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Abstract

A line field on an orbifold O is field of locally invariant tangent lines, that is, a section of its pro-
jectivised tangent bundle PTO. Generalising the work done by Crowley and Grant in ([CG17],
2017), we show that for a line field with a finite set of singularities, the orbifold Euler-Satake
characteristic χorb(O) ∈ Q can be computed by means of local data (the so called projectivised
index) about each singularity. The result can be viewed therefore as a Poincaré-Hopf Theorem
for line fields on an orbifold. We take a classical approach, where O is effective, viewed as a
suitable topological space with an atlas consisting of charts, following Satake.

In passage towards this result, we first recall the classical Poincaré-Hopf Index Theorem by
means of intersection theory, and secondly the result of Crowley and Grant in [CG17] regarding
line fields on a smooth manifold. Following this, we recall some basic orbifold theory, in partic-
ular, Satake’s Poincaré-Hopf Theorem for vector fields on an orbifold. We then contrast those
intersection theoretic results outlined in the first chapter, concluding with brief remarks regard-
ing intersection theory in the category of orbifolds. We conclude this thesis with a generalisation
of Crowley and Grant’s result in [CG17] to the setting of orbifolds.
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Introduction

The Poincaré-Hopf Index Theorem is a remarkable result which relates the behaviour of a vector
field on a smooth manifold to a topological invariant of the manifold. To be more precise, given
a vector field v on a closed smooth n-manifold M with isolated (and thus a finite number of)
zeroes, we assign an integer to each zero p, called the (local) index of v at p, denoted indv(p) ∈ Z.
This integer is obtained by restricting v to a small oriented sphere S centered at p, on which there
are no other zeroes, normalising via an auxillary metric so as to obtain a map v|S : S → STM |S
into the associated sphere bundle, and finally, by choosing S sufficiently small we may compose
with a local trivialisation to obtain a self map of oriented (n − 1)-spheres. The index indv(p)
is the Brouwer degree of this resultant composition, that is, it is the degree of the composition,
S → STM |S → S×Sn−1 → Sn−1. The index is independent of all choices made. The Poincaré-
Hopf Index Theorem relates the indices of the vector field v to the Euler characteristic, χ(M),
of M , a classical topological invariant. Precisely,

χ(M) =
∑
p∈M
v(p)=0

indv(p)

Instead of a vector field, consider a line field ξ on M . Intuitively, a line field assigns to each point
a tangent line, and these lines vary smoothly along M . Formally, let PTM be the fiberwise
projectivisation of TM . A line field is a smooth section ξ : M → PTM . We say that the
line field ξ has singularities {x1, . . . , xk} ⊂ M if it is defined only on the submanifold M −
{x1, . . . , xk}. Another way to think about ξ is as a line subbundle of TM , and singularities
as points where the rank drops to zero. In the spirit of the Poincaré-Hopf Theorem, we can
ask whether a similar index calculation about each singularity x ∈M of ξ called the projective
index, denoted p indξ(x) ∈ Z, can be used to compute the Euler characteristic. This question
was affirmed for surfaces by Hopf in the 1950’s [Hop83], with a slightly different definition of
index, which is now called the Hopf index. In [Mar55] Lawrence Markus published a paper
in the Annals of Mathematics, which contained a ‘generalisation’ of Hopf’s Theorem to all
dimensions. Unfortunately, his result was shown by Crowley and Grant in [CG17] to be invalid
for surfaces and in odd dimensions. Put simply, the subtleties are as follows. First, for surfaces,
singularities can be ‘non-orientable’ (this means that ξ is not locally generated by a vector field
in a neighbourhood of the singularity). Second, in odd dimensions, Markus gave a slightly more
complex definition of the index, which ultimately caused issues. In [CG17], Crowley and Grant
corrected the statement of Markus, and provided a generalisation as follows. For closed M (if
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∂M ̸= ∅, they require all singularities to be in the interior, and the line field normal to ∂M),
one has

2χ(M) =
k∑
i=1

p indξ(xi)

where equality is congruence modulo 2 in odd dimensions.

Rather than a manifold, we may consider vector and line fields on more singular spaces. For
us, these are orbifolds. An orbifold (of dimension n) is a space in which, locally about any given
point, one has a neighbourhood of the form Rn/G for a finite group G, where the groups may
vary over the space. Orbifolds form a class of singular spaces; the singular points arising as
fixed points of a finite group action. Motivation initially draws to this object simply because
it is quite easy to encounter an orbifold in ‘nature’. For example, when one takes the quotient
of a smooth manifold by a group action, we don’t in general get a manifold, but more often an
orbifold. It becomes of interest to know if we can still perform any differential geometry on the
resulting quotient, and this has been confirmed a long time ago, by Ichirō Satake who (formally)
introduced the concept under the title of a ‘V -manifold’ (see [Sat56]). Satake simultaneously
provided natural generalisations of many standard tools and theorems from the differential ge-
ometry of manifolds, such as de Rham cohomology and the Gauss-Bonnet Theorem ([Sat56],
[SAT57]).

To explain the term that stuck, ‘orbifold’ was famously introduced via a democratic pro-
cedure in a course of William Thurston1 in 1976-77, and evidently represents a contraction of
the two words, ‘orbit’ and ‘manifold’. In modern times, there are two takes on orbifold theory,
varying in popularity. The first is a simple generalisation of the definition of a manifold, using
charts and atlases. This definition has to its advantage simplicity, however, hidden in details
is subtlety. For example, defining the ‘correct’ notion of a morphism is not immediate. An
alternative way to view an orbifold is as a special kind of differentiable stack, which we view
as a Morita equivalence class of Lie groupoids. Whilst more technical, this perspective settles
in clarity how to define an orbifold morphism, amongst other things. We shall briefly touch on
both perspectives, but not give a full treatise on differentiable stacks.

Amongst the results that Satake established for orbifolds, is a Poincaré-Hopf Index Theorem.
In particular, for a vector field v on a closed orbifold O (which we can think of as a locally
invariant section of the tangent bundle) with zeroes {x1, . . . , xk} ⊂ O, we can formulate in the
usual way a notion of index v about any given zero, written indv(x). Satake defines an orbifold
index of v at x to be the usual index weighted by the order of the isotropy of x, denoted |Gx|.
We define orb indv(x) := indv(x)/|Gx|. Satake proved in [SAT57] that,

χorb(O) =
k∑
i=1

orb indv(xi) ∈ Q

1Thurston used orbifolds in his geometrization program for 3-manifolds, and introduced the notion of the
orbifold fundamental group.



where χorb(O) is the orbifold Euler characteristic of O, a rational number, which is an orbifold
homotopy invariant, generalising the Euler characteristic to the setting of orbifolds (in the sense
that we define it via a ‘compatible’ triangulation of our underlying space).

Our contribution is to generalise the main result of Crowley and Grant in [CG17] to the
setting of orbifolds, providing a Poincaré-Hopf Index Theorem for line fields on an orbifold. We
define a line field on an orbifold to be a section of its projectivised tangent orbibundle. For an
orbifold O, we say that a line field ξ has singularities {x1, . . . , xk} ⊂ O if it is defined only on
the suborbifold O − {x1, . . . , xk}. About each singularity x of ξ, we define a notion of orbifold
projective index at x, given by weighting the usual projective index, something we compute
locally, by |Gx|, and this is denoted orb p indξ(x) ∈ Q. We show that if O is closed, then

2χorb(O) =
k∑
i=1

orb p indξ(xi)

where equality is congruence modulo 2 if dimO is odd.

Outline of the Thesis

We record here an outline of the stucture of the thesis. In Chapter 1, we present a standard gen-
eralisation of the classical Poincaré-Hopf Index Theorem to the setting of an arbitrary oriented
vector bundle over a compact base, by means of intersection theory. Throughout the Chapter,
an auxillary goal is to demonstrate that almost all essential constructions can be traced back to
Poincaré-duality. In Chapter 2, we recall generalities regarding line fields on smooth manifolds,
and in particular, provide an outline of the techniques used by Crowley and Grant in [CG17]
to prove a Poincaré-Hopf Theorem for line fields on smooth manifolds. In Chapter 3, we recall
some basic theory regarding orbifolds, together with Satake’s Poincaré-Hopf Theorem, then as a
stepping stone, we discuss the incarnation of orbifolds as Lie groupoids, concluding the Chapter
with intersection theory on orbifolds, from the perspective of differentiable stacks. In Chapter
4, we present a proof of a Poincaré-Hopf Theorem for line fields on orbifolds, discussed above.

Assumed Background and Notation

We assume the reader is familiar with standard modern constructions in differential geometry
and differential topology, most importantly, the de Rham cohomology and its associated duality.
We also assume the reader has at least some familiarity with orbifold theory (both perspectives,
in particular, as a stack). Let us fix some notation. For two sets A and B, we write A ⊂ B
to mean A is a subset of B (not necessarily proper). All group actions are, unless otherwise
stated, left actions. By smooth, we shall always mean C∞, and by manifold (resp. orbifold),
we always mean smooth manifold (resp. orbifold). For a smooth map of manifolds f : M → N ,
we denote its differential at x ∈ M by dfx : TxM → Tf(x)N , where TxM denotes the tangent
space at x ∈M . We write Hk

dR(M) to mean the k-th de Rham cohomology group of M . Unless
clarity is needed, we shall simply write Hk(M).





Chapter 1

The Poincaré-Hopf Index Theorem

The Poincaré-Hopf Theorem can be realised as a statement about the zero locus of sections of
the tangent bundle of M . Precisely, given an n-manifold M , we embed M into TM by means
of the zero section, and consider the intersection ‘of M ’ (i.e. the image of the zero section) with
the image of our vector field. Hence we are concerned with the intersection of two submanifolds
in an ambient setting, leading us intersection theory. Clearly a natural generalisation is to ask
for an entirely similar result, where rather than sections of the tangent bundle TM → M , we
consider sections of an arbitrary oriented vector bundle E → M over M of rank n. In this
chapter, we’ll outline a proof of such a generalisation. Rather than the Euler characteristic of
our manifold, we consider a cohomological invariant of our vector bundle, called the Euler class
e(E) ∈ Hn

dR(M). We show that the Euler number, which is by definition
∫
M e(E), can be com-

puted out of local degree calculations about the zeroes of any section s : M → E with isolated
zeroes, thus generalising the Poincaré-Hopf Index Theorem.

As our motivation derives from vector fields, we have chosen to proceed within the realm of
differential forms and de Rham cohomology, however, the theory we present has a formulation
in terms of singular (co)homology, and we may pass between the two perspectives by means of
de Rham’s Isomorphism Theorem. Finally, it is not the intention of this chapter to present an
entirely self contained exposition, as this would lead us astray. On the other hand, an auxillary
goal of this chapter is to demonstrate that Poincaré duality of the cohomology groups encapsu-
lates an incredible amount of geometric content. As a consequence, we obtain the Poincaré-Hopf
Theorem (certainly a different approach to our forefathers).

Let us make a brief comment on our orientation conventions. Let M and N be oriented
smooth manifolds, of dimension m and n respectively. We orient the product manifold M ×N
with the so called product orientation, namely, if (v1, . . . , vm) is a positively oriented basis for
TxM , and (w1, . . . , wn) is a positively oriented basis for TyN , we say that (v1, . . . , vn, w1, . . . , wm)
is a positively oriented basis for T(x,y)(M × N) ∼= TxM × TyN . Let E → M be an oriented
vector bundle over an oriented manifold M (that is, we have chosen a section of the sphere
bundle S(detE).) Our convention shall be that the total space E is equipped with the local
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1.1. INTERSECTION THEORY

product orientation, that is, in a oriented trivialising cover, we declare each local trivialisation
E|U ∼= U × Rn to be an orientation preserving diffeomorphism. A direct sum of vector bundles
E1 ⊕ E2 for E1, E2 → M is oriented by declaring a positive basis of the fiber (E1)x ⊕ (E2)x to
be a positive basis of (E1)x, followed by a positive basis of (E2)x. Let S ⊂ M be a compact
submanifold. Write νMS for its normal bundle. For a choice of metric, one has a canonical
decomposition TM |S ∼= TS ⊕ νMS , and thus orientations of S and M canonically determine an
orientation for the normal bundle, where we follow the base first convention. By submanifold,
we mean regular submanifold (see [Tu]). We follow [Bot82], [Nic07], [Mad97], [RS18], [Ebe14]
and [Hir76] closely. Unless otherwise specified, we assume all manifolds to be connected, and
submanifolds compact.

1.1 Intersection Theory

We recall several aspects regarding differential topology. Let us emphasise that, upon introduc-
ing machinery, one of our cornerstones is the Poincaré-duality, whose statement we now recall.
For a orientable n-manifold M of finite type, we have a bilinear pairing∫

: Hk(M)×Hn−k
c (M)→ R

([ω], [τ ]) 7→
∫
M
ω ∧ τ.

Poincaré-duality asserts that this pairing is non-degenerate, or, what is the same thing, that
(Hk(M))∗ ∼= Hn−k

c (M). Observe that, for k = 0, the pairing is just integration of compactly
supported (which may be dropped if M is compact) top forms over M , and this brings us to
the first fundamental homotopy invariant, namely the degree of a smooth mapping.

The degree generalises the winding number from complex analysis to higher dimensional
manifolds, and is an incredible topological-geometric tool introduced by Brouwer. Let f : M →
N be a smooth map map of closed, oriented and connected n-manifolds. By means of the de
Rham functor and Poincaré-duality, we have a commutative diagram

Hn(N) Hn(M)

R R

f∗

∼=

deg f

∼=

where the vertical isomorphisms are induced by integration over the respective manifold. The
lower horizontal map R → R, being linear, must act by scalar multiplication, and we call this
scalar the degree of f , denoted deg f . This is to say that, given [ω] ∈ Hn(N) we have

deg f
∫
N
ω =

∫
M
f∗ω.

2



CHAPTER 1. THE POINCARÉ-HOPF INDEX THEOREM

As smoothly (even continuously) homotopic maps induce the same map in cohomology, it follows
that the degree is a homotopy invariant of f . A priori, the degree of f is just a real number,
but it turns out, quite remarkably, that it is in fact an integer. Recall that y ∈ N is called a
regular value of f if dfx : TxM → TyN is surjective, for all x ∈ f−1(y), and by Sards Theorem
(see [Mil65], Page 16), regular values of f are dense in N .

Theorem 1.1.1. Let M,N and f be as above. Let z ∈ N be a regular value for f (whose
existence is guaranteed by Sard’s Theorem). If z /∈ im f , then deg f = 0. If z ∈ im f , then
f−1(z) is a finite set of points, and

deg f =
∑

x∈f−1(z)
sign(dfx)

where sign(dfx) = +1 or −1 according to whether f preserves or reverses orientation.

Proof. This is a standard result, we refer the reader to ([Mad97], Page 101).

With this perspective we may have the following geometric interpretation of the degree of
f . For generic y ∈ N , we may find a neighbourhood U of y whose preimage under f consists
of a ‘stack of records’, (namely a finite collection of disjoint open sets, each of which is mapped
diffeomorphically onto U) and the degree of f is the algebraic number of times f covers U .

Figure 1.1.1: Visualising the degree as an algebraic covering number.

We record an easy observation that shall be used frequently, without explicit reference.

Proposition 1.1.1. Suppose f : M → N is a diffeomorphism. For ω ∈ Ωn(N), we have∫
N
ω = ±

∫
M
f∗ω

according to whether f preserves or reverses orientation.

Let us now provide some standard examples.

Example 1.1.1. Given any integer k, there is a map whose degree is k. First, let us handle the
case of a positive integer k ∈ Z. Define a smooth map f : S1 → S1 by f(z) = zk. Let ϕ : R→ S1

defined by ϕ(t) = (cos t, sin t) be orientation preserving. Let ψ : R→ R be multiplication by k.

3



1.1. INTERSECTION THEORY

Now, f ◦ ϕ = ϕ ◦ ψ. We take the differential, and apply the chain rule to obtain a commutative
diagram,

TzS
1 Tf(z)S

1

R R

dfz

ψ

dϕt dϕkt

in which z = ϕ(t). The Jacobian of ϕ at t is given by scaling the vector (− sin t, cos t)T . Now,
a non-zero linear map between two vector spaces of dimension 1 is necessarily an isomorphism,
and so we may identify dfz : TzS1 → Tf(z)S

1 with multiplication by k, that is, identify with
ψ via the vertical (orientation preserving) isomorphisms. The point 1 ∈ S1 is a regular value
of f . Consider the preimage f−1(1); it consists of k-points, the k-th roots of unity. It is now
an easy consequence of Theorem 1.1.1 that the map f has degree k (it is also easy directly,
computing the pullback and integrating). For a negative integer we proceed as follows. With
similar identifications outlined above, the differential of conjugation z → z can be viewed as
reflection, now the degree is multiplicative under composition, and so the map z 7→ zk has
degree −k. We have shown that the map

deg : [S1, S1]→ Z

is in fact surjective, where [S1, S1] denotes homotopy classes of self maps of the circle. In fact,
this mapping is injective, that is, for two maps f, g : S1 → S1 with deg f = deg g, we have that
f is homotopic to g. The latter is a special case of Hopf’s Degree Theorem, which says that
homotopy classes of maps from a closed oriented n-manifold M to the n-sphere are classified by
their degree.
Example 1.1.2. Let F : Rn → Rn be given by x 7→ Lx for L ∈ GL(n,R). There is an induced
map f given by f(x) = F (x)/∥F (x)∥. With Theorem 1.1.1, we observe that the degree of f
is the sign of the determinant of L. In particular, deg f = +1 or −1 according to whether A
preserves or reverses orienation.
Example 1.1.3. Let π : E →M be a smooth orientation preserving k-fold covering map, where
both M and E are connected, orientable, compact, and of the same dimension. It is an easy
consequence of Theorem 1.1.1 that π has degree k. In particular, if dimM = n and ω is an
n-form on M , one has ∫

E
π∗ω = k

∫
M
ω.

This special case foreshadows the so called projection formula (cf. (1.1.1)), which involves
‘integration along the fiber coordinates’, the fiber in this case being dimension 0.

We now discuss another consequence of Poincaré-duality. Let S be a closed oriented sub-
manifold of M , of dimension k. Let i : S ↪→ M be inclusion. Define a linear functional on
Hk(M) by

Hk(M)→ R

[ω]→
∫
S
i∗ω.

4



CHAPTER 1. THE POINCARÉ-HOPF INDEX THEOREM

As S is without boundary, this is well-defined by Stokes’ Theorem. By Poincaré-duality, this
corresponds to a unique class [ηS ] ∈ Hn−k

c (M) which we call the (compact) Poincaré-dual of S.
By definition, the class [ηS ] is characterised by the relation∫

S
i∗ω =

∫
M
ω ∧ ηS

for all ω ∈ Hk(M).

Remark 1.1.1. The class above is titled the compact Poincaré-dual because the submanifold S
is compact, so we can integrate any k-form over S. If the compactness assumption is dropped,
one must, of course, integrate forms with compact support, and require that S is topologically
closed, then one obtains a class in Hn−k(M). Some authors title this the ‘closed Poincaré-dual’
([Bot82], Page 51). We shall only work with compact submanifolds, and so by Poincaré-dual,
we always mean compact Poincaré-dual.

Let us provide the simplest such example.

Example 1.1.4. Set M = Rn and S = {pt} ⊂ Rn. By definition, the Poincaré dual of S is
(represented by) a compactly supported n-form ηS such that, for any constant λ ∈ R ∼= H0(M),
we have

λ =
∫

{pt}
λ = λ

∫
Rn
ηS

where we recall that to wedge with a constant is just to multiply. Thus ηS is just a compactly
supported n-form on Rn with total integral 1. Observe that we can localise the support of any
representative as much as we’d like.

Figure 1.1.2: Inspired by [Nic07],Example 7.3.6; the dual of a point is Dirac’s distribution.

Localising the support of representatives of certain cohomology classes shall be instrumental
in what follows. For example, we have the following localisation principle ([Bot82], Page 53).
Suppose W ⊂M is an open set whom contains S, and write [ηS,W ] ∈ Hn−k

c (W ) for the Poincaré-
dual of S in W . Extend ηS,W by zero to obtain a compactly supported n − k form η′

S defined
on all of M . Then, ∫

S
i∗ω =

∫
W
ω ∧ ηS,W =

∫
M
ω ∧ η′

S

so that [η′
S ] is the Poincaré-dual of S in M . Equipped with localisation of supports, we may

consider neighbourhoods whom admit significantly more structure. For a compact submanifold

5



1.1. INTERSECTION THEORY

S ↪→M of codimension n−k, there is an especially important open neighbourhood of S, namely
that of a tubular neighbourhood; a neighbourhood diffeomorphic to a vector bundle of rank n−k
over S, with S diffeomorphic to the (image of the) zero section.

Observe that there is a canonical inclusion TS ↪→ (TM)|S . The normal bundle of S in M ,
denoted νMS (our notation follows that of ([Ebe14],Page 79)) is defined as the quotient bundle
(TM)|S/TS, so that we have an exact sequence

0→ TS → (TM)|S → νMS → 0

of vector bundles over S (which, a priori, does not admit a canonical splitting). Recall that
we orient the normal bundle of S in M by means of the base first convention, namely, if M is
equipped with a Riemannian metric, then the fibres of the normal bundle may be identified with
orthogonal complements,

(νMS )x = TxM/TxS ∼= (TxS)⊥.

In particular, the normal bundle of S in M may be identifed with the orthogonal complement
(TS)⊥, a subbundle of TM . We have a canonical splitting (TM)|S = TS ⊕ TS⊥, and so an
orientation of νMS , in keeping with our base first convention. For submanifolds with nowhere
vanishing outward normals, their normal bundle is trivial. For example,

Example 1.1.5. Let (x, y) be the usual global coordinates on R2 with the standard metric.
Consider the 1-sphere S1 = {(x, y) |x2 + y2 = 1} ⊂ R2. For each p ∈ S1, we have TpS1 ∼=
spanR(p)⊥ so that v : R2 → R2 defined by v(p) = p restricted to S1 yields a nowhere vanishing
section of the normal bundle. Thus νR2

S1
∼= S1×R. We can in fact be even lazier. There are only

two real line bundles over the circle, and so if it can be oriented, we are done.

Figure 1.1.3: Normal bundle of the circle viewed as an embedded submanifold of R2.

Let us briefly formulate a general definition of normal bundle.

Definition 1.1.1. Let f : S → M be an immersion of smooth manifolds. The normal bundle
of the mapping f is by definition the vector bundle νf := f∗TM/TS. If f is inclusion, we write
νMS , called the normal bundle of S in M .

We define formally our neighbourhoods of interest, but only in the special case of inclusion.

6



CHAPTER 1. THE POINCARÉ-HOPF INDEX THEOREM

Definition 1.1.2. Let M be a smooth manifold, and S a submanifold. A tubular neighbourhood
of S in M is an open neighbourhood U of S in M that is diffeomorphic to the total space of the
normal bundle of S in M , denoted νMS , and for which the diffeomorphism carries S ⊆ U to the
zero section of νMS . The data is often presented as a pair, the diffeomorphism is called a tubular
map.

For compact submanifolds, tubular neighbourhoods exist. The proof of this result is non-
trivial, yet we shall need some aspects of the details later, and so we recall the easy details.

