomorphic frame
(si)α, and extend by the Leibniz rule. By the proof of uniqueness, this satisfies the properties in the
theorem, thus we just need to check that this is well-defined. So let (ti)β be another holomorphic
frame, and suppose g satisfies ti = ∑ gijsj . Then it is not hard to see

hβ = ghαg∗

where g∗ is the conjugate transpose of g. By Proposition B.2.2, it suffices to show that ωβ = (dg)g−1+
gωαg

−1. We compute:

∂hβ = ∂(ghαg∗) = (∂g)hαg∗ + g(∂hα)g∗ + ghα(∂g∗) = (∂g)hαg∗ + g(∂hα)g∗

since g is holomorphic. Thus

ωβ = (∂hβ)h−1β = ((∂g)hαg∗+g(∂hα)g∗)(g∗)−1hαg−1 = (∂g)g−1+g(∂hα)h−1α g−1 = (dg)g−1+gωαg
−1

as desired.

Definition 4.1.9. The unitary connection in the above theorem is the Chern connection.

Remark 4.1.10. Again, it is important to note that different unitary connections could give rise to the
same holomorphic bundle. This is why we will often use the phrase “a Chern connection”.

We sum up the above results as follows: as established, there is a 1-1 correspondence between
holomorphic structures and Dolbeault operators. Now the natural follow-up question to that is given
a Dolbeault operator ∂̄E , is there a canonical connection we can put on E with (0,1)-component ∂̄E?
The Chern correspondence answers this in the affirmative, with the choice of a hermitian metric placed
on E. Thus, in order to study holomorphic structures, we can study unitary connections instead.

Finally, we describe the gauge group action on the space of connections. To begin, we consider
the gauge group action on the space of Dolbeault operators. Let u be a gauge transformation, and ∂̄E
a Dolbeault operator. We define

(u ⋅ ∂̄E)(s) ∶= u∂̄E(u−1(s)).

It is easy to check that this is a group action that results in a Dolbeault operator.

Proposition 4.1.11. Let ∂̄1, ∂̄2 be two Dolbeault operators on E, and E1,E2 their associated holo-
morphic bundles. Then E1 ≅ E2 if and only if there is a gauge transformation u such that ∂̄2 = u ⋅ ∂̄1.
Moreover, u ∶ E1 → E2 is one such isomorphism.

Proof. Suppose firstly that ∂̄2 = u ⋅ ∂̄1 = u∂̄1u−1. Now let s be a holomorphic section of E1. Observe

0 = ∂̄1(s) = ∂̄1(u−1u(s)) = u∂̄1(u−1u(s)) = ∂̄2(u(s))

and hence u(s) is a holomorphic section of E2. By the same argument, if t is a holomorphic section
of E2, then u−1(t) is holomorphic in E1 as desired.

Conversely, suppose E1 ≅ E2 and let u ∶ E1 → E2 be an isomorphism. Now let sα = (si)α be a
holomorphic frame of E1; whence by the above calculation we have u∂̄1(u−1u(si)) = 0. But also
∂̄2(u(si)) = 0 (since u(si)) is holomorphic). Since u∂̄1u−1 and ∂̄2 agree on a collection of frames
on an open cover of X , they must be equal.
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We now want to extend this to the space of all unitary connections, so let ∇ be a unitary con-
nection with Dolbeault operator ∂̄E . By the Chern correspondence, the Dolbeault operator u ⋅ ∂̄E
corresponds to a unique unitary connection; thus we simply need to find a unitary connection with
(0,1)-component u ⋅ ∂̄E . To this end, observe that as in the space of all connections, the space of uni-
tary connections is an affine space. The underlying vector space is the subspace of H0(X,Ω1

End(E))
consisting of 1-forms with values in a skew-hermitian endomorphism; that is, an endomorphism F
such that

h(F (s), t) + h(s,F (t)) = 0

Observe then, that
−(∂̄EndEu)u−1 + ((∂̄EndEu)u−1)∗

is clearly skew-hermitian, (where (∂̄EndEu)(s) ∶= ∂̄E(u(s)) − u∂̄E(s) is the induced Dolbeault
operator) and u∗ satisfies h(us, t) = h(s, u∗t)) and has (0,1)-component equal to

(−(∂̄EndEu)u−1 + (∂̄EndEu)u−1)∗)0,1 = −(∂̄EndEu)u−1

since ((∂̄EndEu)u−1)∗ is of type (1,0). Hence u ⋅ ∇ defined by

(u ⋅ ∇)(s) ∶= ∇(s) − (∂̄EndEu)u−1(s) + ((∂̄EndEu)u−1)∗(s) (4.1)

is a unitary connection, and its associated Dolbeault operator is equal to

∂̄E(s) − (∂̄EndEu)u−1(s) = ∂̄E(s) − ∂̄E(uu−1(s)) + u∂̄E(u−1(s)) = u∂̄E(u−1(s))

as desired. Hence defining the action of the gauge group by the formula in (4.1) (and it is easy to
check that this is indeed a group action) extends the gauge group action on Dolbeault operators, and
in particular two unitary connections induce isomorphic holomorphic structures if and only if they lie
in the same gauge orbit. In summary, we have the following bijection:

{Holomorphic structures on E}/isomorphism↔ {unitary connections on E}/gauge equivalence.

Remark 4.1.12. It is important to note that the above bijection extends to greater generality; more
specifically one can define a (1,2)-Sobolev norm on the space of p-forms, and define a completion
of this space. The closure of the affine space of unitary connections is the space of W 1,2-unitary con-
nections, and one can show that the Chern correspondence extends to W 1,2-connections ([2, Lemma
14.8]). This will become relevant in the next section

4.1.2 Degree of a Smooth Bundle

In this section, we will give a complete classification of smooth vector bundles on X . In particular,
we will show that the degree of a bundle is actually a smooth invariant, and in fact, along with the
rank, the only smooth invariant there is! Thus for each signature (n, d) ∈ N × Z, there is a unique
smooth bundle with that signature. The vehicle for showing this is the invariant known as the first
Chern class. To define it, we fix a smooth bundle E. We begin with a result:



4.1. HOLOMORPHIC STRUCTURES ON A SMOOTH BUNDLE 83

Lemma 4.1.13. Let ∇1,∇2 be connections on E with curvature forms Θ1,Θ2 respectively. Then
trΘ1 and trΘ2 are cohomologous.

Proof. Since X is a Riemann surface, clearly trΘi, being a two-form, is closed, thus the statement
makes sense. Now ∇1 − ∇2 is a global End(E)-valued 1-form; call it A. Let ω1, ω2 be respective
local 1-forms of ∇1 and ∇2 on a local frame. Then locally, we have

Θ2 = dω2 + ω2 ∧ ω2 = d(ω1 +A) + (ω1 +A) ∧ (ω1 +A) = Θ1 + dA +A ∧A + ω1 ∧A +A ∧ ω1

hence
tr(Θ2) = tr(Θ1) + tr(dA) + tr(A ∧A) + tr(ω1 ∧A +A ∧ ω1).

It is not hard to show that tr(A ∧A) and tr(ω1 ∧A +A ∧ ω1) are both zero, from the antisymmetry
of the wedge product. Since A is a global form, the dA glue to a global exact 2-form and hence the
result follows.

Definition 4.1.14. The first Chern class of E is defined to be the cohomology class

c1(E) ∶= [tr(
i

2π
Θ)] ∈H2

DR(X)

where Θ is the curvature form for any connection. By the above lemma, this does not depend on the
connection.

The key theorem we will be proving in this section is the following:

Theorem 4.1.15. For any holomorphic bundle E with underlying smooth bundle E, we have

∫
X
c1(E) = deg(E),

where X is given the standard orientation idz ∧ dz̄ for any holomorphic coordinate z.

Let us take a moment to appreciate this result. We defined the degree of a line bundle L on a curve
X over an algebraically closed field k to be the degree of its corresponding divisor class, and we
defined the degree of a vector bundle E to be the degree of det(E). Note that this is purely algebraic.
The theorem states that in the case k = C, where we have access to analytic tools, when we equip E
with a connection (any connection, in fact), take its curvature, take the trace of the curvature, multiply
by i/2π and integrate it, we get, not only an integer, but the same integer representing the degree of
the divisor associated to its determinant bundle!

The way to prove this is to reduce to the case of line bundles, and to do this, we present the
following well-known result:

Theorem 4.1.16 (Structure Theorem of Smooth Vector Bundles). There is a diffeomorphism

E ≅ detE ⊕OrkE−1
X .
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Before we give the proof, we first recall it can be shown ([5, II, Theorem 15.3]) that every section
s has a section s′ which intersects s transversally (i.e. if s and s′ intersect at P ∈ X , then im s∗,P ⊕
im s′∗,P = Ts(P )E; in other words the images of the differential of s, s′ at P generate the tangent
space of s(P ) in E).

Proof. We proceed by induction on the rank, with the rank 1 case being trivial. Now supposing rkE >
1, we observe that by the above there is a section s which intersects the zero section transversally.
However, the real dimension of E is dimRE = 2 + 2 rkE > 4 and thus s and the zero section cannot
intersect at all (otherwise the space spanned by the images of their differential is at most 4), or in
other words s is nonvanishing. In particular, the bundle spanned by s, which is a trivial line bundle,
is a subbundle of E, and thus we may write E = OX ⊕ E′ for some complement E′ (for example,
placing a hermitian metric h on E and taking the orthogonal complement of s with respect to h), and
by the inductive hypothesis the result follows.

Before we proceed, we review the Snake Lemma; in particular how the “snake” is constructed.
We recall the statement:

Proposition 4.1.17 (Snake Lemma). Suppose we have the following diagram ofA-modules with exact
rows:

0 A0 B0 C0 0

0 A1 B1 C1 0

dA dB dC

f

Then there is a map δ ∶ kerdC → cokerdA such that the following sequence is exact:

0 kerdA kerdB kerdC

cokerdA cokerdB cokerdC 0

The δ above is constructed as follows: Take c ∈ kerdC . Since the top row is exact, there exists
some b ∈ B0 that maps to c. Now observe that since dC(c) = 0, it must follow that the image of
dB(b) ∈ ker f , by the commutativity of the diagram. Since the bottom row is exact, this pulls back to
some unique a ∈ A1, and moreover it can be shown that the image of a in cokerdA does not depend
on our choice of b, and in particular it is well-defined. Hence we define δ(c) ∶= b, and one can show
that the resulting sequence is exact.

Now we continue our investigation. We clearly have the short exact sequence of abelian groups:

0 Z C C∗ 0
exp

where exp above is the map x↦ exp(2πix). Now let P denote the property of smoothness or holo-
morphicity (in particular, statements made about P will be valid in both the smooth and holomorphic
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settings). Taking the sheaf of P-functions with values in the above groups, we have the following
short exact sequence of sheaves, known as the exponential sheaf sequence:

0 Z OX O∗X 0
exp

(4.2)

where OX is the sheaf of P-functions on X , and Z is the constant sheaf Z. Recall that H i(X,Z) ≅
H i

sing(X,Z) ([13, pp. 42-43]). Now taking cohomology of (4.2), we have:

0 H0(X,Z) H0 (X,OX) H0 (X,O∗X)

H1 (X,Z) H1 (X,OX) H1 (X,O∗X) ...

(4.3)

and in particular, we have a map δ ∶ H1(X,O∗X) → H2(X,Z). Now recall that H1(X,O∗X) is the
Picard group of X; in particular it parameterises the isomorphism classes of P-line bundles on X .

Proposition 4.1.18. Under the inclusion H2(X,Z) ⊆H2(X,R) ≅H2
DR(X), we have

δ(L) = −c1(L)

for any P-line bundle L

Proof. This follows the proof given in [13, pp. 141-142]. Let {Uα} be a sufficiently fine open cover
(in particular, one where we can take local logarithms on overlaps) and let {gαβ} be a Čech cocycle
L. We define local inverses

hαβ ∶=
1

2πi
log gαβ

and by the construction of the snake map of the Snake Lemma, it follows that {hαβ −hαγ +hβγ} is a
2-cocycle of Z representing δ(L).

Next we look at c1(L). Fix a connection and let {ωα} be the associated 1-forms. By Proposition
B.2.2, we have

ωβ = (dgαβ)g−1αβ + gαβωαg
−1
αβ = gαβdgαβ + ωα

hence
ωβ − ωα = g−1αβdgαβ = d log gαβ

and in particular dωα = dωβ . Now we compute the curvature. Since we are working with a line
bundle, ω is just a usual 1-form; it follows ω ∧ ω = 0, hence

Θ = dωα = dωβ.

Finally, we reconcile de Rham and Čech cohomology. Note that by the Poincare Lemma we have the
following short exact sequences of sheaves (recall exactness of sheaves is measured locally):

0→ R→ Ω0
X → Z1 → 0 (4.4)
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and
0→ Z1 → Ω1

X → Z2 → 0 (4.5)

where Zp denotes the sheaf of closed p-forms on X . Now it can be shown [13, p. 42] that Ωp
X is

acyclic, hence we have
H0(X,Z2)/H0(X,Ω1

X) ≅H1(X,Z1) (4.6)

by the long exact sequence of (4.5) and

H1(X,Z1) ≅H2(X,R) (4.7)

by the long exact sequence of (4.4). Using (4.6), and the construction of the snake map, the image of
Θ in H1(X,Z) is represented by the Čech 1-cocycle {i(ωβ − ωα)/2π}, and using (4.7), the image
of Θ in H2(X,R) is

{ i
2π
(log gαβ − log gαγ + log gβγ)} = −{hαβ − hαγ + hβγ} = −δ(L)

as desired.

Corollary 4.1.19. In the smooth category, or in the holomorphic category with g = 0, every line
bundle is uniquely determined by its first Chern class.

Proof. In both cases OX is acyclic.

