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Abstract

The vortex equations were originally conceived in the context of superconductivity theory,
but it was shown by Mrowka, Ozsvath and Yu that the moduli space of solutions to the
Seiberg-Witten equations on a Seifert fibered 3-manifold is essentially diffeomorphic to the
moduli space of solutions to the vortex equations on its underlying Riemann surface. Thus,
the vortex equations are of importance in the gauge-theoretic study of 3-manifolds. In this
dissertation, we review a proof by Garcia-Prada which characterises the structure of the
moduli space of vortices. Additionally, we provide the necessary background in complex
and symplectic geometry to understand the proof.
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Chapter 1

Introduction

It is relatively simple to understand and classify surfaces up to diffeomorphism, but the
corresponding task for 3-manifolds and 4-manifolds is much more complicated. Though
Thurston’s geometrisation theorem provides a classification of the 3-dimensional model ge-
ometries, it is generally quite difficult to decompose an arbitrary 3-manifold into these model
geometries; the situation is even worse for 4-manifolds, for which we have no classification.
Thus, tools for understanding the structure of these manifolds are highly desirable.

One such tool was introduced by Seiberg and Witten in 1994, and is now known as
Seiberg-Witten theory; it was conceived as a physical theory on a flat space, but was
subsequently adapted by Witten to closed 4-manifolds. In essence, the theory allows us
to extract smooth invariants from manifolds by defining a set of geometric PDEs called
the Seiberg-Witten equations, and considering the moduli space of solutions (the space
of solutions up to equivalence by a particular group action). Though the Seiberg-Witten
equations are only defined on 4-manifolds a priori, one can obtain a three-dimensional
version of the equations by dimensional reduction; given a 3-manifold Y , we define the
equations on the 4-manifold Y ×R and take the R-invariant solutions. Moreover, the three-
dimensional version of the theory can be further reduced in an important special case. In
1997, it was proven by Mrowka, Ozsvath, and Yu (see [MOY97]) that, when Y is a Seifert
fibered 3-manifold, the moduli space of solutions is essentially equivalent to the moduli
space of another important system of equations called the vortex equations. The moduli
space of solutions to these equations were already being studied at the time, as they had
other physical interpretations.

The vortex equations originated in superconductivity theory, being first published in
1950 by Ginzburg and Landau; for a general reference on Ginzburg-Landau theory and
superconductivity, see [Sch97]. In the case of a complex wavefunction-like electron field Ψ
and a magnetic vector field FA = ∇ × A for a magnetic potential A, they proposed the
following free energy density for a superconductor (up to constants depending on units):

E = |FA|2 + |dΨ− iAΨ|2 + µ2

2 (|Ψ|2 − 1)2, (1.1)

where µ ∈ (0,∞) determines the behaviour of the superconductor. Note that E is invariant
under the gauge transformations Ψ 7→ eiχΨ, A 7→ A +∇χ for any scalar field χ, and this
corresponds to the fact that gauge transformations do not change physical states. The
three terms in this energy density have concrete physical interpretations: the first is the
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2 CHAPTER 1. INTRODUCTION

energy due to the magnetic field; the second is the energy due to the interaction between the
wavefunction and the magnetic field; and the third is the energy due to the interaction of the
wavefunction with itself. This self-interaction was explained microscopically by Bardeen,
Cooper, and Schrieffer in [BCS57], where they found a natural interpretation for Ψ as a
pair of bound electrons.

The stable configurations correspond to pairs (A,Ψ) minimising
´
E dV . Such minimis-

ers are called vortices, because of how they tend to behave around zeros of Ψ. In particular,
if Ψ is equal to zero and A varies slowly in a given direction, there will be a line along which
Ψ is zero. Furthermore, the current of Ψ will circle around the line in a sufficiently small
neighbourhood, meaning Ψ behaves like a vortex around a zero. In this light, it was found
that the value µ = 1/

√
2 was physically significant; vortices tended to attract/repel each

other for smaller/larger µ. Thus, stable solutions with finitely many vortices could only be
found for this critical value of µ. Indeed, it was shown by Jaffe and Taubes in [JT80] that
any choice of d points on the plane R2 for any d corresponded uniquely (up to gauge trans-
formations) to a vortex (A,Ψ) with zeros at each chosen point (counted with multiplicity).
In more concise and suggestive language, the moduli space of vortices is isomorphic to the
disjoint union of all finite symmetric products of R2.

There is a more general geometric perspective on the moduli space of vortices, whose
specifics we will formally define in Chapters 2 and 3. Namely, instead of a complex function
on R2 and a vector field, we can instead consider a section of a complex line bundle, called
a Higgs field, and a connection on that line bundle. This means we are no longer limited to
flat space, so we instead consider arbitrary Riemann surfaces; we therefore have a natural
generalisation of the energy density E to any Riemann surface with a complex line bundle.
The new energy density functional (with µ = 1/

√
2) is referred to as the Yang-Mills-Higgs

functional, so named because it generalises the Yang-Mills functional to include a Higgs
field. An extra parameter τ is also introduced; this new parameter adjusts the functional
slightly so that solutions are not completely eliminated by topological obstructions. (We
elaborate on this in Chapter 3.)

In 1990, it was shown by Bradlow in [Bra90] that all minimisers (∇, φ) of the Yang-
Mills-Higgs functional on a Riemann surface satisfy the following equations:

∇0,1φ = 0;

∗F∇ = i

2(|φ|
2 − τ).

