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Abstract
In this report we discuss the classification of complex semisimple lie algebras. The classifi-

cation relies on the bijective correspondence between complex semisimple Lie algebras and root
systems: in particular the correspondence between complex simple Lie algebras and irreducible
root systems and the similar roles these two structures play in the construction of complex
semisimple Lie algebras and reducible root systems respectively. The final result is very neat,
classifying all complex simple Lie algebras as one of the following classes, An (n ≥ 1), Bn (n ≥ 2),
Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4 or G2, and complex semisimple Lie algebras as direct
sums of such Lie algebras.
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Research Summary.

A Lie algebra is a vector space g endowed with additional structure through a bilinear operator
called a commutator [, ] : g × g → g. It is a fair enough question to ask whether the resulting
structure can be enumerated and fully classified. Due to the difficulty in this question we restrict
our focus to semisimple Lie algebras over C. The full classification of complex semisimple Lie
algebras, as we know it today, was given by a young Evgenĭı B. Dynkin in 1947 (Dynkin, 1947) and
later adapted by Jean-Pierre Serre to give us a complete correspondence between Lie algebras and
their root systems up to isomorphism, as outlined in (Serre, 2012). Books such as (Humphreys,
2012) and (Knapp, 2013) give slightly different methods of decomposition and classification of
abstract root systems, however the fundamentals remain the same. That is, given a complex
semisimple Lie algebra g we can decompose g into the direct sum of a collection of ‘simultaneous
eigenspaces’ relative to the adjoint representation of a Cartan subalgebra h: ad h being maximal
abelian and simultaneously diagonalisable, ensuring we can decompose g in its entirety. To each
eigenspace corresponds an element of h∗ we call a root. The collection of these roots Φ form a
complex root system in h∗. The process is often referred to as the root space decomposition of g
with respect to Cartan subalgebra h. It can then be shown that any two Cartan subalgebras h1

and h2 are isomorphic – with h1 = [g, h2] for some g ∈ g – and that as consequence the resultant
root system Φ is independent of the choice of h. Thus each Lie algebra g has a unique complex
root system Φg. J-P.Serre showed that two Lie algebras with isomorphic root systems must in
turn be isomorphic and that to each abstract root system Φ there exists a complex semisimple Lie
algebra whose root system is Φg with Φ = Φg (Isomorphism and Existence theorems). This then
gives a bijective correspondence between the two structures. However each complex abstract
root system is simply the complexification of a real abstract root system i.e. Φ is a real root
system on the R span of Φ in h∗. So in classifying all real root systems up to isomorphism we
have gained a classification of complex root systems and in turn, thanks to the isomorphism an
existence theorems, classified all complex semisimple Lie algebras. We will not give an outline of
the classification of real root systems here but will instead give the results of the classification,
those being that each real root system is one of four infinite families or five exceptional root
systems: An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4 or G2. The indexing
is to remove repeats, such that each root system listed above is distinct up to isomorphism. The
report does not aim to prove any results, instead giving a brief overview of the classification.
Refer to Humpheys, Knapp, and Serre as listed in the References for proofs on the subject.
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Results and Methods.

1 Introduction to Lie Algebras.

1.1 Lie Algebras.

In attempting to classify all semisimple Lie algebras over C we naturally become interested
in the building blocks of such Lie algebras. In this section we discuss what a Lie algebra is;
isomorphisms and representations of Lie algebras; and semisimple Lie algebras.

Definition. A Lie algebra is a vector space g over a field F, endowed with a bilinear operation
[ , ] : g× g → g (often called the bracket or commutator) with the following properties. For
all x, y, z ∈ g

[L1] [x, y] = −[y, x] (Skew-symmetry)

[L2] [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi identity)

If a is a subspace of a Lie algbera g, that is closed under the bracket [ , ] (i.e. [a, b] ∈ a for all
a, b ∈ a), then we call a a Lie subalgebra of g (or typically a subalgebra of g).

Examples.