Theorem 1.1.2 (Tubular Neighbourhood Theorem). Let S be a compact submanifold of M .
Then S admits a tubular neighbourhood.

Proof. This is a classical result, see for example ([Spi70],Volume 1,Page 334).

We recall some brief details. First, equip M with a Riemannian metric. Let us denote the
resultant ‘norm’ on TM by ∥ · ∥ and the (honest) metric on M by d( , ). For ε > 0, we consider
the following open neighbourhoods,

Nε = {v ∈ (TS)⊥ | ∥v∥ < ε}
Uε = {p ∈M | d(p, S) < ε}.

For sufficiently small ε > 0, one shows that the exponential map (from Riemannian geometry)
exp : Nε → Uε is well-defined (as S is compact) and further, is a diffeomorphism. Hence Uε is a
tubular neighbourhood of S.

Figure 1.1.4: A tube about a nice curve S in R3.

Thus far we have discussed how to establish a relationship between bundles and open neigh-
bourhoods of submanifolds. In what is to come, this relationship shall be used extensively. We
now recall some theory related to cohomological invariants of vector bundles, in particular, the
Thom Isomorphism. As we shall only be concerned with a compact manifold M , it is again a
consequence of Poincaré-duality!

Given a oriented vector bundle π : E → M of rank k over a manifold M , let Ωp
cv(E) be

the space of all p-forms on E with vertically compact support. Recall that a form ω on E is
said to have vertical compact support if the map π : supp(ω) → M is proper. Clearly, such
forms admit compact support on each fiber Ex. For vertical compactly supported forms, we
have a cochain complex, together with cohomology groups H∗

cv(E), called the cohomology of E

7



1.1. INTERSECTION THEORY

with compact support in the vertical direction. The Thom Isomorphism Theorem asserts that
H∗
cv(E) ∼= H∗−k(M). If M is compact, we have H∗

cv(E) = H∗
c (E) (as compact sets in Hausdorff

spaces are closed) and obtaining such an isomorphism is a consequence of duality. Indeed, let
s : M → E denote the zero section. Then π∗ and s∗ are inverse isomorphisms in cohomology as
s ◦ π is homotopic to the identity. In particular, E is of finite type. Now by Poincaré-duality
observe that

Hp
cv(E) = Hp

c (E) ∼= (Hn+k−p(E))∗ ∼= (Hn+k−p(M))∗ ∼= Hp−k
c (M) = Hp−k(M).

Let the resultant isomorphism be denoted by π∗. Let [ω] ∈ Hp
cv(E). If we trace through the

above isomorphisms, we see that the equality of two linear functionals is asserted. Namely, for
each [τ ] ∈ Hn+k−p(M), we have ∫

E
π∗τ ∧ ω =

∫
M
τ ∧ π∗ω. (1.1.1)

This identity is known as the projection formula. Set p = k, and choose [ΦE ] ∈ Hk
cv(E) for

which π∗[ΦE ] = 1 ∈ H0(M). We call [ΦE ] the Thom Class of the oriented rank k vector bundle
π : E → M . Representatives of the Thom class are called Thom forms. By the projection
formula above, we may develop a unique characterisation of Thom forms as those forms whom
restrict to the generator on each fiber, precisely,

Proposition 1.1.2. The Thom class [ΦE ] on an oriented vector bundle π : E → M of rank k
over a closed n-manifold M may be uniquely characterised as the cohomology class in Hk

cv(E)
which restricts to the generator on each fiber. That is, for each x ∈M , we have∫

Ex

ΦE = 1.

Proof. The proof given here is drawn from ([Ebe14], Page 84). The forwards direction is a
consequence of the projection formula. Indeed, let ΦE be a Thom form on E. Choose an
oriented chart (U, x) on M and an n-form η on U with total integral 1, extended by zero to a
form on M . In coordinates on U , we can write η = a(x)dx1 ∧ · · · ∧ dxn for a smooth compactly
supported function a : U → R. We arrange U so that E|U ∼= U ×Rk, and write ξ for our bundle
coordinates E|U . We may write ΦE on E|U as a sum

b(x, ξ)dξ1 ∧ · · · ∧ dξk + ζ

where ζ is a combination of forms where the terms involve at most (n− 1) dξi’s, and therefore
at least one dxj . In E|U , we then have,

π∗η ∧ ΦE = a(x)b(x, ξ)dx1 ∧ · · · ∧ dxn ∧ dξ1 ∧ · · · ∧ dξk

where we’ve identified each xi coordinate with its pullback. Therefore,∫
E
π∗η ∧ ΦE =

∫
U×Rk

a(x)b(x)dx1 ∧ · · · ∧ dxn ∧ dξ1 ∧ · · · ∧ dξk

=
∫
U

(∫
Rk
a(x)b(x, ξ)dξ

)
dx

8



CHAPTER 1. THE POINCARÉ-HOPF INDEX THEOREM

where we’ve used Fubini’s Theorem and several identifications. On the other hand, by the
projection formula, ∫

E
π∗η ∧ ΦE =

∫
U
η = 1.

Let c(x) =
∫
Rk b(x, ξ)dξ. We then have,∫

U
a(x)c(x)dx =

∫
U
a(x)dx

The equality above holds for each compactly supported smooth function a : U → R, and
therefore c(x) = 1. This states precisely that,∫

Ex

ΦE = 1.

As x ∈M was arbitrary, the claim follows. For the converse direction, one uses the second part
of the Theorem 1.1.3.

Remark 1.1.2. The proof above different to the usual one, but it allows us to circumvent a
complete diversion to integration along the fiber coordinates. Finally, for the conclusion that
c(x) = 1 above, use linearity and that if a measurable function has Lebesgue integral zero, then
it is zero almost everywhere.

Remark 1.1.3 (The General Case). The Thom Isomorphism holds true even if M is only
of finite type. One defines first a homomorphism called ‘integration along the fibers’, π∗ :
Ω∗
cv(E)→ Ω∗−k(M) by the following classical procedure. We first make a definition of π∗ within

a local product coordinate system. Then, by means of a trivialising open cover of M , lifted
to E via π, and a partition of unity subordinate to this open cover, we extend π∗ linearly to
an arbitrary ω ∈ Ω∗

cv(E). One then checks that the resulting form on M is independent of all
choices made. To this end, fix a oriented chart (U, x1, . . . , xn) on M for which E|U = π−1(U) ∼=
U × Rk is trivial. Let (t1, . . . , tk) denote coordinates on Rk. Coordinates on π−1(U) are given
by (π∗x1, . . . , π∗xn, t1, . . . , tk). Write xj = π∗xj . A differential form on π−1(U) is a linear
combination of two types of forms, those who do not contain dt1 ∧ · · · ∧ dtk (type I), and those
who do (type II). For ω ∈ Ω∗

cv(π−1(U)), we may uniquely decompose into a sum of type I and
type II forms. We define π∗ for forms on π−1(U) by mapping type I forms to zero, and for a
type II form

ν =
∑
I

aI(x, t)dxI ∧ dt1 ∧ · · · ∧ dtk

where I runs over strictly ascending indices, and aI(x, t) is a smooth real valued function, whose
factor in t has compact support in Rn. We define

π∗(ν) =
∑
I

(∫
Rn
aI(x, t)dt1 · · · dtk

)
dxI .

With the procedure outline above, it can be shown that this extends to a well defined homo-
morphism π∗ : Ω∗

cv(E) → Ω∗−k(M). (Note, our convention in which we write the order of the

9



1.1. INTERSECTION THEORY

forms is that of [Bot82], other authors may decompose with t first as above, and a sign difference
appears in the projection formula.) Let us now summarise the above by recording the discussed
results. For complete proofs, we refer the reader to [Bot82],[RS18].

Theorem 1.1.3 (Thom Isomorphism Theorem). Suppose π : E → M is a orientable rank
k vector bundle over a manifold M of finite type. Then there exists a homomorphism π∗ :
Ω∗
cv(E)→ Ω∗−k(M), called integration along the fiber, which satisfies

1. Denote by d the exterior derivative. Then π∗ ◦ d = d ◦ π∗, so that there is an induced map
π∗ : H∗

cv(E)→ H∗−k(M).

2. If τ ∈ Ω∗(M) and ω ∈ Ω∗
cv(E), then π∗(π∗τ ∧ ω) = τ ∧ π∗ω.

3. (Projection Formula) If M is orientable, then for ω ∈ Ωp
cv(E) and τ ∈ Hn+k−p

c (M), one
has ∫

E
(π∗τ) ∧ ω =

∫
M
τ ∧ π∗ω.

Furthermore, the induced map in cohomology π∗ : H∗
cv(E)→ H∗−k(M) is an isomorphism.

We’ll now return to our special case.

Lemma 1.1.4. Let π : E → M be an oriented vector bundle of rank k over a closed oriented
n-manifold M . Let ΦE be a Thom form. Then given a closed form n-form σ ∈ Ωn(E) we have,∫

E
σ ∧ ΦE =

∫
M
ι∗σ,

where ι : M → E is the zero section.

Proof. This is part of ([RS18],Lemma 7.2.15, Page 194). As ΦE is a Thom form, we have
π∗ΦE = 1, and in particular, for an n-form η on M∫

E
π∗η ∧ ΦE =

∫
M
η.

Let σ ∈ Ωn(E) be a closed n-form. Now ι ◦ π : E → E is homotopic to the identity, so
σ − π∗ι∗σ ∈ Ωn(E) is an exact form. Thus,∫

E
σ ∧ ΦE =

∫
E
π∗ι∗σ ∧ ΦE =

∫
M
ι∗σ.

Remark 1.1.4 (Support of Thom Forms). Let π : E →M be as above. Let U ⊂ E be an open
neighbourhood of the zero section. Then we may choose a representative of the Thom class of
E →M whose support is contained in U . Intuitively, the Thom class is uniquely characteristed
as the form whose restriction to each fiber is the generator, and so this is clear. For a formal
proof, we refer the reader to ([RS18], Page 199).

10
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We shall now introduce arguably the most important notion: transversality.

Definition 1.1.3. Let M , L and S be smooth manifolds. Let f : L → M and g : S → M
be smooth maps. We say that f and g are transverse, denoted f ⋔ g, if for all x, y with
f(x) = g(y) = z, we have

dfx(TxL) + dgy(TyS) = TzM.

If g is the inclusion of a submanifold, we write f ⋔ S.

Example 1.1.6. Let us provide some intuitive examples of a transverse and non-transverse
intersection. Fix R2 as our ambient space, and consider the following intersections.

Figure 1.1.5: The left hand side consists of transverse intersections, the right hand side non-
transverse.

Let us now state several major results regarding approximation and transversality.

Proposition 1.1.3. Let f : L→M be an immersion, S ⊂M . Suppose f ⋔ S. Then f−1(S) is
a submanifold of L, of dimension dimM − dimS. Moreover, the following relation holds true
for the normal bundles,

νLf−1(S)
∼= f∗νMS .

Proof. See ([Ebe12],Proposition 1.1.2) and ([Lee],Page 144).

Theorem 1.1.5. Let f : L→ M and g : S → M be smooth maps. Let M be equipped with the
data of a Riemannian metric, denote the resultant metric on M by d( , ). Let ε : M → (0,∞)
a function. Then there exists a map h : L→M with d(f(x), h(x)) < ε(x) such that h ⋔ g, that
is, we can approximate f with mappings transverse to g.

Proof. We refer the reader to ([Ebe12], Theorem 1.1.3) and ([BJ82],Page 149).

We provide an example of these results applied to sections of a vector bundle.

Example 1.1.7 (Perturbation of a section). With the results above, we may perturb maps as
needed, however, if we perturb a section, we must ensure that it is again a section. Indeed, for
sufficiently small perturbation things are okay. Suppose π : E → M is a vector bundle over a
compact manifold M . Let s : M → E be a smooth section, then we can approximate s by a

11
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smooth map transverse to the zero section, call this map f : M → E. Then g := π ◦ f is a
perturbation of π ◦ s = 1M . In particular, for f close to s, g will be a diffeomorphism, for it
is close to the identity. Define t(x) = f(g−1(x)). Then (π ◦ t)(x) = x, so t is a section, and
in particular, t is transverse to the zero section, and approximates s. (This example is from
[Bot82], proof of Proposition 11.14).

We shall now define the oriented intersection number of two submanifolds who intersect
transversally, and are of complimentary dimension.

Definition 1.1.4. Let S ⊂ M be a submanifold of dimension k. Let f : L → M be a smooth
map where L is a compact manifold of dimension m − k, so that dimL + dimS = dimM .
Suppose that f ⋔ S, then f−1(S) consists of a finite collection of points. To each point x ∈
f−1(S), we assign an integer, denoted ιx(S, f), defined as follows. Consider the direct sum
Tf(x)S⊕ dfx(TxL) = Tf(x)M . We set ιx(S, f) = +1 if the positive orientations of the summands
pair up to give the positive orientation of Tf(x)M , else we set ιx(S, f) = −1. We define the
oriented intersection number I(S, f) to be the finite sum,

I(S, f) =
∑

x∈f−1(S)
ιx(S, f).

The order in which the mapping and submanifold are written is important, and swapping
the factors results in a (potentially trivial) sign contribution. In our definition here, we input the
submanifold first. The reason for this shall become clear later. The submanifold of interest will
be our base M embedded into the total space by the zero section, and the intersection number
is counting the number of zeroes, with signs.

Example 1.1.8. Let R2 be equipped with global coordinates x and y, consider the x-axis
Lx = R× {0} and y-axis Ly = {0} ×R respectively. An orientaton of a 1-dimensional manifold
is a choice of positive direction. Orient Lx by calling e1 = (1, 0) the positive direction, and Ly by
calling −e2 = (0,−1) the positive direction (i.e, standard y-axis, but with orientation reversed.
The frame (e1,−e2) has opposite orientation to (e1, e2), so I(Lx, Ly) = −1, on the other hand the
frame (e2,−e1) has positive orientation (i.e. positive determinant), so I(Ly, Lx) = +1. Linked
to our orientation is the corresponding top form, in this case one has top forms dx and dy for
the standard orientations and in our case with the reversed orientation, dx and d(−y) = −dy.
We’ll show that by manipulating with suitable functions and integrating these we can pickup
intersection numbers.

Figure 1.1.6: Intersection number of axes with opposite orientations.

12
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We now come to a cornerstone of this chapter. We shall establish a relationship between
the Poincaré-dual of a submanifold and the Thom class of its normal bundle. The ability to
utilise Thom forms as representatives of duals is exceptionally useful, and is a genesis in our
intersection theory, as we shall demonstrate. Fix an auxillary Riemannian metric on M , and
identify the normal bundle of S with TS⊥. By the Tubular Neighbourhood Theorem, there
exists an ε > 0 for which the two neighbourhoods,

Nε = {v ∈ (TS)⊥ | ∥v∥ < ε}
Uε = {p ∈M | d(p, S) < ε}

are diffeomorphic via the exponential map exp : Nε → Uε. Choose a Thom form Φε ∈ Ωn−k
c (TS⊥)

for which supp(Φε) ⊂ Nε. Define a form ΦS on M by (exp−1)∗Φε and extend by zero to all of
M , precisely we have

ΦS =
{

(exp−1)∗Φε on Uε

0 on M\Uε.

It is clear that ΦS is a closed (n − k)-form on M with compact support. Let ι : S → TS⊥ be
the zero section. Let ω ∈ Ωk(M). Observe that exp ◦ι is just inclusion S ↪→ M . Then, noting
that, with our conventions exp is orientation preserving, using Lemma 1.1.4∫

M
ω ∧ ΦS =

∫
Uε

ω ∧ (exp−1)∗Φε =
∫
Nε

exp∗ ω ∧ Φε =
∫
S
ι∗ exp∗ ω =

∫
S
ω.

Therefore [ΦS ] ∈ Hn−k
c (M) is the Poincaré dual of S.

Theorem 1.1.6. Let S ⊂ M be a closed oriented k-dimensional submanifold of an oriented
n-manifold M . Let L be a closed oriented manifold of dimension n − k, and let f : L → M be
a smooth map transverse to S. Let [ηS ] ∈ Hn−k

c (M) be the Poincaré dual of S. Then,

I(S, f) =
∫
L
f∗Φ.

The proof uses a common homotopy trick, namely that of ‘dragging fibers’ along a con-
tractible neighbourhood. (We invite the reader to compare with Page 443 of [Spi70]).

Proof. We sketch a proof following ([RS18],Theorem 7.2.18, Page 198). As outlined above, let
us work with the representative ΦS ∈ Ωn−k

c (M) of the Poincaré-dual, obtained via extending (a
representative of) the Thom class of S by zero. Futhermore, carry through the notation above.
As f ⋔ S, the preimage f−1(S) is a finite set of points (see 1.1.3). Write f−1(S) = {x1, . . . , xq}.
As dimS+dimL = dimM , f is an immersion at each point of f−1(S). In particular, about each
xj ∈ f−1(S) we have an open neighbourhood Vj about xj for which f |Vj is a smooth embedding,
whose image is transverse to S. We may without loss of generality assume that the sets {Vj}
are pairwise disjoint, and even further, we may choose ε > 0 sufficiently small so as to obtain
f−1(Uε) =

⋃q
j=1 Vj . Now supp(f∗ΦS) ⊂ ∪qj=1Vj and we have,∫

L
f∗ΦS =

q∑
j=1

∫
Vj

f∗ΦS =
q∑
j=1

∫
Vj

(exp−1 ◦f)∗Φε.

13
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In particular, it is sufficient to show that∫
Vj

(exp−1 ◦f)∗Φε = ιxj (S, f).

To this end, let us drop subscripts and fix x ∈ f−1(S) and the corresponding open neighbour-
hood V about x. Let W be a contractible neighbourhood of f(x) for which TS⊥|W is trivial.
Let ψ : TS⊥ → W × Rn−k be a local trivialisation. We may assume that Nε|W is mapped dif-
feomorphically under ψ to W ×Bε where Bε denotes the open ball of radius ε in Rn−k, centered
at the origin. Define a form τ on W × Bε by ψ∗τ = Φε|W . We observe that τ is a Thom form
on W ×Bε. Now, ∫

V
(exp−1 ◦f)∗Φε =

∫
V

(ψ ◦ exp−1 ◦f)∗τ. (1.1.2)

Let pr1 : W × Bε → Bε and pr2 : W × Bε → Bε denote projection onto the first and second
factor respectively. Now, we may choose ε > 0 sufficiently small so that f(V ) ⊂ W , and for
which the following mapping,

g := pr2 ◦ ψ ◦ exp−1 ◦f |V : V → Bε

is a diffeomorphism. We observe that if g preserves orientation, then f is compatible with the
local product orientation on the normal bundle, and in particular ιx(S, f) = +1. If g reverses
orientation, then we have ιx(S, f) = −1. By assumption, W is contractible, so there is a
homotopy H : V × [0, 1]→W for which

H(·, 0) ≡ f(x) : V →W

H(·, 1) = pr1 ◦ ψ ◦ exp−1 ◦f |V : V →W.

Let us write ht = H(·, t). In particular, h1 × g = ψ ◦ exp−1 ◦f |V : V → W × Bε is the map
appearing in (1.1.2). The pullback of τ ∈ Ωn−k

c (W × Bε) by the collection ht × g is compactly
supported in V × [0, 1]. Homotopic maps induce the same map in cohomology, and so∫

V
(ψ ◦ exp−1 ◦f)∗τ =

∫
V

(h1 × g)∗τ =
∫
V

(h0 × g)∗τ = ιx(S, f)
∫

{f(x)}×Bε

τ = ιx(S, f).

Hence the result follows.

If we apply this result to two submanifolds, where f is realised as an inclusion map, we get
the following corollary.

Corollary 1.1.1. Let S and L be two transverse compact submanifolds of M , with complimen-
tary dimension. Let ηS and ηL be forms representing the Poincaré-duals of S and L respectively.
Then,

I(S,L) =
∫
M
ηS ∧ ηL.

In particular, the left hand side was only defined for transverse intersections, but the right
hand side makes sense without a transversality assumption. In particular, one has a way to
generalise the intersection number.

14
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Example 1.1.9 (Loops on the Torus). Consider two loops on the Torus, S and L, given by
taking horizontal and vertical line segments, in the representation of the Torus as a square with
edges identified, oriented in the usual way. Write ηS and ηL for the respective Poincaré-duals,
viewed as Thom forms of normal bundles of S and L respectively. Both S and L are copies of
S1, so have trivial normal bundle, and we can therefore write down global bundle coordinates,
say ηS = ρ(y)dy and ηL = −ρ(x)dx for a suitable bump function ρ with total integral 1 (see
[Bot82], Page 68). In particular, abusing notation, we write,

I(S,L) =
∫
M
ηS ∧ ηL =

∫
ρ(x)ρ(y)dxdy = +1.

where we can use Fubini to evaluate the final integral over the square, as expected.

Figure 1.1.7: Loops on the Torus, and associated tubes.

At the moment, it might be temporarily unclear as to how the above result relates to sections
of bundles. Let us make the connection now. Suppose s : M → E is a section of a oriented vector
bundle E →M of rank k with a compact oriented base M . Suppose that s is transverse to the
zero section, in which case it has a finite number of zeroes, each of which is non-degenerate (this
means the vertical derivative (see Definition 1.1.6) of the section at the given zero is surjective).
The zero section in E is a submanifold, and it has a Poincaré dual, whom we represent with a
Thom form say Φ. Moreover, choose Φ with support contained in a small tube about the zero
section, so that s∗Φ is supported in balls {B1, . . . , Bk} about the finite number of zeroes. About
each of these balls Bℓ, take a local trivialisation Bℓ×Rk of E over the ball, coordinates say (x, t).
Then, on this trivialisation, Φ locally looks like f(t)dt1 ∧ · · · ∧ dtk, where

∫
Rk f(t)dt1 · · · dtk = 1.

The section locally on Bℓ looks like x→ (x, t(x)) for some mapping t. Then locally, due to the
zeroes of our section being non-degenerate,∫

Bℓ

s∗(f(t)dt1 ∧ · · · ∧ dtk) = ±1

according to whether or not the (vertical) derivative of s (i.e., differentiate the mapping x→ t(x))
preserves (+1) or reverses (−1) orientation. In totality, the integral

∫
M s∗Φ can be thought of

as an oriented intersection number I(M, s), identifying M with its image under the zero section.

The program, as it remains, is to make the discussion above slightly more precise.
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We now define a cohomological invariant of a vector bundle, called the Euler class, and
demonstrate that it is the primary obstruction to the existence of a nowhere vanishing section.

Intuitively, when our rank of our vector bundle lines up with the dimension of a manifold, we
can pullback the Thom form and integrate it. This is pulling back the Poincaré-dual of the zero
section and integrating it against the manifold, so as to ‘detect’ zeroes. Formally, let E → M
be a vector bundle over M . View M as an embedded submanifold of E, via the zero section,
identified with its image. Recall that there is an exact sequence of vector bundles over M ,

0→ TM → TE|M → E → 0,

where the rightmost map is the vertical derivative. In particular, the normal bundle of M in E
is E itself. It follows that the Poincaré-dual of E is the Thom class of E.

Definition 1.1.5. Suppose that E →M is an oriented vector bundle of rank k over a compact
oriented manifold M . The Euler class of E, e(E) ∈ Hk(M), is defined to be the pullback s∗ΦE

where [ΦE ] ∈ Hk
c (M) is the Thom class of E, and s : M → E is a smooth section.