(1.2)

This pair of geometric PDEs is called the τ -vortex equations. In the same paper, Bradlow
published an existence proof for the τ -vortex equations in the case that τ satisfied a certain
inequality, and also showed that the moduli space of τ -vortices was characterised by a choice
of d vortex points. However, unlike the flat case, the number d was found to be fixed; in
particular, it had to be equal to the degree of the line bundle, meaning the moduli space
was equivalent to dth symmetric product of the Riemann surface. Thus, the structure
of the moduli space was found to be constrained topologically. In fact, Bradlow proved
an analogue of this theorem in much more generality, constructing and solving the vortex
equations on arbitrary Kähler manifolds with complex vector bundles of arbitrary rank.

Bradlow’s existence proof relied on the reduction of the τ -vortex equations to a specific
class of PDEs called the Kazdan-Warner equations, for which solutions were already known
to exist. However, in 1994, Garcia-Prada published an existence proof in [Gar94] which
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was much more geometric in nature. His proof was based on a method used by Atiyah
and Bott in [AB83] and Donaldson in [Don83] to study the Yang-Mills equations, in which
the moduli space was shown to be the zero set of a certain geometric map on the space
of connections (specifically a moment map). Remarkably, Garcia-Prada’s proof is non-
constructive: he describes the entire space of solutions to the vortex equations without
explicitly constructing any of them.

Thus, the main goal of this dissertation is to review Garcia-Prada’s proof, as well as the
necessary background in complex geometry and symplectic geometry. The outline of the
dissertation is as follows:

• Firstly, we develop the prerequisite ideas in complex geometry. We start with a dis-
cussion of complex manifolds in general, and follow this with a description of complex
line bundles and holomorphic structures on them. The bulk of this chapter is dedi-
cated to the various correspondences between tools for classifying line bundles up to
isomorphism, both holomorphically and topologically.

• Secondly, we introduce the Yang-Mills-Higgs functional and the vortex equations, and
demonstrate that their solutions can be characterised as zeros of a moment map. We
supplement this with an introduction to the theory of moment maps. Much of this
chapter elaborates on claims made by Garcia-Prada in his 1994 paper.

• Thirdly, we state the structure of the moduli space of τ -vortices, and we prove that it
has this structure. We present a brief introduction to the relevant functional analysis,
namely Sobolev spaces and elliptic differential operators. The proof given is entirely
due to Garcia-Prada, though we have spelled out the reasoning in more elementary
terms, and provided clarifications and corrections wherever necessary. We conclude
with some remarks on further directions.
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Chapter 2

Complex Geometry

As the vortex equations are naturally defined on complex vector bundles over compact com-
plex manifolds, we begin with some background on these objects. We start by discussing
general complex manifold theory, including the Dolbeault operators, Kähler structures, and
inner products on differential forms. We then discuss the basics of complex vector bundles,
which includes the theory of gauge transformations, connections, and curvature. This is
followed by discussions of holomorphic structures on vector bundles, and how these can
be viewed in terms of complex atlases, differential operators, Hermitian connections, and
divisors. Finally, we introduce the first Chern class as a tool for classifying line bundles
topologically. The majority of the contents of this chapter apply to general complex man-
ifolds, but we occasionally restrict attention to compact Riemann surfaces; these are the
primary objects of interest for the vortex equations as we shall define them.

Of these topics, we only present what we will need later when we discuss vortices. For
a more comprehensive overview of complex manifolds and vector bundles, see [Mor07].

2.1 Complex Manifolds and Riemann Surfaces

Complex geometry is the study of spaces which “locally resemble” complex vector spaces.
This can be made precise in one of two ways. The first way is via complex atlases, which
are natural extensions of smooth structures from classical geometry.

Definition 2.1. Let X be a smooth manifold. A complex atlas on X consists of an open
cover U of X and a diffeomorphism φU : U → φU (U) ⊆ Cn for each U ∈ U , such that
φU ◦ φ−1

V is holomorphic as a map between subsets of Cn for every U, V ∈ U . If X is
equipped with a complex atlas, then it is called a complex manifold; and if n = 1, then it is
called a Riemann surface. (Unless explicitly stated otherwise, we assume X is connected.)

The second way is via almost-complex structures, which derive from the observation that
a complex vector space is equivalent to a real vector space with an extra automorphism
corresponding to v 7→ iv.

Definition 2.2. Let X be a smooth manifold. An almost-complex structure on X is a
(1, 1)-tensor J on TX for which J2 = −id. The pair (X,J) is called an almost-complex
manifold.

5



6 CHAPTER 2. COMPLEX GEOMETRY

Every complex vector space Cn possesses an almost-complex structure; on the tangent
bundle TCn ∼= Cn×Cn, one defines the (1, 1)-tensor j to correspond to scalar multiplication
by i on each tangent space. Consequently, a complex atlas on a manifold generates an
almost-complex structure: if p ∈ X and (U, φU ) is a holomorphic chart containing p, we
define the (1, 1)-tensor J on each coordinate chart so that

J |U = (φ−1
U )∗ ◦ j ◦ (φU )∗. (2.1)

It is fairly easy to show that this definition is independent of the choice of coordinates.
The conditions under which an arbitrary almost-complex structure is induced by a complex
atlas are given by the Newlander-Nirenberg theorem:

Theorem 2.3 (Newlander-Nirenberg). Let (X, J) be an almost-complex manifold. Then
there is a complex structure on X if and only if T 0,1X ⊆ TXC, the −i-eigenspace of J , is
integrable.

For a proof, see [Mor07].
As hinted above, there is a canonical decomposition of the complexified tangent bundle

of an almost-complex manifold. In particular, we have that TXC = T 1,0X ⊕ T 0,1X, where
each direct summand is the +i- and −i-eigenspace of J respectively. Similarly, we have a
decomposition of the complex-valued differential forms on X:

Ωk(X) =
⊕

p+q=k
Ωp,q(X), (2.2)

where Ωp,q(X) = (Ω1,0(X))∧p ∧ (Ω0,1(X))∧q, and Ω1,0(X),Ω0,1(X) ⊆ Ω1(X) are the ±i
eigenspaces of the pullback of J . This decomposition leads directly to a decomposition of
the exterior derivative; where πp,q : Ωp+q(X) → Ωp,q(X) denotes the direct sum projection,
we define the Dolbeault operators as follows:

∂p,q = πp+1,q ◦ dp+q,
∂p,q = πp,q+1 ◦ dp+q.