1. An example of a Lie algebra the reader is already well acquainted with is that of R3 endowed
with the cross-product u × v. In particular, we let g = R3 and define the bracket to be
exactly the cross-product with [u, v] = u × v. [L1] is satisfied as the cross-product is well
know to be bilinear and skew symmetric, where u× v = −v×u for u, v ∈ R3. We also note
that for all u, v, w ∈ R3

u× (v × w) = (u× v)× w + v × (u× w)

= −w × (u× v)− v × (w × u).

And so [L2] (called the Jacobi identity) is satisfied, i.e.

u× (v × w) + w × (u× v) + v × (w × u) = 0 for all u, v, w ∈ R3

So (R3,×) does indeed constitute a Lie algebra.

2. A family of linear Lie algebras of particular interest are the special linear Lie algebras
denoted by sl(n,C) whose elements are n by n traceless matrices with complex entries and
bracket [A,B] = AB − BA. For example sl(2,C) is a three-dimensional complex vector
space with basis elements

e =

[
0 1
0 0

]
, h =

[
1 0
0 −1

]
, and f =

[
0 0
1 0

]
In any Lie algebra g for x, y in g we say that x, y commute if [x, y] = 0. We say that g is

abelian if for all x, y ∈ g, x and y commute (or equivalently if [g, g] = {[x, y] : x, y ∈ g} = {0}).
Thanks to the skew-symmetry of the commutator we have that for any x ∈ g , [x, x] = −[x, x]
and thus 2[x, x] = 0. Assuming the base field F of g is of characteristic other than 2, we must
have [x, x] = 0 i.e. x commutes with itself (for this reason, in the future, we will always assume
F has characteristic other than 2). If g is a one dimensional Lie algebra with basis {a}, then we
see that [g, g] ⊆ C[a, a] = {0}, and so any one dimensional Lie algebra is abelian.
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1.2 Isomorphisms, Representations and Ideals.

A natural notion of equivalence of Lie algebras arises by considering structure preserving maps
between Lie algebras: the structure of interest being that imposed on the Lie algebra as a vector
space by the bracket.

Definition. Let a, b be Lie algebras, and π : a → b a linear transformation, then π is a ho-
momorphism of Lie algebras if π([x, y]) = [π(x), π(y)] for all x, y ∈ a. Let kerπ = {x ∈ a :
π(x) = 0} and imπ = {y ∈ b : ∃x ∈ a, π(x) = y}. If kerπ = {0} and imπ = b then we call π an
isomorphism of Lie algebras and say that a and b are isomorphic.

We can partition the set of all Lie algebras into isomorphic classes, as isomorphism defines
an equivalence relation on Lie algebras. Now we discuss representations of Lie algebras.

Definition′. Let g be a Lie algebra and V a vector space over field F. Then a representation
of g on V is a Lie algebra homomorphism π : g→ gl(V ).

Thus, if π : g→ gl(V ) is a representation of g on V then one must have

π([x, y]) = [π(x), π(y)] = π(x)π(y)− π(y)π(x)

for all x, y ∈ g, as a result of the definition of the bracket on gl(V ).

Examples.

1. An important example of a representation is the adjoint representation. Given a Lie
algebra g define the map ad : g → EndF g : x 7→ adx where the operator adx is defined
to be such that adx(y) = [x, y] for all y, x ∈ g. We often write ad g := im ad . All we
must show is that ad is a homomorphism. Due to linearity of the bracket, the adjoint
representation is linear on g i.e.

ad (ax+ by) = [ax+ by,−] = a[x,−] + b[y,−] = a adx+ b ad y for all a, b ∈ F, x, y ∈ g.

We also have that ad preserves the bracket i.e. due to the Jacobi identity, for all x, y, z ∈ g

ad [x, y](z) = [[x, y], z] = [x, [y, z]]−[y, [x, z]] = (adx ◦ ad y − ad y ◦ adx) (z) = [adx, ad y](z).

Thus, it is now clear that ad is a Lie algebra homomorphism. Moreover, it is a represen-
tation.

2. For an example we can easily calculate a basis of the adjoint representation of sl(2,C). It
is a simple exercise to check

[h, e] = 2e, [e, f ] = h, and [h, f ] = −2f.