Next we prove Theorem 4.1.15 for line bundles:

Theorem 4.1.20. If L is a holomorphic line bundle with underlying smooth bundle L, then we have:

∫
X
c1(L) = degL. (4.8)

Proof. We first prove the case where L is the line bundle of a prime divisor. LetD be a prime divisor,
supported on P ∈ X , suppose L = L(D). Since D is effective, by Proposition A.1.6, it is the divisor
of zeroes of some global section s ∈ H0(X,L) that vanishes exactly once, at P . In particular, s is a
frame on X ∖ {P}. Now fix a hermitian metric h. By the Chern correspondence, a Chern connection
of (E , h) is given locally by h−1α ∂hα with respect to a holomorphic frame, and the curvature by
dh−1α ∂hα = d∂ loghα (here we may take logarithms because hα > 0). Now for an ε > 0, write Uε for
the open set {p ∈ X ∣ h(s(p), s(p)) > ε} and U ε for its closure, define sε to be the frame s∣Uε and
finally write hε ∶= h(sε, sε) > 0. We compute:

∫
X
c1(L) = lim

ε→0
∫
Uε

c1(L) = lim
ε→0
∫
Uε

i

2π
d∂ loghε = lim

ε→0
∫
∂Uε

i

2π
∂ loghε

where the final equality follows from Stoke’s theorem. Now since s∣X∖Uε
vanishes exactly at P , we

may pick a holomorphic coordinate chart centred at P such that s = z. Hence

∫
∂Uε

∂ loghε = −∫∣z∣=ε ∂(log z + log z̄ + loghz(1,1)) (4.9)
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integrating anticlockwise as usual. The negative sign is there due to our choice of orientation. Now
observe that since loghz(1,1) is smooth, it follows ∂ log(hz(1,1))/∂z is continuous, and since {∣z∣ ≤
δ} is compact, for some sufficiently small δ, it follows ∂ log(hz(1,1))/∂z is bounded on {∣z∣ ≤ δ}.
Thus

lim
ε→0
∣∫∣z∣=ε ∂ logh(1,1)∣ = limε→0

∣∫∣z∣=ε
∂ loghz(1,1)

∂z
dz∣ ≤ lim

ε→0
2πε sup{∣∂ loghz(1,1)

∂z
∣ ∣ ∣z∣ ≤ δ} = 0.

Finally, we have, by Cauchy’s integration formula,

∫∣z∣=ε ∂(log z + log z̄) = ∫∣z∣=ε
dz

z
= 2πi

as desired.
Finally, we observe that H2(X,Z) ≅ Z, and by Proposition 4.1.18, it follows

c1(L1 ⊗L2) = c1(L1) + c2(L2)

Hence if D = ∑niPi is any divisor and L = L(D), it follows L = ⊗L(Pi)⊗ni hence

∫
X
c1(L) = ∫

X
c1(⊗L(Pi)⊗ni) = ∫

X
∑nic1(L(Pi)) =∑ni = degL

as desired.

Example 4.1.21. Suppose X = P1. We will compute the Chern class of OX(n). Suppose the
homogeneous coordinates onX are [x0 ∶ x1], and let U0 = {x0 ≠ 0} and similarly with U1. We define
z0 ∶= x1/x0 to be the affine coordinate on U0 ≅ A1 and similarly for z1. Now by definition ofOX(n),
we may find frames s0, s1 on the corresponding affine patches such that

g0,1 ∶=
s1
s0
= zn0 = z−n1

We define the hermitian metric on OX(n) to be

h0 ∶= h(s0, s0) = (1 + ∣z0∣2)−n

on U0, and
h1 ∶= h(s1, s1) = (1 + ∣z1∣2)−n.

Of course, we need to check this is well-defined, that is

h0 = h(s0, s0) = h(zn1 s1, zn1 s1) = ∣z1∣2nh1.

To this end observe

h0 = (1 + ∣z0∣2)−n = (1 +
1

∣z1∣2
)−n = ( ∣z1∣

2 + 1
∣z1∣2

)−n = ∣z1∣2n(∣z1∣2 + 1)−n = ∣z1∣2nh1
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as claimed. Hence for brevity, we will simply write

h = (1 + ∣z∣2)−n

understanding that this works for any affine patch, and finally observe that both affine patches have
complement measure zero, and thus we may ultimately just work on one affine patch.

By the Chern correspondence, the unitary connection ω is given by

ω = h−1∂h = − nz̄

1 + ∣z∣2dz

and now computing the curvature Θ:

Θ = dω = −n
(1 + ∣z∣2)2dz̄ ∧ dz =

n

(1 + ∣z∣2)2dz ∧ dz̄

and hence

c1(OX(n)) =
ni

2π(1 + ∣z∣2)2dz ∧ dz̄

Finally, we integrate. Write z = x + iy and we interpret the real coordinates x, y as the standard
coordinates of R2. Then idz ∧dz̄ = 2dx∧dy, and letting r, θ denote the polar coordinates, we deduce

∫
X
c1(OX(n)) = ∫

U

n

π(1 + ∣z∣2)2dx ∧ dy = ∫
∞

0
∫

2π

0

nr

π(1 + r2)2dθdr = n

as desired.

Proof of Theorem 4.1.15. By the structure theorem we know E = detE ⊕ OrkE−1
X . Then given

connections on detE and OrkE−1
X , we can build a connection on E with a diagonal matrix of as-

sociated 1-forms. More precisely, if ∇ is a connection on detE with local 1-forms {ωα}, then
{diag(ωα,0, ...,0)} is the matrix of 1-forms for a connection on detE ⊕OrkE−1

X = E. Thus

∫
X
c1(E) = ∫

X
c1(detE) = deg(E)

as desired.

Corollary 4.1.22. For each (n, d) ∈ N × Z ≅ N ×H2(X,Z), there exists a unique smooth bundle E
over X with signature (n, d).

To summarise, we have given an interpretation of Vn,d, the set of isomorphism classes of holo-
morphic vector bundles of signature (n, d) as the set of holomorphic structures on the unique smooth
bundle E of signature (n, d). Our earlier work on the Chern correspondence in turn describes this
set as equal to the affine space of unitary connections on E modulo gauge equivalence. Now the next
question is, where does stability fit in all of this?
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4.2 An Overview of Donaldson’s Proof

In this section, we conduct an exposition of Donaldson’s paper [8], which interprets stability of a given
holomorphic bundle E in terms of the type of Chern connection on the underlying smooth bundle E
that gives rise to E . This builds on earlier work by Atiyah and Bott in [2], and provides a short proof
of the theorem of Narasimhan and Seshadri, as we will see shortly, and it is this correspondence which
will allow us to topologise our moduli space.

To begin, observe that sinceX is a compact Riemann surface, it is Kähler, and we make the further
assumption that the volume of X is 1 (that is, we fix a volume form such that ∫X vol = 1). The result
is the following:

Theorem 4.2.1 (Donaldson-Narasimhan-Seshadri). Let E be a indecomposable holomorphic bundle.
Then E is stable if and only if there is some Chern connection ∇ on E giving rise to E with curvature
Θ ∈H0(Ω2

X)⊗EndE satisfying
Θ = −2πiµvol⊗ idE (4.10)

Moreover, ∇ is unique up to the action of the unitary gauge group.

Note that if deg E = 0, this means Θ will be flat.

Example 4.2.2. Of course, over P1 the only stable bundles are line bundles. So let OX(n) be a
line bundle. In Example 4.1.21, we defined a hermitian metric and computed the Chern class, Chern
connection and curvature. Now we will need to compute the volume form. Of course, X is obviously
Kähler with its Fubini-Study metric (which can be realised as the metric of TX = OX(2) or its dual
OX(−2) = Ω1,0

X described in Example 4.1.21), and so by taking the real part of this complex inner
product, we have a natural Riemannian structure. Locally, if we pick an affine patch with holomorphic
coordinate z = x + iy, and frame (∂x, ∂y) of TX (the real smooth tangent space) the metric is given
by

g =
⎛
⎝

1√
π(1+x2+y2)2 0

0 1√
π(1+x2+y2)2

⎞
⎠

The
√
π is there so that the resulting volume is 1. An orthonormal frame is given by (√π(1 + x2 +

y2)∂x,√π(1 + x2 + y2)∂y), and hence the volume form is

vol = dx ∧ dy
π(1 + x2 + y2)2 =

idz ∧ dz̄
2π(1 + ∣z∣2)2 .

Now we computed the curvature of the Chern connection on OX(n) to be

Θ = n

(1 + ∣z∣2)2dz ∧ dz̄ = −2πideg(OX(n))vol

as expected. Hence the theorem is verified for P1.

In fact, we will first prove the theorem for line bundles in general:

Theorem 4.2.3. The Donaldson-Narasimhan-Seshadri theorem is true for line bundles.
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Proof. Of course, if L is a line bundle with hermitian metric h, underlying smooth bundle L and
Chern connection ∇, then it is already stable. Thus we reduce to showing that a connection ∇′ in the
orbit of ∇ with curvature in the form (4.10) exists.

To this end, we observe that the curvature Θ of ∇ is just an imaginary global (1,1)-form (since
EndL is trivial; the identity endomorphism is a global frame), so iΘ differs from its harmonic rep-
resentative iΘ0 by a real exact 1-form, say iΘ − dη = iΘ0. Now observe that since Θ0 is harmonic,
d⋆Θ0 = 0, and so ⋆Θ0 is a constant; necessarily equal to −2πiµ. So we reduce once again to showing
that there is a gauge transformation g such that Θ0 is the curvature of g ⋅ ∇.

Observe that dη is real and closed and therefore the following Poisson equation has a real solution
([3, Theorem 4.7]):

2∂̄∂f =∆f = idη.
Now write g ∶= exp f , let ∇′ = g ⋅ ∇, and write Θ′ for the curvature of ∇′. Firstly, observe that since
EndL is trivial, the operators induced by the connection, ∂EndL and ∂̄EndL, are just the usual ∂ and
∂̄ operators. Hence

Θ′ = Θ − d(∂̄g)g−1 + d(∂̄g)g−1 = Θ − ∂∂̄f + ∂̄∂f̄ = Θ + 2∂̄∂f = Θ + idη = Θ0

as desired.

Observe that the condition (4.10) is a little awkward to work with, so we introduce the Donaldson
J-functional on the space of W 1,2-unitary connections (the W 1,2-condition is required to use Uhlen-
beck’s compactness theorem, which will be stated below), which satisfies the property that J(∇) = 0
if and only if ∇ satisfies (4.10). It is defined as follows: Firstly recall that the trace norm (which
despite its name, is not a norm in general) of a square matrix M ∈ Cr×r is defined to be

ν(M) ∶= tr((MM∗)
1
2 ),

where (MM∗) 12 is the unique positive semidefinite matrix B such that B2 = MM∗, which exists
since MM∗ is hermitian (and hence diagonalisable) and positive semidefinite. In fact, if M is diago-
nalisable, it is easy to see that

ν(M) =∑ ∣λi∣,
where the sum is taken across all eigenvalues of M , counting multiplicity. The key property is the
following:

Lemma 4.2.4. For any hermitian matrix M , we have

ν(M) = sup
{si}

n

∑
i=1
∣⟨Msi, si⟩∣,

where the supremum is taken across all unitary bases {si} of Cn.

Proof. We first observe that M has a unitary basis of eigenvectors, say {vi} and letting {si} = {vi}
we deduce

ν(M) =∑ ∣λi∣ =
n

∑
i=1
∣⟨Mvi, vi⟩∣ ≤ sup

{si}

n

∑
i=1
∣⟨Msi, si⟩∣.
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For the reverse inequality, let {si} be a unitary basis, and let (gij) ∈ U(n) denote the matrix taking
{vi} to {si}; that is, si = ∑ gijvj . We compute:

n

∑
i=1
∣⟨Msi, si⟩∣ =

n

∑
i=1
∣⟨M

n

∑
j=1

gijvj ,
n

∑
k=1

gikvk⟩∣

=
n

∑
i=1
∣
n

∑
j=1

gij⟨Mvj ,
n

∑
k=1

gikvk⟩∣

=
n

∑
i=1
∣
n

∑
j=1

gij⟨Mvj , gijvj⟩∣

=
n

∑
i=1
∣
n

∑
j=1

λj⟨gijvj , gijvj⟩∣

≤
n

∑
i=1

n

∑
j=1
∣λj ∣∣⟨gijvj , gijvj⟩∣

=
n

∑
i=1

n

∑
j=1
∣λj ∣∣gij ∣2 =

n

∑
j=1
∣λj ∣

as desired.

Of course, this in itself is not particularly interesting or useful, but it does give us two very impor-
tant corollaries:

Corollary 4.2.5. Let H(n) denote the vector space of hermitian n-by-n matrices.

(i) ν is a norm on H(n).

(ii) If M ∈H(n) can be written in the form

M = ( A B
B∗ C

) ,

then ν(M) ≥ ∣ trA∣ + ∣ trC ∣.

Proof. To prove (i), we need only check the triangle inequality. So suppose M,N ∈H(n) are given.
Then

ν(M +N) = sup
{ei}
∑ ∣⟨(M +N)ei, ei⟩∣ =≤ sup

{ei}
∑ ∣⟨Mei, ei⟩∣ + ∣⟨Nei, ei⟩∣ ≤ ν(M) + ν(N)

as desired. To prove (ii), let {ei} denote the standard basis of Cn. Then

ν(M) ≥
n

∑
i=1
∣⟨Mei, ei⟩∣ ≥ ∣

rkA

∑
i=1
⟨Mei, ei⟩∣ + ∣

n

∑
i=rkA+1

⟨Mei, ei⟩∣ = ∣ trA∣ + ∣ trC ∣

as desired.
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With this in mind, we define the N -norm on the space of self-adjoint smooth endomorphisms of
E, as

N(s) ∶= (∫
X
ν2(s)vol)

1
2

.

By the above corollary, this is a norm.
Now let ∇ be a unitary W 1,2-connection with curvature Θ ∈ H0(Ω2

EndE). Since the matrix of a
unitary connection with respect to a unitary frame is skew-hermitian, its curvature Θ is also skew-
hermitian, and since the volume form is real, it follows that ⋆Θ is also skew-hermitian. In particular,
it follows that ⋆Θ2πi is actually hermitian. Thus we define the Donaldson J-functional as

J(∇) ∶= N( ⋆Θ
2πi
+ diag(µ)) = (∫

X
ν2 ( ⋆Θ

2πi
+ diag(µ))vol)

1
2

,

where ν2(s) ∶= (ν(s))2. Observe that J = 0 if and only if ∇ is a unitary connection of the type we
want (known as, projectively flat, or Yang-Mills connections). Thus we have turned our problem into
one of finding zeroes of J .

The rough idea of Donaldson’s proof is as follows: let E be an indecomposable bundle of signa-
ture (n, d). We fix a reference Chern connection ∇0 of E , and use gauge transformations to find our
desired ∇. Denote the W 2,2-gauge orbit of ∇0 by O∇0 . We will show that if E is stable, then the
infimum of J(O∇0) is attained; that is there is some ∇ ∈ O∇0 such that J(∇) = inf J(O∇0). One
then deduces that the infimum must be zero, by looking near ∇. In order to deduce that the infimum
is attained, we take a minimising sequence (that is, a sequence ∇i such that J(∇i)→ inf J(O∇0)) in
O∇0 and extract, using Uhlenbeck’s weak compactness theorem (to be stated), a weakly convergent
subsequence that converges to some ∇∞. Now ∇∞ defines a holomorphic bundle, say F , and the key
property is that Hom(E ,F) ≠ 0. So we take a nonzero φ ∶ E → F , and apply Proposition A.1.17 to
get a factorisation of φ through two exact rows, and apply estimates to these rows to deduce that E is
stable if and only if E ≅ F . The converse (that if there is some connection annihilating J then E is
stable) also follows from these estimates.