(2.3)

One can show that, whenever the almost-complex structure is integrable, dp+q = ∂p,q+∂p,q
for every p, q. It follows by separating d2 into its direct summands that ∂2 = ∂

2 = ∂∂+∂∂ =
0. Therefore, the spaces of differential (p, q)-forms equipped with the Dolbeault operators
form a double complex, meaning we can form cohomology out of them:

Definition 2.4. Given a complex manifold X, the (p, q) Dolbeault cohomology space is the
following vector space:

Hp,q(X) = ker(∂p,q)
im(∂p,q−1)

. (2.4)

Unsurprisingly, there is a relationship between the Dolbeault cohomology and the other
varieties of cohomology. This is made precise by Dolbeault’s theorem (for a proof, see
[GH94]):

Theorem 2.5 (Dolbeault). Let X be a complex manifold. Then there is an isomorphism
between Hp,q(X) and Ȟq(X,Ωphol(X)), where Ȟ denotes the Čech cohomology and Ωqhol(X)
is the sheaf of holomorphic q-forms.
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One case of the Dolbeault isomorphism can be spelled out explicitly, and we will use
this description later. In what follows, let U = {Ui}i∈I be a good open cover of X. If
p = 0 and q = 1, we can describe the map F : H0,1(X) → Ȟ1(X,Ω0

hol(X)) ∼= Ȟ1(U ,O)
as follows. Given a class in H0,1(X) defined by some (0, 1)-form α, we make the following
definition for F ([α]) ∈ Ȟ1(U ,O):

F ([α])ij = fi|Ui∩Uj − fj |Ui∩Uj , (2.5)

where each fi : Ui → C is a smooth function for which α|Ui = ∂fi (which we know must
exist by the Poincaré lemma). There are four things to check regarding this definition:

• The output of F is a 1-cocycle; this is a straightforward computation.

• The output of F does not depend on the choice of α. If β is another (0, 1)-form in
the same class, then β = α + ∂h for some h : X → C. But then β|Ui = ∂fi + ∂h for
each i, meaning F ([β])ij = (fi + h)|Ui∩Uj − (fj + h)|Ui∩Uj = F ([α])ij .

• The output of F does not depend on the choice of fi. If gi is another function for
which α = ∂gi, then gi = fi + ci where ci : X → C is holomorphic. But then
gi − gj = fi − fj + ci − cj = fi − fj + (δc)ij , where c is the 0-cochain for which
c(Ui) = ci. It follows that the cocycle determined by the gi differs by a coboundary
to the cocycle determined by the fi, so they are equal in Ȟ1(U ,O).

• F is linear; this follows from the linearity of ∂.

To show that F is an isomorphism, we may construct its inverse. Given a cocycle f ∈
Č1(U ,O), we can consider f as a cocycle valued in E instead (i.e. the sheaf of smooth
functions). However, since this sheaf is acyclic, we know that f = δg for some 0-cocycle g,
i.e. fij = gi − gj . We then define a (0, 1)-form α, whose cohomology class we define to be
F−1(f), by taking α|Ui = ∂gi. There are three things to check:

• α is a well-defined (0, 1)-form. Since gi − gj is holomorphic, we know that ∂gi = ∂gj
on overlaps. Therefore, the definition of α is consistent and can be glued together to
form a global differential form.

• The cohomology class of α does not depend on the choice of gi. If fij = hi − hj , then
gi− gj = hi−hj , so gi−hi = gj −hj . It follows that we can glue together each gi−hi
to form a global function g−h (even though neither g nor h may be glued in general),
which means that ∂hi = ∂gi − ∂(g − h). It follows that the image of f under F−1

differs by a ∂-exact (0, 1)-form under different choices of gi, meaning the cohomology
class is the same.

• F−1 is indeed the inverse of F ; this is once again a straightforward computation.

It follows that F is an explicit isomorphism between H(0,1)(X) and Ȟ1(X,O).
Additionally, we can elegantly phrase holomorphicity in terms of the Dolbeault opera-

tors. A function f : X → C is holomorphic (i.e. it is holomorphic in the complex atlas) if
and only if

∂f = 0. (2.6)
On the other hand, ifX is compact, the space of holomorphic functions reduces dramatically:



8 CHAPTER 2. COMPLEX GEOMETRY

Theorem 2.6. If X is a compact complex manifold, then the space O(X) of holomorphic
functions on X consists only of constant functions.

For a proof of this fact, see [Wel08].
Because every complex manifold is a smooth manifold, the smooth notions of metric and

symplectic structure can be applied to complex geometry. We briefly recall their definitions:

Definition 2.7. Given a smooth manifold X, a Riemannian metric on X is a (0, 2)-tensor
g which is pointwise a real inner product. A symplectic structure on X is a real-valued
closed 2-form ω on X which is pointwise nondegenerate.

The analogue of a complex-valued inner product is called a Hermitian metric, and it is
definable only on complex manifolds:

Definition 2.8. A Hermitian metric on a complex manifold X is a complex-valued 2-tensor
h on TX, which is pointwise a complex inner product.

A special case occurs when all three of these structures agree with each other; a manifold
with three compatible structures is called a Kähler manifold.