Setting B = {e, h, f} as a basis of sl(2,C), one has

[ad e]B =

0 −2 0
0 0 1
0 0 0

 , [adh]B =

2 0 0
0 0 0
0 0 −2

 , [ad f ]B =

 0 0 0
−1 0 0
0 2 0


Definition′. Let g be a Lie algebra and a a Lie subalgebra. Then a is said to be an ideal if, for
all a ∈ a one has

[g, a] ∈ a and [a, g] ∈ a, for all g ∈ g

For those unfamiliar, an ideal can be thought of as part of an algebra that contributes to the
algebraic structure disjointly i.e it can be removed and leave behind another algebra.
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1.3 Simple and Semisimple Lie Algebras.

We now look at the building blocks of semisimple Lie algebras and what it means to be semisim-
ple.

Definition. Let g be a Lie algebra, then we say that g is simple if

i. g is non abelian;

ii. g has no non-zero ideals apart from g.

These algebras can be thought of as bricks. Due to the lack of non-trivial ideals, there is no
interesting way to decompose simple Lie algebras into smaller algebras.

Definition′. Let g be a Lie algebra. Then g is said to be semisimple if there exists ideals
a1, a2, . . . an of g such that

g =
⊕
i

ai

with each ai simple.

Indeed, the building block analogy holds as we can represent any semisimple Lie algebra as
the sum of simple Lie algebras. This gives us the ability to reorient our focus to classifying
all simple Lie algebras over C, as we can naturally extend the classification to semisimple Lie
algebras.

2 Cartan Subalgebras and Root-space Decomposition.

In this section we consider how one gains a root system from a finite dimensional complex
semisimple Lie algebra.

2.1 Weight-space Decomposition.

We introduce the machinery required to decompose a complex semisimple Lie algebra. Let h be
a finite dimensional Lie algebra over C.

Definition. Let π be a representation of h on a complex vector space V . For α ∈ h∗ we define

Vα := {v ∈ V : (π(h)− α(h)1)nv = 0 for all h ∈ h for some n = n(h, v) ∈ N}

If Vα 6= 0, we call Vα a generalised weight-space, and we call α a weight. Note that n above
is dependent on both h ∈ h and v ∈ V .

We find it useful to mention the following. Let h be a Lie algebra, and suppose {adh1 ◦
adh2 ◦ · · · ◦adhn : hi ∈ h} = {0} ⊆ EndF h for some n ∈ N, then we say that h is nilpotent. For
example, any Lie algebra consisting of strictly upper triangular matrices with bracket [A,B] =
AB−BA is nilpotent. Note that any abelian Lie algebra is nilpotent: as if [h, h] = 0, then adh = 0
for all h ∈ h. We then observe the properties of the following weight-space decomposition.

Proposition. Let h be a nilpotent Lie algebra over C and π a representation of h on a finite
dimensional complex vector space V . Then there are finitely many generalised weights αi, each
Vαi

is stable under π(h) and we can write V as the direct sum of its generalised weight-spaces
i.e.

V =
⊕
i

Vαi .
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2.2 Cartan Subalgebras.

Definition. Let g be a semisimple Lie algebra over C, and h a nilpotent subalgebra of g. Then
h is said to be a Cartan subalgebra of g if h = g0.

Theorem (Existence). Let g be a finite dimensional semisimple Lie algebra over C. Then g has
a Cartan subalgebra h.

Theorem′ (Isomorphism). Let g be a Lie algebra with h1 and h2 as Cartan subalgebras of g.
Then there exists an inner automorphism of g (denote it π), with h1 = π(h2). Namely, h1

∼= h2,
with h1 = [g, h2] for some g ∈ g.

So a Cartan subalgebra is guaranteed to exist and is isomorphic by conjugation to other
Cartan subalgebras of the same underlying Lie algebra. We then note the following theorem.

Theorem′′. Let g be a Lie algebra over C and h a subalgebra. If g is semisimple, then h is a
Cartan subalgebra if h is maximal abelian and adgh is simultaneously diagonalisable.