As smooth sections induce the same map in cohomology (because they are all are homotopic
to the zero section), we have two immediate results.

Proposition 1.1.4. With E →M as above, if there exists a nowhere vanishing section s : M →
E, then e(E) = 0.

Proof. This proof follows ([Nic11],Theorem 4.4). Equip our bundle E →M with a metric. Let
ε > 0, and denote by Dε(E) the set of all vectors in E of length less than ε; an open subset.
As s is both nowhere vanishing and M is assumed compact, choose ε so that for each x ∈ M ,
we have ∥s(x)∥ > ε. Now, choose a representative Φε ∈ Ωk

c (E) of the Thom class of E so that
supp(Φε) ⊂ Dε(E). Then s∗Φε = 0, for the support of Φε is missed by s. As all sections induce
the same map in cohomology, we deduce that e(E) = 0.

Therefore the Euler class is an obstruction to the existence of a nowhere vanishing section.

Theorem 1.1.7. Let E →M be an orientable vector bundle of rank k over a compact orientable
n-manifold M . Let s : M → E be a section transverse to the zero section. Then we have,

I(M, s) =
∫
M
e(E).

Proof. This is simply employing the definition of the Euler class.

We have an alternative perspective in the language of intersection theory. The Euler class
measures whether we can unlink the image of a given section and the zero section, and the net
count is given by integration over M .
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Figure 1.1.8: Manifolds M and s(M) in E, with e(E) = 0 implying they can be seperated.

We now work towards dropping the transversality assumption on our section. The idea is to
first obtain local information about a zero, where in the special case of a transverse intersection,
we recover the oriented interesection number. If we use the local triviality of our bundle, and
normalise our section, we can produce a mapping of spheres, for which we then recall the notion
of degree. We shall need the following definition, which one can think of as differentiating a
vector field on Euclidean space,

Definition 1.1.6. Let s : M → E be a section of a vector bundle π : E → M . Let x ∈ M be
a zero of s. The vertical derivative of s at x is a linear map Dsx : TxM → Ex constructed as
follows. Choose a local trivialisation ψ : π−1(U) → U × Rk, where U is an open neighbourhood
of x. There is an isomorphism of vector spaces Φx = pr2 ◦ ψ|π−1(x) : Ex → Rk, and a map
sU = pr2 ◦ ψ ◦ s|U : U → Rk. Let v ∈ TxM . Define,

Dsx(v) := Φ−1
x (dsU )xv ∈ Ex.

This linear map is independent of choices made.

For more details on the vertical derivative, we refer the reader to ([RS18],Page 201). We
now define the local index about a zero. We let k = dimM , and s : M → E be a section with
an isolated zero at x ∈M . Choose a coordinate disk D centered at x ∈M , containing no other
zeroes, by means of a chart. Let S = ∂D, oriented as such. Choose an auxillary metric on E.
Choose D small enough so that E|S ∼= S × Rk. The restriction of s to our small sphere S and
subsequent normalisation results in a compostion of sequence of mappings,

S → S(E)|S ∼= S × Sk−1 → Sk−1.

We define the local degree of s at x to be the degree of this composition, denoted inds(x) ∈ Z.
It is independent of the choice of disk and Riemannian structure, for the degree is a homotopy
invariant. We now have two results.

Proposition 1.1.5. Let E → M be as above, with k = dimM . Let s : M → E be a section
transverse to the zero section, and let x ∈M be a zero of s. Then the local intersection number
of s at x agrees with the local degree, that is, ιx(s,M) = inds(x) ∈ Z.
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Proof. Consider the vertical derivative of s at x, Dsx : TxM → Ex. As s is transverse to M at
x, we have, for ι : M → E the zero section,

T0xs(M)⊕ T0xι(M) = T0xE
∼= TxM ⊕ Ex.

In particular, the image of TxM under dsx is not in the kernel of vertical projection T0xE → Ex.
On the other hand, s is a section, so dsx is an injection, and therefore the vertical derivative
of s at x, Dsx, is surjective. By dimensional reasoning, Dsx is an isomorphism. Examining
Definition 1.1.6, we see that the local degree of s at x is ±1 (a local diffeomorphism), according
to whether the vertical derivative preserves or reverses orientation. To say that ιx(M, s) = +1
(resp. −1) is to say that the orientation of T0xs(M) agrees (resp. disagrees) with Ex, which is
exactly that Dsx preserves (resp. reverses) orientation.

Before we give our ultimate result, we need some easy lemmata.

Lemma 1.1.8. Let F : Wn+1 →Mn be a smooth map from an oriented manifold W to a closed,
oriented and connected manifold M . Let X ⊆ W be a compact submanifold with boundary N ,
and suppose N is the disjoint union of submanifolds N1, . . . , Nk. Let fi := F |Ni. Then,

k∑
i=1

deg(fi) = 0.

Proof. This proof is drawn from ([Mad97],Page 102). Let f = F |N , then deg(f) =
∑k
i=1 deg(fi).

Let ω ∈ Ωn(M) be a closed bump n-form, i.e., we have
∫
M ω = 1. Then, by Stokes’ Theorem,

deg(f) =
∫
N
f∗ω =

∫
X
dF ∗(ω) =

∫
X
F ∗(dω) = 0.

We make use of the following local result, which should be understood as relating an index
sum of a vector field (here as a section of the tangent bundle) to the degree of an associated
Gauss map.

Lemma 1.1.9. Let U be an open subset of Rn. Let F : U → Rn be a smooth function with
isolated zeroes. At each zero z of F , the local degree indF (z) is defined. Let R ⊆ U be a
compact domain with smooth boundary, ∂R, and assume that F does not vanish on ∂R. Define
f : ∂R→ Sn−1 by f(x) = F (x)/∥F (x)∥. Then,

deg(f) =
∑

z∈R,F (z)=0
indF (z).

Proof. This proof is drawn from ([Mad97],Page 110). Write p1, . . . , pk for the zeroes of F in
the interior of R. Choose a collection Dj ⊂ int(R) of pairwise disjoint closed disks each of which
is centered at pj . Define fj : ∂Dj → Sn−1 by fj(x) = F (x)/∥F (x)∥. Define X := R−⊔j int(Dj).
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CHAPTER 1. THE POINCARÉ-HOPF INDEX THEOREM

The boundary of X is the disjoint union of ∂R and ∂Dj for each j, where each ∂Dj has the
opposite orientation when viewed as a boundary component of X. Thus, by the Lemma 1.1.8,

deg(f) =
k∑
j=1

deg(fj)

and the claim follows.

We now use a standard approximation trick to obtain our general result.

Theorem 1.1.10. Let π : E → M be an oriented vector bundle of rank n over an oriented
compact n-manifold M . Let s : M → E be a section with isolated zeroes x1, . . . , xq ∈M . Then,

∫
M
e(E) =

q∑
i=1

inds(xi).

Proof. (Sketch) The proof technique here is drawn from ([Ben19], Page 239-240, Theorem 14.4).
For each zero xj of s, choose a coordinate disk Dj about xj , Sj := ∂Dj , so that the collection of
such disks is pairwise disjoint, and say inds(xj) = deg(fj : Sj → Sn−1) for a suitable mapping
fj . Let s̃ : M → E be a section transverse to the zero section, and suitably close to s, so that
the zeroes of s̃ are each distributed in the interior of the disks Dj . Fix a zero x = xj of s, with
corresponding disk D = Dj . Write z1, . . . , zrj for the corresponding zeroes of s̃ in int(D). By
construction, the sections s and s̃ are homotopic along ∂D, so we may compute inds(xj) with s̃
instead. However, by the Lemma above, we have that,

inds(xj) =
∑
i

inds̃(zi).

where each zi is a non-degenerate zero of s̃. In particular,∫
M
e(E) = I(M, s̃) =

∑
z,s̃(z)=0

inds̃(z) =
q∑
j=1

inds(xj).

We shall conclude this chapter with the Poincaré-Hopf Index Theorem.

1.2 Vector Fields on Manifolds

Let M be a closed oriented manifold. Let v : M → TM be a vector field on M with isolated
zeroes {x1, . . . , xq}. In light of previous work, we have shown that the Euler number of M is
equal to the index sum of v about its zeroes, that is,∫

M
e(TM) =

q∑
i=1

indv(xi).
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1.2. VECTOR FIELDS ON MANIFOLDS

To prove the Poincaré-Hopf Index Theorem, it therefore remains to prove that for a compact,
oriented manifold M , we have

χ(M) =
∫
M
e(TM)

We take here, as a definition for the Euler characteristic χ(M),

χ(M) =
∑
i

(−1)i dimH i
dR(M).

We follow the approach outlined in ([Bot82], Pages 126-129). In particular, we recognise the
integral above as the self intersection number of the diagonal in M×M . We assume the reader is
familiar with the Künneth formula, as stated in ([Bot82], Page 47). Let M be a closed, oriented
n-manifold. Let {ωi} be a basis for H∗(M), and {τj} the dual basis under Poincaré-duality,
that is, we have, ∫

M
ωi ∧ τj = δij .

Let π, p : M×M →M be projections onto the first and second factor respectively. The Künneth
formula yields that,

H∗(M ×M) ∼=
⊕

q+k=n
Hq(M)⊗Hk(M).

In particular, {π∗ωi ∧ p∗τj} is a basis for H∗(M ×M). Write ∆ = {(x, x) |x ∈ M} for the
diagonal in M ×M , a closed oriented (via the diagonal map) submanifold. The Poincaré-dual
η∆ is of ∆ in M ×M is therefore defined, and can be written as a linear combination of our
basis elements,

η∆ =
∑
i,j

cijπ
∗ωi ∧ p∗τj

for some coefficients cij . Using the definition of the Poincaré-dual, together with a pullback
along the diagonal map ι : M →M ×M , we can determine our coefficients.

Lemma 1.2.1. The Poincaré-dual η∆ of the diagonal in M ×M is given by

η∆ =
∑
i

(−1)degωiπ∗ωi ∧ ρ∗τi.

Proof. The trick is to consider the integral
∫

∆ π
∗τk∧ρ∗wℓ, and its pullback via ι : M →M×M ,

namely,

∫
∆
π∗τk ∧ ρ∗wℓ =

∫
M
ι∗π∗τk ∧ ι∗p∗wℓ =

∫
M
τk ∧ wℓ = (−1)(deg wℓ)(deg τk)δkℓ.
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By definition,∫
∆
π∗τk ∧ p∗wℓ =

∫
M×M

π∗τk ∧ p∗wℓ ∧ η∆

=
∑
i,j

cij

∫
M×M

π∗τk ∧ p∗wℓ ∧ pi∗ωi ∧ p∗τj

=
∑
i,j

cij(−1)(deg τk+deg wℓ) deg wi

∫
M×M

π∗(wi ∧ τk) ∧ p∗(wℓ ∧ τj)

=
∑
i,j

cij(−1)(deg τk+deg wℓ) deg wi

(∫
M
ωi ∧ τk

)(∫
M
wℓ ∧ τj

)
= (−1)(deg τk+deg wℓ) deg wkckl.

We thus have, for k = ℓ,

(−1)(deg τk+deg wℓ) deg wkckl = (−1)(deg wℓ)(deg τk)δkℓ

and in particular, it follows, that

ckl =
{

0 if k ̸= ℓ,

(−1)degωk if k = ℓ.

Lemma 1.2.2. The normal bundle of the diagonal ∆ in M ×M , denoted by N∆, is canonically
orientation preservingly isomorphic to the tangent bundle T∆.

Proof. We only provide a sketch. Consider the following short exact sequences,

0 TM TM ⊕ TM TM 0

0 T∆ T (M ×M)|∆ N∆ 0.

v 7→(v,v) (v0,v1)7→ v1−v0
2

∼= ∼=

Via the diagonal map we identify the lower sequence over ∆ with the upper one over M . It
follows that N∆ ∼= TM ∼= T∆, and it can be checked that this isomorphism preserves orientation.
For a detailed proof, we refer the reader to ([Nic11], Page 17, Lemma 4.11).

As proved in the previous section, the Poincaré-dual of a submanifold is one and the same
thing (or more precisely, can be represented by the same form) as the Thom class of its normal
bundle, which is diffeomorphic to a tubular neighbourhood. Let Φ(N∆) be a form representing
the Thom class of N∆, and identify ∆ with its image under the zero section of N∆. Then,
omitting restriction maps, together with the fact that the Euler class of a bundle is the pullback
of its Thom class by a section,∫

∆
η∆ =

∫
∆

Φ(N∆) =
∫

∆
e(N∆) =

∫
∆
e(T∆) =

∫
M
e(TM)
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1.2. VECTOR FIELDS ON MANIFOLDS

where we’ve parsed through orientation preserving diffeomorphisms in the final equalities. In the
language of intersection theory, we have shown that the self-intersection number of the diagonal
in M ×M is the Euler number, that is,

I(∆,∆) =
∫
M×M

η∆ ∧ η∆ =
∫

∆
η∆ =

∫
M
e(TM).

Finally, we have,

I(∆,∆) =
∫

∆
η∆ =

∑
i

(−1)deg wi

∫
∆
π∗wi ∧ ρ∗τi =

∑
i

(−1)deg wi

∫
M
ι∗π∗wi ∧ ι∗p∗τi

=
∑
i

(−1)deg wi

∫
M
wi ∧ τi

=
∑
i

(−1)deg wi

=
∑
q

(−1)q dimHq(M) = χ(M).

This realises the Euler characteristic as the self interesection of ∆ in M , as was desired. We
now present the Poincaré-Hopf Index Theorem.

Theorem 1.2.3 (Poincaré-Hopf). Let v be a vector field on a closed manifold M , with isolated
zeroes x1, . . . , xq ∈M . Then,

χ(M) =
q∑
i=1

indv(xi).

Proof. If M is orientable we are done, and if M is non-orientable, the claim follows by passing
to the orientation double cover of M , a two sheeted smooth covering M̃ → M , and using the
fact that χ(M̃) = 2χ(M).

As it stands, there are two main directions in which the Theorem above can be generalised.
Namely, one can suppose that M is a compact manifold with non-empty boundary. If the vector
field v points outward along ∂M , the result again holds true with an identical formula. Some-
what lesser known is that if all zeroes lie within the interior, but the vector field may have
points on the boundary where it is not normal, one has the so called Morse-Index Formula.
This formula has a new boundary contribution term. We shall not concern ourselves with these
generalisations here, but we recommned the paper [Jub09] for a summary.

We shall now briefly consider some easy consequences of the Poincaré-Hopf Theorem, to-
gether with some famous applications.

Example 1.2.1. Let G be a compact Lie group. Then G admits a nowhere vanishing vector
field given by left translation of a fixed vector in TeG (in fact, TG is easily seen to be trivial).
Therefore χ(G) = 0. In particular, spheres of even dimensions are not Lie groups, for they
have Euler characteristic 2. Let us furnish an example of a vector field on S2 vanishing at the
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CHAPTER 1. THE POINCARÉ-HOPF INDEX THEOREM

poles. As usual, view the 2-sphere S2 as an embedded submanifold of R3, where the standard
coordinates on R3 are given by (x, y, z). We define a vector field v : S2 → TS2 by

v = −y ∂
∂x

+ x
∂

∂y
.

This vector field has two isolated zeroes; the poles N,S, both of which are non-degenerate (i.e.
the differential of v at each pole is non-singular). The index of v at each pole is given by the
determinant of the Jacobian matrix of v,

det
(

0 −1
1 0

)
= +1.

And indeed, χ(S2) = 2 = 1 + 1 = indv(N) + indv(S).

We’ll conclude this chapter with one or two additional results that we use later on, and are
of independent interest.

Theorem 1.2.4. Suppose that M is a smooth manifold with χ(M) = 0. Then M admits a
nowhere vanishing vector field. In particular, compact odd-dimensional smooth manifolds admit
nowhere vanishing vector fields.

Proof. We refer the reader to ([Hir76],Page 137).

If one allows boundary, we can double our manifold, that is, glue two copies along the identity
map of the boundary (and obtain smooth charts via collars), and ‘push’ the zeroes to the other
copy of our manifold.

Figure 1.2.1: Doubling a ‘handle’ along its boundary.

Theorem 1.2.5. Let M be a compact, connected manifold with boundary. Then M admits a
nowhere vanishing vector field.

Proof. We refer the reader to ([Hir76], Page 136).

Let us make a technical remark that we shall make use of in Chapters 2 and 4. Namely, we,
amongst other things, concern ourselves with the radial extension of a vector field over a disk
in construction arguments.
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1.2. VECTOR FIELDS ON MANIFOLDS

Example 1.2.2. This example is drawn from ([Hir76],Page 155). Suppose that n is even.
Consider Rn equipped with its standard Euclidean norm ∥·∥, and Sn−1 ⊂ Rn the (n−1)-sphere.
Let us consider a nowhere vanishing vector field defined on Sn−1, which we, after normalisation,
view as a smooth mapping f : Sn−1 → Sn−1. Let Dn = {x ∈ Rn | ∥x∥ ≤ 1}. We may extend f
radially to obtain a vector field F on Dn with an isolated zero at the origin. Precisely, define
F : Dn → Dn by

F (x) =
{
∥x∥f (x/∥|x∥) x ̸= 0,
0 x = 0.

Figure 1.2.2: The radial extension of a vector field over a disk.

Suppose that f is an O(n)-equivariant mapping, i.e. we have an O(n)-invariant vector field.
Let g ∈ O(n). For x ̸= 0, we have F (g · x) = ∥g · x∥f(g · x/∥g · x∥) = ∥x∥f(g(x/∥x∥)) = g ·F (x),
so that this extension procedures preserves invariance under an orthogonal action.
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Chapter 2

Line Fields on Manifolds

A line field on a smooth manifold assigns to each point a tangent line, and these tangent lines
vary smoothly with respect to the prescribed differentiable structure (see Figure 2.0.1). In the
spirit of Chapter 1, one can ask whether the behaviour of a line field on a smooth manifold
is captured by its topology. The answer is affirmative, and the purpose of this Chapter is to
demonstrate this, namely, we recall a Poincaré-Hopf Theorem for line fields on a manifold, that
is, given a line field defined on an open submanifold whose complement consists of a finite set of
points, the Euler characteristic, a global invariant, can be captured by means of local behaviour
of the line field near each singularity. For closed orientable surfaces, such a result can be traced
back to Hopf, outlined in ([Hop83]). In particular, Hopf relates the Euler characteristic to an
index sum of a line field, whose summands, the local indices, are now called Hopf Indices. These
differ from the indices we use in this chapter, in the sense that they need not be integers, but
lie within 1

2Z. The local indices whom are not integers convey additional information, namely
that the line field is not locally generated by a vector field in a neighbourhood of the singularity.
Such singularities are called non-orientable, and play an important role in this chapter. In 1955,
Lawrence Markus published a paper [Mar55] in the Annals of Mathematics which contained a
generalisation of Hopf’s result for line fields to arbitrary dimensions. Unfortunately, this result
was incorrect for surfaces, and odd dimensions, where counterexamples, and a new proof of the
result, were given by Crowley and Grant in ([CG17],2017). In this Chapter, we present the
generalisation to arbitrary compact manifolds, given by Crowley and Grant in ([CG17],2017).
Finally, let us mention that there are various results in the literature regarding line fields, with
varying degrees of generality amongst the definitions. We do not attempt here to give a full and
complete overview, and refer the reader instead to page 2 of [CG17].

Let us define line fields in the precise sense.

Definition 2.0.1. Let π : E → M be a vector bundle over a manifold M . A line field ξ on
E →M is a smooth section ξ : M → P (E), where P (E) denotes the fiberwise projectivisation of
E. In particular, a line field ξ can be realised as a line subbundle of E. We say that the line field
ξ has singularities x1, . . . , xq ∈ M if the corresponding section is defined on the complement,
that is, ξ : M − {x1, . . . , xq} → P (E)|M−{x1,...,xq}.
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Figure 2.0.1: The integral curves of some line fields.

We shall momentarily specialise to E = TM , and return to the general case later.

Example 2.0.1. Let v be a vector field on M with a finite number of isolated zeroes, say
x1, . . . , xq ∈ M . By taking the span of each nonzero tangent vector, we obtain a line field ξ
with singularities x1, . . . , xq. By an abuse of notation, we write ξ = ⟨v⟩. To be more precise
the line field ξ is obtained via post-composing v (when v is nonzero) with the quotient map
TM − {0} → PTM . In particular, note that nowhere vanishing vector fields generate globally
defined line fields. We shall see that the converse is in fact true, that is, a globally defined line
field yields a nowhere vanishing vector field.

The example above readily produces an uncountable number of examples, all of whom are
generated by vector fields. In such cases, we can easily visually depict the line field by drawing
integral curves without direction. However, not all line fields arise in this fashion. One key
obstruction is non-orientability. To see this, consider a line field ξ : M → PTM on M . View ξ
as a subbundle of TM ; a line bundle over M . That ξ is generated by a vector field is equivalent
to the existence of a nowhere vanishing section v : M → ξ. It is an elementary fact that
line bundles whom admit nowhere vanishing sections are trivial (see [Tu17], Page 235), and so
in particular orientable. Note that line bundles admit local sections, and so a given line field
(with no singularities!) is always locally generated by a vector field. We may summarise this
observation by means of a cohomological obstruction.

Proposition 2.0.1. A line field ξ → M is generated by a vector field if and only if the first
Stiefel-Whitney class w1(ξ) ∈ H1(M ;Z/2) (singular cohomology with Z/2 coefficients) vanishes.

Proof. The first Stiefel-Whitney class is zero if and only if the bundle is orientable, and a line
bundle is orientable if and only if it is trivial.

For background on Stiefel-Whitney classes, we refer the reader to [Mil74]. Let us now furnish
examples of line fields whom are not globally generated by a vector field.

Example 2.0.2. Consider the Klein Bottle K, a closed non-orientable surface with χ(K) = 0.
There is thus a nowhere vanishing vector field v (see Theorem 1.2.4) and so a line field ξ = ⟨v⟩,
which we view as a subbundle ξ ⊆ TK. We split TK = ξ ⊕ ν, and view ν as a line field on M .

26
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Figure 2.0.2: The Klein Bottle, viewed as a quotient.

If ν is generated by a vector field, TK decomposes into a direct sum of trivial line bundles, and
in particular, K is orientable, and thus ν is an example of a line field not generated by a vector
field.

Example 2.0.3. We exhibit a line field on a compact orientable 4-manifold which cannot be
lifted to a vector field. This example is drawn from ([Gre81], Example 14). Let M = S1×SO(3).
Now M is parallelizable, so TM ∼= M × R4 and PTM ∼= M × RP 3. Therefore, vector fields
on M can be identified with maps M → R4, and line fields identified with maps M → RP 3.
We recall that SO(3) is diffeomorphic to RP 3. Let φ : SO(3) → RP 3 be a diffeomorphism.
Define a line field ξ on M by ξ(x, y) = φ(y) for x ∈ S1, y ∈ RP 3. There is an induced map
ξ∗ : π1(M)→ π1(RP 3). Let α ∈ π1(S1) and β ∈ π1(SO(3)) be generators, then

ξ∗(α, β) = φ∗(β) ̸= 0.

Suppose that ξ = ⟨v⟩. We may suppose that v is normalised, and therefore a mapping M → S3.
Then ξ = p◦v where p : S3 → RP 3 is the canonical double cover. In particular, ξ∗ = p∗ ◦v∗, but
v∗(α, β) ∈ π1(S3) = 0, so ξ∗(α, β) = 0, which is a contradiction. Therefore ξ is a not globally
generated by a vector field.