Definition 2.9. Let X be a smooth manifold. A Kähler structure on X consists of an
integrable almost-complex structure J , a Riemannian metric g, and a symplectic structure
ω, such that g(u, v) = ω(u, Jv) for every u, v. Equivalently, a Kähler structure on X is a
complex structure on X and a Hermitian metric h on X for which Im(h) is a closed 2-form.

The equivalence between these two definitions is seen by taking Re(h) = g and Im(h) = ω.
Any Riemannian metric on TX has an extension to all tensor bundles (TX)⊗k ⊗

(T ∗X)⊗ℓ, given by enforcing that

g(u1 ⊗ v1, u2 ⊗ v2) = g(u1, u2)g(v1, v2) (2.7)

for any ui, vi in the same fibre of the tensor bundle. We also extend this to the real exterior
powers Λk(X) by defining

(α, β) = 1
k!g(α, β) (2.8)

for each α, β ∈ Ωk(X), and this is extended to the complex exterior powers Λp,q(X) by
making g conjugate-linear in its second argument. It can be shown by induction that this
inner product respects the holomorphic decomposition of Λk(X), i.e. that

Λp,q(X) ⊥g Λr,s(X) (2.9)

whenever (p, q) ̸= (r, s). The inner product allows us to define a new kind of dual on the
spaces ΛX:

Definition 2.10. The Hodge dual is the unique operator ∗ : Λp,qX → Λn−q,n−pX such that
the following holds for any α, β ∈ Λp,q:

α ∧ ∗β = (α, β)volg. (2.10)
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By working in an orthonormal basis and extending linearly, it is easily shown that ∗2 =
(−1)(p+q)(n−p−q) on Λp,qX. If we further assume that X is compact, then we can integrate
any smooth complex-valued function on X using the volume form volg, and we can therefore
extend this inner product to differential forms as follows:

Definition 2.11. Given differential k-forms α, β ∈ Ωp,q(X) over a compact complex man-
ifold X, we define their L2-inner product as follows:

⟨α, β⟩ =
ˆ
X
(α, β)volg =

ˆ
X
α ∧ ∗β, (2.11)

where the expression (α, β) refers to the pointwise inner product of α and β in Λp,q(X).

As previously stated, a Riemann surface is a complex manifold X of dimension 1. All of
the preceding theory carries over to Riemann surfaces, but the low dimensionality results
in some simplifications. Firstly, we note that Ωk(X) vanishes for any k > 2, meaning
there are only four nontrivial spaces of complex differential forms. We also have that every
Riemannian metric automatically gives rise to a Kähler structure since every 2-form is
already closed. In this case, we also have the important result that the symplectic 2-form
is precisely the volume form induced by g; this is because J is orientation-preserving and
orthogonal, so ω(u1, u2) = ω(u1, Ju1) = 1 for any orthonormal frame {u1, u2}.

Given a Riemann surface X with metric g and associated Kähler form ω, we can define
a map from Ω0,0(X) to Ω1,1(X) given by f 7→ fω; it is clearly an isomorphism. The inverse
of this map will be denoted by Λ : Ω1,1(X) → Ω0,0(X); explicitly,

Λ(fω) = f. (2.12)

In fact, there is an important relationship between Λ and the Dolbeault operators, that we
will occasionally make use of, called the Kähler identities:

Theorem 2.12 (Kähler identities). Let X be a Riemann surface with Kähler form ω, and
denote the commutator by square brackets. Then the following equations hold:

[Λ, ∂] = −i(∗ ◦ ∂ ◦ ∗),
[Λ, ∂] = i(∗ ◦ ∂ ◦ ∗).

(2.13)

See [Mor07] for a proof.
One final result that will be occasionally useful is the following: if X is a Riemann

surface and α, β ∈ Λ1,0X ⊕ Λ0,1X, then

α ∧ ∗β = − ∗ α ∧ β. (2.14)

2.2 Complex Vector Bundles

Our fundamental goal is to study the space of solutions of certain PDEs on Riemann
surfaces. However, since every holomorphic complex-valued function on a compact Riemann
surface is necessarily constant, we will need to broaden the class of functions we consider to
gain any interesting information. Thus, we will instead consider sections of vector bundles,
and the PDEs will be formed using connections and Hermitian metrics. We briefly review
these concepts.
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Definition 2.13. Let X be a smooth manifold. A rank k complex vector bundle over X is
a manifold E together with a projection π : E → X, satisfying the following conditions:

• For each p ∈ X, π−1(p) has a complex vector space structure isomorphic to Ck;

• X has an open cover {Ui}i∈I together with diffeomorphisms ψi : π−1(Ui) → Ui × Ck,
called local trivialisations of E over Ui, such that the following diagram commutes:

π−1(Ui) Ui × Ck

Ui

ψi

π pr1

We frequently denote the vector bundle by E → X, or simply E. If k = 1, the vector bundle
is called a line bundle. A real vector bundle of rank k is exactly the same as a complex line
bundle, except that C is replaced with R wherever it appears.

Equivalently, a vector bundle E → X may be characterised as an open cover {Ui} of X
and a set of transition functions gij : Ui ∩ Uj → Aut(Ck). Each Ui corresponds to an
open set over which E is locally trivial, and each gij corresponds to the change of basis on
(Ui ∩ Uj) × Ck when moving between local trivialisations. The transition functions must
satisfy the cocycle condition in order to define a vector bundle; that is, we must have that

gijgjkgki = 1. (2.15)

For a detailed proof of this correspondence, see [Hus94].
We immediately define the notion of functions on manifolds with values in vector bun-

dles. In fact, we call them sections:

Definition 2.14. Given an open set U ⊆ X and a vector bundle E → X, a local section
of E (over U) is a smooth map σ : U → E such that π ◦ σ = id, and the set of all such
sections is denoted by ΓU (E). If U = X then σ is called a global section, and the set of
these sections is denoted by Γ(E).