Now we begin with a statement of Uhlenbeck’s compactness theorem:

Theorem 4.2.6 (Uhlenbeck’s weak compactness). Let (∇i) be a sequence of W 1,2-connections with
curvatures (Θi), and suppose the sequence (∣∣Θi∣∣L2 ∶= ∫X tr(Θi)∧ tr(⋆Θi)) is bounded. Then there
is a sequence of W 2,2-gauge transformations (gi) and a subsequence (∇ik) such that (gik ⋅ ∇ik)
weakly converges to some ∇∞ (that is, ∫X tr(gik ⋅ Θik) ∧ tr(⋆A) → ∫X tr(Θ∞) ∧ tr(⋆A) for all
W 1,2-connections A).

Proof. [47, p. 41].

Let (∇i) be a sequence in O∇0 with curvatures (Θi), such that J(∇i) → inf J(O∇0). In order to
use the theorem, we need to check that ∣∣Θi∣∣L2 is bounded. To this end, we first observe that N(⋆Θi)
is bounded, since J(∇i) is and N is a norm. Note that

ν2(⋆Θi)vol = tr(
√
(⋆Θi)(⋆Θi)∗)2 vol,
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and similarly,
tr(Θi) ∧ ⋆ tr(Θi) = tr(⋆Θ)(⋆Θ)∗ vol .

Since all norms are equivalent in finite dimensions, it follows that there is some m,M > 0 such that
for any matrix A we have

m tr(AA∗) ≤ tr
√
AA∗

2 ≤M tr(AA∗),
thus since {N(⋆Θi)} is bounded, it follows that {∣∣Θi∣∣L2} is also bounded. Thus (replacing ∇i with
g ⋅ ∇i, and replacing the sequence with a weakly convergent subsequence) we may assume without
loss of generality ∇i converges weakly to some ∇∞, which is a unitary connection and hence defines
a holomorphic bundle, say F with signature (n, d).
Proposition 4.2.7. Let E ,F be as above.

(i) Then J(∇∞) ≤ inf J(O∇0).

(ii) The group Hom(E ,F) is nonzero.

Proof Sketch. To prove (i), we first observe that for any ε > 0 the set Cε = {α ∈ EndE ∣ N(α +
diag(µ)) < J(∇∞) − ε} is convex and closed, and thus by the Hahn-Banach separation theorem, we
can separate ⋆Θ2πi from Cε by a hyperplane. Now if

J(∇∞) > inf J(O∇0) = lim inf
n→∞

J(∇i),

then picking some ε0 such that J(∇∞) − ε0 > inf J(O∇0), we find that infinitely many ⋆Θi

2πi lie in
Cε0 . But that means Θi cannot converge weakly to Θ∞ in L2, and since the curvature is a bounded
linear operator, it follows that weak convergence is preserved, and thus we have a contradiction. This
proves (i).

To prove (ii), we first observe that an element of Hom(E ,F) is just a global section ofHom(E ,F) =
E∨⊗F . Now the underlying smooth bundle of E∨⊗F is just End(E) = E∨ ⊗E, and it is easy to see
that given any Dolbeault operators ∂̄E and ∂̄F giving rise to the holomorphic structures on E and F ,
the operator

∂̄E∨⊗F ∶= 1⊗ ∂̄F − ∂̄E ⊗ 1

is a Dolbeault operator for E∨⊗F . Since E and F have Chern connections ∇0 and ∇∞ respectively,
and since the∇i for i ≥ 0 all give rise to the same (more precisely isomorphic) holomorphic structures,
we can take the (0,1) part of these connections to build the Dolbeault operators ∂̄i,∞ ∶= (1 ⊗ ∇∞ −
∇i⊗1)0,1. Now to say Hom(E ,F) = 0 is to say that the Dolbeault operators ∂̄i,∞ for i ≥ 0, considered
as maps EndE → EndE⊗H0(X,Ω0,1) have trivial kernel. One can then apply the theory of elliptic
operators and the Sobolev embedding theorem to deduce that ∂̄0,i ∶= 1 ⊗ ∇i − ∇0 ⊗ 1 also has no
kernel. But that would imply EndE = 0, a clear contradiction.

With this result in hand, we fix a nonzero homomorphism φ ∶ E → F and apply Proposition
A.1.17, so that we have the following commutative diagram:

0 E ′ E E ′′ 0

0 F ′′ F F ′ 0

φ (4.11)
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with exact rows, E ′ ≅ kerφ, E ′′ ≅ imφ and rkE ′′ = rkF ′, deg E ′′ ≤ degF ′. The key now is to apply
estimates to these rows.

Proposition 4.2.8 (First Estimate). Consider the following short exact sequence of vector bundles:

0→ F ′ → F → F ′′ → 0,

and suppose µ(F ′) ≥ µ(F). Then if ∇F is a unitary connection on E giving rise to the holomorphic
structure of F , we have

J(∇F) ≥ rkF ′(µ(F ′) − µ(F)) + rkF ′′(µ(F) − µ(F ′′)).

Equality holds only if the sequence splits.

Proof. Firstly, we fix a local unitary frame sα compatible with a local holomorphic splitting and
consider the matrix of one-forms of ∇F , which is skew-hermitian. One can show that it has the shape

ωα = (
ω′α βα
−β∗α ω′′α

) ,

where the βα glue to the second fundamental form (c.f. Remark 3.1.4) β, and the ω′α are the 1-forms
of a Chern connection ∇′ on F ′, and similarly with ω′′α. If we compute the curvature, we see that it is
of the form

ΘF = (
Θ′ − β ∧ β∗ ∇F ′′,Fβ
−∇F ′′,Fβ∗ Θ′′ − β∗ ∧ β) ,

where Θ′ and Θ′′ are the curvatures of ∇′ and ∇′′ respectively and ∇F ′′,F ∶ Ω1(Hom(F ′′,F)) →
Ω2(Hom(F ′′,F)) is built from the connections ∇′,∇′′ (see [13, p. 78] for details). Now by Corol-
lary 4.2.5, it follows that

ν (⋆ΘF
2πi

+ diagrkF(µ)) ≥ ∣tr(
⋆(Θ′ − β ∧ β∗)

2πi
+ diagrkF ′(µ))∣+∣tr(

⋆(Θ′′ − β∗ ∧ β)
2πi

+ diagrkF ′′(µ))∣ ,

where µ = µ(F). Applying Hölder’s inequality, we deduce

J(∇F) ≥ ∫
X
ν (⋆ΘF

2πi
+ diagrkF(µ))vol

= ∣∫
X
tr(⋆(Θ

′ − β ∧ β∗)
2πi

+ diagrkF ′(µ))vol∣ + ∣∫
X

tr(⋆(Θ
′′ − β∗ ∧ β)
2πi

+ diagrkF ′′(µ))vol∣

Let us consider the term ⋆(β ∧ β∗). Observe that β is a (0,1)-form and so β ∧ β∗ has entries of
the form ∣f ∣dz̄ ∧ dz for any holomorphic coordinate z. Since, by our conventions, our orientation is
idz ∧ dz̄, this means that −i tr⋆(β ∧ β∗) will be nonnegative.

Next we observe that by Theorem 4.1.15, we have

∫
X
tr(⋆Θ

′

2πi
)vol = −degF ′ ≤ − rkF ′µ(F) = − tr diagrkF(µ) = −∫

X
tr diagrkF ′(µ)vol,
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where the last equality follows from the assumption ∫X vol = 1. Hence

∣∫
X
tr(⋆(Θ

′ − β ∧ β∗)
2πi

+ diagrkF ′(µ))vol∣ = −∫
X
tr(⋆(Θ

′ − β ∧ β∗)
2πi

+ diagrkF ′(µ))vol

= rkF ′(µ(F ′) − µ(F)) + 1

2πi
tr⋆(β ∧ β∗)

and note that 1
2πi tr⋆(β ∧ β

∗) ≥ 0 by the above discussion. Similarly, note that

∣∫
X
tr(⋆(Θ

′′ − β∗ ∧ β)
2πi

+ diagrkF ′′(µ))vol∣ = rkF ′′(µ(F) − µ(F ′′)) +
1

2πi
tr⋆(β ∧ β∗)

And putting it all together we get

J(∇F) ≥ rkF ′(µ(F ′) − µ(F)) + rkF ′′(µ(F) − µ(F ′′)) +
1

πi
tr⋆(β ∧ β∗)

≥ rkF ′(µ(F ′) − µ(F)) + rkF ′′(µ(F) − µ(F ′′)).

as desired. Finally, if equality occurs, that means β = 0, but β defines an element of Ext1(F ′′,F ′)
via the Dolbeault cohomology representation of sheaf cohomology (Remark 3.1.4), and in particular
if it is zero then the sequence splits.

And in fact, from this we may already deduce one direction of the Donaldson-Narasimhan-
Seshadri theorem:

Corollary 4.2.9. Suppose E is indecomposable, and there is a Chern connection ∇ giving rise to E
such that J(∇) = 0. Then E is stable.

Proof. Suppose for contradiction E is not stable. Then there is some subbundle E ′ such that µ(E ′) ≥
µ(E), whence µ(E) ≥ µ(E /E ′). Then

0 = J(∇) ≥ rkE ′(µ(E ′) − µ(E)) + rk(E /E ′)(µ(E) − µ(E /E ′)) ≥ 0,

which means the sequence
0→ E ′ → E → E /E ′ → 0

splits, by the above proposition, contradicting the indecomposability of E .

Remark 4.2.10. In fact, we can deduce that if E has a Chern connection which is a zero of J , then
E must be polystable, since the proposition tells us that E can be written as a direct sum of two
subbundles of equal slope.

Our next estimate applies to the top row. However, it is more technical and requires the stronger
hypothesis that the Donaldson-Narasimhan-Seshadri theorem has been proven for bundles of smaller
rank:
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Proposition 4.2.11 (Second Estimate). Consider the following short exact sequence of vector bun-
dles:

0→ E ′ → E → E ′′ → 0.

Suppose this exension is proper, that E is stable and the Donaldson-Narasimhan-Seshadri theorem
has been proven for bundles of rank less than rkE . Then there exists a unitary connection ∇E on E
giving rise to E such that

J(∇E) < rkE ′(µ(E) − µ(E ′)) + rkE ′′(µ(E ′′) − µ(E)).

Proof Sketch. The idea here is to use the Harder-Narasimhan and Jordan-Hölder filtrations and the
inductive hypothesis to build this∇E . Let (E ′i) be the Harder-Narasimhan filtration of E ′, and for each
i let (E ′ij) denote the Jordan-Hölder filtration of E ′i /E ′i−1. Since rkE ′i,j /E i,j−1 < rkE , by assumption
we know that there is a projectively flat Chern connection ∇′ij on E ′i,j /E i,j . Now given any

0→ E ′i,j → E ′i,j+1 → E ′i,j+1 /E ′i,j → 0

with second fundamental form Bi,j , one can inductively (starting with j = 0) build a connection on
E ′i,j+1 from the one on E ′i,j and the one on E ′i,j+1 /E ′i,j given to us, and letting the i vary we can build
a connection on each E ′i. Now given any short exact sequence of vector bundles

0→ F ′ → F → F ′′ → 0

with second fundamental form B, one can scale B by any nonzero constant t ∈ C ∖ {0} and the
resulting bundle in the middle is isomorphic to F , by the proof of Theorem 3.1.3. In particular, given
any short exact sequence from any of our filtrations above (which either looks like

0→ E ′i,j → E ′i,j+1 → E ′i,j+1 /E ′i,j → 0

or
0→ E ′i → E ′i+1 → E ′i+1 /E ′i → 0),

the connection built in the middle is of the form

( ∇1,B
−B∗,∇2

)

where ∇1 and ∇2 are connections on the left and right respectively and B is the second fundamental
form. Now as mentioned, we may scale B by any constant t > 0 and retain the same isomorphism
class, so the matrix

( ∇1, tB
−tB∗,∇2

)

gives rise another Chern connection on the middle bundle. Doing this (with a fixed t > 0) for every
step of both filtrations, we have a collection of Chern connections {∇′t} on E ′, but their limit ∇′0 is a
Chern connection for⊕i,j E ′ij , and moreover by construction we have

⋆Θ′0 = −2πidiag(µ(E ′ij)),
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where Θ′t is the curvature of ∇′t. Similarly, we can build a collection of Chern connections ∇′′t on E ′′
that converge to a connection ∇′′0 on some⊕i′,j′ E ′′i′j′ and ⋆Θ′′0 = −2πidiag(µ(E ′′i′,j′)).

Let [β] ∈ Ext1(F ′′,F ′) denote the extension class of E . For each∇′t,∇′′t , one can build a connec-
tion ∇t

E ′′,E ′ onHom(E ′′,E ′), and for each ∇t
E ′′,E ′ , standard arguments from Hodge theory tell us that

there is a representative of [β], call it βt, such that ∇t
E ′′,E ′(βt) = 0. Letting s > 0 be another variable,

we have connections depending on s and t

∇s,t = (
∇′t sβt
−sβ∗t ∇′′t

)

with curvature

Θs,t = (
Θ′t − s2βt ∧ β∗t 0

0 Θ′′t − s2β∗t ∧ βt
)

that converge to ∇0,0 with curvature Θ0,0 = diag(Θ′0,Θ′′0). Now we observe

tr(⋆Θ
′
0

2πi
+ diagrkE ′(µ(E))) =∑(µ(E) − µ(E ′ij)) = rkE ′(µ(E) − µ(E ′)) > 0

and similarly

tr(⋆Θ
′′
0

2πi
+ diagrkE ′′(µ(E))) = rkE ′′(µ(E) − µ(E ′′)) < 0,

and put together this tells us

J(∇0,0) = rkE ′(µ(E) − µ(E ′)) + rkE ′′(µ(E ′′) − µ(E)).