Example 2.0.4. Consider the Möbius band as a bundle over the circle (see Figure 2.0.3). Take
the subbundle tangent to the fibers, it is a line field, whom is not globally generated by a vector
field. (For details, we refer the reader to [Kos93], Page 76).

Let us now introduce a construction fundamental to this chapter. Let ξ : M → PTM be a
line field on a manifold M . Choose a Riemannian metric on M . View ξ as a subbundle of the
tangent bundle, and consider the associated sphere bundle Sξ → M , a two sheeted covering of
M (an S0-bundle). An element of Sξ may be viewed (by an abuse of notation) as a pair (x, v)
where x ∈M and v ∈ ξ(x) has unit length, with respect to the metric. We define a vector field
vξ on Sξ by vξ(x,w) = w ∈ T(x,w)(Sξ) ∼= TxM , where we have used the fact that the fiber is
0-dimensional. Utilisation of this associated vector field and covering forms the heart of this
chapter, and shall be demonstrated in what is to come.
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Figure 2.0.3: The Möbius band viewed as a bundle over the circle.

Returning to matters at hand, in Example 2.0.1, we claimed that the existence of a line field
implies that of a nowhere vanishing vector field. Let us prove this in generality (the proof given
is a trivial adaptation of the argument given in ([CG17], Remark 2.4) and for the benefit of the
reader, we adapt similar notation).

Proposition 2.0.2. Let π : E → M be a rank n vector bundle over a closed manifold M of
dimension n. The bundle π : E → M admits a line field if, and only if, it admits a nowhere
vanishing section.

Proof. We only need prove the forward direction. Let ξ : M → P (E) be a smooth section, and
view ξ as a subbundle of E. We may split E ∼= ξ ⊕ F for some bundle F over M of rank n− 1
(say, by means of an auxillary metric). Let ν : M → ξ be transverse to the zero section. As M
is compact, we conclude that the zeroes of ν form a finite set, say {x1, . . . , xq} ⊆ M . Consider
the zero section M → F , by means of suitable bump functions, we may manipulate the zero
section to construct a section t : M → F such that in a neighbourhood of each zero xj of ν, the
section t is non-zero. Define s : M → E by s(x) = (ν(x), t(x)) ∈ ξ ⊕ F ∼= E, and one obtains
the desired nowhere vanishing section

In particular, if E →M is an oriented rank n vector bundle over a compact oriented manifold
M , which admits a line field, the Euler number of the bundle π : E →M vanishes.

Corollary 2.0.1. A closed manifold admits a line field if and only if it admits a nowhere
vanishing vector field.

Proof. This follows from Proposition 2.0.2.

Note also, that by Theorem 1.2.5, if M is compact and has non-trivial boundary, it admits
a nowhere vanishing vector field, and thus a line field. We shall now introduce singularities into
the mix. Suppose that a line field ξ on M has a singularity at x ∈M . By means of a coordinate
chart, choose a disk D centered at x, and denote its boundary by S, oriented as such. Formulate
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the associated two sheeted covering ρ of M − {x} induced by ξ, as above. Restrict ρ to S,
ρ|S : ρ−1(S)→ S. This is a two sheeted covering of an (n− 1)-sphere.

Definition 2.0.2. Carry through notation from above. If ρ|S is trivial, we say that x is ori-
entable, otherwise we say x is non-orientable.

If n ≥ 3, then Sn−1 is simply connected, and so any double cover is necessarily trivial.
In particular, for n ≥ 3 all singularities are orientable. For n = 2, we are concerned with
double covers of the circle, of which there are (up to identification) only two. Indeed, the
connected double covers of the circle are in correspondence with homomorphisms of the form
Z ∼= π1(S1) → Sym(2) ∼= Z2 (see [Hat02], Page 70). In particular, if ρ−1(S) is connected, the
covering is necessarily of the form S1 → S1 given by z 7→ z2, where we’ve identified the circle
as a subset of C. If ρ−1(S) is disconnected, it is simply the trivial double cover. Distinguishing
between non-orientable and orientable singularities in the case of surfaces is critical, and in
doing so Crowley and Grant were able to give a unified proof of a Poincaré-Hopf Theorem for
line fields. We shall now introduce the notion of projective index. The tool which we use to
define it is of course the Brouwer degree. The alert reader may foresee a technicality; even
dimensional real projective spaces are not orientable, and so if M has odd dimension, we resort
to working modulo 2. Let ξ, x and S be as above. Suppose (by shrinking if necessary), that
PTM |S is trivial, and Ψ : PTM |S → S×RPn−1 is a local trivialisation. Consider the following
composition f : S → RPn−1 defined by,

f : S ξS→ PTM |S
Ψ→ S × RPn−1 π2→ RPn−1.

Definition 2.0.3. With the data above, we define the projective index of ξ at x, denoted
p indξ(x), to be

p indξ(x) =
{

deg(f) ∈ Z, if n is even
deg2(f) ∈ Z, if n is odd.

Remark 2.0.1 (Hopf Indices). We follow [BSS16]. Let (M, g) be a closed oriented Riemannian
2-manifold. Let ξ be a line field on M with singularity at x ∈M . Let us recall how Hopf defined
the index of a line field ξ about a singularity x ∈M . Let U be a simply connected open coordinate
neighbourhood of x, and Z a nowhere vanishing vector field on U . Let C : [0, 1]→ U be a simple
closed curve which encircles x counterclockwise. We may define a map F : [0, 1]→ TM so that
ξ(C(t)) is the span of F (t) for each t ∈ [0, 1]. Let ∠[Z,F ]C(t) be the angle between Z(C(t)) and
F (t) with respect to the metric g. Let δC∠[Z,F ] be the total change (with sign) of this angle
on [0, 1] by traversing C once counterclockwise. Define j ∈ R by

2πj = δC∠[Z,F ].

It is clear that j ∈ 1
2Z. We call j the Hopf index of ξ at x ∈ M , denoted j = h indξ(x). It is

shown in ([Hop83], Chapter 3, Theorems 1.3,1.4) that this half integer is independent of C, the
vector field Z, and the metric g. It can be shown that the projective index defined above, is
exactly twice the Hopf index (see, [CG17], Remark 3.6). We refer the reader to Figure 2.0.4
for examples, both of which shall reappear later in Examples 2.0.9, 2.0.10. Let us conclude this
diversion by stating Hopf’s Theorem for line fields/elements.
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(a) Hopf Index +1/2.

•

(b) Hopf Index +1.

Figure 2.0.4: Two line fields, with singularities at the origin. The left hand side is a non-
orientable singularity.

Theorem 2.0.1 (Hopf, [Hop83], pg 113, Theorem 2.2). For a line field ξ on a closed orientable
surface M of genus g, with a finite number of singularities x1, . . . , xq in M , one has

q∑
k=1

h indξ(xk) = χ(M) = 2− 2g.

Retuning to the projective index, let us consider a special case.

Example 2.0.5. Let M be a closed oriented smooth manifold of even dimension n ≥ 2. Let v
be a vector field on M with a isolated zeros x1, . . . , xk. The vector field v defines a line field ξ
on the open submanifold M − {x1, . . . , xk} by ξ = ⟨v⟩. Let x ∈ {x1, . . . , xk}. Choose, by the
means of a chart, a small coordinate disk D about x which contains no other zeros of v. Write
∂D = S ∼= Sn−1. Restricting v to S and normalising yields a section v : S → STM |S . The
restriction of ξ to S yields ξ : S → PTM |S . We may choose D sufficiently small so as to have
the trivialisations Φ : STM |S

∼→ S × Sn−1 and Ψ : PTM |S
∼→ S ×RPn−1. There is a canonical

map ζ : STM |S → PTM |S given by taking the disjoint union of the standard 2-sheeted covering
on map on each fibre. We now consider the following diagram,

S STM |S S × Sn−1 Sn−1

PTM |S S × RPn−1 RPn−1

v Φ π2

ξ

Ψ π2

pζ

where π2 is projection onto the second factor and p : Sn−1 → RPn−1 is the standard 2-sheeted
covering map. The degree of p is +2 or −2 according to whether p is orientation preserving
or not; we orient RPn−1 (i.e. choose fundamental class) so that the map has degree +2. Let
f = π2 ◦ Φ ◦ v|S and g = π2 ◦ Ψ ◦ ξ|S . We note that ξ = ⟨v⟩ on S is precisely g = p ◦ f . The
degree is multiplicative under composition, and so,

p indξ(x) = deg(g) = deg(p ◦ f) = 2 deg(f) = 2 indv(x).

In particular, by the Poincaré-Hopf Index theorem, 2χ(M) = 2
∑k
i=1 indv(xi) =

∑k
i=1 p indξ(xi).
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Remark 2.0.2. This calculation demonstrates another interesting property in odd dimensions.
Given a vector field v on M , certainly −v generates the same line field. For the above to hold,
we’d need to have, at an isolated zero x of v, indv(x) = ind−v(x) = (−1)dimM indv(x).

This example demonstrates that given a line field on an even dimensional manifold with a
singularity, if it is generated by a vector field about the singularity, then the projective index is
a multiple of 2. The contrapositive is useful. If the projective index is odd, then the line field is
not locally generated by a vector field near the singularity.

Remark 2.0.3. Whilst we have specialised the example and definition above to TM → M ,
precisely the same definition of projective index works for line fields on a vector bundle E →M .
The example given above also follows through, and for the final conclusion, one uses a core result
from Chapter 1, namely Theorem 1.1.10.

Before we state the main result of Crowley and Grant’s paper, we are going to introduce
a fundamental technical tool regarding indices, namely that of the normal index. The normal
index is used to compare the indices of a certain vector field with the projective indices of our
line field, and ultimately leads to the proof of the Poincaré-Hopf Theorem for line fields given
by Crowley and Grant. In order to motivate the definition, we will first retrieve the definition
of the usual index via means of an oriented intersection number. Suppose v : M → TM is a
vector field on M , with an isolated zero at x ∈M . In the usual way, let S be a sphere centered
at x, above which STM |S is trivial. Let Φ : STM |S → S × Sn−1 be a local trivialisation (an
orientation preserving diffeomorphism, for we orient bundles with the local product orientation).
Define f : S v|S→ STM |S

Φ→ S × Sn−1 π2→ Sn−1, where by an abuse of notation, v|S denotes the
restriction of v to S, together with normalisation. By definition, indv(x) = deg(f). Fix a ∈ Sn−1.
Define σ : S → STM |S by σ(z) = Φ−1(z, a). Note (Φ ◦ σ)(S) = S × {a}. For generic choice of
a ∈ Sn−1 the embeddings σ and v intersect transversely i.e., transversality is a generic property.
In such a case, we may consider the oriented intersection number σ(S) ⋔ v(S) ∈ Z. Let us now
establish the desired result.

Proposition 2.0.3. We have indv(x) = σ(S) ⋔ v(S).

Proof. As Φ is an orientation preserving diffeomorphism, it suffices to compute our prescribed
intersection number in S × Sn−1. We are thus concerned with (S × {a}) ⋔ (Φ ◦ v)(S). Recall,
for generic a ∈ Sn−1, we have, deg(f) =

∑
q∈f−1(a) sign(dfq). It is clear there is a bijective

correspondence between the points f−1(a) and (S × {a}) ∩ (Φ ◦ v)(S), for we may consult the
following diagram,

S STM |S S × Sn−1 Sn−1

S S

v|S Φ π2

σ

id

π
π1

Given q ∈ f−1(a), consider the corresponding point Φ(v(q)). To say that the local intersection
number at Φ(v(q)) is +1 is to say that the orientation of v(S) (induced from v, which is an
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immersion, being a section) is the same as that of the fiber, which means exactly that sign(dfq) =
+1. Similarly, a local intersection number of −1 at Φ(v(q)) means exactly that the orientation
of v(S) is opposite to that of the fiber, and so sign(dfq) = −1. The result follows.

Carrying through notation as above, our auxillary metric determines an outward unit normal
to the sphere S, which can be viewed as an embedding η : S → STM |S . We now define the
normal index.

Definition 2.0.4. The normal index of v at x, denoted ind⊥
v (x), is by definition the oriented

intersection number,
ind⊥

v (x) = η(S) ⋔ v(S) ∈ Z.

Intuitively, this counts the number of times our vector field points outwards along the sphere S,
with signs.

Example 2.0.6. Figure 2.0.5 describes a vector field (on a surface) along a circle centered at
a zero whom nets a normal index of +1. Notice that the vector field wraps around the circle
twice. Therefore,

ind⊥
v (x) = 1 = 2− 1 = indv(x)− 1.

This phenomena is in fact general, as the incoming results will state.

Figure 2.0.5: Here purple denotes the outward normal, and black the vector field.

Establishing a relationship between indv(x) and ind⊥
v (x) is a natural first order of business,

and is done so in [CG17] by comparing intersection numbers in the product S × Sn−1, using
homological techniques, similar to those outlined in the first chapter, but parsed through into
the language of singular (co)homology. We have,

Lemma 2.0.2. With the data above, one has, for n ≥ 2,

ind⊥
v (x) = indv(x) + (−1)n−1.

Proof. We refer the reader to Lemma 3.4 in [CG17].

Example 2.0.7. Here we extend Example 1.2.1 from Chapter 1. Consider the 2-sphere S2 as
an embedded submanifold of R3, where the standard coordinates on R3 are given by (x, y, z).
We recall that we defined a vector field v : S2 → TS2 by v = −y∂x + x∂y (where we use the
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CHAPTER 2. LINE FIELDS ON MANIFOLDS

standard contraction of partial operators). This vector field has non-degenerate zeroes at the
poles. The index of v at each pole is given by the determinant of the Jacobian matrix of v,

det
(

0 −1
1 0

)
= +1.

(a) Local behaviour about a pole. (b) The Jacobian is rotation by π/2.

In particular, the normal index of v at either pole is zero (as intuitively expected, considering
the Gauss normal to S2 along a circle about a pole).

Example 2.0.8. Let n ≥ 3 be an odd integer. Define a vector field v : Rn → Rn on Rn by
v(x) = Ax, where A is an n× n matrix whom preserves the standard orietation on Rn. Then v
has an isolated zero at the origin, with indv(0) = sgn det(A) = +1. Thus the normal index of v
at the origin is ind⊥

v (0) = 2.

We now model our definition of the projective normal index. Let ξ be a line field with a
singularity at x ∈ M . By means of a chart, choose a sphere S centered at x, and let η : S →
PTM |S be the projectivised outward unit normal to S, i.e., a normal line to S.

Definition 2.0.5. We define the projective normal index of ξ at x, denoted p ind⊥
ξ (x), to be

the oriented intersection number, p ind⊥
ξ (x) = η(S) ⋔ ξ(S) in even dimensions, and the mod 2

intersection number η(S) ⋔2 ξ(S) in odd dimensions.

Consider the example given in Figure 2.0.5, but with lines, rather than vectors. We see that
the bottom vector whom pointed inwards now counts, and one nets a +2 normal projective
index! In a similar way to Lemma 2.0.2, one obtains the following relationship between the
projective indices.

Lemma 2.0.3. For even n, p ind⊥
ξ (x) = p indξ(x) − 2. For n ≥ 3 odd, we have p indξ(x) =

p ind⊥
ξ (x) = 0 ∈ Z/2.

Proof. This is the content of Lemmata 3.8 and 3.9 in [CG17].

In particular, one has the following immediate consequence of the previous lemmata.

Proposition 2.0.4. Let M be a compact manifold of even dimension, and let v be a vector field
on M with isolated zeroes x1, . . . , xk. Let ξ = ⟨v⟩ on M − {x1, . . . , xk}. Then, as for regular
indices in Example 2.0.5, we have the following relationship between the normal indices,

p ind⊥
ξ (x) = 2ind⊥

v (x).
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We shall now state Crowley and Grants Poincaré-Hopf Theorem for line fields on a compact
manifolds, and then provide the underlying strategy.

Theorem 2.0.4. Let M be a compact manifold of dimension n ≥ 2, and let ξ be a line field
on M with finitely many singularities x1, . . . , xq. If ∂M ̸= ∅, we assume additionally that the
singularities lie in the interior of M , and that the line field is normal to ∂M . Then,

2χ(M) =
q∑
i=1

p indξ(xi)

where the equality is interpreted as congruence modulo 2 if n is odd.

Remark 2.0.4. Notice that in even dimensions, this has the following consequence. A line field
on a closed manifold cannot have only a single singularity, that of which is non-orientable.

Rather than prove this result, we shall provide an overview of the techniques used. The
statement is first proved for a closed manifold M , for the general case follows by doubling M
along its boundary to obtain a closed manifold, and applying the case that of which has been
established. Thus let us assume that M is closed. If n is odd, it is simply the content of
Lemma 2.0.3, and so we are concerned only with even dimensions at least 2. Here is a quick
overview. First, excise the interiors of disks centered at each singularity, this yields a manifold
with boundary on which the line field is globally defined. We pass to the associated cover, and
consider the associated vector field. By gluing in disks along the boundary components of this
associated covering, we obtain a closed manifold. We extend our vector field over these glued
in disks to obtain a vector field with isolated zeroes. We now apply the classical Poincaré-Hopf
Theorem together with the Riemann-Hurwitz formula and several established lemmata to obtain
the result. We’ll now proceed through the details a bit more carefully.

Construction 2.0.1 (Excise and Radially Extend). For each singularity xi of ξ, choose a
coordinate disk Di centered at xi. Organise our disks so that the family {Di}qi=1 is pairwise
disjoint. Define,

N := M −
q⊔
i=1

int(Di).

Then N is a compact manifold with boundary, and the restriction ξ|N yields a globally defined
line field on N , and thus (by means of a metric) an associated double cover p : Ñ → N , together
with a vector field vξ|N on Ñ . The restriction of this double cover to a boundary component
on N yields a two sheeted covering of an (n − 1)-sphere, which is trivial if and only if the
corresponding singularity is orientable. We have ∂Ñ = p−1(∂N). By gluing in disks along the
boundary components of Ñ , we obtain a closed manifold M̃ , together with a map π : M̃ → M
which extends p, and is a branched two sheeted covering, with branch points corresponding to
the non-orientable singularities. Fix i ∈ {1 . . . , q}, then π−1(xi) consists of either a single point
(if xi is non-orientable), or two points (if xi is orientable). We now radially extend the vector
field vξ|N over the glued in disks to obtain a vector field v on M̃ with a finite number of isolated
zeroes. See Example 1.2.2 for radial extension over a disk. In particular, if k denotes the number
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CHAPTER 2. LINE FIELDS ON MANIFOLDS

of non-orientable singularities, then the vector field v has 2q − k zeroes, corresponding to the
number of disks glued along the boundary components of Ñ . In ([CG17]), Crowley and Grant
establish the following.

Lemma 2.0.5. For n even, with the data of ξ and v as above, we have

p ind⊥
ξ (x) =

∑
y∈π−1(x)

ind⊥
v (y).

Proof. See Lemma 4.1 in [CG17]. We notify the reader that the proof uses a so called ‘push-pull’
formula. For details on this, we refer the reader to here.

Equipped with this result, and the Riemann Hurwitz formula, which yields χ(M̃) = 2χ(M)−
k, we use the Poincaré-Hopf Theorem together with several established lemmata to move as
follows.

2χ(M) = k + χ(M̃)

= k +
q∑
i=1

∑
y∈π−1(xi)

indv(y)

= k +
q∑
i=1

∑
y∈π−1(xi)

(ind⊥
v (y) + 1)

= k + (2q − k) +
q∑
i=1

∑
y∈π−1(xi)

ind⊥
v (y)

= 2q +
q∑
i=1

p ind⊥
ξ (xi)

= 2q +
q∑
i=1

(p indξ − 2)

=
q∑
i=1

p indξ(xi)

which yields the desired result

We shall now furnish examples.

Example 2.0.9 (A line field on the 2-sphere). Consider the vector field defined on S2 as in
Example 2.0.7. By taking the span of each non-zero tangent vector, we obtain a line field ξ on
S2 − {N,S} where N and S denote the north and south poles respectively. About each pole,
the line field looks as in 2.0.4, with projective index +2 (so Hopf index +1). In particular,

2χ(S2) = 4 = 2 + 2 = p indξ(N) + p indξ(S).

It is also interesting to compare the normal indices in the case where v has generated ξ, which
is the content of Proposition 2.0.4.
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In order to construct non-trivial examples, where one can still easily compute, we use the
following construction.

Construction 2.0.2 (Proto-line fields). Here we recall brielfy a construction given in [BSS16].
Let (M, g) be a closed oriented Riemannian 2-manifold. Let X and Y be vector fields on M ,
with zero sets zX and zY respectively. We define a line field ξX,Y on M\(zX ∪ zY ) by assigning
to each point p ∈ M\(zX ∪ zY ) the line bisecting the pair (X(p), Y (p)) in TpM , relative to
the metric g. The line field ξX,Y is called a proto-line field. For such a line field, we have the
following helpful criterion for computing its Hopf Index at an isolated singularity x ∈ zX ∪ zY ,

h indξX,Y
(x) = 1

2 (indX(x) + indY (x)) .

For this, we refer the reader to ([BSS16],Proposition 11).

Example 2.0.10 (Baseball Line Field). We construct a line field on the 2-sphere with four
singularities, each of projective index 1. It is called a baseball line field, for the stitching on
baseball is similar to behaviour of the line field. This is drawn from ([CG17],Example 2.9).
First, we establish a proto-line field on the plane, that is, R2 with its standard metric. Consider
the vector fields X and Y on the plane given by, at each point (x, y) ∈ R2,

X(x, y) =
(
x+ y
y − x

)
, Y (x, y) =

(
1
1

)
.

Let ξX,Y be the induced proto-line field. Then ξX,Y has a single singularity at the origin, with
projective index +1 (this is easily computed with the above formulae). For more details, we
refer the reader to the so called ‘Lemon’ proto-line field ([BSS16], Example 3). Visually, this is
the line field of Hopf index 1/2 from Figure 2.0.4. We use this example to construct a line field
on the 2-disk, parallel to the boundary, with two singularities, each of projective index +1. This
line field intuitively looks like,

Figure 2.0.7: Here we’ve sketched the integral curves of the line field on the disk, and used
purple to denote its boundary.

By gluing together two copies of this disk along their common boundary, we obtain a line
field on the 2-sphere with four non-orientable singularities, each of projective index +1. And
indeed, 2χ(S2) = 4.
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Example 2.0.11. This example is taken from [CG17]. Let n be even at least 2. Consider a
line field on Dn ⊂ Rn given by rays emanating from the origin. If n = 2, this looks visually as
follows,

•

Figure 2.0.8: Emanating Rays.