2.3 Root-space Decomposition.

Let g be a finite dimensional complex semisimple Lie algebra and h a Cartan subalgebra of g.
Then we can represent h by its adjoint action on g, we denote by adg h. Using the weight-space
decomposition mentioned previously, we can decompose g into generalised weight-spaces with
respect to the representation adg of h on g.

In consideration of Proposition 2.1, we denote the finite collection of non-zero weights by Φg;
we then write g as

g = h⊕
⊕
α∈Φg

gα,

where
gα = {g ∈ g : (adgh− α(h)1)ng = 0 for all h ∈ h for some n = n(h, v)}

Note that Φg ⊆ h∗.

3 Abstract Root Systems.

Our next goal is to understand the structure of abstact root systems.

3.1 Reflections.

A Euclidean space is simply a real vector space E endowed with an inner product ( , ). A
reflection in some Euclidean space E is any linear transformation that fixes some hyperplane
P in E and sends those vectors orthogonal to P to their negative. Given any vector α in E
we can define a reflection σα, that fixes the hyperplane Pα = {x ∈ E : (α, x) = 0} and sends
α 7→ −α. We can easily show that σα is orthogonal and preserves the inner product. We may
write E = Pα ⊕ Rα, and for any x ∈ E we can write x = x′ + x′′ with x′ ∈ Pα and x′′ ∈ Rα.
Then

(σα(x), σα(y)) = (σα(x′ + x′′), σα(y′ + y′′))

= (−x′ + x′′,−y′ + y′′)

= (x′, y′) + (x′′, y′′)

= (x′ + x′′, y′ + y′′)

= (x, y)
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for all x, y ∈ E, and σα is indeed orthogonal. Explicitly, σα(β) = β − 2 (β,α)
(α,α)α for β, α ∈ E. For

convenience we write 〈β, α〉 := 2 (β,α)
(α,α) .

3.2 Abstract Root Systems.

Now that we have some idea of what a reflection is, we can easily define a root system.

Definition. Let Φ be a set of vectors in E. Then we say that Φ is a root system in E if the
following are satisfied:

[R1] Φ is finite, spans E, and does not contain 0;

[R2] If α ∈ Φ, then Φ is invariant under the action of σα;

[R3] If α, β ∈ Φ, then 〈β, α〉 ∈ Z.

[R4] If α ∈ Φ, then the only scalar multiples of α in Φ are ±α.

If Φ is a root system, we call α ∈ Φ a root.

Definition′. Given an abstract root system Φ we denote the collection of all reflections σα with
α ∈ Φ by W . We call W the Weyl group of Φ.

Definition′′. Let Φ be a root system in a real inner product space E. If Φ = Φ′ ∪ Φ′′ with
(x, y) = 0 for all x ∈ Φ′, y ∈ Φ′′ then we say Φ is reducible. We say Φ is irreducible if it is
not reducible.

There is a natural notion of isomorphism between root systems. If Φ is a root system in E,
and Φ′ a root system in E′ then we say that the two root systems are isomorphic if there exists
a vector space isomorphism π : E → E′ such that π(Φ) = Φ′, and 〈π(β), π(α)〉 = 〈β, α〉.

The following theorems show an important correspondence between finite dimensional com-
plex semisimple Lie algebras. Not only can we associate a root system to each complex semisim-
ple Lie algebra, we notice that irreducible root systems play a similar role in the construction of
reducible root systems as simple Lie algebras play in the construction of semisimple Lie algebras.

Theorem. Let g be a finite dimensional complex semisimple Lie algebra and h a Cartan sub-
algebra. Then the set of non-zero weights Φg spans a real vector space V0 = spanRΦg, and Φg

forms a root system on V0.

Theorem′. Let g be a finite dimensional complex semisimple Lie algebra and Φg its associated
root system. Then Φg is irreducible if and only if g is simple.

Examples.

1. Call ` = dimE the rank of a root system in E. Thanks to property R4 we only have one
reduced root system of rank 1 (up to isomorphism) we label the root system A1.