Our next task is to show that for sufficiently small s, t we have J(∇s,t) < J(∇0,0). To this end,
we first note that since A′ ∶= diag(µ − µ(E ′ij)) is a diagonal matrix with positive entries and hence
has negative eigenvalues, it follows that ν(A′) = trA′, and hence the same is true for matrices
sufficiently close to A′. Now it can be shown that the i tr⋆(β∗t ∧ βt) are uniformly bounded, and
hence for sufficiently small s, t, it follows

ν(⋆(Θ
′
t − s2βt ∧ β∗t )

2πi
+ diagrkE ′(µ)) = tr(

⋆Θ′t − s2βt ∧ β∗t
2πi

+ diagrkE ′(µ))

= rkE ′(µ(E) − µ(E ′)) − s2 tr⋆(βt ∧ β
∗
t

2πi
) + ε1(t),

where ε1(t) is some error term that vanishes as t → 0, and the uniform bound is used to control the
∣ tr⋆(βt∧β∗t

2πi )∣, so that the matrix does not deviate from A′ too much. Similarly,

ν(⋆(Θ
′
t + s2βt ∧ β∗t )

2πi
+ diagrkE ′(µ)) = − tr(

⋆Θ′′t + s2βt ∧ β∗t
2πi

+ diagrkE ′(µ))

= rkE ′′(µ(E ′′) − µ(E)) − s2 tr⋆(βt ∧ β
∗
t

2πi
) + ε2(t),

and hence

ν(⋆Θs,t

2πi
+ diagrkE(µ)) = J(∇0,0) − s2 tr⋆(

βt ∧ β∗t
πi

) + ε(t).
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Integrating, we find

J(∇s,t)2 = ∫
X
ν2 ( ⋆Θ

2πi
+ diag(µ))vol

= ∫
X
(J(∇0,0) − s2 tr⋆(

βt ∧ β∗t
πi

) + ε(t))
2

vol

= J(∇0,0)2 + ε′(s, t) + ∫
X
(s4 tr⋆(βt ∧ β

∗
t

πi
)4 −Cts

2 tr⋆(βt ∧ β
∗
t

πi
)2)vol

where Ct is some term depending on t which is positive and bounded for sufficiently small t and ε′

is some error term depending on s and t which goes to zero. In particular, one can choose an s, t so
small that the term in the integral is negative (since s4 is much smaller than s2 for sufficiently small
s and the i tr⋆(β∗t ∧ βt) are uniformly bounded) and ε′ is negligible, whence J(∇s,t) < J(∇0,0), as
desired.

Corollary 4.2.12. Suppose the Donaldson-Narasimhan-Seshadri theorem has been proven for lower-
rank bundles, and let E and F be as in Proposition 4.2.7. If E is stable, we have E ≅ F . In particular,
J(∇∞) = inf J(O∇0).

Proof. Suppose for contradiction E is not isomorphic to F . Then there is a nonzero homomorphism
φ ∶ E → F by Proposition 4.2.7 which is not an isomorphism. Recalling Proposition A.1.17, φ factors
through

0 E ′ E E ′′ 0

0 F ′′ F F ′ 0,

φ

where E ′ = kerφ and E ′′ = imφ. We first claim that φ cannot be injective. Indeed, if it is, then E ′ = 0
and it is easy to see F ′′ = 0 too. But that means E ′′ = E and F ′ = F , but deg E = deg E ′′ < degF ′ =
degF (c.f. Lemma A.1.16), contradicting the fact that E and F have the same signature. Hence we
may assume the top row is proper.

Now recall deg E ′′ ≤ degF ′, and the ranks of each column are equal (i.e. rkE ′ = rkF ′′ etc.).
Applying the first estimate to the bottom row, we find that

J(∇∞) ≥ rkF ′(µ(F ′) − µ(F)) + rkF ′′(µ(F) − µ(F ′′)),

and similarly, by the second estimate (which requires the top row to be a proper extension), there is
some Chern connection ∇E on E such that

J(∇E) < rkE ′(µ(E) − µ(E ′)) + rkE ′′(µ(E ′′) − µ(E)).

But by assumption, J(∇∞) ≤ inf J(O∇0) ≤ J(∇E), and so

rkF ′(µ(F ′) − µ(F)) + rkF ′′(µ(F) − µ(F ′′)) < rkE ′(µ(E) − µ(E ′)) + rkE ′′(µ(E ′′) − µ(E)).
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Using the fact that the columns have the same rank and the fact that E and F have the same signature
(n, d), we deduce

degF ′ − deg E ′′ < degF ′′ − deg E ′ . (4.12)

Now degF ′ ≥ deg E ′′, so the left hand side of (4.12) is nonnegative. But degF ′′ = d − degF ′ and
deg E ′ = d − deg E ′′, and so the right hand side of (4.12) is −(degF ′ − deg E ′′), so in summary, we
have

0 ≤ degF ′ − deg E ′′ < −(degF ′ − deg E ′′),
which is absurd.

Proof of Theorem 4.2.1. We have J(∇∞) = inf J(O∇0), so in particular, the infimum of J(O∇0)
is attained. For brevity, we will henceforth denote ∇∞ by just ∇, and we will show that this is the
connection we are interested in. The rest of this section will be dedicated to showing this.

The connection∇ splits into its (0,1) and (1,0) components ∂̄E , ∂E respectively, and these operators
define an associated operators on End(E), for example ∂̄EndE ∶ Ω0

EndE → Ω0,1
EndE is defined by

∂̄EndE(u)(s) = ∂̄E(u(s)) − u(∂̄E(s)),

for any local section u of EndE and s of E, and similarly with ∂EndE . We thus have an operator

⋆i(∂̄EndE∂EndE − ∂EndE ∂̄EndE) ∶ EndE → EndE.

Denote this operator by D. It can be shown that there exists some self-adjoint section h such that

Dh = 2πµ − ⋆iΘ,

where Θ is the curvature of ∇. Using h and sufficiently small t, we define the gauge transformation
gt ∶= 1 + th (observe that this is a gauge transformation, since gt is close to 1 for sufficiently small t
and hence never vanishes). Recall the gauge group action is given by

∇t ∶= gt ⋅ ∇ = ∇− (∂̄EndEgt)g−1t + ((∂̄EndEgt)g−1t )∗.

For brevity, write α ∶= (∂̄EndEgt)g−1t , and observe that α = t∂̄EndEh + O(t2), where by abuse of
notation O(t2)means the L2-norm of the error term (and hence our N -norm, if our error term is self-
adjoint) is O(t2) (since g−1t = ∑∞n=0(−1)n(th)n and so α = t∂̄EndEh(1 +O(t))). Now we compute
the curvature Θt of ∇t:

Θt = Θ − ∂EndEα + ∂̄EndEα∗ − α ∧ α∗ − α∗ ∧ α = Θ − t(∂EndE ∂̄EndE − ∂̄EndE∂EndE)h +O(t2),

where (t∂̄EndEh)∗ = t∂EndEh since h is self-adjoint. But taking the Hodge star, we find

⋆Θt = ⋆Θ − itDh +O(t2) = ⋆Θ(1 − t) − 2πitµ +O(t2),

and finally, note that

J(∇t) = N(
⋆Θt

2πi
+ µ) = N( ⋆Θ

2πi
+ µ)(1 − t) +O(t2) = (1 − t)J(∇) +O(t2),

and thus if J(∇) is minimal, it follows that we must have J(∇) = 0, as desired.
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And finally, Donaldson shows that this ∇ is in fact smooth and unique up to the action of the
unitary gauge group. Combining with the Riemann-Hilbert correspondence, we have:

Corollary 4.2.13. There is a canonical bijection between polystable bundles of signature (n,0) and
U(n) representations of the fundamental group π1(X) up to conjugation. Moreover, stable bundles
coincide with irreducible representations under this bijection.

Proof. Let E be the unique bundle of signature (n,0) and fix a hermitian metric h on E. Firstly,
Theorem 4.2.1 tells us that an indecomposable bundle of signature (n,0) is stable if and only if it
has a flat Chern connection, which must be unique. Now given a general bundle E , Remark 4.2.10
tells us that if E has a flat Chern connection, then it is polystable and by considering its irreducible
components, this connection must be unique. Conversely, if E is polystable then by considering its
irreducible (necessarily stable) components, we can build a flat connection on E . Hence we have a
bijection between flat unitary connections on (E,h), and polystable bundles with signature (n,0).

Now let P denote the unitary frame bundle of (E,h), which is a principal U(n)-bundle. Now a
flat unitary connection on E induces a flat connection on P , and taking its holonomy representation,
we get a U(n)-representation of π1(X), by the Riemann-Hilbert correspondence. Conversely, given
a U(n)-representation of π1(X), the Riemann-Hilbert correspondence tells us it is the holonomy
representation of some flat ω on some P ′. Now it is not hard to see the associated bundles of P and
P ′ are isomorphic, and hence we may assume P = P ′, and thus ω induces a unitary connection ∇
on (E,h). Moreover, it is not hard to see that flatness and gauge equivalence between connections
on P and E agree, and hence this ∇ is flat and unique up to gauge equivalence, and this gives us the
bijection between polystable bundles E of signature (n,0) and U(n)-representations of π1(X).

Finally, we need to show that irreducible representations coincide with stable bundles. But this
simply follows from the fact that the flat Chern connection on a polystable bundle E is built from the
flat connections on its irreducible components, and a simple induction argument.

4.3 Topologising the Moduli Space

Our final task is to use the correspondences to topologise the moduli space of V s
n,0. In particular, we

need to topology on either the space of flat unitary connections, or the space of representations of
π1(X). We will choose the latter. To begin, we have the following result:

Proposition 4.3.1. LetG be a Lie group. Then the multiplication map µ ∶ G×G→ G is a submersion.

Before we give the proof, we extract the following theorem:

Theorem 4.3.2 ([25], Theorem 4.26). Let f ∶M → N be a smooth map between manifolds. Then f
is a submersion if and only if every m ∈M is in the image of a smooth local section.

Proof of Proposition 4.3.1. Let h ∈ G. Then µ(−, h) ∶ G → G is a diffeomorphism, and hence
its inverse, which is given by x ↦ (xh−1, h) is also smooth, and clearly a section of µ, and so
every (g, h) ∈ G is contained in the image of x ↦ (xh−1, h), and the result follows from the above
theorem.
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Now we use this to topologise Hom(π1(X), U(n)). To this end, observe that π1(X) is a finitely
generated group, in particular it has the presentation

π1(X) = ⟨a1, b1, ..., ag, bg ∣∏[ai, bi] = 1⟩,

where g is the genus of X ([19, p. 51]). Now to give a representation π1(X) → U(n) is equivalent
to giving Ai,Bi ∈ U(n) subject to ∏[Ai,Bi] = 1, so in particular, Hom(π1(X), U(n)) may be
identified with the subset of U(n)2g subject to the constraint ∏[Ai,Bi] = 1, which, by Proposition
4.3.1 is actually a smooth manifold. This is known as the U(n)-representation variety of π1(X),
which, despite its name, is not an algebraic variety. The character variety is then defined to be the
(topological) quotient of Hom(π1(X), U(n)) by U(n), where the latter acts via conjugation. Note
that this is a Hausdorff space, since U(n) is compact, but not a manifold, as the action is not free
(indeed, the centre of U(n) is S1). This gives a topology to the space of polystable bundles, and
hence to the space of stable bundles too. This concludes the second construction of V s

n,0, the moduli
space of stable bundles.

4.4 Further Discussion

Many generalisations and analogues of the Narasimhan-Seshadri theorem are now known. For ex-
ample, the Kobayashi-Hitchin correspondence ([48]), also known as the Donaldson-Uhlenbeck-Yau
theorem describes a correspondence between stable bundles on a complex projective variety and a
certain class of connections, known as Hermitian-Einstein connections, which generalise Yang-Mills
connections. The non-abelian Hodge correspondence also describe homeomorphisms between three
moduli spaces: the space of so-called semistable Higgs bundles with certain vanishing Chern classes
(which generalise degree zero vector bundles) on a complex projective variety X , the space of vec-
tor bundles with integrable connections (generalising flat connections) and the space of complex
representations of the fundamental group of X ([43]). Finally, there is a correspondence between
semistable vector bundles of slope zero on the Fargues-Fontaine curve and certain p-adic Galois rep-
resentations, in analogy with the Narasimhan-Seshadri theorem. More precisely, given a perfectoid
field K of characteristic p > 0 and L a complete nonarchimedean field with residue field Fp, one can
associate a curve over Qp known as the Fargues-Fontaine curve, denotedXK,L, and there is an equiv-
alence of categories between semistable vector bundles of slope zero on XK,L and L-representations
of GK = Gal(K̄/K), the absolute Galois group of K ([10]) (which may be thought of as the étale
fundamental group of SpecK).

However, one direction that has not been explored is towards the recent development of “twisted”
analogues of these objects. For example, given a reductive Lie groupG and compact Riemann surface
X , one can define the notion of a twisted principal G-bundle, where G is a so-called twisted bundle
of groups, which generalises the notion of a principal G-bundle (and hence the notion of a vector
bundle). Now twisted character varieties and the analogue of flat connections on twisted G-bundles
(known as G-local systems) have been defined and studied in [4], and an analogue of the Riemann-
Hilbert has been proven ([4, Proposition 19]). One can then ask, is there an analogue of stability for
principal G-bundles, and if so, does the analogy of the Narasimhan-Seshadri theorem hold?
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Appendix A

Preliminaries to Part I

Let X be a nonsingular quasiprojective curve over an algebraically closed field k.

A.1 Divisors and Line Bundles

In this section, we will review the relation between divisors and line bundles, which will ultimately
help us define the degree of a vector bundle. Our exposition roughly follows the one found in [17, II,
Section 6].

Definition A.1.1. We define the group of Weil divisors on X , denoted Div(X) to be the free abelian
group on the k-points of X . The elements of DivX are known as Weil divisors. The support of a
Weil divisor D = ∑nipi, denoted SuppD, is the set {pi ∣ ni ≠ 0}, and the degree of D is defined to
be degD ∶= ∑ni. We say D is effective if ni > 0 for all pi ∈ SuppD. A prime divisor is an effective
Weil divisor of degree 1.

Since X is nonsingular, for any k-point p, the local ring OX,p is regular of dimension 1, and in
particular it is a DVR, with fraction field K(X), the function field of X . Denote the valuation vp.
For any f ∈K(X)∗, we define the divisor of f , denoted div(f) to be

div f ∶= ∑
p∈X(k)

vp(f)p.

We can show ([17, II Lemma 6.1]) that all but finitely many of the vp(f) vanish, hence we get a Weil
divisor. A divisor of the form div f is known as a principal divisor; clearly the principal divisors form
a subgroup. Two Weil divisors are linearly equivalent if their difference is a principal divisor. The
group of Weil divisors modulo linear equivalence is the divisor class group, denoted ClX . A divisor
class, is an element of ClX . By a divisor, we will abuse language and refer to either a Weil divisor
or its divisor class; it will either be clear from context or unimportant which is meant.