By identifying antipodal points on the boundary of Dn, this descends to a line field on RPn
with a single orientable singularity of projective index +2. As n is even, we have 2χ(RPn) = 2,
and the Theorem is confirmed. We remark that this example is of interesting consideration
if one tries to refine the degeneracy of Theorem 2.0.4 in odd dimensions, for if n is odd, we
have χ(RPn) = 0, and one has a line field, again with a single singularity, and constructing an
alternative index definition which retains such a high level of compatibility seems unlikely (as
remarked in [CG17],Remark 4.2).
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Chapter 3

Orbifold Theory

Orbifolds are spaces that are locally modelled on finite quotients of Euclidean space. They were
first formally introduced by Satake in the 50’s, under the title of V -manifolds (see [Sat56]), and
futher developed upon by Thurston in the 70’s. A modern perspective is to view an orbifold as
a special kind of differentiable stack, which one can view as a Morita equivalence class of certain
Lie groupoids, where a choice of Lie groupoid is equivalent to choosing an atlas on the underlying
topological space, the ‘coarse’ quotient. In this Chapter, we first recall some basic definitions
and properties regarding orbifolds, together with Satake’s Poincaré-Hopf and Gauss Bonnet
Theorem (see [SAT57]). The second half is devoted to the perspective of orbifolds as groupoids,
concluding with a discussion of intersection theoretic results in the category of orbifolds.

3.1 Basic Theory

In this section, we follow the overall structure of [ALR07] closely, but our notation and technical
definitions are drawn from [KL14]. We shall now define orbifolds.

Definition 3.1.1. Let X be a paracompact Hausdorff topological space. Fix n ∈ N.

1. An orbifold chart of dimension n for an open subset U ⊆ X consists of the following data;
an open non-empty connected subset Û ⊆ Rn, a finite group G of smooth automorphisms
of Û , a G-invariant, onto map Û → U which induces a homeomorphism from Û/G onto
U ⊆ X. We shall formally frame this data as a tuple (Û , G), leaving U to be clear from
notational convention. We call the pair (Û , G) a local model (or chart) on X, which
uniformises the open set U . We summarise with a triangle.

Û U

Û/G

∼=

2. By an embedding λ : (Û , G) ↪−→ (V̂ ,H) between two local models X we mean a smooth
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embedding λ : Û → V̂ for which,

Û V̂

X

is commutative.

3. An n-dimensional orbifold atlas on X consists of a collection of n-dimensional local models
U = {(Û , G)} which cover X and are locally compatible in the following sense: for any two
local models (Û , G), (V̂ ,H), and a point x ∈ U ∩ V , there exists an open neighbourhood
W ⊆ U ∩ V of x and a local model (Ŵ ,K) for W such that we have two embeddings,
λ1 : (Ŵ ,K)→ (Û , G) and λ2 : (Ŵ ,K)→ (V̂ ,H).

Figure 3.1.1: Local compatibility of charts.

4. We say that an atlas U refines another atlas V if for every chart in U there exists an
embedding into some chart of V. We call two atlases equivalent if they admit a common
refinement.

Remark 3.1.1. Consider a quotient Û/G modelling an open subset of X. The assumptions
prescribed in the above definition yield that G acts effectively on Û , that is, if g · x = x for all
x ∈ Û , then g is the identity element of G. This particular consequence is highlighted in our
forthcoming definition.

Remark 3.1.2. For completeness, let us momentarily diverge to a technical result. Some
authors will state that, for an embedding λ : Û → V̂ , there is an associated group monomorphism
G → H, with respect to which λ is equivariant. This actually follows from our definition, and
is an important technical result for the theory.

Proposition 3.1.1. For two embeddings λ, µ : (Û , G) ⇒ (V̂ ,H), there exists a unique h ∈ H
for which µ = h ◦ λ. In the special case for which we view an element g ∈ G as an embedding
of the chart (Û , G) into itself, the two embeddings λ and λ ◦ g yield a unique h ∈ H for which
λ ◦ g = h ◦ λ. We denote this h by λ(g), and hence associate to our embedding λ : Û → V̂ an
injective group homomorphism λ : G→ H.
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Proof. This result is proved in the appendix of a paper by Moerdijk and Pronk, [MP97].

The proposition above tells us that an embedding is equivariant with respect to its associated
group monomorphism.

With this observation, we now make a general definition (following [KL14]) about mappings
between local models (not necessarily on the same space).

Definition 3.1.2. A smooth map between local models (Û1, G1) and (Û2, G2) is given by a
smooth map f̂ : Û1 → Û2 and a homomorphism ρ : G1 → G2 so that f̂ is ρ-equivariant. We
make no assumption on ρ, it need not be injective or surjective.

In this way, embeddings of charts on an orbifold can be viewed as smooth maps of such. We
now come to a fundamental definition.

Definition 3.1.3. An effective orbifold X of dimension n is a paracompact Hausdorff space X
equipped with an equivalence class of n-dimensional orbifold atlases. We write X = (X, [U ]).

This definition is slightly more general than Satake’s original definition of orbifolds, as ‘V-
manifolds’. In particular, we do not require that the fixed point set of each local action has
codimension at least 2 (this forbidds, for example, reflections through a hyperplane). We shall
see that such an assumption is closely related to orientability of an orbifold, and mainly serves
a technical purpose. We call such orbifolds ‘codimension 2’ orbifolds. We say that X is compact
(resp. connected) if the underlying topological space X is compact (resp. connected).

We shall almost exclusively work only with effective orbifolds, but we should point out that
there are several important examples of non-effective orbifolds, such as the inertia orbifold (see
Chapter 4 of [ALR07]). Furthermore, we shall use fonts such as X ,Y,O to denote orbifolds,
and plain fonts X,Y,O to denote their respective underlying topological spaces. We shall also
sometimes write |O| to denote the underlying topological space. To each equivalence class of
orbifold atlases on X, there is a unique associated maximal atlas. In particular, by an abuse
of notation, we shall tacitly work with a fixed maximal atlas (see Chapter 1 of [ALR07] for
details), and we write the datum as a pair X = (X,U). Before we proceed to examples and the
notion of morphism, we need a few more basic definitions, namely the notion of boundary, and
orientability.

Definition 3.1.4. An orbifold X with boundary is defined similarly to the above, except that we
allow each Û to be a connected open subset of [0,∞) × Rn−1. For an orbifold X , the boundary
∂X consists of points x in the underlying topological space for which there is a chart Û/G about
x, so that x corresponds to an orbit in (Û ∩ ∂Rn+)/G. An orbifold is closed if it is compact, and
its orbifold boundary is empty.

Definition 3.1.5. An orbifold X with a given atlas U is locally orientable if the atlas U =
{(Û , G)} is so that each group G consists of orientation preserving automorphisms. It is ori-
entable if the embeddings of charts preserve orientation. We say that it is oriented if a orientation
for each connected open subset Û has been chosen.
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Remark 3.1.3. The chart domain Û in a local model pair (Û , G) is required to be a connected
open subset of Euclidean space. An equivalent definition is to allow chart domains to be con-
nected smooth manifolds of a fixed dimension. Indeed, if U is an atlas consisting of pairs (Û , G)
where Û is a connected smooth manifold, then there is a canonical refinement of U to an atlas
consisting of charts whose domains are subsets of Euclidean space, the refinement being given
by an argument involving the exponential map and invariant metric on each chart. We shall
often pass between these two equivalent definitions when working with examples, for ease of
presentation. For more details, we refer the reader to ([Sch15],Page 9). Finally, In a similar
fashion to the above we can define complex orbifolds.

Fix an orbifold X = (X,U). If each local action is free, then X is, in addition, a locally
Euclidean topological space, and so a manifold. In particular, the fixed points amongst the local
data are thus a distinguishing difference, and are therefore called singular points. We make this
notion precise. Let x ∈ X, and Û/G a chart about x. Choose a representative x̂, and consider
the associated isotropy group Gx̂. This group is, up to conjugacy, independent of the choices
made, and we denote its isomorphism class by Gx, called the local group at x (see [ALR07],
Definition 1.5). If |Gx| ≠ 1, then we call x a singular point. The set of all points in X with non-
trivial local group is called the singular set of X, denoted Σ(X ). Points with trivial local group
are called regular points. It is known that the collection of regular points is a smooth manifold
which forms an open dense subset of the underlying topological space. In low dimensions, we can
completely classify the structure of the singular points. We use the following result regarding
the local structure to do so.

Theorem 3.1.1. An orbifold X is locally modelled on Rn/G, where G acts as a finite subgroup
of O(n).

Proof. (Sketch) The proof here is drawn from ([Coo00],Theorem 2.3, Page 24). Let x ∈ |X |.
Let (Û , G) be a local model about x, and x̂ a representative. Consider the associated isotropy
group, Gx̂; a finite group of diffeomorphisms Û → Û fixing x̂. Choose a Gx̂-invariant Riemannian
metric on Û , say by averaging. The exponential map yields a Gx̂-equivariant diffeomorphism
from an open neighbourhood of the origin in Tx̂Û to a Gx̂-invariant neighbourhood Ûx̂ of x̂ in
Û . The action of Gx̂ on Tx̂Û is linear and as a subgroup of O(n), and therefore the action of
Gx̂ on Ûx̂ is conjugate, via the exponential map, to a linear action. The claim follows.

For details regarding the exponential map, we refer the reader to ([Bre72], Page 305). It
follows that for a local model pair (Û , G) about x, we may assume that G = Gx acts linearly
and as a subgroup of O(n). Several authors refer to such a pair, writing say (Rn, G), as a linear
chart. The finite subgroups of O(2) are understood, so we have the following description of local
models of 2-dimensional orbifolds.

Corollary 3.1.1 (Singular Types of 2-orbifolds). For a 2-orbifold O, let x ∈ O be a singular
point. Then the local group Gx is a finite subgroup of O(2), and either

1. Gx is a cyclic rotation group, Zk for some k,which yields a cone point of angle 2π/k.
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Figure 3.1.2: Singularities in dimension 2.

2. Gx is a reflection of order 2, and x is a mirror point.

3. Gx is a dihedral group D2k, of order 2k, giving a corner point x.

In particular, the singular set of an orientable 2-orbifold is discrete, consisting only of cone
points. Furthermore, we see that the underlying space of a 2-orbifold is a topological 2-manifold
(potentially with boundary).

Example 3.1.1 (A Note on Orientation). Earlier we mentioned that an orientable orbifold
satisfies Satake’s fixed point condition. Indeed, let X be an orientable (locally orientable is all
that is required) orbifold, and suppose (Rn, G) is a linear chart about a point. If G fixes a
hyperplane V ⊆ Rn, which is to say that the fixed point set has codimension 1, consider V ⊥.
The G-action restricts to V ⊥ in an effective manner, and thus if G is not acting trivially, it must
act as Z2 via reflection about V , which is non-orientable.

Note that, in particular, if one is working with a codimension 2 orbifold of dimension 2, the
singular set just consists of points. We now come to the notion of a smooth map. We follow
([KL14], Page 7) and define a smooth map of orbifolds as follows.

Definition 3.1.6. A smooth map f : X → Y between orbifolds is given by a continuous map
|f | : |X | → |Y| with the property that for each x ∈ |X |, there are local models (Û , G) about x,
(V̂ ,H) about |f |(x) ∈ |Y|, together with a smooth map f̂ : (Û , G) → (V̂ ,H) of local models, so
that the diagram,

Û V̂

U V

f̂

|f |

is commutative. Smooth maps can be composed, and a diffeomorphism f : X → Y is a smooth
map with a smooth inverse. In this case, Gx is isomorphic to Gf(x).

Remark 3.1.4. Historically, there have been issues with the notion of a smooth map between
orbifolds first provided by Satake. For example, the desired property that the pullback of an
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orbifold vector bundle by a smooth map is an orbifold vector bundle, may not always hold
(see section 4.4 of [CR01] and section 2.4 of [ALR07]). Fortunately, the issues are resolved by
introducing another notion of a map between orbifolds, that of the Chen-Ruan good map ( see
section 4.4 of [CR01]) or, equivalently, the Moerdijk-Pronk strong map (see, for example, section
5 of [MP97]). In this way, upon considering the correct notion of an orbifold morphism, the
theory of orbifolds begins to distinguish itself from its manifold counterpart. A diffeomorphism
in our language is a good map, and so compatible with both sheaf and bundle type constructions.

Example 3.1.2. Define X = R×C, and consider a uniformising structure (R×C,Z4, π : R×C→
(R × C)/Z4) where Z4 acts on C by multiplication of

√
−1. Define a map f̂ : R → R × C by

f̂(t) = (t, t2). Then f := π ◦ f̂ is a smooth map between orbifolds.

R R× C

R (R× C)/Z4

f̂

f

π

This way of constructing a smooth map generalises to constructing morphisms between global
quotients M/G, which we’ll discuss in the example below.

Later on, we shall be concerned with generalisations of classical theorems to the setting of
orbifold. In particular, we shall need the notion of a metric.

Definition 3.1.7. A Riemannian metric on an orbifold O = (O,U) is given by a collection of
Riemannian metrics on the chart domains Û ’s so that each G acts isometrically on Û , and the
embeddings of charts on O are isometries with respect to these metrics.

Existence is taken care by a generalisation of the usual partition of unity argument, which in-
volves averaging (see Proposition 2.20 in [MM03]). We shall now furnish a collection of examples,
varying in degree of complexity.

Example 3.1.3 (Quotient Orbifolds). Recall that if a compact Lie group G acts smoothly
and freely on a manifold M , then M/G can be equipped with a smooth structure so that the
projection M → M/G is a principal G-bundle. Suppose now G acts smoothly (say a left ac-
tion), effectively, but only almost freely (i.e., finite stabilisers). The quotient M/G is then an
orbifold. The underlying topological space is M/G equipped with the quotient topology. Fix
x ∈ M . By the differentiable slice theorem ([Bre72], page 308), there exists a a Gx-invariant
neighbourhood U of x along with a G-equivariant map G×GxU →M which is a diffeomorphism
onto an open neighbourhood N of the orbit of x (so N is a G-space). Identify U with an open
subset of Rn, denoted Û , via a diffeomorphism f : Û → U . We let Gx act on Û so that f is
Gx-equivariant. An orbifold chart about x is given by (Û , Gx, φ) where φ : Û →M/G is defined
as follows; observe that (G×Gx U)/G is homeomorphic to N/G and the former is identified with
U/Gx. Now by definition, φ must map onto an open subset of M/G, and so it is defined via
Û → U → U/Gx → N/G. Collecting such charts as x runs over M , we obtain an orbifold atlas
on the orbit space M/G, where local compatibility of our charts is taken care of by sufficiently
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shrinking our open sets U . The resulting orbifold, again denoted by M/G, is called an effective
quotient orbifold. A special case is for which G is a finite group, in this case such an orbifold is
called an effective global quotient

This example, and its varies subfamilies, motivates a definition.

Definition 3.1.8. An orbifold O is called good (or developable) if O = M/G for some manifold
M and discrete group G. We say O is very good if G is a finite group. Orbifolds that are not
good are called bad.

We’ll now provide examples of very good, and bad orbifolds, amongst others.

Example 3.1.4 (Coordinate Reflection on the Torus). We now specialise to examples from a
class called Toroidal orbifolds, these are orbifolds where we consider a quotient of the n-torus
by a finite subgroup G ⊂ GLn(Z) acting smoothly. Let Tn = (S1)n = (R/Z)n be the n-torus,
and consider the action of Z2 on Tn generated by the involution τ which acts by complex
conjugation on each coordinate. The resulting orbit space Tn/Z2 is an orbifold with 2n singular
points; the singular points having coordinates chosen from {0, 1/2}. A special case is the so
called pillowcase orbifold. View the torus T2 = S1 × S1 as a submanifold of R3. Let Z2 act on
T2 via (z, w) 7→ (z̄, w̄). The orbifold T2/Z2 has underlying topological space (homeomorphic to)
S2, and four singular points, each with local group Z2. We may visually interpret this action as
a rotation by π around an axis,

Figure 3.1.3: Our pillowcase.

This example allows us to realise S2 as the underlying coarse space of a “flat” orbifold (we’ll
make sense of this later, once we’ve discussed curvature, for now, we refer the reader to here).

Example 3.1.5 (Mirror). Let Z2 act on Rn by reflection through a hyperplane. The quotient
Rn/Z2 is an orbifold, which we call a mirror. Its singular set is exactly the hyperplane, and
has codimension 1. This example is not an orbifold within the stricter definition of Satake.
Moreover, this particular consideration allows us to construct an interesting class of examples;
manifolds with boundary realised as orbifolds without. Let M be an n-manifold with boundary.
We may provide M with the structure of an orbifold as follows. We consider each point x ∈ ∂M
to be modelled on the quotient Rn/Z2, where the action of Z2 is generated by reflection about
the hyperplane in the half space model about x. The resulting orbifold has singular set ∂M ,
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Figure 3.1.4: An awkward rugby ball, and Thurston’s teadrop, a ‘bad’ orbifold.

and the singular points are thought of as ‘mirror’ points, with local group Z2. (See Example
1.3.3 at [Car19]).

Example 3.1.6 (Orbifold Structures on the 2-sphere). In this example, we pass to and from
identification with complex structure. This example closely follows ([BH13], Example 1.4, page
587). Identify the 2-sphere S2 with C∪{∞}. Let V0 = C ⊂ S2 and V∞ = S2\{0}. Let n and m
be two positive integers. We define an orbifold structure on S2 with the datum of two charts.
Define mappings, q0 : C→ V0 by q0(z) = zm and q∞ : C→ V∞ by q∞(w) = 1/wn. Let G0 be the
group of all rotations of order m fixing 0, acting on C (identified with the cyclic group of order
m). Let G∞ be the group of all rotations of C fixing 0 whose order is n (identified with the cyclic
group of order n). There are two uniformising systems, (C, G0, q0) and (C, G∞, q∞), which cover
S2. We model the intersection V0 ∩ V∞ with C\{0} and the restriction of q0, call it q#. There
are then two embeddings; into the q0 chart this is simply the inclusion map C\{0} → C, and for
the q∞ chart, we define λ : C\{0} → C by λ(z) = (1/z)m/n, then q∞ ◦ λ = q#. We thus have
a (complex) orbifold structure on S2. By varying choices of n and m, we obtain rather famous
examples, for example, set n ̸= 1, m = 1, then the corresponding orbifold is called a ‘teardrop’.
In fact, this orbifold is good (i.e., a global quotient) if and only if m = n, in which case it is the
canonical quotient S2/Zm by rotations.

Example 3.1.7 (Symmetric Product). Let M be a smooth manifold. Let n be a positive integer,
at least 2. Consider the product Mn = M × · · · ×M (n times). Consider the symmetric group
of degree n, denoted Sn, acting on Mn by permutation of coordinates. The quotient M/Sn is an
orbifold, a global quotient at that. Furthermore, the diagonal in the product is the fixed point
set. This singular set therefore looks like a copy of M inside of Mn.

Example 3.1.8 (Gorenstein Orbifolds). We say that an n-dimensional complex orbifold X is
Gorenstein (or an SL-orbifold) if all local groups Gx are subgroups of SL(n,C). Gorenstein
orbifolds are of particular interest, for example, they are involved in the so called Crepant reso-
lution conjecture and, in particular, have Z-graded Chen-Ruan cohomology, with their canonical
bundle (top exterior power of the cotangent bundle) being an honest line bundle! (We refer the
reader to [CR00] for details on the Chen-Ruan cohomology).
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3.2 Bundles on Orbifolds

We now come to several standard geometric constructions, namely those of bundles, forms and
(a little bit of) cohomology. An orbifold bundle is locally a G-bundle for varying finite G. We
require that sections of orbifold bundles consist of locally equivariant sections, compatible with
the underlying embedding data. A common way to define a bundle over an orbifold is first locally
over each chart, and then glue together the quotients. Let us provide a general definition, drawn
from [KL14].

Definition 3.2.1. An orbifold fiber bundle with total space O1, base space O2 and fiber F (a
smooth manifold), consists of a smooth map of orbifolds π : O1 → O2 for which,

1. The underlying map |π| is surjective,

2. For each p ∈ |O2|, there is a local model (Û , Gp) about p, where Gp denotes the local group
at p, together with an action of Gp on F and a diffeomorphism (Û ×F )/Gp → O1||π|−1(U)
so that the diagram,

(Û × F )/Gp O1

Û/Gp O2

is commutative.

Definition 3.2.2. A smooth section s of an orbifiber bundle π : O1 → O2 consists of a smooth
map s : O2 → O1 such that π ◦ s is the identity on O2.

In particular, the local lifts of a smooth section consist of equivariant sections of the form
Û → Û × F .

Remark 3.2.1. Let us comment on a general perspective. For a fixed atlas U on an orbifold
O, we may consider the disjoint union

∐
Û of chart domains (this is the object space of a

groupoid induced by O). Bundles and sheaves (and their associated constructions), may be
viewed as a sequence of data defined over this union, satisfying various compatibility conditions.
This approach is taken by several authors, and is demonstrated below. However, each example
satisfies our underlying definition given above.

Construction 3.2.1 (Recovering |O| via our atlas). Fix an orbifold O = (O,U). Let (Û , G)
and (V̂ ,H) be overlapping charts, x ∈ U ∩ V . By hypothesis, there is a third chart (Ŵ ,K),
x ∈ W ⊆ U ∩ V , and two embeddings λ1 : (Ŵ ,K) → (Û , G) and λ2 : (Ŵ ,K) → (V̂ ,H). We
may use λ1 and λ2 to produce a diffeomorphism,

λ12 := λ2 ◦ λ−1
1 : λ1(Ŵ )→ λ2(Ŵ ).

Related to an embedding is an associated group monomorphism with respect to which the
embedding is equivariant. In this case there are two injections K → G and K → H, and we
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may view λ12 as a K-equivariant diffeomorphism. We glue Û/G and V̂ /H together according
to λ12, that is, we say [û] ∼ [v̂] if λ12(û) = v̂, and this is well defined. In this fashion, we may
consider the following quotient space,

Y :=

∐
Û∈U

Û/G

/ ∼
This is homeomorphic to |O|, with the homeomorphism given by piecing together the collection
of mappings {ϕ : Û → |O|} induced via U .

We shall use the core principle underlying the above construction to formulate examples of
orbibundles. The reader can certainly guess the approach that will be taken (thinking of cocyles,
gluing and so on). Our main example will be the tangent bundle of an orbifold, together with
its projectivisation, whom we will consider in the following chapter.

Example 3.2.1 (Tangent Orbibundle). We shall construct the tangent bundle of an orbifold
(an orbivector bundle). Let O = (O,U) be an orbifold of dimension n. Over each local model
(Û , G), consider the tangent bundle TÛ → Û . The G-action on Û lifts canonically via the
differential to TÛ ∼= Û × Rn, namely, for g ∈ G and (x̂, v) ∈ T Û , we have

g(x̂, v) = (g(x̂), (dg)x̂v).