One example of a vector bundle which always exists is the trivial bundle, defined to be
X ×Ck → X. On a trivial bundle, a section is just a Ck-valued function on X. For a more
interesting class of examples, consider the various tangent bundles: the tangent bundle TX,
its associated tensor bundles, and the bundles of alternating tensors ΛkX, all constitute real
vector bundles; their complexified variants, on the other hand, are complex vector bundles.
Sections of these bundles correspond to vector fields, tensor fields, and differential forms.

Many linear algebraic constructions carry directly over to vector bundles, by applying
them pointwise. In particular, given a vector bundle E → X, there is a dual bundle
E∗ → X and a conjugate bundle E → X, obtained by replacing each fibre space with the
dual space and the conjugate space respectively. (Note that a section of the dual bundle
acts on sections of E by contracting pointwise.) Moreover, if we have another vector bundle
F → X, we can construct the direct sum bundle E ⊕ F by taking the direct sum of the
fibres, the tensor product bundle E ⊗ F by taking the tensor product of the fibres, and
the homomorphism bundle Hom(E,F ) by taking the space of linear maps between fibres.
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(Note that the homomorphism bundle is isomorphic to E∗ ⊗ F .) A special case of these
constructions is the bundle of E-valued differential k-forms Λk(E), which is defined by
taking an arbitrary vector bundle E and taking its tensor product with Λk(X). The space
of sections of this bundle is denoted by Ωk(E). For a more careful construction of a topology
on these bundles, see [Hus94].

With these notions, we can define automorphisms of vector bundles. These are referred
to as gauge transformations:

Definition 2.15. Let π : E → X be a complex vector bundle. A gauge transformation on
L is a section g ∈ Γ(Aut(E)) of the automorphism bundle. We denote by G (or G (E)) the
group of all gauge transformations of a vector bundle E.

We define a group action of G (E) on Γ(E) as follows: an element g ∈ G (E) acts on a section
σ ∈ Γ(E) by taking

σ 7→ g−1σ. (2.16)

This ostensibly unnatural choice ensures that the action of G (E) on Γ(E) is a group action,
i.e. that (σg)h = σgh.

In order to differentiate sections of a vector bundle, we need an extra structure called
a connection. A connection is essentially interpreted as a generalisation of the directional
derivative in flat space, except that the input vector is a tangent vector.

Definition 2.16. Let π : E → X be a complex vector bundle. A connection on E is a
linear map ∇ : Γ(E) → Ω1(E) satisfying the Leibniz rule: for every f ∈ C∞(X) and every
σ ∈ Γ(E), we have

∇(fσ) = df ⊗ σ + f∇σ. (2.17)

We denote by A (E) the set of all connections on E, or simply A is E is obvious from
context.

Note that there is a natural action of G (E) on A (E), defined so that g ∈ G (E) acts on
∇ ∈ A (E) by taking

∇ 7→ g−1∇g. (2.18)

This choice ensures that (∇σ)g = ∇gσg.
Given connections ∇E and ∇F on vector bundles E,F → X, we can define a connection

∇E⊗F on E ⊗ F by defining

∇E⊗F (σ ⊗ η) = (∇Eσ)⊗ η + σ ⊗ (∇F η) (2.19)

for every σ ∈ Γ(E) and η ∈ Γ(F ). Likewise, we can define a connection ∇E∗ on E∗ by
defining

(∇E∗
ω)(σ) = d(ω(σ))− ω(∇Eσ) (2.20)

for every ω ∈ Γ(E∗) and every σ ∈ Γ(E). This leads immediately to the following useful
result:

Theorem 2.17. Let π : E → X be a complex vector bundle with connection ∇. Then there
is a unique system of connections on each tensor product bundle E⊗m ⊗ (E∗)⊗n satisfying
the following conditions:
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• On the trivial bundle, ∇ = d.

• If δ : E⊗m ⊗ (E∗)⊗n → E⊗(m−1) ⊗ (E∗)⊗(n−1) denotes a contraction operator (i.e. a
trace), then δ ◦ ∇ = ∇ ◦ δ.

• For any sections A and B of any two tensor product bundles, ∇(A ⊗ B) = (∇A) ⊗
B +A⊗ (∇B).

Similarly, there is a unique system of connections on each bundle of E-valued differential
forms Λk(E) satisfying the Leibniz rule: for any ω ∈ Ωk(X) and any σ ∈ Γ(E), we have
that

∇(ω ∧ σ) = (∇ω)⊗ σ + (−1)pω ∧∇σ. (2.21)

Thus, once we define a connection on sections of a bundle, we immediately have sections
of every “derived” bundle. We will often refer to these as the same connection. For more
details on this, see [Kob87].

It is an idea from classical differential geometry that derivatives give information regard-
ing intrinsic curvature; specifically, one can compute derivatives in different directions, and
if they commute at a given point then the space is flat there. This idea admits a natural
generalisation in the vector bundle formalism:

Definition 2.18. Let π : E → X be a complex vector bundle with connection ∇. The
curvature 2-form F∇ ∈ Ω2(End(E)) is defined such that

F∇(σ) = ∇(∇σ). (2.22)

It is linear over C∞(X) and alternating in its input tangent vectors, meaning it is indeed
a 2-form. Note also that, under a gauge transformation g ∈ G (E), the curvature 2-form
transforms as follows:

(F∇)g = g−1F∇g. (2.23)

It will be occasionally useful to conceptualise our global definitions in terms of local
trivialisations. To this end, the following proposition is illuminating:

Proposition 2.19. Let π : E → X be a complex vector bundle of rank k. A local triv-
ialisation of E over U may be equivalently described as a collection of nowhere-zero local
sections σ1, . . . , σk ∈ ΓU (E) which is pointwise linearly independent (that is, a smoothly
varying basis for E|U ).