Example A.1.2. If X is affine, equal to SpecA where A is necessarily a Dedekind domain ([32, I,
Proposition 11.5]), then ClX = 0 if and only if A is a PID. Indeed, if A is a PID, then if D = ∑npp
is a divisor, then for each p ∈ SuppD, the maximal ideal mp of p is principal, generated by, say ϖp,
which must be a uniformiser of OX,p. Now let

f = ∏
p∈SuppD

ϖnp ∈ FracA =K(X)

then clearly D = div f .

103
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Conversely, if A is not a PID, then there is some maximal ideal mp corresponding to some p ∈
X(k) generated by two elements ([32, I, 3, Ex 6.]), say mp = ⟨f, g⟩. Now localising at p, it is clear
that either f or g must be the uniformiser ofOX,p; suppose it is f without loss of generality. Now if p
was principal, then clearly p must be the divisor of some associate of f in OX,p, say F . But F is not
prime, and by the unique ideal factorisation property of Dedekind domains ([32, I, Theroem 3.3]), we
may write

⟨F ⟩ = mp∏mni
pi

where at least one ni is nonzero, but all but finitely many of them are. But that means

divF = p +∑nipi

which is a contradiction.
More concretely, if X = A1 = Speck[x], then any D = ∑niai can be written D = div∏(x − ai),

but if X = Speck[x, y]/⟨y2 = x3 − x⟩ and chark ≠ 2, then we claim p = (0,0) is not principal.
Indeed, mp = ⟨x, y⟩ and clearly y2 = x(x−1)(x+1), so vp(x) = 2, so y is a uniformiser ofOX,p. But

div y = (0,0) + (1,0) + (−1,0) ≠ p,

and similarly for any other uniformiser.

We now state a key result, which will allow us to define the degree of a line bundle:

Proposition A.1.3. The degree map deg ∶ DivX → Z descends to a map Cl→ Z.

Proof. [17, p. 138].

Example A.1.4. Let X = P1 = Projk[x0, x1]. We claim that the degree map is an isomorphism; in
particular its kernel is trivial. So suppose D = ∑npp is a degree zero divisor. Now each p can be
written [p0 ∶ p1], corresponding to ⟨x0p1 − x1p0⟩. Write

f = ∏
p∈SuppD

(x0p1 − x1p0)np ∈ k(x0, x1)

Now observe that
K(X) = k(x0

x1
)

in particular, K(X) is the subfield of k(x0, x1) consisting of degree 0 elements. Since ∑np = 0, it
follows deg f = 0 too, hence D = div f as desired.

Next we describe the relation between divisors and line bundles: Let [D] be a divisor class. We
define the line bundle associated to [D], denoted L(D) as follows: let D = ∑npp be a divisor in the
class of [D]. For any open set U , we define

L(D)(U) ∶= {f ∈K(X) ∣ vp(f) + np ≥ 0 for all p ∈ U(k)}

Firstly, we need to check that this is indeed a line bundle. To see this, observe the following: if
U ∩ SuppD = ∅ then L(D)(U) = OX(U). Now for any p ∈ SuppD, we choose some uniformiser
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ϖp of OX,p, and we may assume ϖp ∈ OX(Up) for some open set Up containing p. We may pick Up

sufficiently small that (divϖnp
p )∣U = npp (in other words, Up ∩ Supp(divϖp) = {p}). Now observe

L(D)(Up) =ϖ−1p OX(U), and in particular they are isomorphic. Now covering X with the open sets
Up and open sets which do not intersect SuppD, we deduce that L(D) is a line bundle.

Finally, we need to check that L(D) does not depend on our choice of D. So let D′ = ∑n′pp be
a divisor linearly equivalent to D, so that D −D′ = divF . Observe that then vp(F ) = np − n′p. Now
we define the isomorphism φ ∶ L(D) → L(D′) to be f ↦ Ff . To see that this is an isomorphism,
observe that given an open set U , we have

L(D)(U) = {f ∈K(X) ∣ vp(f) + np ≥ 0 for all p ∈ U(k)}

and
L(D′)(U) ∶= {f ∈K(X) ∣ vp(f) + n′p ≥ 0 for all p ∈ U(k)}

now if f ∈ L(D)(U), then

vp(fF ) + n′p = vp(f) + vp(F ) + n′p ≥ −np + vp(F ) + n′p = 0

hence we have a well-defined morphism of sheaves, and moreover, clearly division by F is its inverse.
Before we state our next result, we recall that the Picard group, denoted PicX is the group of line

bundles on X , with the group operation given by tensor product, and inversion given by dualising.

Theorem A.1.5. The map D ↦ L(D) is an isomorphism ClX → PicX .

Proof. This follows the proof given in [17, pp. 144, 145]. First of all, let K denote the constant
sheaf K(X), which is an OX -module. We claim L ⊗ K ≅ K. To see this, we consider the base
of the topology {Uα = SpecAα} on X consisting of the affine open sets where L is trivial. Then
K(X) = FracAα for each α, so locally we have the natural isomorphism Aα ⊗K(X) ≅ K(X),
given by a ⊗ b ↦ b, and it is very easy to see that these agree on overlaps, and since the Uα form a
base, by [9, Proposition I-12], this extends to an isomorphisms of sheaves. It thus follows that L can
be embedded inside K.

First we prove surjectivity. By our discussion above, we may consider L as a subsheaf of K; in
particular, every local section is an element of K(X). Since L is invertible, it follows that L(U) is
a free OX(U)-submodule of K(X) = FracOX(U), for sufficiently small U , and in particular it is
generated by some ϖ−1U ∈ K(X). Now we define the divisor D locally as divϖU , and let U vary
across a cover. To see this is well-defined, note that if ϖ−1U generates L(U) and ϖ−1V generates L(V ),
then both ϖ−1U and ϖ−1V generate L(U ∩ V ), and in particular they are associates in OX(U ∩ V ),
hence they generate the same Weil divisor on U ∩ V . It is then clear that L(D) = L.

Next we prove the homomorphism property. But this is obvious since if L(D1) and L(D2)
are generated locally by {ϖ−11 } and {ϖ−12 } respectively, then L(D1 + D2) are generated locally
by {ϖ−11 ϖ−12 }. But L(D1) ⊗ L(D2) is also generated locally by {ϖ−11 ϖ−12 }, and hence they are
isomorphic.

Finally, we prove injectivity. Since we have shown this is a group homomorphism, it suffices to
show that the kernel is trivial. So suppose L(D) ≅ OX , and fix an isomorphism φ ∶ OX → L(D).
We claim D = divφ(1)−1. Indeed, choosing a sufficiently fine open affine cover {Uα} such that
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#(Uα ∩ SuppD) ≤ 1, we suppose D∣Uα is the divisor of ϖα. Then ϖ−1α generates L(D)(Uα). But
φ(1) also generates L(D)(Uα), hence φ(1) andϖ−1α , and hence both generate the same Weil divisor.
In particular, φ(1)−1 generates D, as desired.

Now let L be a line bundle. We will take a look at H0(X,L), the space of global sections. For
each nonzero s ∈ H0(X,L), we define the divisor of zeroes of s, denoted div s as follows: on any
open subset U on which L is trivial, we let ΦU ∶ L∣U → OU be an isomorphism, and define

div s∣U ∶= divΦU(s).

Of course, this is well-defined: let p ∈ U(k), and let ΦV ∶ L∣V → OV be another trivialisation, with
p ∈ V (k). Then at p, ΦV (s) and ΦU(s) differ by an invertible element ofOX,p, and thus they have the
same valuation, and since p is arbitrary, this means we get a well-defined Weil divisor. Furthermore,
observe that div s is effective, since it is locally the divisor of some section of OX , which must have
nonnegative valuation at any k-point. We are now in a position to state our result:

Proposition A.1.6. Let L = L(D) be the line bundle associated to a divisor D. Then:

(i) The divisor of zeroes of any nonzero s ∈H0(X,L) is linearly equivalent to D.

(ii) Any effective divisor D0 linearly equivalent to D is the divisor of zeroes of some nonzero
s ∈H0(X,L).

Proof. [17, p. 157].

We now come to the definition of the degree:

Definition A.1.7. Let E be a line bundle. We define the degree of E , denoted deg E as follows: if E is
a line bundle, we define deg E to be the degree of the divisor corresponding to E via the isomorphism
PicX ≅ ClX . This is well-defined, by Proposition A.1.3. In general, we define the determinant line
bundle of a rank n vector bundle E to be the line bundle

detE ∶= ∧n E

and we define deg E ∶= deg(detE). Note that detL = L if L is a line bundle, hence our definition is
consistent. We define the signature of E to be the pair (rkE ,deg E).

Example A.1.8. Let X = P1 = Projk[x0, x1]. We will show degOX(n) = n. Let D = n[0 ∶ 1]. We
compute L(D) as follows: on U1 = {x1 ≠ 0} = Speck[x0/x1], we have

D∣U1 = div(
x0
x1
)n

and on U0 = {x0 ≠ 0} = Speck[x1/x0], we have D∣U0 = 0, hence

L(D)(U0) = OX(U0) = k[x1/x0]

and
L(D)(U1) = (

x1
x0
)nk[x0/x1]
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Meanwhile,
OX(n)(U0) = xn0k[x1/x0]

and
OX(n)(U1) = xn1k[x0/x1]

hence we define the isomorphism L(D) → OX(n) by f ↦ xn0f . It is easy to check that this is
well-defined and agrees on overlaps (which is just localising), hence we get an isomorphism of line
bundles.

We also observe that D is the divisor of zeroes of xn0 ∈H0(X,OX(n)), as expected.

Example A.1.9. Let X be the elliptic curve X = Projk[x, y, z]/⟨y2z = x3 −xz2⟩, and let OX(1) be
the pullback of OP2(1) induced by the embedding (or equivalently the twisting sheaf of Serre). We
will show degOX(1) = 3 and is isomorphic to L = L(3[0 ∶ 1 ∶ 0]). Note that x ≠ 0 implies z ≠ 0,
hence we can cover X by two open sets Uz = {z ≠ 0} and Uy = {y ≠ 0}. Thus we have

OX(1)(Uz) = zk[y/x, z/x]/(y2z/x3 = 1 − z2/x2) = zOX(Uz)

and
OX(1)(Uy) = yk[x/y, z/y]/(z/y = (x/y)3 − xz2/y3) = yOX(Uy).

Now observe that
L(Uz) = OX(Uz)

but
L(Uy) = (y/z)OX(Uy)

since D = 3[0 ∶ 1 ∶ 0] is the divisor of z/y on Uy. It then follows we have a global isomorphism
L→ OX(1) defined by f ↦ zf .

We conclude this section with some technical results about vector bundles. This collection of
results will be used in various parts of chapters 3 and 4..

Proposition A.1.10. Let E be a vector bundle. Then E has a line subbundle (a subbundle is a subsheaf
F of E such that E /F is also locally free; note that this is a property of the inclusion F ⊆ E , not of F
itself).

Proof. Tensoring with a sufficiently high power of an ample line bundle (and then tensoring with its
dual at the end), we may assume without loss of generality H0(X,E) ≠ 0. Let s ∈ H0(X,E) be a
nonzero global section and let L be the subsheaf generated by s, so that L is locally free of rank 1.
Then s is a global section of L and thus if D is the divisor of zeroes of s, we know L = L(D). Now
tensoring with L(−D), we see

OX ≅ L⊗L(−D) ⊆ E ⊗L(−D),

and in particular there is a nonzero global section of E ⊗L(−D), hence E ⊗L(−D)/OX is locally free
(since we are locally annihilating a free generator), and we have the following short exact sequence
of vector bundles

0→ OX → E ⊗L(−D)→ E ⊗L(−D)/OX → 0.

Tensoring with L(D) then proves the result.
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Remark A.1.11. In fact, we have proven that if s is a global section of E , then there is a line subbundle
of E isomorphic to the subsheaf generated by s.

Proposition A.1.12. Let
0→ E → F → G → 0

be a short exact sequence of vector bundles. Then

degF = deg E +degG

Proof. If {gαβ ∈ GLn(OX(Uα ∩Uβ))} is the set of transition morphisms on a sufficiently fine cover
representing F , then it is not difficult to check {det gαβ ∶ Uα ∩ Uβ → Gm} is the set of transition
functions of detF . Now it can be shown ([13, p. 68]) that each gαβ has the shape

(hαβ kαβ
0 jαβ

)

where {hαβ} and {jαβ} are the transition morphisms representing E and F respectively. Hence

det gαβ = dethαβ det jαβ

But {dethαβ det jαβ} is the set of transition functions for detE ⊗detG, which means detF =
detE ⊗detG, and thus the result follows.

Corollary A.1.13. Let E and F be vector bundles. then deg(E ⊕F) = deg E +degF .

Proof. Apply the above proposition to

0→ E → E ⊕F → F → 0

and the result follows immediately.

Corollary A.1.14. Let E be a vector bundle and L a line bundle. Then

deg(E ⊗L) = deg E +degL rkE

Proof. As in the proof of the proposition, we look at the transition functions, and the result immedi-
ately follows.

Lemma A.1.15. Let L be a line bundle of rank n and suppose H0(X,L) ≠ 0. Then degL ≥ 0, with
equality holding if and only if L = OX .

Proof. Suppose L is the line bundle associated to a divisorD and suppose s ∈H0(X,L) is a nonzero
global section. Then by Proposition A.1.6, the divisor of zeroes of s, say D0, is effective, and linearly
equivalent to D. But since D0 is effective, it has nonnegative degree, and thus L = L(D) = L(D0)
has nonnegative degree. Moreover, if the degree of D0 is zero, then it is trivial, and thus so is L.
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Lemma A.1.16. Let E and F be vector bundles of rank n, and suppose there is a homomorphism
E → F with nonzero determinant (i.e. the determinant is not identically zero). Then deg E ≤ degF .
Equality holds if and only if the map is an isomorphism.

Proof. Taking the determinant, we get a nonzero homomorphism detE → detF . Now a nonzero
homomorphism detE → detF is nothing more than a global section of Hom(detE ,detF) =
(detE)∨⊗detF , and since deg((detE)∨⊗detF) = degF −deg E , the result follows from Lemma
A.1.15. Moreover, if equality holds, then detE ≅ detF , and moreover the determinant never van-
ishes (being a global section of OX ), and hence is invertible on every stalk, which means the map is
an isomorphism.