The projection TÛ → Û is an equivariant mapping, and we have a G-bundle. There is a
canonical map TÛ/G→ Û/G ∼= U . Define,

TO :=

∐
Û∈U

TÛ/G

/ ∼
where [(x̂, v)] ∈ TÛ/G is equivalent to [(ŷ, q)] ∈ T V̂ /H if there is a model (Ŵ ,K) in U with
embeddings λ1 : (Ŵ ,K)→ (Û , G) and λ2 : (Ŵ ,K)→ (V̂ ,H) for which we have a pair (ŵ, u) ∈
TŴ so that λ1(ŵ) = x̂, λ2(ŵ) = ŷ and (dλ1)ŵu = v and (dλ2)ŵu = q. Topologise TO with the
quotient topology. The collection of charts (TÛ,G, π

Û
: TÛ → TÛ/G) yields an orbifold atlas

on TO, and the resulting orbifold is denoted TO, an orbifold of dimension 2n. The collection of
maps TÛ/G→ U yield a projection p : TO → O, which is a smooth map of orbifolds. For x ∈ O,
the fiber p−1(x) looks like Rn/Gx, and thus fibers above non-singular points are ordinary vector
spaces. Suppose we are given a G-equivariant map v

Û
: Û → TÛ over each chart (Û , G), for

which the collection {v
Û
} is compatible with embeddings, in the sense that if λ : (Û , G)→ (V̂ ,H)

is an embedding of charts, then λ∗vV̂ = v
Û

, where λ∗vV̂ denotes the pullback vector field. We
may then produce a section v : O → TO. Indeed, all that is needed is to define the underlying
continuous map. For x ∈ O, we define v : O → TO by v(x) = [(x̂, v

Û
(x̂)] ∈ TO where x̂ is a

representative of x in a chart Û/G, and this is both a well-defined and continuous function. The
tangent bundle of an orbifold is an example of an orbifold vector bundle, an ‘orbivector’ bundle.
By definition the tangent space at p ∈ |O| is (the isomorphism class of) the orbivector space
(Tp̂Û , Gp), where p̂ is a representative of p in a model pair (Û , Gp). The tangent cone Cp|O| at
p is by definition isomorphic to the quotient Tp̂Û/Gp.
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Remark 3.2.2. For a global quotient orbifold M/G, if one takes the perspective which allows
chart domains to be smooth manifolds (see 3.1.3), then we can think of a vector field on the
orbifold M/G as a G-equivariant section M → TM . Often, we shall employ this perspective
when giving examples, for ease of presentation.

Example 3.2.2 (Projectivised Orbibundle). We may construct the projectivisation of TO. Over
each local model (Û , G), consider the projectivised tangent bundle PTÛ → Û . The G action
extends canonically to PTÛ , by

g(x̂, ⟨v⟩) = (g(x̂), ⟨dgx̂v⟩).

We remark that the action on the fiber space, in this case RPn−1, need not be effective (consider
scalar matrices, for example). By gluing together quotients PTÛ/G as outlined above, we obtain
an orbifold PTO, together with a projection p : PTO → O, an example of an orbifold fiber
bundle. A section ξ : O → PTO is a line field on O. We shall consider such maps in more detail
in Chapter 4.

Equipped with the notion of tangent bundle, we can make sense of the differential of a
smooth map of orbifolds. In particular, one can talk of immersions and submersions. We briefly
mention this. Let f : O1 → O2 be a smooth map of orbifolds. Given a point p ∈ |O1|, we have
local models (Û1, G1), (Û2, G2) and an equivariant lift f̂ : Û1 → Û2. Let p̂ be a representative of
p. We may then consider the differential df̂p̂ : Tp̂Û1 → T

f̂(p̂)Û2. This data is, up to isomorphism,
only dependent on our basepoint, and we have a mapping dfp : TpO1 → T|f |(p)O2. More so,
in locality we have an equivariant bundle map df̂ : T Û1 → TÛ2, the collection of which piece
together to yield a smooth map df : TO1 → TO2. We refer the reader to [KL14] for more detail.

Definition 3.2.3. We shall say that f : O1 → O2 is a submersion at p (respectively, an
immersion at p), if the differential dfp : TpO1 → T|f |(p)O2 is surjective (respectively, injective).
We say that f is a submersion (respectively, immersion) if it is a submersion at all points of p
(respectively, an immersion at all points of p).

With the notion of an immersion, we can make sense of a suborbifold.

Definition 3.2.4. A suborbifold O is given by an orbifold O′ and an immersion f : O′ → O for
which |f | maps |O′| homeomorphically onto its image in |O|. Let us remark that given an open
subset of |O|, there is a canonically induced orbifold structure.

We shall now construct differential forms. It is clear how to define them, namely as sections
of exterior powers of the cotangent bundle of an orbifold. Let us remark (as in [ALR07]), if we
are given any continuous functor F from vector spaces to vector spaces, we can construct an
orbivector bundle F (TO) → O with fibers F (Tx̂Û)/Gx. Thus we have access to the cotangent
bundle of an orbifold, T ∗O, and its exterior powers. These can all be built in detail as above. We
omit a detailed description. We define 0-forms on an orbifold to simply be smooth real-valued
functions. For k > 0,
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Definition 3.2.5. A differential k-form on an orbifold O is a section O →
∧k(T ∗O). As usual,

we write the space of k-forms on X as Ωk(O). The wedge product of forms on an orbifold
is defined, furthermore, by naturality, we have a well-defined exterior derivative d : Ωk(X ) →
Ωk+1(X ), and in particular, taking the cohomology of the complex

· · · d→ Ωk−1(O) d→ Ωk(O) d→ Ωk+1(O) d→ · · ·

we obtain the de Rham cohomology O of an orbifold, H∗
dR(O).

Let us now briefly discuss the integration of differential forms over an oriented n-orbifold O.
It is akin to integration on a manifold. Let U ⊂ |O| be an open subset uniformised by a model
pair (Û , G). A compactly supported n-form ω on U is (naturally identified with) a compactly
supported G-invariant n-form ω̂ on Û ⊆ Rn. The integration of ω on U is defined by,∫ orb

U
ω := 1

|G|

∫
Û
ω̂.

Example 3.2.3 (Global Quotient). Let O = M/G be a orientable global quotient orbifold,
whom we think of as being uniformised by a single chart, allowing, for the moment, our domains
to be smooth manifolds (refer to Remark 3.1.3). A differential form on M/G is then a G-
invariant differential form on M . Let ω ∈ Ωn(M) be G-invariant, and suppose ω has compact
support. Then, ∫ orb

O
ω = 1

|G|

∫
M
ω.

In fact, we can think of TO as the quotient orbifold TM/G.

Let us now consider the global case. We have O with a cover {Uα} of uniformised open sets;
we may choose, via paracompactness, (see Lemma 3.4.1 in [Car19]) a smooth partition of unity
{ρα} subordinate to this cover, then integrate a compactly supported n-form ω on O as,∫ orb

O
ω :=

∑
α

∫ orb

Uα

ραω.

In exactly the same way as for manifolds, this definition is independent of the choice of
partition of unity. We have (see Theorem 3.4.2 in [Car19]),

Theorem 3.2.1 (Stokes’ Theorem). Let O be an oriented n-dimensional orbifold with boundary,
and ω ∈ Ωn−1(O) a compactly supported (n− 1)-form. Then,∫ orb

O
dω =

∫ orb

∂O
ω.

Proof. This is a trivial consequence of Stokes’ theorem in the setting of manifolds applied to
local model pairs.

We shall now state a collection of classical results generalised to the setting of orbifolds.
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Theorem 3.2.2. The following results were proved by Satake in [Sat56];

1. For O a closed, orientable, n-orbifold the pairing,∫
: Hk

dR(O)⊗Hn−k
dR (O)→ R

(ω, τ) 7→
∫ orb

O
ω ∧ τ

is non-degenerate. In particular, compact orientable orbifolds satisfy Poincaré duality,
Hk
dR(O) ∼= (Hn−k

dR (O))∗.

2. For a closed orbifold O, there is an isomorphism,

H∗
dR(O) ∼= H∗(|O|;R)

where the right hand side denotes the singular cohomology of the underlying topological
space, with real coefficients.

Included above is a de Rham Theorem in the setting of orbifolds. It implies, in particular,
that the orbifold de Rham cohomology does not detect singular points (for example, consider
a point with the trivial action of a finite group; all the group data is lost upon passing to the
orbifold de Rham cohomology). Taking the perspective that our orbifold O consists of two pieces
of data;

1. Geometric data; the underlying topological space |O|, the ‘coarse quotient’.

2. Singular data; the set of all points in |O| with non-trivial local group, Σ(O).

The orbifold de Rham cohomology is insufficient; it loses too much information. This sug-
gests we search for an alternative cohomology theory, one which at least detects the presence of
singular points. This brings us to the following philosophy (inspired by Section 4.3 of [Gin13])
“The correct characteristic zero (co)homology invariants of an orbifold X are those of its inertia
orbifold (possibly up to some regrading)”. We shall not pursue this further, but simply refer the
reader to [CR00], which discusses the so called ‘Chen-Ruan’ cohomology of an orbifold admitting
an almost complex structure. This cohomology theory is distinct even at the most basic level, for
example, the 0-th Chen-Ruan cohomology of a point orbifold G↷ {pt} has dimension equal to
the number of conjugacy classes of G, that is, the number of irreducible complex representations
of the group G.

Let us now turn to a different type of question. Suppose we are given an effective orbifold
O. Is there a general theme regarding the global structure of O? The answer is affirmative. In
fact, all effective orbifolds look like the quotient of a smooth manifold by a compact lie group
(with a suitable action, of course). To see this, we must first establish the candidate smooth
manifold, for this, consider a model (Û , G) on O. Choose a Riemannian metric on O. We may
then, on Û , consider the corresponding orthonormal frame bundle of Û ,

Fr(Û) = {(x̂, B) |B ∈ O(Tx̂Û)}.
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The differential of a smooth mapping yields an action of G on Fr(Û). This G-action is free, and
so the quotient Fr(Û)/G is a smooth manifold. There is a right O(n) action on the quotient
Fr(Û)/G, induced by the canonical O(n) action on the frame bundle. It can be shown that one
can glue together the quotients Fr(Û)/G to obtain a smooth manifold Fr(O), called the frame
bundle of O, with a well-defined O(n)-action. We then have the following result.

Theorem 3.2.3. For an effective orbifold O, its frame bundle Fr(O) is a smooth manifold with
a smooth, effective and almost free O(n)-action. Moreover, there is a diffeomorphism of orbifolds
O ∼= Fr(O)/O(n).

Proof. We refer the reader to Theorem 1.23 in [ALR07].

Suppose we apply the construction above to a global quotient orbifold. We then have two
‘presentations’ (this shall be made a little bit more precise later), for now we shall be concerned
with simply an outline of the details.

Proposition 3.2.1. Let M be a compact manifold with a smooth, almost free and effective
action of G, a compact Lie group. Then the frame bundle Fr(M) of M has a smooth almost free
G×O(n) action such that the following diagram is commutative,

Fr(M) M

Fr(M/G) M/G

/O(n)

/G

/O(n)

/G

and one has Fr(M)/G ∼= Fr(M/G).

Proof. This is Proposition 1.25 in [ALR07].

In light of the established results, we see that for a global quotient M/G, there are two
presentations, namely M/G and Fr(M/G)/O(n), which give rise to the same orbifold structure.
Why should we be concerned with alternative presentations? We illustrate an outline in the
following two examples.

Example 3.2.4. This example is inspired by ([Cav12],Page 23). Consider the morphisms be-
tween two global quotient orbifolds [M/G] → [N/H]. Certainly, the data of a smooth map
f : M → N and a Lie group homomorphism Φ : G→ H with respect to which it is equivariant,
induces a smooth map of orbifolds (for a detailed proof, we refer the reader to [PR20], Propo-
sition 4.1). Constraining all morphisms to arise in this fashion can fail to capture necessary
data. The issue arises from the fact that the global quotients are specific presentations of the
orbifolds, and only by considering ’Morita equivalent’ presentations, will we enlargen our collec-
tion of morphisms. To illustrate this, consider the following elementary example. Let e denote
the additive identity in the abelian group (Z,+). Let M = S1, G = {e}, N = R and H = Z.
We let G act trivially on M , and H act on N by translations. Then M/G and N/H are both
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copies of the circle. View the data from an orbifold perspective, and constrain all morphisms to
arise as induced maps from M to N . The identity map of the 1-sphere, presented on either side
in different ways, ought to appear in our collection of morphisms. However, any smooth map
f : S1 → R is homotopically trivial, so has degree zero. Consider the triangle,

S1 R

R/Z

The degree is multiplicative under composition, and the identity is of non-zero degree, therefore
no map can descend to the identity. This issue is resolved via the notion of Morita equivalence,
which we shall discuss soon.

Example 3.2.5 (An Alternative Viewpoint of TX ). For an orbifold X , let us provide an alter-
native perspective on the tangent orbibundle TX → X . As in [ALR07], we identify the tangent
bundle of X with the quotient TFr(X )/O(n)→ Fr(X )/O(n). Of course, we can now also identify
sections. In particular, a vector field X → TX can be thought of as an O(n)-equivariant section
Fr(X )→ TFr(X ).

3.3 The Orbifold Euler Characteristic and Coverings

We’ll now turn our attention to more combinatorial invariants of an orbifold, and several ap-
plications. Recall that for a manifold M , we have an integer isomorphism invariant called the
Euler characteristic of M , denoted χ(M). We’ll now define the orbifold analogue of this result,
called the orbifold Euler characteristic, initially introduced by Satake, and further developed
upon by Thurston. The notational style here follows [Sea08].

Definition 3.3.1. Let O = (O,U) be an orbifold. We call a triangulation T of O compatible
if the order of the isotropy group is a constant function on the interior of each simplex σ ∈ T .
Orbifolds admit good triangulations (see [MP99]). Let Nσ denote the order of an isotropy group
on the interior of the simplex σ ∈ T . The orbifold Euler characteristic, denoted χorb(O), is

χorb(O) =
∑
σ∈T

(−1)dim(σ)

Nσ
∈ Q.

If we are to call this an invariant, we should make precise what it is invariant under. Clearly
diffeomorphic orbifolds have the same orbifold Euler characteristic. Furthermore, the orbifold
Euler characteristic is ‘compatible’ with orbifold covering space theory, as we shall shortly see.
Before we do so, let us state some properties of the orbifold Euler characteristic. The first and
most basic property is additivity.

Proposition 3.3.1. If O1 and O2 are subsets of O such that O = O1 ∪ O2 and O1, O2 and
O1 ∩ O2 correspond to subcomplexes of the triangulation, then

χorb(O) = χorb(O1) + χorb(O2)− χorb(O1 ∩ O2)
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Proof. This is immediate from the definition, for more details we refer the reader to ([FS09],
Page 5).

We should also mention how to compute the characteristic in the simplest case.

Example 3.3.1. If M/G is a global quotient orbifold, for G finite, we have

χorb(M/G) = χ(M)/|G| ∈ Q.

In particular, the orbifold Euler characteristic need not agree with the Euler characteristic of the
underlying coarse space (i.e., consider S2/Zk where Zk acts by rotations). Once we’ve defined
orbifold coverings and established a basic result, this property will become immediate.

We now define our notion of covering, which is compatible with our invariant defined above.

Definition 3.3.2. A covering of an orbifold O2 is an orbifold O1 together with a projection
π : |O1| → |O2| between the underlying spaces such that at each point p ∈ |O2|, one has a
neighbourhood p ∈ U ∼= Û/G for which each connected component V of p−1(U) is isomorphic to
Û/H, where H ≤ G, and π restricted to V is locally the canonical map Û/H → Û/G, i.e.

V Û/H

U Û/G

∼

π

∼

commutes. We define the number of sheets of the covering π to be the number of points in the
pre-image of a regular point.

An orbifiber bundle π : O1 → O2 with zero-dimensional fiber is a covering map of orbifolds
(see page 8 of [KL14]). Futhermore, we have the following fibration result in the setting of
orbifolds.

Theorem 3.3.1. A proper surjective submersion f : O1 → O2, with O2 connected, defines an
orbifiber bundle with discrete fibers. In particular, a proper surjective local diffeomorphism to a
connected orbifold is a covering map with finite fibers.

Proof. We refer the reader to Lemma 2.9 of [KL14].

Example 3.3.2. If we have a global quotient M/G, and H ≤ G, then the canonical map
M/H →M/G is the prototypical example of an orbifold covering. To give a concrete example,
let G = Z2 act on S1 by reflection. The quotient S1/Z2 is an interval with two singular points,
each of local group Z2, which we think of as an interal with mirrored endpoints. The quotient
map S1 → S1/Z2 is a two sheeted covering of orbifolds.
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Figure 3.3.1: A two-sheeted orbifold covering.

The map S1 → S1/Z2 may alternatively be viewed as a branched two sheeted covering, with
branch points of ramification index 2 the singular points on the interval. This example carries
a hint of generality. In general, for an orbifold O, consider the ‘mirror points’, Σmir(O), i.e.,
where the local model is a quotient of Euclidean space by reflection through a hyperplane. By
doubling the underlying coarse space |O| along the set of mirror points, one obtains the so called
local orientation cover. To illustrate this, if we start with the ‘stacky’ interval above, we see
that the local orientation cover is simply the circle (it is not in general a manifold, but it is an
orbifold with no mirror points, so locally orientable).

Example 3.3.3. Consider a line orbivector bundle π : L → O. The bundle is locally of the
form (Û × R)/Gx where (Û , Gx) is a local model on O . The fiber above x ∈ |O| is of the form
R/Gx. By means of a Riemannian metric on O, we may consider the associated orbi-sphere
bundle S(L)→ O. This is an example of an orbifold fiber bundle with finite fibers, where each
local lift is a local diffeomorphism.

Let us now demonstrate that the established notions of orbifold Euler characteristic and
orbifold coverings are in fact compatible.

Proposition 3.3.2. If π : O1 → O2 is a k-sheeted orbifold covering map, then

χorb(O1) = kχorb(O2).

The reader is invited to first check it with the example provided above. Furthermore, neigh-
bourhoods satisfying the core propertiy in the definition of an orbifold covering are sometimes
called elementary neighbourhoods. It is known that if one takes a simply connected model pair,
we always have an elementary neighbourhood (see Proposition 4.2 in [Liu22]).

Proof. We refer the reader to ([Car19], Proposition 2.4.2).

For a global quotient M/G, consider the canonical projection M → M/G, an orbifold cov-
ering. Applying the result above yields χ(M) = |G|χorb(M/G). We now derive a formulae for
the orbifold Euler characteristic in the setting of 2-orbifolds.
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Proposition 3.3.3. Let O be a closed, orientable 2-orbifold O, with k cone points {x1, . . . , xk} ⊂
|O|. For a singular point xℓ, write qℓ for its order. Then,

χorb(O) = χ(|O|)−
k∑
i=1

(
1− 1

qi

)
.

Proof. About each cone point xi, we choose, by means of a linear model pair, an orbifold 2-disk
D̂i/Gxi , and we ensure the collection of such is pairwise disjoint. We may define,

N := O −
k⊔
i=1

D̂i/Gxi .

Then N is a manifold, whose boundary consists of circles bounding cones, and of course χ(S1) =
0. In particular, by additivity, we have,

χorb(O) = χ(N) +
k∑
i=1

1
qi
.

On the other hand, as a topological space, the quotient D̂i/Gxi is homeomorphic to a 2-disk,
and so χ(|O|) = χ(N) + k. Thus,

χorb(O) = χ(|O|)−
k∑
i=1

(
1− 1

qi

)
.

We are done.

Remark 3.3.1. For O above, one can view O − Σ(O) as N with open collars attached to ∂N .

Example 3.3.4 (Euler Characteristic of a Bad Orbifold). Consider Thurston’s teadrop O; we
have a single cone point of order p > 1 and |O| ∼= S2. In particular,

χorb(O) = 1 + 1
p
.

Example 3.3.5. This example is inspired from Ian Agol’s answer here. Any rational number
m/n ∈ Q can be obtained as the orbifold Euler characteristic of some orbifold. Indeed, consider
the sphere S2n under a rotation action by Zn, this is an orbifold with characteristic 1/n. Then
take the product of any manifold with Euler characteristic m ∈ Z (consider a connected sum of
disks, for example) to obtain an orbifold with orbifold Euler characteristic m/n.

3.4 Satake’s Poincaré-Hopf and Gauss-Bonnet for Orbifolds

The Euler characteristic of a manifold is a topological invariant which appears in several high-
lighted theorems, such as the generalised Gauss-Bonnet Theorem, and the classical Poincaré-
Hopf Index Theorem, amongst other things. In the previous section, we defined the orbifold
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Euler characteristic. The purpose of this section is to illustrate its corresponding role in the
orbifold versions of the previous two theorems, both of which were proved by Satake in the 50’s.
Before we proceed, let us motivate our forthcoming definitions. Consider a closed orientable
2-orbifold O. Let v : O → TO be a vector field on O. Consider a local model pair (D̂,Gx)
uniformising a neighbourhood of a cone point x ∈ Σ(O), where D̂ is 2-disk, and Gx acts as Zk by
rotations, for k = |Gx|. The restriction (and then pullback) of v to this model pair yields a Zk-
invariant vector field v̂ : D̂ → TD̂. In particular, we have, for Zk = ⟨g⟩, v̂(0) = v̂(g(0)) = gv̂(0).
Therefore the vector field v necessarily vanishes at the cone point x. We thus conclude (as in
[Ham18], Proposition 2.3)

Proposition 3.4.1. Let O be a closed connected orientable 2-orbifold. Let v be a vector field
on O. Then v necessarily vanishes at all the cone points of O. In particular, if v is nowhere
vanishing, then O is a torus.

This is intuitively clear, we cannot comb our field around a cone point without losing some
form of regularity. On the other hand, a compatible triangulation of O looks like V − E + F ,
except some vertices are weighted with their isotropy. In particular, we see that, we should, in
developing the notion of an ‘index’ for a vector field on an orbifold, consider weighting a local
index calculation with isotropy. This is what we shall do.

Definition 3.4.1. Fix an arbitrary orbifold O. Let v : O → TO be a vector field on O with
an isolated zero x ∈ O. Let (Û , G) be a model pair about x. Write v

Û
: Û → TÛ for the

corresponding vector field, whom has a zero at x̂. We define the orbifold index of v at x, denoted
orb indv(x), to the the rational number,

orb indv(x) := 1
|Gx|

indv
Û

(x̂) ∈ Q.

This definition is well-defined, for the index is a diffeomorphism invariant (and vector fields
between charts are related via pullback).

Let us provide an elementary example.

Example 3.4.1. Consider a G-invariant vector field v : R2 → R2, where G is a finite subgroup
of O(2). Suppose v has an isolated non-degenerate zero at the origin. The origin has isotropy
|G|. Then, orb indv(0) = ± 1

|G| . We present this example without compactness, but it is clear
that suitable adjustments can be made.

We now present Satake’s Poincaré-Hopf Index Theorem, as given in ([SAT57], Theorem 3).

Theorem 3.4.1. For a closed codimension 2 orbifold O and a vector field v : O → TO with
isolated singularities x1, . . . , xq ∈ O, we have,

χorb(O) =
q∑
i=1

orb indv(xi).
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Proof. We work here only with a global quotient, and refer the reader to [SAT57] for the general
case. Let M be a connected, closed smooth manifold. Let G be a finite group acting on M by
diffeomorphisms. Let v be a vector field on the global quotient orbifold M/G, with isolated zeros
x1, . . . , xq ∈M/G. To give a vector field v on M/G is to give a G-invariant vector field v on M
(here, v is the pullback of v by the orbifold covering π : M →M/G of degree |G|). Each zero x
in M/G of v corresponds to |G|/|Gx| zeroes of v in M , each of which have the same index with
respect to v, for the index is a local diffeomorphism invariant. By the classical Poincaré-Hopf
Index Theorem, we deduce that,

χ(M) =
q∑
i=1

∑
y∈π−1(xi)

indv(y) =
q∑
i=1

|G|
|Gxi |

indv(xi) = |G|
q∑
i=1

orb indv(xi).

Therefore,

χorb(M/G) =
q∑
i=1

orb indv(xi).