Proof. Given a local trivialisation ψ : π−1(U) → U × Ck, we define ei : U → U × Ck
to be the constant vector in Ck in the ith direction, and we then take σi ∈ ΓU (E) to
be ψ−1(ei). Conversely, given a smoothly varying basis σ1, . . . , σk ∈ ΓU (E), we define
ψ : π−1(U) → U × Ck to take e ∈ π−1(U) to (π(e), v), where v ∈ Ck consists of the
components of e in the pointwise basis σ1, . . . , σk. The verification that all maps are smooth,
and that ψ is a diffeomorphism, is left to the reader.

We will often refer to a smoothly varying basis as a local trivialisation, and vice versa.
If {σi}ki=1 ∈ ΓU (E) is a local trivialisation of E over an open set U , the connection can be
written locally as follows:

∇σ = Aσ, (2.24)
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where A ∈ Ω1(End(E)|U ) is an endomorphism-valued 1-form on U called the connection
form. In terms of the connection form, the curvature 2-form is locally expressed as follows:

F∇ = dA+A ∧A, (2.25)

where the wedge product is taken component-wise and therefore does not vanish in general.
In the case of a complex line bundle L→ X, several reductions make the theory slightly

simpler. Firstly, since the fibres are 1-dimensional, a trivialisation of L corresponds to a
nowhere-vanishing section of L. Secondly, End(C) = C as a vector space over C, and the
identity map constitutes a nowhere-vanishing section of End(C), making the bundle globally
trivial. Thus, a gauge transformation of L is really just a function g : X → C∗, and the
action of G (L) on F∇ is trivial. Moreover, the connection form becomes an ordinary 1-form,
i.e. A ∈ Ω1(U), and this means that the curvature reduces to F∇ = dA. We also have that
F∇g = F∇. It is worth noting that, for a line bundle, we recover the classical theory of
electromagnetism with no sources by taking A to be the vector potential and F∇ to be the
field strength; then Maxwell’s equations are simply dF∇ = d ∗ F∇ = 0.

2.3 Holomorphic Vector Bundles

All that we have outlined so far is in the realm of smooth geometry, and (aside from the
dimension of the fibres) there is no complex structure in the objects we have defined. We
now introduce this aspect by specifying what it means for a function to be holomorphic.

Definition 2.20. Let X be a complex manifold, and let π : E → X be a rank k vec-
tor bundle. A holomorphic atlas on E consists of an open cover {Ui} of X and local
trivialisations ψi : π−1(Ui) → Ui × Ck such that, for each intersecting Ui, Uj , we have
(ψi ◦ ψ−1

j )(p, z) = (p, gij(p)z) for holomorphic functions gij : Ui ∩ Uj → Ck. We call E a
holomorphic vector bundle if it has a holomorphic atlas.

A section is then called holomorphic if its local representation in the holomorphic atlas is
holomorphic. A related analytic notion is that of a holomorphic structure:

Definition 2.21. Let π : E → X be a complex vector bundle over a complex manifold.
A holomorphic structure on E is a collection of operators ∂E : Ωp,q(E) → Ωp,q+1(E) for
each (p, q) such that ∂2E = 0, satisfying the Leibniz rule: for any ω ∈ Ωp,q(X) and any
σ ∈ Ωr,s(E), we have that

∂E(ω ∧ σ) = (∂ω) ∧ σ + (−1)p+qω ∧ (∂Eσ). (2.26)

A section σ ∈ Γ(E) is called holomorphic if ∂Eσ = 0.

It turns out that these two descriptions of holomorphicity are equivalent. We will prove
that the two are equivalent in the case of line bundles, and we will do so with the following
lemma:

Lemma 2.22. Let π : L → X be a complex line bundle over a complex manifold X, and
let ∂L be a holomorphic structure. Around every point p ∈ X, there is a neighbourhood U
and a nowhere-zero local section σ ∈ ΓU (L) such that ∂σ = 0.
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Proof. We give only an outline of the proof; for the complete proof of this lemma, see
[Mor07]. The argument essentially consists of three steps:

• Work in a local trivialisation of the line bundle, i.e. some local section σ in a neigh-
bourhood U ⊂ X of the given point (with holomorphic coordinates zα). We can then
represent the holomorphic structure as the (0, 1)-form τ for which ∂Lσ = τσ, and the
target trivialisation as a nowhere-zero complex-valued function f : U → C satisfying
the equation ∂f + fτ = 0.

• Use the holomorphic structure τ to put a complex structure on π−1(U) ∼= U × C. In
particular, if w represents the coordinate on C, there is a unique complex structure
on U ×C for which {dzα,dw− τw} ⊆ Λ1(U ×C) generates the (1, 0)-forms on U ×C.

• Use the Newlander-Nirenberg theorem to complete the holomorphic coordinates zα
to a local coordinate system (zα, u) on U × C. The desired function f is given by a
component of du in the basis of (1, 0)-forms.

Theorem 2.23. Let π : L → X be a complex line bundle over a complex manifold. Then
it is holomorphic if and only if it has a holomorphic structure.

Proof. It is fairly easy to construct a holomorphic structure for a holomorphic bundle: in a
local trivialisation σ ∈ ΓU (L), we define ∂L(ασ) = (∂α)σ for each α ∈ Ωp,q(L), where ∂ is a
Dolbeault operator. It can be easily shown that this definition is coordinate-independent,
squares to 0, and satisfies the Leibniz rule.