A1: α−α

2. The following are some examples of rank 2 reduced root systems (it turns out there are
only four!) Note that A1 ⊕A1 is reducible and all other root system are irreducible.
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α

β

(a) A1 ⊕A1

α

β

(b) A2

α

β

(c) B2

α

β

(d) G2

Figure 1: Examples of reduced root systems of rank 2.

3.3 Pairs of Roots.

An important consequence of [R3] is the restriction it places on the relative positioning and
length between two roots. Let Φ be a root system on E. Let α, β ∈ Φ, and we assume that
|α|2 ≤ |β|2 and that α and β are linearly independent. Let θ denote the angle between the two
roots with 0 < θ < π (θ 6= 0 and θ 6= π due to linear independence). Now, one has

〈β, α〉 = 2
(β, α)

|α|2
= 2
|β|
|α|

cos θ.

In particular, we have
0 ≤ 〈β, α〉〈α, β〉 = 4 cos2 θ ≤ 4

Note that 〈β, α〉 ≤ 0 if and only if (β, α) ≤ 0, and 〈α, β〉 ≤ 0 if and only if (α, β) ≤ 0. Since
(α, β) = (β, α) we can conclude that 〈β, α〉 and 〈α, β〉 have the same sign. Moreover, 〈β, α〉 = 0
if and only if 〈α, β〉 = 0, by a similar consideration. Now since θ 6= 0 and θ 6= π,

0 ≤ 〈β, α〉〈α, β〉 = 4 cos2 θ < 4

By [R3], 〈β, α〉〈α, β〉 ∈ Z, so 〈β, α〉〈α, β〉 = 0, 1, 2, or 3.
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Suppose 4 cos2 θ = 〈β, α〉〈α, β〉 = 1 with 〈β, α〉 = 〈α, β〉 = −1. Then either θ = π/3 or
θ = 2π/3, however since cos(π/3) > 0, if θ = π/3 then

〈β, α〉 = 2
|β|
|α|

cos θ ≥ 0

So it cannot be the case that θ = π/3 when 〈β, α〉 = −1. Hence, it must be the case that
θ = 2π/3. We also note that

〈β, α〉2

4 cos2 θ
=
|β|2

|α|2

Thus we see that given our assumptions one has |β|2/|α|2 = 1.
We list all possible values of〈β, α〉 and 〈α, β〉 (assuming |α|2 < |β|2) alongside the corre-

sponding angular displacements θ and relative lengths |β|2/|α|2 (found by similar considerations
as above in the case of 〈β, α〉〈α, β〉 = 1 and 〈β, α〉 = 〈α, β〉 = −1).

〈β, α〉〈α, β〉 〈β, α〉 〈α, β〉 θ |β|2/|α|2
0 0 0 π/2 -
1 1 1 π/3 1
1 -1 -1 2π/3 1
2 2 1 π/4 2
2 -2 -1 3π/4 2
3 3 1 π/6 3
3 -3 -1 5π/6 3

Table 1: Relations between pairs of roots.

The following proposition will be useful in later discussion.

Proposition. Let Φ be a reduced root system and α, β ∈ Φ be linearly independent roots. If
(α, β) > 0, then α− β is also a root.

Proof. Note that (α, β) > 0 if and only if 〈α, β〉 = 2(α, β)/|β|2 > 0. By observation of table 1, we
see that either 〈α, β〉 = 1 or 〈β, α〉 = 1. In the former case one would have σβ(α) = α − β ∈ Φ,
and in the latter σα(−β) = −β + α ∈ Φ. In either case α− β is a root.

4 Classification of Abstract Root Systems.

We now state the classification theorem of roots systems via the use of Dynkin diagrams.

4.1 Bases and Simple Roots.

Definition. Let Φ be an abstract root system over E and let ∆ ⊆ Φ. Then ∆ is said to be a
base of Φ is

[B1] ∆ is a basis of E;

[B2] and for each α ∈ Φ we can write can α =
∑
i kiβi, βi ∈ ∆ with either all ki ≥ 0 or all

ki ≤ 0.