Corollary 3.4.1. Let O be a closed orientable 2-orbifold. Let v be a vector field on O with
isolated zeroes x1, . . . , xq ∈ O. By renumbering if necessary, write x1, . . . , xk for the cone points
of O, orders q1, . . . , qk respectively. Then,

χ(|O|) =
q∑
i=1

orb indv(xi) +
k∑
i=1

(
1− 1

qi

)
.

Remark 3.4.1. Although here we have specialised to tangent bundles and sections thereof, by
making appropriate definitions, it seems one can form a corresponding generalisation of those
core intersection theoretic results outlined in Chapter 1.

Let us point out that there are certain facts that hold true in the smooth category, which
are patently false for orbifolds. For example, if M is a closed manifold with zero Euler charac-
teristic, then M admits a nowhere vanishing vector field (see Theorem 1.2.4). This is false for
orbifolds. For example, consider the pillowcase orbifold T2/Z2. This is a closed 2-orbifold with
four cone points. It is a global quotient of a surface of genus 1, so χorb(T2/Z2) = 0. Yet, as
discussed earlier, any vector field necessarily vanishes at the cone points. Later on we’ll see how
the notion of a line field can ‘resolve’ an issue like this, for the special case where the action
linearised yields that of a scalar matrix.

We now furnish some basic examples of Satake’s Poincaré-Hopf Theorem.

Example 3.4.2. This example extends Example 1.2.1 into the setting of orbifolds. Consider
the 2-sphere under an action of the cyclic group of order k by rotations. To be precise, let,
as usual, (x, y, z) be the standard global coordinates on R3 and S2 the 2-sphere, realised as
an embedded submanifold of R3. Let N and S denote the North and South poles respectively.
Define a vector vield v : S2 → TS2 on the 2-sphere by v = −y∂x + x∂y. This vector field has

58



CHAPTER 3. ORBIFOLD THEORY

zeroes at the poles, and both are non-degenerate with index +1. Let G := Zk be identified with
the k-th roots of unity. Define the action of G on S2 by

eit ·

xy
z

 =

cos t − sin t 0
sin t cos t 0

0 0 1


xy
z


for suitable t. The quotient S2/Zk is an orbifold. The poles are the fixed points of the action,
in particular, the poles are cone points of order k. We can easily check directly that v is a
G-invariant vector field on S2 (the differential of a linear map is canonically identified with the
linear map itself, and it reduces to a simple matrix calculation). We thus have a vector field on
the orbifold S2/Zk. Now, χorb(S2/Zk) = 2

k . On the other hand,

orb indv(N) = 1
k
, orb indv(S) = 1

k
.

This checks out with Satake’s Poincaré-Hopf Index Theorem.

Example 3.4.3 (Symmetric Product). Let M be a closed smooth manifold, and v a vector field
on M with a single isolated zero at x ∈M . Let Z2 act on M×M by permutation of coordinates.
There is Z2-invariant vector field on M ×M induced by v, with a singularity at (x, x) ∈M ×M ,
a point which has local group of order 2. Call this vector field v2. Easily,

χorb(M ×M/Z2) = χ(M)2

2 = ind2
v(x)
2 = orb indv2(x, x)

where we recall that for suitable mappings f, g, one has deg(f × g) = deg(f) deg(g).

We’ll conclude this section with a brief discussion regarding the Gauss-Bonnet Theorem. Let
us fix a closed orientable Riemannian 2-orbifold. Over each model pair (Û , G), there is a notion
of curvature and area element. As embeddings of charts (and the local actions themselves) are
by isometries with respect to the local metrics, we obtain a well-defined curvature function K
on O, together with our canonical area form, denoted dA. We have the following Gauss-Bonnet
Theorem,

Theorem 3.4.2. Let O be a closed orientable Riemannian 2-orbifold, with q1, . . . , qk denoting
orders of the cone points of O. Write K for our curvature functon, and dA for our area element.
Then, ∫

O
KdA = 2πχorb(O).

In particular, ∫
O
KdA+ 2π

k∑
i=1

(
1− 1

qi

)
= 2πχ(|O|).

This can be proved by excising ‘geodesic’ cone neighbourhoods about the singularities, leav-
ing a manifold with boundary, and then applying the usual Gauss-Bonnet Theorem for manifolds
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with boundary, together with a limiting process, and employing additivity of the orbifold Euler-
Satake characteristic. What is particularly interesting about the second equality above is that
the second summand on the left can be viewed as the an error correction, namely the “curva-
ture concentrated at cone points”. For more details, we refer the reader to ([Coo00], Page 31,
Proposition 2.17).

Example 3.4.4 (Flat Orbifolds). A flat orbifold is one whom admits a metric of zero curvature
away from singular points. A family of examples which has generated some interest are those
flat orbifolds whose underlying topological space is an n-sphere. We already are well-versed with
an example. The pillowcase T2/Z2 (or more generally, any Toroidal orbifold) is a flat orbifold,
whose underlying topological space is homeomorphic to S2.

Finally, let us make general commentary following ([BG07], Page 121).

Remark 3.4.2. Let O be an orientable closed 2n-dimensional orbifold. One can define the
Euler class eorb ∈ H2n(O,Q), and this cohomology class can be represented by the top invariant
curvature form Ω of the Riemannian curvature. In this language, Satake’s result may be phrased
as,

χorb(O) = ⟨eorb, [O]⟩ =
∫

O
Ω

where [O] ∈ H2n(O,Q) denotes the fundamental class of O. In order to make this precise,
one needs to discuss characteristic classes, connections, and Chern-Weil theory (amongst other
details) on orbifolds, all of which can be done. We refer the reader to Chapter 4 of [BG07] for
more details.

3.5 Orbifolds as Groupoids

As briefly mentioned in the Introduction and start of this Chapter, there are more or less two
ways to think about an orbifold. Previously, we defined things in the first/classical way, using
charts and atlases. It is clear that this quickly becomes clumsy, and it is easy to write down
wrong definitions (consider even the simplest notion, that of a smooth map). It turns out that
there is an alternative, more high powered perspective of an orbifold, and that is as a type
of differentiable stack. Whilst this approach (at least to the author) forgoes some geometric
intuition, it makes up for it in elegance once it is up an running. Rather than proceed directly
with the language of stacks, we shall opt to introduce the incarnation of orbifolds as groupoids,
and demonstrate, briefly, how one passes to the standing definition of an orbifold. Ultimately,
then, we shall think of as a stack as an ‘equivalence class’ of groupoids. To explain the need for
equivalence at once, recall from Example 3.2.4 that in certain cases, one must consider different
presentations of an orbifold in order to get enough morphisms. This phenomena highlights the
need for an ability to consider alternate presentations. Throughout this section, we follow closely
section 4.3 of [BG07], and section 1.4 of [ALR07].

Definition 3.5.1. A groupoid G is a (small) category in which every arrow is invertible.
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To be a little bit more precise, a groupoid G consists of a set of objects G0 and set of arrows
G1, with five natural structure maps; the source and target maps s, t : G1 ⇒ G0, a composition
map m : G1 ×G0 G1 → G1, a unit map u : G0 → G1, and finally an inverse map i : G1 → G1.
For an arrow g ∈ G1 with s(g) = x and t(g) = y we shall write g : x → y. We write g−1 for
i(g) and g ◦ h for m(g, h). The usual identities must be satisfied (see for example section 3 of
[MP97]). A topological groupoid is a groupoid in which both the set of objects and arrows are
topological spaces, and the structure maps are continuous. Going one step further,

Definition 3.5.2. A Lie groupoid G is a groupoid whose objects G0 and arrows G1 both admit
the structure of smooth manifolds, with the additional property that the structure maps of G are
all smooth and further, our source and target maps s, t : G1 → G0 are submersions.

That the source and target maps are required to be submersions is so that the domain of
the multiplication map G1 ×G0 G1 is a manifold, and consequently it makes sense to say that
the composition map m is smooth. We point out that sometimes it is useful to think of G0 as a
base space, and the groupoid G is written as G1 =⇒ G0. Let us provide some examples of Lie
groupoids.

Example 3.5.1 (Action Groupoid). Let a smooth manifold M be equipped with a smooth left
action of a Lie group K. We define a Lie groupoid K ⋉M with objects (K ⋉M)0 = M and
arrows (K ⋉M)1 = K ×M . The source map s : K ×M → M is projection onto the second
factor, the target map t : K ×M →M is the group action. Thus arrow (k, x) ∈ (K ⋉M)1 is of
the form,

x k · x(k,x)

The composition map m is defined in the natural way, with respect to our action. We call
such a Lie groupoid an action groupoid. Note that by specialising our Lie group or manifold in
the obvious way, we may view a manifold as a Lie groupoid (the so called ‘unit groupoid’, whose
arrows are all units), or alternatively, a Lie group as a Lie groupoid (the set of objects being a
single point).

Example 3.5.2 (A Groupoid of Germs; see Example 5.32 in [MM03]). Let M be a smooth
manifold. By a ‘local transition’ on M , we mean a diffeomorphism between two open subsets of
M . For the set of all local transitions on M , we write C∞

M . A pseudogroup of local transitions
on M is a subset P of local transitions on M for which,

1. IdV ∈ P for any open set V ⊆M .

2. If f, f ′ ∈ P , then the composition f ′ ◦ f |f−1(dom(f ′)) ∈ P and inverse f−1 ∈ P .

3. If f is a transition on M and (Vα) is an open cover of dom(f) for which each restriction
f |Vα ∈ P , then f ∈ P .

For a pseudogroup of local transitions P , we can associate a groupoid Γ(P ) whose objects are
points of M , and arrows between x, y ∈M are given by

Γ(P )1(x, y) = {germxf | f ∈ P, x ∈ dom(f), f(x) = y}
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Multiplication is defined naturally, by composing transitions. The set of arrows Γ1(P ) may be
equipped with the sheaf topology, upon doing so, the groupoid Γ(P ) becomes effective.

Example 3.5.3 (Fundamental Groupoid). Suppose M is a connected manifold. The funda-
mental groupoid of M , denoted Π(M), has as objects points of M , Π(M)0 = M . An arrow
g ∈ Π(M)1 with s(g) = x and t(g) = y is given by a homotopy class of paths from x to y. Note
then that composition is defined naturally, and inversion of an arrow is simply given by walking
along in the opposite direction. If we consider all arrows with source and target x ∈M (i.e. self
loops of x), then we capture the fundamental group of M , based at x, π1(M,x).

In the previous example we saw that self loops of an object had significance; we can make
some general definitions and remarks regarding such loops.

Definition 3.5.3. Let G be a Lie groupoid with objects G0 and arrows G1. For an object x ∈ G0,
the set of all arrows with source and target x is called (because of a canonical group structure)
the isotropy group (or local group) at x, and is denoted by Gx. The set ts−1(x) of targets of
arrows with source x is called the orbit of x. The orbit space |G| of G is by definition of the
quotient space G0/ ∼ where x ∼ y if and only if x and y are in the same orbit (i.e. there is an
arrow from x to y). We call G a (groupoid) represenation of |G|.

In order to make the connection to orbifolds, we must restrict our attention to classes of Lie
groupoids. The classes of interest are as follows;

Definition 3.5.4. Let G be a Lie groupoid, with set of objects G0 and arrows G1.

1. We call G proper if the map (s, t) : G1 → G0 × G0 is a proper map (i.e. the preimage of
any compact set is compact).

2. We call G a foliation groupoid if for each x ∈ G0, the isotropy group Gx is discrete.

3. We call G étale if the source and target maps s, t : G1 ⇒ G0 are local diffeomorphisms.

Note that if G is étale, then dimG = dimG0 = dimG1 is well-defined. Next, for an ar-
bitrary Lie groupoid G each isotropy group Gx is a Lie group. To see this, we note that
Gx = (s, t)−1(x, x) = s−1(x) ∩ t−1(x) ⊂ G1 and that, by hypothesis, s and t are submer-
sions (i.e. their differential is everywhere onto), which implies that Gx is a smooth submanifold
of G1 (refer to Theorem 9.9 of [Tu]), the assumption that our structure maps are smooth implies
that the natural group operations are smooth on Gx, so it is a Lie group. If we assume that G
is proper, then each Gx is clearly a compact Lie group. A compact discrete Lie group is a finite
group, so that if we assume G is a proper foliation Lie groupoid, then each Gx is a finite group.
Clearly an étale Lie groupoid is a foliation groupoid, and so we have the following proposition,

Proposition 3.5.1. If G is a proper étale Lie groupoid, then for each x ∈ G0, the isotropy group
Gx is finite.

The reason for restricting to a special case in the above proposition will soon become appar-
ent. A useful property of proper étale Lie groupoids is as follows.
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Construction 3.5.1. Let G be a proper étale Lie groupoid. We shall describe a way in which
the (finite) isotropy group Gx of x ∈ G0 acts as a group of diffeomorphisms on a neighbourhood
of x. Let g ∈ Gx be fixed, then, because s and t are local diffeomorphisms, there exists an open
neighbourhood Vg of g ∈ G1 for which both s and t map Vg diffeomorphically onto an open
neighbourhood Ux of x. Let j : Ux → Vg be the local inverse to the source map s|Vg : Vg → Ux.
Define a diffeomorphism ĝ = t|Vg ◦ j : Ux → Ux. We obtain a group homomorphism Gx →
Diff(Ux) defined by g → ĝ. In this way, an arrow g : x → x yields a well defined germ of a
diffeomorphism about x.
Definition 3.5.5. An orbifold groupoid G is a proper étale Lie groupoid. We call an orbifold
groupoid G effective if, for each x ∈ G0, there exists an open neighbourhood Ux about x such that
the associated group homomorphism Gx → Diff(Ux) is injective.

In what is to come, we shall justify the title ‘orbifold groupoid’. In order to do so, we need
the notion of Morita equivalence. First, a few definitions. Given that we view a Lie groupoid
as a sort of ‘smooth category’, a homomorphism of Lie groupoids should be a smooth functor.
Precisely,
Definition 3.5.6. A homomorphism of Lie groupoids ϕ : K → G consists of a pair of smooth
maps ϕ0 : K0 → G0, ϕ1 : K1 → G1 which together commute with all the structure maps.

If homomorphisms are functors, then we must have natural transformations. Let us quickly
mention this, for completeness. If ϕ, ψ : K⇒ G are homomorphisms of Lie groupoids, a natural
transformation α from ϕ to ψ, denoted α : ϕ =⇒ ψ, is given by a smooth map α : K0 → G1
for which s ◦ α = ϕ0 and t ◦ α = ψ0. By natural, it is meant that if k : x → x′ is an arrow in
K1, the following diagram commutes,

ϕ0(x) ψ0(x)

ψ0(x) ψ0(x′)

ϕ1(k)

α(x)

ψ1(k)

α(x′)

Definition 3.5.7. A homomorphism ϕ : K → G of Lie groupoids is called an equivalence if,
1. (Essentially Surjective) The map

tπ1 : G1s ×ϕ K0 → G0

defined on G1s ×ϕ K0 = {(g, k) | s(g) = ϕ0(k)} is a surjective submersion.

2. (Fully faithful) The diagram

K1 G1

K0 ×K0 G0 ×G0

ϕ1

(s,t)

ϕ0×ϕ0

(s,t)
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is a fibered product of manifolds.

If we unwrap these conditions; the first means that any object in G0 can be connected by an
arrow in G1 to the image of ϕ0. The second condition means that ϕ produces a diffeomorphism

K1(y, z)→ G1(ϕ0(y), ϕ0(z))

from the space of arrows between y and z in K0 and the space of arrows between ϕ0(y) and
ϕ0(z) in G0. Thus an equivalence is a smooth equivalence of categories. We call ϕ strong
if ϕ0 : K0 → G0 is a surjective submersion. We point out that an equivalence ϕ yields a
homeomorphism of the underlying orbit spaces, |ϕ| : |K| → |G|. We now come to the notion of
Morita equivalence.

Definition 3.5.8. We say that two Lie groupoids H and G are Morita equivalent if there exists
a third Lie groupoid K and two equivalences,

H ψ← K ϕ→ G

Let us make two remarks. If ϕ : K → G is an equivalence, then K is Morita equivalent to
G via strong equivalences (see Definition 1.43 in [ALR07]). If ϕ is an equivalence of orbifold
groupoids, then ϕ0 : K0 → G0 is a local diffeomorphism (see Lemma 2.1 in [ALR07]). We will
now explain the connection between our standing definition of an orbifold (a space with charts)
and the content of Definition 3.5.5, in which we called a proper étale Lie groupoid an ‘orbifold
groupoid’. We shall pass from an orbifold to an orbifold groupoid, and vice versa. Upon consid-
ering Morita equivalent Lie groupoids and isomorphic orbifolds, this passage is well defined.

First, we will show how one goes from an effective orbifold to an effective orbifold groupoid.
Let X = (X,U) be an effective orbifold with a fixed atlas U = {(Ûi, Gi, ϕi)} on X. Define
Û =

∐
i Ûi. Let PX denote the pseudogroup of local diffeomorphisms of Û generated by the

embeddings and their inverses. Let G(Û) denote the groupoid of germs of diffeomorphisms of
this pseudogroup PX , as in Example 3.5.2, i.e. objects Û and arrows germs of the embeddings.
Consider the projection map ϕ : Û → X defined by taking the union of the ϕi. If xi ∈ Ûi and
xj ∈ Ûj are such that xi ∼ xj , then there is an embedding λij : Ûi → Ûj for which λij(xi) = xj ,
then, because ϕj ◦ λij = ϕi, we see that ϕ(xi) = ϕ(xj). This implies that ϕ yields a well-
defined map from the space of orbits |G(Û)| → X. In this sense, we say that the groupoid G(Ũ)
represents the orbifold X. (A nice point to skip to now would be Definition 3.5.9). In fact, even
more is true,

Proposition 3.5.2. Let X = (X,U) be an effective orbifold with a fixed atlas U , then G(Û)
is an effective orbifold groupoid. Moreover, if X ′ = (X ′,U ′) is another effective orbifold with a
fixed atlas U ′, then G(Û) is Morita equivalent to G(Û ′) if and only if the orbifolds X and X ′ are
isomorphic.

Proof. See Proposition 5.29 in [MM03].
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Now we will show how to go from an effective orbifold groupoid to an effective orbifold. Let
G be an effective orbifold groupoid. By Proposition 3.5.1, for each x ∈ G0, the isotropy group
Gx is finite. Futhermore, for any x ∈ G0, there exists an open neighbourhood Ux of x in G0
with an action of Gx such that there is an isomorphism of étale Lie groupoids, G|Ux

∼= Gx ⋉ Ux
(see for example, Corollary 5.31 in [MM03]). This allows us to construct an orbifold atlas on the
orbit space |G|, which is both Hausdorff and paracompact. Let π : G0 → |G| denote the quotient
projection. For x ∈ G0, we choose the neighbourhood Ux so that we have a diffeomorphism
ϕx : Ux → Ûx ⊆ Rn, for n = dimG. Let Gx act on Ûx so that ϕx is Gx-equivariant. An orbifold
atlas U on |G| consists of charts of the form, {(Ûx, Gx, π ◦ ϕ−1

x )}. Embeddings of charts look as
follows. If Vy and Ux are two such neighbourhoods and Vy

ιy
↪→ Ux, then the embedding

λxy : (V̂y, Gy, π ◦ ψ−1
y )→ (Ûx, Gx, π ◦ ϕ−1

x )

is defined by λxy = ϕx ◦ ιy ◦ψ−1
y . Note that the resulting orbifold represents the groupoid G, for

its underlying topoogical space is exactly |G|. Our discussion may be summarised, along with a
Theorem 1.45 from [ALR07] (originally appearing in [MP97]),

Theorem 3.5.1. If G is an effective orbifold groupoid, then its space of orbits |G| admits the
structure of an effective orbifold. Two effective orbifold groupoids G and H represent the same
effective orbifold up to isomorphism if and only if they are Morita equivalent.

This roughly describes the bridge between the two vantage points. Equipped with our current
theory, one may provide a new definition of an orbifold (one which makes it easy to drop the
condition of an effective action). First, we specify the data akin to an atlas.

Definition 3.5.9. An orbifold structure on a paracompact Hausdorff topological space X is given
by an orbifold groupoid G and a homeomorphism f : |G| → X. If ϕ : K → G is an equivalence,
then |ϕ| : |K| → |G| is a homeomorphism, and f ◦ |ϕ| : |K| → X is said to define an equivalent
orbifold structure on X.

A modern definition is now as follows.

Definition 3.5.10. An orbifold X is a paracompact Hausdorff space X equipped with an equiv-
alence class of orbifold structures. A specific choice of structure is given by the datum of an
orbifold groupoid G, and a homeomorphism f : |G| → X, called a presentation of X .

3.6 Intersection Theory on Deligne-Mumford Stacks

In this section, we wish to very briefly present interesection theory on an orbifold, contrasting
those results developed in Chapter 1. We shall follow the notes [Beh02] by Kai Behrend extremely
closely, and omit several technical details. The purpose of this section is to simply demonstrate
that key results in Chapter 1 admit vast generalisations. Furthermore, we are motivated by the
following slogan,

Remark 3.6.1. “Topological stacks are the right formalism for dealing with orbifolds and
topological groupoids” - Angelo Vistoli.
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We shall take as an imprecise definition the following. A differentiable stack X is a Morita
equivalence class of Lie groupoids (or more precisely, is the quotient stack of a Lie groupoid
X1 ⇒ X0, denoted [X0/X1]). A choice of presenting Lie groupoid can be thought of as choosing
an ‘atlas’, for the coarse space. If the presenting Lie groupoids are proper and étale, then we
have an orbifold, a so called (differentiable) stack of Deligne-Mumford type. We remark that the
usual way to proceed is by first defining a category fibered in groupoids (or a prestack, over Diff,
in this case), then a stack (which is a prestack satisfying some descent data), and then equip
ourselves with the data of an ‘atlas’, so becoming ‘differentiable’. Then one establishes a passage
to the description above. We shall not recall these definitions here, and be content with choosing
presentation of our differentiable stack, and ensuring invariance under Morita equivalence. For
details, we refer the reader to [Gin13] and [Beh02]. We may set up the de Rham cohomology
of a differentiable stack X as follows. First, we introduce the simplicial nerve of a Lie groupoid.
Let X1 ⇒ X0 be a Lie groupoid. Recall that a simplicial manifold is a simplicial object in Diff.
We associate a simplicial manifold to X1 ⇒ X0 as follows. For p ≥ 0, let Xp be the manifold
consisting of composable sequences of arrows in X1, of length p, that is,

Xp = X1 ×X0 X1 ×X0 · · · ×X0 X1 (p times).

There are now (p+ 1) canonical maps, face maps, ∂i : Xp → Xp−1, i = 0, . . . , p where ∂0 leaves
out the first arrow, ∂p the last, and ∂i, 1 ≤ i ≤ p − 1 is given by composing two succesive
arrows, the pair located at (i, i+ 1). As pointed out in [Beh02], one has the following relations;
∂i∂j = ∂j−1∂i : Xp → Xp−2, 0 ≤ i, j ≤ p. The data given above is summarised as,

· · · · · · X2 X1 X0

On each manifold Xp, we can make sense of differential forms Ωq(Xp) for q ≥ 0. By pulling back
the maps above, we obtain a ‘cosimplicial set’,

Ωq(X0) Ωq(X1) Ωq(X2) ··· ··· ···

and therefore, we have an induced complex,

Ωq(X0) Ωq(X1) Ωq(X2) · · ·∂ ∂ ∂

where the operator ∂ : Ωq(Xp−1)→ Ωq(Xp) is given by,

p∑
i=0

(−1)i∂∗
i = ∂∗

1 − ∂∗
2 + · · ·+ (−1)p∂∗

p .