Proposition A.1.17. Let E → F be a nonzero homomorphism of vector bundles. Then there is a
factorisation:

0 E ′ E E ′′ 0

0 F ′′ F F ′ 0

φ (A.1)

where each sheaf above is locally free, the rows are exact, and E ′ ≅ kerφ, E ′′ ≅ imφ and rkE ′′ =
rkF ′, deg E ′′ ≤ degF ′.

Proof. Define E ′ and E ′′ as in the theorem statement, so that the top row is exact. Since F is locally
free and since X is covered by the spectra of Dedekind domains (which are hereditary), it follows
that E ′′ = imφ ⊆ F is locally free. Now the sheaf cokerφ is coherent, and hence if U = SpecA is an
affine open subset of X , where A is a Dedekind domain, then cokerφ is isomorphic to M̃ for some
finitely-generated A-module M . Let M ′ be the torsion submodule of M (these M ′ glue to form the
torsion subsheaf of cokerφ) and we define F ′′ to locally be the sheaf (M/M ′)∼. It is not hard to
see that this is well-defined. Observe that since A is a Dedekind domain and M/M ′ is a torsion-free
module, it is also a projective module, and hence F ′′ is locally free, by the Serre-Swan Theorem. We
then define F ′ to be the kernel of F → F ′′. Now since the map E ′′ → F ′′ defined by composing the
obvious maps is zero, by the universal property of kernels there is unique homomorphism E ′′ → F ′
making everything commute. This unique homomorphism has nonzero determinant, because φ is
nonzero, and E ′′ → F is the inclusion of the image. Finally, in light of the above lemma, it suffices
to show that rkE ′′ = rkF ′. But this follows directly from the observation that the local ring at any
k-point is a DVR, and thus a PID, and so any finitely generated module splits into its torsion and free
parts.
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Appendix B

Preliminaries to Part II

Since notations and conventions vary between sources, the purpose of this section is to collect the
basic definitions and results which will be used throughout Part II.

B.1 Smooth and Holomorphic Vector Bundles

In this section, we will recall basic definitions and results. Let X be a complex manifold, which may
also be regarded as a smooth manifold.

Definition B.1.1. Let K ∈ {R,C}. If K = R, let P = smooth, and if K = C, let P ∈ {smooth, holomorphic}.
A P-vector bundle, or just P-bundle of rank n over X is a P-manifold E equipped with a surjec-
tive P-map π ∶ E → X such that at each p ∈ X , the fibre Ep ∶= π−1(p) has the structure of
an n-dimensional K-vector space, and there is an open (in the usual topology) cover {Uα} and P-
isomorphisms {Φα ∶ π−1(Uα)→ Uα×Kn} such that at every p ∈ Uα the induced map Φα∣p ∶ Ep → Kn

is a linear isomorphism and the following diagram commutes:

π−1(Uα) Uα ×Kn

Uα

Φα

π

where the arrow from Uα ×Kn to Uα denotes projection onto the first factor.

A P-(local) section over an open subset U is a P-map s ∶ U → E such that π ○ s = idU . A
P-global section is a section over X . A P-frame is a tuple of sections (s1, ..., sn) over U such that
for all p ∈ U the set {s1(p), ..., sn(p)} is linearly independent.

A P-morphism of P-vector bundles πE ∶ E → X and πF ∶ F → X is a P-map f ∶ E → F
such that the following diagram commutes:

E F

X

f

πE
πF

and for all p ∈ X we have that f ∣Ep is a linear map. A P-isomorphism of P-bundles is a morphism
with a two-sided inverse. E and F are isomorphic if there is an isomorphism between them. If E

111
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is smooth, then an automorphism of E is known as a gauge transformation. The group of smooth
automorphisms is known as the gauge group.

For now we give only the most basic example:

Example B.1.2. The most basic example is E =X ×Kn with π being projection onto the first factor,
known as the trivial bundle. A bundle is trivial if it is isomorphic to the trivial bundle.

Lemma B.1.3. A bundle is trivial if and only if there is a global frame.

Proof. Clearly ((x, ei))ni=1 is a frame forX×Kn. Conversely, suppose (si)ni=1 is a frame forE. Then
every p ∈ E can be written uniquely as ∑aisi(π(p)) where the ai are smooth. It is not hard to check
that

∑aisi(π(p))↦ (π(p),∑aiei)

is a P-isomorphism.

In fact, the notions of local frame and local trivialisation are equivalent: given a local trivialisation
Φi ∶ π−1(Uα)→ Uα×Kn, we can define si(p) ∶= (p, ei), and conversely, given a local frame (si)α, we
can define Φi(∑aisi(p)) ∶= (p,∑aiei). We will be using this equivalence without further comment.

Definition B.1.4. Let E be a P-vector bundle and let sα = (si)α and tβ = (ti)β be frames on Uα

and Uβ . We define the transition function gαβ ∶ Uα ∩Uβ → GLn(K) equal to be the P-map

gαβ(x) ∶= Φα,x ○Φ−1β,x

Observe that if tj = ∑ gijsi, then

gαβ(ej) = Φα ○Φ−1β (ej) = Φα(tj) = Φα(∑ gijsi) =∑ gijei

and hence gαβ = (gij).

If {Uα} is an open cover of X with local frames sα, then it is not hard to check that the transition
functions satisfy the following conditions:

(i) gαβ = g−1βα.

(ii) gαβgβγ = gαγ

These are known as the cocycle conditions. Conversely:

Lemma B.1.5 (Clutching Construction). Let {Uα} be an open cover of X and suppose for any α,β
we have a P-map

gαβ ∶ Uα ∩Uβ → GLn(K)

satisfying the cocycle conditions. Then there exists a unique bundle E → X trivial on each Uα with
transition functions gαβ .
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Proof. We define
E♯ ∶=∐

α

Uα ×Kn

with the induced P-structure. Now we put an equivalence relation ∼ on E♯ by declaring (x,u)α ∼
(y, v)β if and only if x = y and u = gαβ(x)v. The cocycle conditions guarantee that this is an
equivalence relation. We then define E ∶= E♯/ ∼. Since P-ness is local, we obtain a P-vector
bundle. Now for each α define the local frame (si)α on Uα by

si(p) ∶= (p, ei)α mod ∼

and observe that with respect to the frame (si)α, we have (ti)β = gαβ as desired. To check unique-
ness, suppose F is another vector bundle with local frames {(si)α} that satisfy the same transition
functions. We then define an isomorphism E → F given by (x, ei) ↦ si(x) and extend by linearity.
It is not hard to check that this is well defined and an isomorphism.

Example B.1.6. We define the P-tangent bundle π ∶ TX →X of X as follows: let {(Uα, φα ∶ Uα →
Kn)} be a P-chart forX . Then the tangent bundle atX is the unique bundle that is trivial on each Uα

and has transition function gαβ equal to the Jacobian of φα ○φβ . This may be interpreted as follows:
on Kn, the tangent space is spanned by ∂i = ∂/∂xi, where xi are the P-coordinates of Kn. Thus
on Uα, we define the local frame (si)α by si ∶= φ−1α (∂i), and hence we obtain a local trivialisation
Φα(si) ∶= ei. Identifying ei with ∂i, we obtain

Φα ○Φβ = φα ○ φβ

as desired.
Similarly, we may define the cotangent bundle T ∗X to be the unique bundle with transition function

φβ ○φα; we may interpret the fibre at each point to be the set of linear functionals from TpX . Locally,
we may find a basis dxi dual to ∂i, and on overlaps these satisfy the required transition map.

In future, we will often denote the smooth tangent bundle by TX and the holomorphic tangent
bundle by TX .

Our next theorem connects us back to algebraic geometry:

Theorem B.1.7. LetOX denote the sheaf of complex P-functions onX , and letE be a vector bundle
of rank n. Then:

(i) The presheaf E given by
E(U) ∶= {sections of E over U}

is a locally free OX -module of rank n. Call this the sheaf of sections of E.

(ii) Any locally free OX -module of rank n is isomorphic to the sheaf of sections of some unique
vector bundle of rank n.

(iii) The association E ↦ E is an equivalence of categories between the category of vector bundles
and locally free sheaves.
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Proof. It is not hard to check that E is indeed a sheaf (indeed, a section over U is a function satisfying
a local property), and since each fibre Ep is a vector space, this defines the OX -module structure. To
see that it is locally free, suppose E is trivial on U . We define an isomorphism

φ ∶
n

⊕
i=1
OX ∣U → E ∣U

as follows: let V be an open subset of U . Then given (fi) ∈⊕n
i=1OX(V ), we interpret this as a map

V → Kn. This naturally defines a section s ∶ V → E given by

p↦ Φ−1(p, f1(p), ..., fn(p))

where Φ ∶ π−1(V )→ V ×Kn is a local trivialisation. We then define φV (fi) ∶= s. It is easy to check
that this is a homomorphism ofOX(V )-modules and that it commutes with restriction, hence we have
a morphism of sheaves. Conversely, given a section s ∶ V → E, composing with Φ ∶ π−1(V )→ V ×Kn

and projecting onto Kn we have a map V → Kn, which is exactly an element of⊕OX(V ). It is clear
that this is the inverse to φ, hence this proves (i).

Now let E be a locally free OX -module. Cover X with open subsets {Uα} on which E is free.
For any α, fix an isomorphism of OX(Uα)-modules Φα ∶ Γ(Uα,E)→ OX(Uα)n. Now we define

gαβ ∶= Φα ○Φ−1β ∣Uα∩Uβ
∈ GLn(OX(Uα ∩Uβ))

In other words, gαβ is a matrix of K-valued P-functions, which may also be interpreted as a P-map

gαβ ∶ Uα ∩Uβ → GLn(K)

It is clear they satisfy the cocycle condition, so by the Clutching Construction this gives us a unique
vector bundle F . Now let F denote the sheaf of sections of F , so that F is trivial on each Uα, and fix
a frame (si)α for F on each Uα. We define a morphism φ ∶ F → E given by

φUα(si) ∶= Φ−1α (ei)

where ei ∈ OX(Uα)n is the obvious constant function, and extend by linearity. It is then not hard
to check that these are isomorphisms of OX(Uα)-modules and that they glue on overlaps, hence we
have a morphism of sheaves. Now these are isomorphisms locally, hence φ is an isomorphism of
sheaves. This proves (ii).

To prove 3, it suffices to show that the embedding is fully faithful. Let φ ∶ E → F denote a morphism
of vector bundles. Now given a section s of E over U , this induces a section φ♯(s) of F by defining

φ♯(s)(p) ∶= φ(s(p))

and it is not hard to check that this is an OX(U)-module homomorphism. Since it clearly commutes
with restriction, we have a morphism of sheaves φ♯ ∶ E → F . It is clear that φ↦ φ♯ is functorial, and
that it is faithful. To show that it is full, suppose φ♯ ∶ E → F is a homomorphism of sheaves. Now we
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define a morphism φ ∶ E → F as follows: let p ∈ E be a point, and suppose s is a section such that
s(π(p)) = p. We then define φ(p) ∶= φ♯(s)(π(p)). To see this is well-defined, suppose s′ also goes
through p. Then

0 = φ(0)(p) = φ♯(s − s′)(p) = φ♯(s)(p) − φ♯(s′)(p)

and hence φ is well-defined. It is not hard to check that φ is P and linear on each fibre, and is hence
a morphism of vector bundles as desired. This proves (iii).

Example B.1.8. Given two bundles E,F , we may interpret these as locally free sheaves E ,F . Then
the tensor product of E and F , denoted E ⊗ F is the bundle associated to E ⊗F . Similarly, we may
define the direct sum of E and F to be the bundle associated to E ⊕F , and the exterior powers of E,
denoted ⋀pE to be the bundle associated to the sheaf ⋀p E . We may also define Hom(E,F ) to be
the bundle associated to the sheaf-homHom(E ,F), and similarly define End(E) to beHom(E,E).
Note that these differ from the groups Hom(E,F ) and End(E).

Henceforth, we will make very little distinction between locally free sheaves and vector bundles.

Example B.1.9. In this example, we extend the constructions in Example B.1.6. Let TX and T ∗X be
the smooth tangent and cotangent bundles. We define the bundle of p-forms, to be the p-th exterior
power of T ∗X . The sections of this bundle will be called differential p-forms.

We will conclude this section with a study of the interplay between the smooth and holomorphic
tangent bundles. Let X♭ denote the underlying smooth manifold of X . Picking a local holomorphic
chart for X , we have a local diffeomorphism Cn → R2n given by

(z1 = x1 + iy1, ..., zn = xn + iyn)↦ (x1, y1, ..., xn, yn).

The holomorphic and smooth tangent bundles are then related as follows: observe that the symbols
∂xi, ∂yi act on real-valued functions. Tensoring TX♭ with the trivial bundle X♭ × C, these symbols
may be interpreted as acting on complex-valued smooth functions, given by

∂

∂xi
(f + ig) = ∂f

∂xi
+ i ∂g
∂xi
∶= ∂f
∂xi
⊗ 1 + ∂g

∂xi
⊗ i

where f, g are real-valued. Then by the chain rule we have

∂

∂zi
= ∂

∂xi
− i ∂
∂yi

.

We thus conclude that the holomorphic tangent space is spanned by ∂xi − i∂yi. However, we also see
that

∂

∂z̄i
= ∂

∂xi
+ i ∂
∂yi

.

We call the vector bundle spanned locally by the ∂z̄i the antiholomorphic tangent bundle. Now
observe that TX♭ ⊗ C is the direct sum of the holomorphic and antiholomorphic tangent spaces. We
will often write

TX♭ ⊗C = T 1,0
X ⊕ T 0,1

X
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for this decomposition.
In fact, this extends to differential forms. A complex (p, q)-form, or a complex form of type (p, q),

or simply (p, q)-form is a section of Ωp,q
X ∶= (⋀p T 1,0

X )⊕ (⋀q T 0,1
X ). Locally, a (p, q)-form looks like

f1dzi1 + ... + fpdzip + g1dz̄j1 + ... + gq z̄jq

where the fi, gi are smooth complex-valued functions. A complex r-form is a complex (p, q)-form
such that p + q = r. We will denote the bundle of complex r-forms by Ωr

X . Observe that we have a
decomposition

Ωr
X = ⊕

p+q=r
Ωp,q
X .

Finally, we define the operators ∂p,q ∶ Ωp,q
X → Ωp+1,q

X and ∂̄p,q ∶ Ωp,q
X → Ωp,q+1

X to be

∂p,q ∶= πp+1,q ○ d

∂̄p,q ∶= πp,q+1 ○ d,

where dp+q ∶ Ωp+q
X → Ωp+q+1

X is the usual exterior derivative, and the projections are the obvious
projections. Note that

d0 = ∂0 + ∂̄0.
We will often omit the superscripts.