We construct a system of holomorphic transition functions from a holomorphic structure
∂L by using the above lemma. In particular, by the above lemma, there is an open cover
{Ui} of X and local trivialisations (i.e. nowhere-zero local sections) σi ∈ ΓUi(L) such that
∂Lσi = 0. The transition functions between the trivialisations σi and σj is the function
gij : Ui ∩ Uj → C for which σj = gijσi. It follows from the Leibniz rule that ∂gij = 0 for
every i, j, so each gij is holomorphic.

Henceforth, we will identify systems of holomorphic transition functions with holomor-
phic structures. We will also use meromorphic sections when discussing divisors:

Definition 2.24. A meromorphic section of a holomorphic line bundle is a section which
is meromorphic in the holomorphic atlas. We denote by M (L) the set of all meromorphic
sections of L.

Note that the complexified tangent bundle and bundles of complex differential (p, 0)-
forms possess natural holomorphic structures, so we have natural notions of holomorphic
vector fields and holomorphic differential forms. On a compact Riemann surface, the exis-
tence of nonvanishing holomorphic differential forms is entirely determined by the topology
of the surface:

Proposition 2.25. The only compact Riemann surface with a nonvanishing holomorphic
1-form is the torus.

For a proof, see [Don11].
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2.4 The Chern Correspondence

Given a vector bundle π : E → X, there is another way to think of holomorphic structures
in the special case that E possesses a Hermitian structure; we begin with a description of
this structure:

Definition 2.26. Let π : E → X be a vector bundle over a complex manifold. A Hermitian
structure h on E is a smooth section of (E⊗E)∗ which is a pointwise Hermitian inner product
(i.e. it is conjugate-symmetric and nondegenerate). A vector bundle with a Hermitian
structure is called a Hermitian vector bundle, and is denoted by Eh. A connection ∇ on
Eh is called a Hermitian connection (or a unitary connection) if ∇h = 0. We will denote
by A h the space of all Hermitian connections, or simply A when the Hermitian structure
is understood from context.

If a vector bundle possesses a Hermitian structure h, the gauge transformations which
preserve h are of special importance. Specifically, we call a gauge transformation g ∈ G (E)
unitary if

(g∗h)(u, v) = h(ug, vg) = h(u, v) (2.27)

for any u, v ∈ E in the same fibre. We will sometimes refer to more general gauge transfor-
mations as complex.

Given a section σ ∈ Γ(E) and a connection ∇, it is true by definition that ∇σ is in
Ω1(E). Furthermore, if we complexify these differential forms, this splits into (1, 0)- and
(0, 1)-forms Ω1,0(E) and Ω0,1(E). By projecting ∇σ into each of these spaces, we obtain new
connections ∇1,0 and ∇0,1. Using these connections, we can demonstrate a correspondence
between Hermitian connections and holomorphic structures on vector bundles:

Theorem 2.27 (Chern correspondence). Let π : Eh → X be a Hermitian vector bundle
over a complex manifold. Given a holomorphic structure ∂E, there is a unique Hermitian
connection ∇ (called the Chern connection) for which ∇0,1 = ∂E. Additionally, if ∇ is
any Hermitian connection on Eh for which F∇ ∈ Ω2,0(X)⊕ Ω1,1(X) (meaning F∇ has no
(0, 2)-component), then ∇0,1 is a holomorphic structure on Eh.

Proof. The following proof is from [Mor07]. First, let ∂E be a holomorphic structure. Since
h is nondegenerate, we can think of h as a map from Γ(E) to Γ(E∗) by tensoring h with
a given section, and applying a contraction. If ∇ is a Hermitian connection, then by using
the Leibniz rule (and the action of connections on tensor products and contractions), we
observe that

∇(h(σ)) = ∇(δ(h⊗ σ)) = δ((∇h)⊗ σ + h⊗∇σ) = h(∇σ), (2.28)

for every σ ∈ Γ(E). Given an arbitrary complex tangent vector v ∈ TXC, it follows from
the conjugate linearity of h that ∇v(h(σ)) = h(∇vσ). Since conjugation exchanges T 1,0X
and T 0,1X, and since (1, 0)-forms annihilate (0, 1)-vectors (and vice versa), it follows that
h(∇1,0σ) = ∇0,1(h(σ)). Applying the inverse of h, we see that ∇1,0 = h−1 ◦ ∇0,1 ◦ h.

Now, define the Chern connection to be

∇ = h−1 ◦ ∂E ◦ h+ ∂E . (2.29)
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It is easy to verify that ∇ is linear and satisfies the Leibniz rule, meaning it is a connection.
Furthermore, its (0, 1)-component is simply ∂E . Any other connection with this (0, 1)-
component must have (1, 0)-component h−1 ◦ ∂E ◦ h by the above calculation, meaning it
must be the same as the Chern connection.

Conversely, let ∇ be an arbitrary connection on Eh. Since R∇ = ∇ ◦ ∇, the linearity
of F∇ and the splitting of ∇ shows that F∇ = (∇1,0)2 + {∇1,0,∇0,1} + (∇0,1)2. The only
(0, 2)-component of R∇ vanishes precisely when (∇0,1)2 = 0; since ∇0,1 already satisfies the
Leibniz rule, it follows that ∇0,1 is a holomorphic structure.

Observe that if X is a Riemann surface then its real dimension is 2, meaning there
are no (0, 2)-forms. It follows that ∇0,1 is always a holomorphic structure, so Hermitian
connections correspond exactly to holomorphic structures on vector bundles over Riemann
surfaces.

If we endow our underlying complex manifold X with a Kähler form ω, we can naturally
extend the operator Λ : Ωp,q(X) → Ωp−1,q−1(X) to Ωp,q(E). If we do this, we get an
analogue of the Kähler identities, called the Nakano identities:

Proposition 2.28 (Nakano). Let X be a Kähler manifold, let E be a Hermitian vector
bundle over X, and let ∇ be a unitary connection on E. Then the following identities
holds:

[Λ,∇0,1] = i(∗ ◦ ∇0,1 ◦ ∗),
[Λ,∇1,0] = −i(∗ ◦ ∇1,0 ◦ ∗).