If ∆ is a base, then we say that α is simple if α ∈ ∆.
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The first thought that may come to mind is how do we guarantee the existence of a base.
But it turns out that a base does exist for any given root system and is unique up to reflection
by an element of the Weyl group. We summarise this in the following theorem.

Theorem. Every abstract root system has a base ∆. Moreover, if ∆1 and ∆2 are two bases of
a root system with Weyl group W , then there exists a σ ∈W such that ∆1 = σ(∆2).

We also have the following properties that will be important in the construction of Dynkin
diagrams.

Proposition. Let ∆ be a base of a root system Φ. If α, β are linearly independent simple roots,
then we must have one of the following

1. 〈β, α〉〈α, β〉 = 0, and θ = π/2;

2. 〈β, α〉〈α, β〉 = 1 and θ = 2π/3;

3. 〈β, α〉〈α, β〉 = 2 and θ = 3π/4;

4. 〈β, α〉〈α, β〉 = 3 and θ = 5π/6.

Examples.

1. The roots labled α and β form a base for each root system in Figure 1. By Proposition
4.1, these four root systems are indeed the only root systems of rank 2.

4.2 Dynkin Diagrams.

Definition. Let Φ be a root system with base ∆. A Coxeter diagram is a graph, with simple
roots for vertices and the number of edges between simple roots α and β given by the value
〈β, α〉〈α, β〉. A Dynkin diagram is a Coxeter diagram with directed edges, pointing towards
the simple root of least magnitude. If two simple roots have the same magnitude the edge remains
is un-directed.

Theorem. If Φ is an irreducible root system, then it’s associated Dynkin Diagram must be one
of the following

An (n ≥ 2) : Bn (n ≥ 2) :

Cn (n ≥ 3) : Dn (n ≥ 4) :

E6 : E7 :

E8 :
F4 :

G2 :

Figure 2: The Classification of root systems.

This restricts the structure of irreducible root systems. Note that the Dynkin diagram of a
complex semisimple Lie algebra is a disconnected graph whose components are Dynkin diagrams
of irreducible root systems.

9



5 Isomorphism and Existence Theorems.

We now have a complete classification of abstract root systems. Thus the root system generated
by the root-space decomposition of some Lie algebra g, being an abstract root system, is classified
accordingly. However we still wish to establish a bijective correspondence between isomorphic
abstract root systems and isomorphic complex semisimple Lie algebras. To do this we have two
important theorems given by J-P. Serre. To prove these theorems we require an understanding
of how to gain information about the Lie algebra from its associated root system which is beyond
the scope of this report.

Theorem (Isomorphism). Let g1 and g2 be complex semisimple Lie algebras with root systems
Φ1 and Φ2. If Φ1 and Φ2 are isomorphic as root systems, then g1 and g2 are isomorphic as Lie
algebras.

Simply put, two complex semisimple Lie algebras with isomorphic root systems are isomor-
phic.

Theorem′ (Existence). Let Φ be a an abstract root system. Then there exists a complex
semisimple Lie algebra g with root system Φ.

Hence, with these two theorems, we have established a bijective correspondence between finite
dimensional complex semisimple Lie algebras and abstract root systems up to isomorphim. The
classification of finite dimensional complex semisimple Lie algebras then follows as the structure
of abstract root systems is limited to a Dynkin diagram with components listed in Theorem 4.2.
We can impose an equivalence relation on all finite dimensional semisimple Lie algebras over
C by considering isomorphism classes. We then associate to each isomorphism class a Dynkin
diagram. Note the following about complex simple Lie algebras.

Theorem′′. Let g be a Lie algebra over C. If g is simple then it must be in one of the following
classes: An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4 or G2. Moreover,
each class is non-empty.

The classification then naturally extends to semisimple Lie algebras over C: such algebras
being in equivalence classes represented by the direct sums of simple Lie algebras over C i.e.
A1 ⊕B2 is an equivalence class of semisimple complex Lie alegbras with reducible root systems
isomorphic to A1 ∪B2.
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