B.2 Connections

In this section, we fix a smooth complex bundle E. We define the bundle of complex E-valued
p-forms, denoted Ωp

E , to be E ⊗Ωp
X , where Ωp

X is the sheaf of complex p-forms. Note that Ω0
E ≅ E.

Definition B.2.1. A connection on E is a morphism of abelian sheaves (NOT as sheaves of modules)
∇ ∶ Ω0

E → Ω1
E that satisfies the following Leibniz rule for any f ∈ C∞(U) and local seciton s:

∇(fs) = df ⊗ s + f∇(s)

Now let {Uα} be a trivialising open cover, and let (si)α be a collection of local frames on Uα. We
define the local connection 1-form, denoted ωα to be the matrix such that

∇(si) =∑(ωα)ijsj

Observe that if s = ∑aisi is a local section, then

∇(s) =∑
j

daj ⊗ sj +∑
i

ai(ωα)ijsj

and hence the local 1-form carries the data of the entire connection.

Observe that the set of connections is an affine space with underlying vector spaceH0(X,Ω1
End(E)).

In other words, any two connections differ by an End(E)-valued global 1-form, and conversely, if ∇
is a connection and L ∈H0(X,Ω1

End(E)), then ∇+L is a connection.
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Proposition B.2.2. Let∇ be a connection, and sα, tβ two frames and suppose g ∶ Uα∩Uβ → GLn(C)
satisfies ti = ∑ gijsj . Then if ωα and ωβ are the respective local 1-forms, then we have

ωβ = (dg)g−1 + gωαg
−1 (B.1)

Conversely, if {Uα} is a trivialising open cover with local frames {sα}, and for each α we have a
local 1-form ωα that satisfy (B.1), then there exists a unique connection with local 1-forms ωα.

Proof. [13, p. 72]

A connection ∇ induces an operator Ωp
E → Ωp+1

E , by asserting, for any η ∈ Ωp
E and s ∈ Ω0

E that

∇(ηs) ∶= dη ⊗ s + η ∧∇(s)

This allows us to make the following definition:

Definition B.2.3. Let ∇ be a connection. We define the curvature of ∇ to be

∇2 ∶ Ω0
E → Ω2

E

Remark B.2.4. This is not the Laplacian.

Let us compute the curvature locally. Let sα = (si)α be a local frame with local 1-form ω = ωα.
We define the local curvature matrix Θα such that

∇2(si) = (Θα)ijsj

Let us compute the curvature locally:

∇2(si) = ∇(∑
j

ωijsj) =∑
j

dωijsj+ωij∇(sj) =∑
j

dωijsj+∑
j
∑
k

ωij∧ωjksk =∑
j

(dωij+∑
k

ωik∧ωkj)sj

and hence

(Θα)ij = dωij +∑
k

ωik ∧ ωkj

we commonly just write

Θα = dω + ω ∧ ω

Proposition B.2.5. The curvature operator is anOX -module homomorphism, whereOX is the sheaf
of smooth functions on X . In particular, the Θα glue together to a global End(E)-valued 2-form Θ.

Proof. One simply checks that ∇2 is C∞-linear.
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B.3 Principal Bundles and Connections

In this section, we will discuss principal bundles, with the goal of proving the Riemann-Hilbert corre-
spondence. Our exposition follows [21, pp. 1-15] very closely. Let G be a Lie group with Lie algebra
g.

Definition B.3.1. A principal G-bundle, or simply principal bundle over X is a fibre bundle π ∶ P →
X with fibre G equipped with a right free action P ×G → G such that the local trivialisations ΦU ∶
U ×G→ π−1(U) are equivariant, where we define the action of G on U ×G by (x, g) ⋅ h ∶= (x, gh).

We see from the definition that the action is fibre-preserving; indeed if p = ΦU(x,h) ∈ P is in the
fibre over x, then p ⋅ g = ΦU(x,h) ⋅ g = ΦU(x,hg) for any g ∈ G.

Example B.3.2. The trivial bundleX×G is a principalG-bundle, where theG-action is simply given
by right multiplication.

Example B.3.3. Let X be a connected manifold. Then the universal covering map p ∶ X̃ → X is a
principal π1(X)-bundle (where π1(X))) is equipped with the discrete topology.

Example B.3.4. Let P → X be a principal bundle over X . Then given local trivialisations {Φα ∶
Uα × G → π−1(Uα)}, it is easy to see that we can similarly get transition functions gαβ ∶ Uα ∩
Uβ → G which satisfy the cocycle condition. Moreover, it is easy to see that the transition functions
define P up to isomorphism. In particular, if G = GLn(K), then the data of a vector bundle on X
is equivalent to the data of a principal GLn(K)-bundle; in particular there is a canonical bijection
between their isomorphism classes. Thus given a vector bundle E, we can define its frame bundle
Fr(E) as the principal GLn(K)-bundle with the same transition functions as E. Conversely, given
a principal GLn(K)-bundle P we can define its associated vector bundle P (Kn) with the same
transition functions as P

Extending the previous example, if g is a Riemannian metric on a real vector bundle E of rank
n over a real manifold X , then taking local orthonormal frames gives us a collection of transition
functions with values in O(n). In particular, this defines a principal O(n)-bundle, known as its
orthogonal frame bundle. Conversely, given a principal O(n)-bundle P , we can build a real vector
bundle E of rank n by considering the transition functions of P as elements of GLn(R), and we can
define a Riemannian metric on E since we can define orthogonal frames of E via P . Thus the data
of a principal O(n)-bundle is equivalent to the data of a real vector bundle with a metric. Similarly, a
principal U(n)-bundle over a complex manifold X is equivalent to a smooth complex vector bundle
E equipped with a hermitian metric. In particular, we see that vector bundles and principal bundles
are intimately connected. However, their correspondence is not functorial, as we will see now:

Definition B.3.5. If πP ∶ P → X and πQ ∶ Q → Y are principal G-bundles, then a morphism of
principal G-bundles is a pair (f̄ , f) where f̄ ∶ P → Q and f ∶ X → Y are smooth and the following
diagram commutes:

P Q

X Y

f̄

πP πQ

f
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A gauge transformation is a morphism of principal G-bundles as defined above where X = Y and f
is the identity.

Lemma B.3.6. Any gauge transformation is an isomorphism.

Proof. Let f̄ ∶ P → Q be a gauge transformation. On each x ∈ X , f̄ induces a map f̄x ∶ π−1P (x) ≅
G→ π−1Q (x) ≅ G. By the discussion above, this map is simply left multiplication by f̄x(1), and hence
is bijective. Now in a trivialisable open set U ×G ⊆ P , the tangent space is canonically isomorphic to
TU ⊕ TG, and on each (x, g) ∈ U ×G the pushforward is simply (lf̄x(1))∗, which is nonvanishing.
Thus by the inverse function theorem, it follows that f̄ is an isomorphism.

Any element η ∈ TeG = g determines a vector field ρ(η) on P given by ρp(η) ∶= (jp)∗(η), where
jp ∶ G → P is given by g ↦ pg. This is known as the fundamental vector field generated by η. Note
that by the properties of pushforwards, if η, θ ∈ g then ρ([η, θ]) = [ρ(η), ρ(θ)].

In the case P = G, and the action is simply right multiplication, this vector field is known as the
left-invariant vector field generated by η, it is called this because it is invariant under (lh)∗ for any
h ∈ G; indeed

(lh)∗(ρg(η)) = ((lh)∗ ○ (pg)∗)(η) = ((lh)∗ ○ (lg)∗)(η) = (lhg)∗(η) = ρhg(η)

Conversely, any vector field that has this property is generated by its value at the identity, thus the
space of left-invariant vector fields is in bijection with g.

There is an alternative characterisation of the fundamental vector field:

Proposition B.3.7.

ρp(η) =
d

dt
∣
t=0
p ⋅ exp(tη)

Proof. Define the curve γ ∶ [0,1]→ G given by γ(t) ∶= exp(tη) and observe γ′(0) = η. Thus

ρp(η) = (jp)∗(η)
= (jp)∗(γ′(0))

= d

dt
∣
t=0
jp(γ(t))

= d

dt
∣
t=0
p ⋅ exp(tη)

as desired.

B.3.1 Connections on Principal G-Bundles

Let π ∶ P → X be a principal G-bundle. The pushforward π∗ induces a map TP → π∗TX given by
up ↦ (p, π∗(up)). By local triviality, the this is surjective at every point.

Definition B.3.8. We define vertical tangent bundle T vP to be the kernel of the map TP → π∗TX .
The elements of T vP are called vertical vectors. A vector field U on P is vertical if Up is vertical for
all p ∈ P .
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Proposition B.3.9. For any p ∈ P , the map ρp ∶ g→ TpP is an isomorphism onto T v
p P .

Proof. We first claim that ρp is injective. To see this, suppose η ∈ kerρp. Now consider the curve
γ1 ∶ [0,1] → P given by γ1(t) ∶= p. Then γ1 satisfies γ′1(t) = ργ1(t)(η) for all t ∈ [0,1] with initial
condition γ1(0) = p. Now define γ2 ∶ [0,1] → P given by γ2(t) ∶= p ⋅ exp(tη). By the chain rule we
have

γ′2(t) =
d

ds
∣
s=0

γ2(t + s) =
d

ds
∣
s=0

p ⋅ exp(tη) exp(sη) = ργ2(t)(η)

and since γ′2(0) = p, it follows that γ1 and γ2 satisfy the same ODE and have the same initial
conditions, and hence are equal. In particular, exp(tη) = e for all t. Since the exponential map is
locally bijective, it follows that η = 0.

Now for any η ∈ g, define γ ∶ [0,1]→ P given by γ(t) ∶= p ⋅ exp(tη). We have

π∗(ρp(η)) = (π ○ γ)∗(
d

dt
∣
t=0
) = 0

since π ○ γ is constant. Thus ρp maps into the vertical tangent space. The result then follows from
the fact that dimT v

p P = dimg, which can easily be checked.

Corollary B.3.10. Let U,V be fundamental vector fields on P . Then [U,V ] is also a fundamental
vector field, and in particular it is vertical.

We have a short exact sequence:

0 T vP TP π∗TX 0 (B.2)

Definition B.3.11. A connection on P is a smooth splitting TP ≅ T vP ⊕ T hP of (B.2) such that
(rg)∗(T h

p P ) = T h
pgP for all p ∈ P, g ∈ G (this is sometimes also known as equivariance). The

elements of T h
p P are known as horizontal vectors. A vector field U on P is horizontal if Up is

horizontal for all p ∈ P .

Example B.3.12. Let P = X ×G be the trivial bundle. Let π1 ∶ P → X and π2 ∶ P → G denote the
projections onto the first and second factors respectively. Then one can show that TP ≅ kerπ1∗ ⊕
kerπ2∗. We claim that this splitting is a connection. It is clearly smooth, thus it suffices to check
equivariance, that is (kerπ2∗)p = (kerπ2∗)pg for any p = (x,h) ∈ P and g ∈ G. To this end, observe
(rg ○π2)(p) = hg = (π2 ○ rg)(p), where by abuse of notation we use rg to denote right multiplication
by g in both P and G. Thus by the chain rule

(rg)∗ ○ (π2)∗ = (rg ○ π2)∗ = (π2 ○ rg)∗ = (π2)∗ ○ (rg)∗

since (rg)∗ is bijective the result follows. This connection is known as the trivial connection.

Let TP ≅ T vP ⊕ T hP be a connection, and for any point p let ωp ∶ TpP → g denote the natural
projection map composed with ρ−1p . As p run through P , ω may be considered as a g-valued 1-form,
that is a section of T ∗X ⊗ (g ×X).

Proposition B.3.13. The form ω satisfies the following two properties:



B.3. PRINCIPAL BUNDLES AND CONNECTIONS 121

(i) For any η ∈ g and p ∈ P , we have ωp(ρp(η)) = η.

(ii) For all g ∈ G we have (rg)∗ω = (Ad g)ω.

Proof. [46, p. 255].

Clearly we can recover T hP from ω by defining T h
p P ∶= kerωp for every p ∈ P . The next theorem

shows the converse to this:

Theorem B.3.14. Let ω be a g-valued 1-form that satisfies the two properties of Proposition B.3.13.
Then TpP ≅ T vP ⊕ kerωp is a connection.

Proof. [46, pp. 257-258].

Thus the notion of a connection and a 1-form satisfying the two properties of Proposition B.3.13
are equivalent. For this reason, such a 1-form is sometimes known as a connection 1-form, or simply
a connection form.

Example B.3.15. Consider the trivial connection on the trivial bundle as in Example B.3.12. Then
the associated 1-form is simply ω = ρ−1 ○ (π2)∗. Let U,V be horizontal vector fields on P , and fix
some g ∈ G. Then we have an inclusion map ig ∶ X → P given by x ↦ (x, g). Then U(x,g) =
(ig ○ π1)(U(x,g)) for any x ∈X and similarly with V , hence

[U,V ](x,g) = [(ig ○ π1)(U), (ig ○ π1)(V )](x,g) = (ig ○ π1)([U,V ](x,g))

and hence [U,V ] is horizontal (we can also see this using coordinates) and ω is flat.

Example B.3.16. In the special case where X has zero dimension, ω above is known as the Maurer-
Cartan form, and it is denoted θ. An alternative description is

θg = (lg−1)∗ ∶ TgG→ TeG ≅ g

Definition B.3.17. Let ω be a connection 1-form on a principal bundle P → X . Then the curvature
form of ω is the 2-form given by

Fω ∶= dω + [ω,ω]

where [ω,ω](u, v) ∶= [ω(u), ω(v)]. We say ω is flat if Fω = 0. A connection is said to be flat if its
associated 1-form is flat.

Theorem B.3.18. A connection ω is flat if and only if [U,V ] is horizontal for any horizontal vector
fields U and V .

Proof. We first claim any two vertical vectors annihilate F . Indeed, fix some p ∈ P , suppose u, v ∈
T v
p P and let U,V denote the fundamental vector fields generated by ρ−1p (u) = ωp(u) and ρ−1(v)
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respectively. Then it is easy to see that ω(U) = u and ω(V ) = v globally, and in particular it has zero
directional derivative. Then

Fω,p(u, v) = dωp(u, v) + [ω(u), ω(v)]
= U(ω(V ))p − V (ω(U))p − ωp([U,V ]) + [ω(u), ω(v)]
= −ωp([U,V ]) + [ω(u), ω(v)]
= −[u, v] + [u, v]
= 0

Where the equality ωp([U,V ]) = [u, v] comes from Corollary B.3.10. This proves the claim.
Now let U,V be two horizontal vector fields. Then ω(U) = ω(V ) = 0 by definition, hence

Fω,p = dωp(u, v) + [ω(u), ω(v)]
= −ωp([U,V ])

It thus follows that Fω is 0 constantly if and only if ωp([U,V ]) = 0 for all p as desired.