We call this complex the Čech complex associated to the sheaf of q-forms and groupoid X1 ⇒ X0.
The corresponding cohomology groups are called Čech cohomology groups of X1 ⇒ X0, denoted
Hk(X = X1 ⇒ X0,Ωq). The first point to move to is check invariance (up to isomorphism)
under Morita equivalence.
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Proposition 3.6.1. Any Morita equivalence of Lie groupoids, write f• : X• → Y•, induces
isomorphisms on Čech cohomology groups, f∗ : Hk(Y,Ωq) → Hk(X,Ωq). In particular, Morita
equivalent Lie groupoids have canonically isomorphic Čech cohomology groups with values in Ωq.

Proof. We refer the reader to Corollary 3 in [Beh02].

We can in particular, make the following definition.

Definition 3.6.1. For a differentiable stack X, we define the Čech cohomology groups associated
the sheaf of q-forms by,

Hk(X,Ωq) = Hk(X1 ⇒ X0,Ωq)

where X1 ⇒ X0 is a presentation of X.

We now discuss the de Rham complex. The exterior differential d : Ωq(Xp)→ Ωq+1(Xp) for
all p ≥ 0 yields a double complex.

· · · · · · · · ·

Ω2(X0) Ω2(X1) Ω2(X2) · · ·

Ω1(X0) Ω1(X1) Ω1(X2) · · ·

Ω0(X0) Ω0(X1) Ω0(X2) · · ·∂ ∂ ∂

d d d

d d d

∂ ∂ ∂

∂

ddd

∂ ∂

In order to obtain a singly graded complex we set (we refer the reader to [Bot82], Page 90, for
the general construction),

CndR(X) =
⊕

p+q=n
Ωq(Xp)

and define a differential δ : CndR(X)→ Cn+1
dR (X) by,

δ(w) = ∂(w) + (−1)pd(w)

for each w ∈ Ωp
q(X) with p + q = n. The complex C•

dR(X) is titled the de Rham complex of
X1 ⇒ X0, where we write Hn

dR(X) for the de Rham cohomology groups. We now, as previously,
move to the following.

Proposition 3.6.2. Morita equivalent Lie groupoids have canonically isomorphic de Rham co-
homology groups.

Proof. We refer the reader to Definition 9 in [Beh02].

This allows us to make the following definition.
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Definition 3.6.2. For a differentiable stack X , we define its de Rham cohomology

Hk
dR(X) = Hk

dR(X1 ⇒ X0)

where X1 ⇒ X0 is a presentation of X.

Remark 3.6.2. A very natural question to ask is if orbifold ‘geometry’ is simply a special case
of equivariant geometry, at least for effective orbifolds, for we know they can be expressed as
quotients of a smooth manifold by a compact Lie group. As an answer to this question, it is
pointed out in [Beh02] that the de Rham cohomology of a quotient stack [M/G] is equal to its
equivariant cohomology, namely write H∗

G(X) for the equivariant cohomology of M/G, given via
the Cartan complex. Then for G compact, there is an isomorphism H∗

G(M) → H∗
dR(G×M ⇒

M) = H∗
dR([M/G]) where G×M ⇒M is the action/transformation groupoid.

We now recall the multiplicative structure given on the data above. Let Ωq(Xp) and η ∈
Ωq′(Xp′). Then we set,

ω ∪ η = (−1)qp′
π∗

1ω ∧ π∗
2η ∈ Ωq+q′(Xp+p′)

where the maps π1 : Xp+p′ → Xp and π2 : Xp+p′ → Xp′ are, to be informal, defined as follows.
For π1, we map an arrow sequence (ϕ1, . . . , ϕp+p′) in Xp+p′ to the first p arrows (ϕ1, . . . , ϕp) and
for π2, to a sequence of length p′, given by (ϕp+1, . . . , ϕp+p′). As discussed in [Beh02], there is
a cup product, Hn

dR(X) ⊗Hm
dR(X) → Hn+m

dR (X) induced via ∪. Indeed, the following relation
holds, δ(ω ∪ η) = δ(ω)∪ η+ (−1)p+qω ∪ δ(η). Recall that we call a differentiable stack X proper
if there is a presenting groupoid X1 ⇒ X0 for which (s, t) : X1 → X0 ×X0 is proper, and the
coarse underlying space is proper (that is, the diagonal map is proper).

Theorem 3.6.1 (Integration and Poincaré-Duality). Let X be a proper oriented Deligne-mumford
stack. We have a well-defined integral, ∫

X
: Hn

dR(X)→ R

given by integration over a presenting groupoid, and furthermore, the induced pairing,

Hk(X)⊗Hn−k(X)→ R

ω ⊗ τ 7→
∫
X
ω ∪ τ.

is non-degenerate.

Proof. We refer the reader to Corollary 25 in [Beh02], where compactly supported cohomology
coincides with the usual de Rham cohomology as the stack X is assumed proper.

Remark 3.6.3. In order to define integration, one needs a partition of unity. The corresponding
notion for a groupoid is defined in [Beh02], but there is a subtle aspect; their existence is not
guaranteed unless one can pass to a Morita equivalent groupoid.
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Let us consider a proper representable morphism f : D → X of oriented differentiable
Deligne-mumford stacks. As in [Beh02], for presenting groupoids X1 ⇒ X0 of X and Y1 ⇒ Y0
of D, this is given by the data of a morphism f• : X• → Y• presenting f , for which our base
change f0 : X0 → Y0 is a proper map, and the square

Y1 Y0

X1 X0

s

f1

s

f0

is cartesian. Assume that both X and D are proper. We have a map Ωq(Xp)→ Ωq(Yp) given by
pulling back differential forms, and an induced map f∗ : H∗(X) → H∗(D). For dimD = k, we
get a map,

Hk(X)→ R

γ 7→
∫
D
f∗γ

and thus by Poincaré-duality, a class cl(D) ∈ Hn−k(X), the ‘class of D’, generalising the
Poincaré-dual of a submanifold, a tool we used extensively within the smooth category, to
the category of orbifolds. For X above, and our presentation X1 ⇒ X0, we can consider the as-
sociated tangent bundles, giving the data of a Lie groupoid TX1 ⇒ TX0, and the induced stack
is called the tangent stack of X, and there is a canonical morphism TX → X. In particular, as
stated in [Beh02], by taking the class of the zero section, and pulling back (by the zero section)
to X, we obtain a class e(TX) ∈ Hn(X). The Euler number of X is given by,

e(X) =
∫
X
e(TX).

In particular, for two representable morphisms D→ X and Z→ X, with complimentary dimen-
sion, we define their intersection number to be given by,∫

X
cl(D) ∪ cl(Z) ∈ R.

We now conclude this section, and close our chapter, with a statement generalising the result
1.1.1 in Chapter 1, to the category of orbifolds.

Theorem 3.6.2 (Intersection Theory on Orbifolds). Consider a cartesian diagram of proper
differentiable stacks, of Deligne-Mumford type,

M Z

D X
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where all maps are proper and representable, and that for all w ∈ M, we have TM,w = TD,w ∩
TZ,w ⊂ TX,w (a property which can be defined by pullback to a presentation X0 → X). Further,
suppose that dimD+ dimZ = dimX, and D and Z intersect transversally (see [Beh02] for more
details). Then, ∫

X
cl(D) ∪ cl(Z) = #M =

∑
x∈M/∼=

1
#Aut(x) .

Proof. We refer the reader to Proposition 28 in [Beh02], and Example 26 in [Beh02].

Remark 3.6.4. Given the results above, we observe that one can generalise Satake’s Poincaré-
Hopf Theorem to an intersection theoretic result on orbifolds. Moreover, a Lefschetz fixed point
theorem for orbifolds is given in [Beh02].
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Chapter 4

Poincaré-Hopf for Orbiline Fields

We work with an effective codimension 2 orbifold O of dimension n ≥ 2. Our definitions in this
Chapter all align with those given in Chapter 3. We define a line field ξ on an orbifold O to be a
section of the projectivised tangent orbibundle, denoted PTO. A line field with a finite number
of singularities is a line field defined on a suborbifold whose complement consists of a finite set
of points. To each singularity, we assign a rational number called the orbifold projective index.
From an intersection theory perspective, one may view this (locally) as an honest intersection
number (oriented in even dimensions, mod 2 in odd), where we weight points with additional
data, namely their isotropy. For a closed orbifold of even dimension, the sum of these rational
numbers is shown to be equal to twice the orbifold Euler characteristic, an invariant compatible
with orbifold covering space theory. In odd dimensions, the sum vanishes mod 2, and equality
is obtained in this fashion. The results thus obtained represent a straightforward generalisation
of the work of Crowley and Grant in [CG17].

4.1 Line Fields on an Orbifold

Fix a(n effective codimension 2) closed, and connected orbifold O = (O,U). Let PTO → O
denote the projectivisation of the tangent orbibundle of O (recall Example 3.2.2).
Definition 4.1.1. A line field ξ on O is a smooth section ξ : O → PTO. Let k ∈ N. We
say that a line field ξ has singularities Σ(ξ) := {x1, . . . , xk} ⊂ |O| if it is defined only on the
suborbifold O − {x1, . . . , xk} (see Definition 3.2.4).

Let ξ be a line field on O. The line field ξ induces a canonical a subbundle of the tangent
orbibundle Lξ ⊆ TO. Fix a Riemannian metric on O. By means of the metric, we may
consider the associated sphere bundle π : S(Lξ) → O with zero-dimensional fiber, which is, in
particular, a two sheeted orbifold covering (we refer the reader to Theorem 3.3.1). We construct
an associated vector field vξ on S(Lξ) by means of a local definition. For each chart Û/G on
O, consider the associated sphere bundle S(LÛξ ) → Û , the local lift of π. Let (x,w) ∈ S(LÛξ ).
Define vÛξ on S(LÛξ ) by,

vÛξ (x,w) = w ∈ TxÛ
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where we are using the identification TxÛ ∼= T(x,w)(S(LÛξ )), for the fiber is zero dimensional. In
particular, each local lift of π is a local diffeomorphism. Let g ∈ G. Then, vÛξ (g ·(x,w)) = g ·w =
g · vÛξ ((x,w)) so that vÛξ is G-equivariant. The collection of these vector fields are compatible
with the induced embedding data on S(Lξ). We denote the induced vector field on S(Lξ) by vξ.
The following is now immediate.

Proposition 4.1.1. If O admits a nowhere vanishing vector field, then it admits a line field.
On the other hand, if O admits a globally defined line field ξ, then χorb(O) = 0, but O need not
admit a nowhere vanishing vector field.

Proof. The first statement is a triviality. If a closed orbifold admits a nowhere vanishing vector
field, then its Euler-Satake characteristic vanishes. This is a consequence of Satake’s Poincaré-
Hopf Index Theorem (see, [SAT57], and [FS10]). Let ξ be a globally defined line field on O.
As above, there is an associated a double cover S(Lξ) → O together with a nowhere vanishing
vector field vξ on S(Lξ). By the previous remark and the multiplicativity of the Euler-Satake
characteristic under coverings, we have,

0 = χorb(S(Lξ)) = 2χorb(O).

To conclude, it suffices to construct an example where we have a globally defined line field, but
no nowhere vanishing vector field. Let T2 = S1 × S1 and Z2 = ⟨g⟩ act on T2 by conjugation
on each coordinate. The quotient T2/Z2 is an orbifold with four singular points, each of local
group Z2. We have T (T2) ∼= T2×R2. We consider the line field ξ induced via the line subbundle
T2×R×{0}. We observe that this induces a line field on the orbifold T2/Z2. Let v be a nowhere
vanishing vector field on T2/Z2, tantamount to a Z2-invariant vector field on T2. Let x be a
singular point. Then, v(x) = v(g · x) = g · v(x) = −v(x), and so v(x) = 0x.

Proposition 4.1.1 demonstrates that in some cases, the existence of globally defined line fields
allow conclusions which the ordinary result for vector fields does not. This contrasts Corollary
2.0.1, where a manifold admits a line field if and only if it admits a nowhere vanishing vector
field. We now define our local tools. Recall the definition of index about a zero from Chapter
3, Definition 3.4.1.

Definition 4.1.2. Let v : O → TO be a vector field with an isolated zero at x ∈ |O|. Let Û/G be
a chart about x, v

Û
the corresponding G-invariant vector field on Û , and x̂ ∈ Û a representative

of x. We define the orbifold normal index of v at x, denoted orb ind⊥
v (x), to be

orb ind⊥
v (x) := 1

|Gx|
ind⊥

v
Û

(x̂) ∈ Q.

The definition given is independent of the choices made, for the classical construction is invariant
under diffeomorphisms, and the integer |Gx| depends only on x.

Our notation for the index of a vector field on an orbifold is non-standard. We make a similar
definition for the projective analogue.
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Definition 4.1.3. Let x be a singular point of a line field ξ on O. Let Û/G be a chart about x,
and let x̂ ∈ Û be a representative of x. We define the orbifold projective index of ξ at x, denoted
orb p indξ(x), to be,

orb p indξ(x) := 1
|Gx|

p indξ
Û

(x̂) ∈ Q

where ξ
Û

is the corresponding G-invariant line field. We define the orbifold projective normal
index of ξ at x, denoted orb p ind⊥

ξ (x), to be

orb p ind⊥
ξ (x) := 1

|Gx|
p ind⊥

ξ
Û

(x̂) ∈ Q.

Similarly, the definitions given are well-defined, for the projective index is a diffeomorphism
invariant. Note that the usual projective indices appearing above depend on the dimension of the
orbifold.

Corollary 4.1.1. Let v and ξ be as in Definitions 4.1.2, 4.1.3. Set n := dimO ≥ 2. Then, we
have,

orb ind⊥
v (x) = orb indv(x) + (−1)n−1

|Gx|

orb p ind⊥
ξ (x) =

{
orb p indξ(x)− 2/|Gx|, for n even;

orb p indξ(x) = 0 ∈ Z/2, for n ≥ 3 odd.

Proof. The relationships above are trivial consequences of the results developed in ([CG17],
Lemmata 3.4, 3.8 and 3.9) by Crowley and Grant, and summarised in Chapter 2 as Lemmata
2.0.2, 2.0.3, all applied locally within an orbifold chart. For example, if (Û , G) is a model pair
about a singularity x of a vector field v, and v

Û
the corresponding vector field on Û with a

singularity at x̂, one has

orb ind⊥
v (x) = 1

|Gx|
ind⊥

v
Û

(x̂)

= 1
|Gx|

(
indv

Û
(x̂) + (−1)n−1

)
= orb indv(x) + (−1)n−1

|Gx|
.

We shall now state and prove the corresponding generalisation. Recall that for an odd-
dimensional closed orbifold, its Euler-Satake characteristic necessarily vanishes (see [SAT57]).

Theorem 4.1.1. Let O be a closed orbifold of dimension at least 2. Let ξ be a line field on
O − {x1, . . . , xq}. Then,

2χorb(O) =
q∑
j=1

orb p indξ(xj) ∈ Q

where equality is congruence modulo 2 in odd dimensions.
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Proof. If n := dimO is odd, then the result follows at once from Corollary 4.1.1. Suppose now
that n ≥ 2 is even. Fix a Riemannian metric on O. About each singularity xj , we choose an
orbifold disk (D̂j , Gxj ) where Gxj is the local group at xj , acts linearly on D̂j as a subgroup
of O(n), and xj corresponds to the origin in D̂j . We arrange our collection of disks D̂j/Gxj so
that they are pairwise disjoint. Define,

N := O −
q⊔
j=1

int(D̂j)/Gxj .

Then N canonically admits the structure of an orbifold with boundary, induced from O. In
particular, ∂N consists of those points in ∂D̂j/Gxj for j ∈ {1, . . . , q}. The restriction ξ|N yields
a globally defined line field on N , and therefore, by means of our metric, an associated double
cover p : N̂ → N , together with a vector field vξ|N on N̂ . Each boundary component of N̂ is in
correspondence with a base point singularity of ξ. Indeed, ∂N̂ = p−1(∂N). To each boundary
component (or to be more precise, to each connected component thereof), we glue copies of the
corresponding quotient D̂j/Gxj along an equivariant homeomorphism of (n− 1)-spheres (which
induces a diffeomorphism of orbifold boundaries). If the singularity xj is non-orientable, only a
single copy is required. If the singularity xj is orientable, two copies are required (see Definition
2.0.2). This procedure yields a closed orbifold Ô, together with a map π : Ô → O extending
p : N̂ → N . On each glued in disk, by means of working on the associated chart, we radially (see
Example 1.2.2) extend the associated vector field vξ|N , and as Gxj acts as a subgroup of O(n),
the radial extension is Gxj -invariant. In particular, we obtain a vector field v on Ô with isolated
zeroes {π−1(xj) : j ∈ {1, . . . , q}}. Let k denote the number of non-orientable singularities.
Then v has 2q − k isolated zeroes, each of which admits a neighbourhood uniformised by the
quotient of a disk. By construction, the order of the isotropy group at each point of π−1(xj) is
the same as that of the base point xj . In particular, as a consequence of ([CG17],Lemma 4.1)
(which is summarised as Lemma 2.0.5), we have, for each j ∈ {1, . . . , q},

orb p ind⊥
ξ (xj) =

∑
y∈π−1(xj)

orb ind⊥
v (y).

Before we conclude, we establish a relationship between χorb(Ô) and χorb(O). First, we have
χorb(N̂) = 2χorb(N). Now, O = N ∪

(⊔q
j=1 D̂j/Gxj

)
. The boundary of each orbifold disk is

realised as the global quotient of an (n− 1)-sphere (odd dimensional). In particular,

χorb(O) = χorb(N) +
q∑
j=1

χorb(D̂j/Gxj )

= χorb(N) +
q∑
j=1

1
|Gxj |

.

as each disk D̂j is contractible. Now, the closed orbifold Ô is obtained from N̂ by gluing 2q− k
orbifold disks, of varying singular order. By renumbering if necessary, write x1, . . . , xk for the
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non-orientable singularities. Then,

χorb(Ô) = χorb(N̂) +
k∑
j=1

1
|Gxj |

+
q∑

j=k+1

2
|Gxj |

= χorb(N̂) +
q∑
j=1

2
|Gxj |

−
k∑
j=1

1
|Gxj |

= 2χorb(N) +
q∑
j=1

2
|Gxj |

−
k∑
j=1

1
|Gxj |

= 2

χorb(O)−
q∑
j=1

1
|Gxj |

+
q∑
j=1

2
|Gxj |

−
k∑
j=1

1
|Gxj |

= 2χorb(O)−
k∑
j=1

1
|Gxj |

We therefore have, by Satake’s Poincaré-Hopf Theorem 3.4.1 and Corollary 4.1.1,

2χorb(O)−
k∑
j=1

1
|Gxj |

= χorb(Ô) =
q∑
j=1

∑
y∈π−1(xj)

orb indv(y)

=
q∑
j=1

∑
y∈π−1(xj)

(
orb ind⊥

v (y) + 1
|Gy|

)

=
k∑
j=1

1
|Gxj |

+
q∑

j=k+1

2
|Gxj |

+
q∑
j=1

∑
y∈π−1(xj)

orb ind⊥
v (y)

=
k∑
j=1

1
|Gxj |

+
q∑

j=k+1

2
|Gxj |

+
q∑
j=1

orb p indξ(xj)

=
k∑
j=1

1
|Gxj |

+
q∑

j=k+1

2
|Gxj |

+
q∑
j=1

(
orb p indξ(xj)−

2
|Gxj |

)

=
q∑
j=1

orb p indξ(xj)−
k∑
j=1

1
|Gxj |

We thus have,

2χorb(O) =
q∑
j=1

orb p indξ(xj).

Remark 4.1.1. Let us make a few remarks about geometric operations on orbifolds. For
compact orbifolds with boundary, one has access to collar neighbourhoods about the boundary.
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For a proof, we refer the reader to ([PS08], Page 6). In particular, given compact orbifolds X
and Y, together with a diffeomorphism f : ∂Y → ∂X (as orbifolds), the adjunction space X∪f Y
admits the structure of a closed orbifold. One such proof is similar to the case of manifolds,
utilising collar neighbourhoods (see [Lee], Theorem 9.29, Page 224). For a brief discussion
regarding surgery and connected sums on orbifolds, we refer the reader to ([KL14], Page 10).
Finally, note that in the extension of the vector field over the glued in orbifold disks, one can
ensure smoothness, using the following result locally.

Theorem 4.1.2 ([Bre72], Page 317). Let G be a compact Lie group acting smoothly on the
manifolds M and N . Let φ : M → N be a continuous equivariant map. Then φ can be
approximated by a smooth equivariant map ψ : M → N which is equivariantly homotopic to φ
by a homotopy approximating the constant homotopy. Moreover, if φ is already smooth on the
closed invariant set A ⊂ M , then ψ can be chosen to coincide with φ on A, and the homotopy
between φ and ψ to be constant there.

We conclude this chapter with some examples.

Example 4.1.1. We provide an infinite family of orbifolds, all of whom admit globally defined
line fields, but none of which admit a globally defined vector field. Let n be a positive integer
greater than 1. Consider Tn = (S1)n and Z2 acting on Tn by complex conjugation on each
coordinate. The quotient Tn/Z2 is an orbifold, and there are 2n singular points. The tangent
bundle of Tn as a manifold is trivial, and choosing a trivial line subbundle determines a mapping
Tn → RPn−1, which is identified with a line field on Tn. The Z2 action linearised is a scalar
multiple of the identity matrix, and therefore acts trivially on real projective (n− 1)-space. In
particular, any such line field descends to the orbifold Tn/Z2, the induced map Tn → RPn−1

being Z2-equivariant. In particular, the orbifold Tn/Z2 admits a globally defined line field, and
χorb(Tn/Zn) = 0, as expected. On the other hand, Tn/Z2 does not admit a nowhere vanishing
vector field. Indeed, any such Z2-equivariant section Tn → T (Tn) necessarily vanishes at the
singular points.

Example 4.1.2. Let Zk act on S2 by rotations. Extending Example 1.2.1, one can define a line
field ξ on the orbifold S2/Zk with two singularities at the cone points, each of projective index
2/k, and indeed 2χorb(S2/Zk) = 4/k. In a natural way, this example can also be adjusted to
both the teardrop and akward rugby ball of Figure 3.1.4.

Example 4.1.3. Following Example 3.3.5, given q = 2m/n ∈ Q, we construct a line field on
a orbifold whose projective index at a singularity is q ∈ Q. Let Z2n act on S2n by rotations,
and let v be a vector field on S2n, invariant under rotations, with zeroes at the poles, each of
index +1. There is an induced line field ξ on the orbifold S2n/Z2n with two singularites, each
of projective index 1/n. Let M be a compact manifold with Euler characteristic m, and write ν
for a line field on M of projective index 2m, obtained via generation with a vector field whom
has a single isolated zero. The pair (ξ, ν) induce a line field on the orbifold S2n/Z2n×M , which
has a single singularity, of projective index 2m/n. Moreover, 2χorb(S2n/Z2n ×M) = 2m/n.
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