Finally, we will give a local description of a connection. Let ω be a connection 1-form on a
(smooth) principal G-bundle P → X , let {Uα} be an open cover of X and let sα ∶ Uα → P be local
smooth sections for each α. Then define ωα ∶= s∗αω.

Proposition B.3.19. If sβ is another section and sβ = sαgαβ , then we have

ωβ = Adgαβ
ωα + g∗αβθ (B.3)

where θ is the Maurer-Cartan form;

Proof. We begin by computing the pushforward of the map sβ . We do this by decomposing sβ into a
map U → P ×G→ P given by

x↦ (sα(x), gαβ(x))↦ sα(x)gαβ(x) = sβ(x)

Now fix one such x and write g ∶= gαβ(x) and p ∶= sα(x). Applying the chain rule, we obtain, for
any u ∈ Tx(Uα ∩Uβ):

(sβ)∗,x(u) = (rg)∗,p((sα)∗,x(u)) + (jp)∗,g((gαβ)∗,x(u))

And now we compute:

ωβ(u) = (sαgαβ)∗(ω)x(u)
= ωpg((rg)∗,p((sα)∗,x(u)) + (jp)∗,g((gαβ)∗,x(u)))
= ωrg(p)((rg)∗,p((sα)∗,x(u))) + ωpg((jp)∗,g((gαβ)∗,x(u)))
= (rg)∗(ω)p((sα)∗,x(u)) + ωpg(jpg)∗,e(ℓg−1)∗,g((gαβ)∗,x(u)))
= Adg ωα(u) + (θgαβ(x)

)((gαβ)∗,x(u))
= Adg ωα(u) + g∗αβθ(u)

as desired.
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Conversely, a collection of local g-valued 1-forms ωα and local sections sα that satisfy (B.3)
determine a connection uniquely.

Example B.3.20. In the case G = GL(V ), the form ωα is simply an n × n matrix of 1-forms (where
n ∶= dimV ). It can also be seen that

Adgαβ
ωα = g−1αβωαgαβ

and a calculation will show that

g∗αβθ(ux) = θgαβ(x)((gαβ)∗(ux)) = g
−1
αβdgαβ(ux)

for any ux ∈ TxX and hence the ωα are nothing more or less than a collection of matrices that satisfy
(B.2.2); in other words they define a unique connection ∇ on the associated bundle P (V ). The frame
(si)α upon which ωα is the associated matrix is given by si = (sα, ei), where (ei) is the standard
basis of V . Conversely, a connection ∇ on E uniquely defines a connection on Fr(E) in exactly
the same way. Thus the notions of a connection on principal GL(V ) bundles and vector bundles are
equivalent.

Example B.3.21. Similarly, given G = U(n), the local 1-forms are valued in u(n), the algebra of
skew-hermitian n-by-n matrices. But that is exactly the data that defines a unitary connection on the
associated bundle.

B.3.2 Parallel Transport and Holonomy

Let π ∶ P →X be a principal G-bundle with connection ω.

Definition B.3.22. A curve γ ∶ [0,1]→ P is said to be horizontal if γ′(t) is horizontal for all t.

Lemma B.3.23. Let γ ∶ [0,1] → P be a horizontal curve and suppose g ∈ G. Then rg ○ γ is also
horizontal.

Proof. This is simply a consequence of the fact that (rg)∗ preserves the horizontal tangent space.

Theorem B.3.24. Let γ ∶ [0,1] → X be a piecewise smooth curve. Then for p ∈ P such that
π(p) = γ(0), there exists a unique horizontal γ♯p ∶ [0,1]→ P such that γ♯p(0) = p and π ○ γ♯p = γ.

Proof. This is just a first order ODE with an initial condition.

Definition B.3.25. Let γ ∶ [0,1] → X be a piecewise smooth curve in X . Then for p ∈ π−1(γ(0)),
we define the parallel transport of p along γ as

Pω
γ (p) ∶= γ♯p(1)

For the rest of this section, any curve will be assumed to be piecewise smooth. Before we proceed
further, we present two elementary properties of parallel transport:
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Lemma B.3.26. Suppose x ∈ X and let γ1, γ2 ∶ [0,1] → X be two curves such that γ1(0) = x and
γ2(0) = γ1(1). If p ∈ π−1(x), then

(γ2 ⋅ γ1)♯p = (γ2)♯(γ1)♯p(1) ⋅ (γ1)
♯
p

Pω
γ2⋅γ1(p) = P

ω
γ2(P

ω
γ1(p))

Proof. This follows immediately from the definitions.

Lemma B.3.27. Let γ ∶ [0,1]→X be a curve. Then for any g ∈ G and p ∈ π−1(x) we have

(rg)∗ ○ γ♯p = γ♯pg

and consequently
Pω
γ (p)g = Pω

γ (pg)

.

Proof. This is a consequence of Lemma B.3.23 and Theorem B.3.24.

Definition B.3.28. Let γ ∶ [0,1] → X be a loop in X and let x ∶= γ(0) = γ(1). Then for p ∈ π−1(x),
we define the holonomy of γ with respect to p, denoted Holp(ω, γ) to be the unique g ∈ G such that
p ⋅ g = γ♯p(1).

We list some properties of holonomy:

Lemma B.3.29. Let γ1, γ2 ∶ [0,1]→X be loops, let x ∶= γ1(0) and let δ ∶ [0,1]→X be a path from
x to y ∶= δ(1). Then for p ∈ π−1(x) and g ∈ G, we have the following:

(i) Holpg(ω, γ1) = Holp(ω, γ1)g.

(ii) Holp(ω, γ1) = HolPω
δ
(p)(ω, δ ⋅ γ1 ⋅ δ−1).

(iii) Holp(ω, γ1 ⋅ γ2) = Holp(ω, γ2)Holp(ω, γ1).

Recall that γ1 ⋅ γ2 means γ1 is traversed after γ2.

Proof. Observe

pg ⋅ (Holp(ω, γ1)g) = pgg−1Holp(ω, γ1)g = pHolp(ω, γ1)g = Pγ1(pg)

this proves (1). To prove (2), observe

(δ ⋅ γ1 ⋅ δ−1)♯Pω
δ
(p) = δ♯Pω

γ1
(p) ⋅ (γ1)

♯
p ⋅ (δ−1)♯Pω

δ
(p)
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Hence

Pω
δ (p) ⋅HolPω

δ
(p)(ω, δ ⋅ γ1 ⋅ δ−1) = Pω

δ⋅γ1⋅δ−1(P
ω
δ (p))

= Pω
δ⋅γ1(p)

= Pω
δ (Pω

γ1(p))
= Pω

δ (pHolp(ω, γ1))
= Pω

δ (p)Holp(ω, γ1)

This proves (2). Finally, we have

p ⋅Holp(ω, γ1 ⋅ γ2) = Pω
γ1⋅γ2(p)

= Pω
γ1(P

ω
γ2(p))

= Pω
γ1(pHolp(ω, γ2))

= Pω
γ1(p)Holp(ω, γ2)

= pHolp(ω, γ2)Holp(ω, γ2)

which proves (3).

Proposition B.3.30. Suppose ω is flat. Then any contractible loop has trivial holonomy.

Proof. Let γ be a contractible loop based at x ∈ X and fix any p ∈ π−1(x). Let P (p) denote the set
of points in P that are connected to p by a horizontal path. Since ω is flat, TH is closed under the Lie
bracket and thus it is completely integrable (that is, for all x ∈ X there is an immersed submanifold
Yx ∋ x such that TpYx = TpH for all p ∈ Y .) by the Frobenius Integrability Theorem ([6, pp. 36, 37]).
In particular, that means P (p) is an immersed submanifold of P . By a dimension count we observe
that the restricted map π∣P (a) has an isomorphic pushforward; and is thus locally a diffeomorphism
by the Inverse Function Theorem.

Now it suffices to show that π∣P (a) is a covering map, since that would mean γ lifts to a loop in
P (a) by the Covering Homotopy Theorem [37, Theorem 10.5]. To see this, let V ⊆ P (a) be an open
subset such that π∣V is a diffeomorphism, and let U ⊆X denote the image of V . Now it is easy to see
that for any q ∈ V , if g ∈ G satisfies qg ∈ P (p) then V g ⊆ P (a). It thus follows that V g ∩ P (a) is
either empty or equal to Ug for all g ∈ G hence π∣−1P (a)(U) =∐g∈G(V g ∩ P (a)) as desired.

This implies that if our connection is flat, then holonomy of a loop is dependent only on the
homotopy class of the loop. In particular, that means for any x ∈ X and p ∈ π−1(x) there is a
well-defined map ρω,p ∶ π1(X,x)→ G given by

[γ]↦ Holp(ω, γ)−1

and in fact this is a group homomorphism by property (3) of Lemma B.3.29. This map is known as
the holonomy representation. By property (1) of Lemma B.3.29, this representation is defined up to
conjugation independently of our choice of p.
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B.3.3 The Riemann-Hilbert Correspondence

Theorem B.3.31 (Riemann-Hilbert). Let G be a Lie group and X a connected manifold. Fix some
x ∈ X . Then there is a bijection between the set of pairs (P,ω) where P is some principal G-bundle
and ω is a flat connection on P , up to gauge equivalence, and G-representations of π1(X,x) up to
conjugation.

Proof. We will show the map (P,ω) ↦ ρω,p, where p ∈ π−1(x) is any element in the fibre of x
in P and ρω,p is the holonomy representation, is a bijection between the set of pairs (P,ω) up to
gauge equivalence and G-representations of the fundamental group up to conjugation. Note that if
we choose some other pg ∈ π−1(x), then ρω,pg = ρgω,p by Lemma B.3.29, thus this representation is
well-defined up to conjugation.

First, let ρ ∶ π1(X,x)→ G be a representation. Now let X̃ denote the universal cover of X , define
P̃ ∶= X̃ ×G and let ω̃ denote the form associated to the trivial connection on P̃ . Now there is a natural
isomorphism Deck(X̃) ≅ π1(X,x), where Deck(X̃) is the group of deck transformations of X̃ →X
([37, Corollary 10.29]). Since Deck X̃ acts transitively on the fibres of X̃ ([37, Theorem 10.18]), the
quotient of this action is X . Now we define an action of π1(X,x) on P̃ as follows:

[γ] ⋅ (x̃, g) ∶= ([γ] ⋅ x̃, gρ([γ])−1)

We can also identify the tangent spaces T(x̃,g)P̃ and T[γ]⋅(x̃,g)P̃ by the pushforward induced by this
action. Now we define P to be the quotient of P̃ by this action; we can easily show that this is a
principal G-bundle. Observe that ω̃ induces a connection on P , which we will denote ω. It is easily
checked that ω is also flat.

Now we may compute the holonomy of (P,ω). Suppose [γ] ∈ π1(X,x), and let (x̃, g) ∈ P be a
representative of some point in the fibre of x. Then

Pγ(x̃, g) = [γ] ⋅ (x̃, g) = ([γ] ⋅ x̃, g) = (x̃, g(ρ([γ])−1)) = (x̃, g) ⋅ ρ([γ])−1

hence Hol(x̃,g)(ω, [γ]) = ρ([γ])−1 as required. This proves surjectivity.
Now suppose that (P,ω) and (P ′, ω′) have the same holonomy representation, that is for p ∈ P

and p′ ∈ P ′ we have ρω,p = ρω,p′ (observe that by Lemma B.3.29 we can assume that the represen-
tations are in fact equal and not just conjugate equivalent). We will construct a gauge equivalence
Φ ∶ P → P ′ that preserves horizontal vectors as follows: for any path δ from x to y in X , we define

Φ(Pω
δ (p)) ∶= Pω′

δ (p′)

To see that this is well-defined, suppose δ′ is some other path from x to y such that Pω
δ (p) = Pω

δ′(p).
Then Holp(ω, δ−1 ⋅ δ′) = 1 = Holp′(ω′, δ−1 ⋅ δ′), hence

Pω′

δ (p′) = Pω′

δ′ (p′) = (δ−1 ⋅ δ′)♯p′(1/2) (B.4)

This determines Φ on all points q with a horizontal path to p. Now we require for all g ∈ G, that
Φ(qg) = Φ(q)g. To see that this is well-defined, suppose that Pω

δ1
(p)g1 = Pω

δ2
(p)g2. By multiplying
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by g−12 we may assume g2 = 1. Writing g ∶= g1 we observe

g = HolPω
δ2
(p)(ω, δ1 ⋅ δ−12 )

= Holp(ω, δ−12 ⋅ δ1)
= Holp′(ω′, δ−12 ⋅ δ1)
= HolPω′

δ1
(p′)(ω

′, δ1 ⋅ δ−12 )

and hence Pω′

δ1
(p′)g = Pω′

δ2
(p′) as desired. Since X is path connected this now defines Φ on the

entirety of P . Also for this reason, this map is surjective. To see that Φ is injective, suppose that
Φ(p1) = Φ(p2). By multiplying by elements of G, we may assume that p1 = Pω

δ (p) for some path δ.
Then Φ(p2) = Pω′

δ (p′) and hence p2 = Pω
δ (p) = p1.

Example B.3.32. Being the free group on one element, there is a canonical isomorphism HomGps(Z,G) ≅
G for any group G. In the case G = R∗, the Riemann-Hilbert correspondence gives a perverse way to
see this: firstly, let U1 = S1 ∖ {1} and U2 = S1 ∖ {−1}. Let u ∈ R∗, and let E → S1 be the (real) line
bundle defined by gluing U1 ×R and U2 ×R together with locally constant transition function

g1,2(z) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if I(z) > 0
u if I(z) < 0

on the intersection of U1 and U2 (which is just the intersection of S1 and the union of the two half-
planes). Observe that if u < 0 we get a Möbius strip, but if u > 0 we get a cylinder. Now define s to
be the section s(z) ∶= (z,1) ∈ U1 × R, and define ω to be the connection form which is zero on s.
Now to compute the holonomy, we define the path γ ∶ [0,1)→ E as

γ(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

(1,1) ∈ U2 ×R if t = 0
s(exp(2iπt)) otherwise

,

which has winding number 1, and thus is a generator of π1(S1), and note that

lim
t→1

γ(t) = (1, u) ∈ U2 ×R;

and in particular the holonomy is just u. This defines the map Z ≅ π1(S1)→ R∗ sending 1 to u.
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