(2.30)

Proof. See [Huy05].

2.5 Divisors on Riemann Surfaces

It is also possible to completely classify holomorphic line bundles using only the structure of
the underlying complex manifold. The fundamental objects for this classification are called
divisors. (We henceforth restrict discussion to compact Riemann surfaces, as the theory is
considerably simpler. The natural setting for the study of arbitrary complex manifolds is
algebraic geometry; see [Vak24] for an overview of divisors in this light.)

Definition 2.29. Let X be a compact Riemann surface. A divisor on X is an element of
the free abelian group generated by the points on X; that is, a divisor D is a finite integral
linear combination of points:

D =
m∑
i=1

nipi, ni ∈ Z, pi ∈ X, m <∞. (2.31)

A divisor D is called effective if each of its integers is nonnegative; we write D ≥ 0 if D is
effective. The degree of a divisor is the sum of its integer entries:

deg(D) =
m∑
i=1

ni. (2.32)
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It is worth noting that the set of all divisors on X form a group Div(X) under addition,
and that deg : Div(X) → Z is a group homomorphism.

Intuitively, divisors are an abstraction of the zeros and poles of a meromorphic func-
tion/section. Indeed, given a meromorphic section σ ∈ M (L), we can define an associated
divisor as follows:

(σ) =
∑
p∈X

deg(σ(p))p, (2.33)

where deg(σ(p)) is the degree of σ at p; observe that (σ) ≥ 0 if and only if σ is holomorphic.
In the special case of a meromorphic function, the divisor is called a principal divisor.

Definition 2.30. Given a compact Riemann surface X, two divisors D and D′ on X are
linearly equivalent if their difference is a principal divisor, that is, if there exists some
meromorphic function f ∈ M (X) for which (f) = D −D′.

The principal divisors form a subgroup PrDiv(X) of Div(X); the sum of two principal
divisors corresponds to the product of their respective functions. Thus, an alternative
definition of a linear equivalence class is an element of the quotient group Div(X)/PrDiv(X).
On the other hand, the class of holomorphic line bundles over a given Riemann surface also
constitutes a group:

Proposition 2.31. Let Pic(X) denote the set of holomorphic line bundles over X up to
isomorphism. Then, with the (complex) tensor product as a binary operation, Pic(X) con-
stitutes a group (called the Picard group).

Proof. The dimension of a tensor product of m- and n-dimensional spaces is mn, so the
tensor product of two line bundles is another line bundle. Furthermore, the tensor product
is associative. The identity element is given by the trivial bundle X ×C, and the inverse of
a line bundle L is given by L∗; this is consistent because L∗ ⊗ L ∼= End(L) ∼= X × C.

With this observation, there is a precise correspondence between line bundles and divi-
sors:

Theorem 2.32. For any D ∈ Div(X), there is some holomorphic line bundle LD → X
with a section σ ∈ Γ(LD) for which D = (σ). This defines a map taking Div(X) 7→ Pic(X),
which is a group epimorphism with kernel PrDiv(X). (It follows from the isomorphism
theorems that Pic(X) ∼= Div(X)/PrDiv(X).)

Proof. The following proof is from [Don11]. First, let p ∈ X be an arbitrary point; we shall
construct a line bundle over X which admits a holomorphic section vanishing only at p. To
do this, take an open cover {Uk} of X and holomorphic functions fk : Uk → C with degree
1 at p and degree 0 elsewhere. We then define Lp to be locally trivial on each Uk, with
transition functions given as follows:

gkℓ = fk/fℓ. (2.34)

Observe that each such gkℓ is holomorphic and nowhere-zero, and they jointly satisfy the
cocycle condition (Equation 2.15). It follows that gkℓ may be used to define a system of
holomorphic transition functions, giving rise to a holomorphic line bundle Lp. Furthermore,
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since the transition function gkℓ transforms fℓ into fk, the collection of all such fk can be
considered to be local representations of a global holomorphic section σp with a single zero
at p. If we instead consider the dual bundle L∗

p then, since the transition functions are
inverted for the dual bundle, there is instead a meromorphic section on L∗

p with a single
pole at p; it is given in a local trivialisation over Uk by f−1

k .
Now, let D = ∑

i nipi be a divisor on X. We define the corresponding line bundle to be
the following:

LD =
⊗
i

(Lpi)⊗ni , (2.35)

where a negative tensor power is the positive tensor power of the dual; there is a corre-
sponding meromorphic section given by

σD =
⊗
i

(σpi)⊗ni . (2.36)

The zeros and poles of σD are given by the zeros and poles of each σ⊗ni
pi , which is clearly

ni at pi and 0 elsewhere. It follows that (σD) = D.
The map D 7→ LD is clearly a group homomorphism. We verify that it is an isomor-

phism:

• We first show that its kernel consists of principal divisors. Assume that LD is in the
kernel for some divisor D, i.e. LD is trivial. Then LD has a global section 1, so
σD = f · 1 for some meromorphic function f : X → C. It follows that D = (σD)
is a principal divisor. Moreover, for every principal divisor (f), we can construct a
nowhere-zero holomorphic section f−1 · σ(f) of the bundle L(f), making L(f) a trivial
bundle.

• Secondly, we show that the homomorphism is surjective. But this follows from the
fact that every line bundle admits a meromorphic section. (This result is nontrivial
but we will not prove it; see [Don11] for this part of the proof.)

Given these three correspondences, we can describe a holomorphic structure on a given
Hermitian line bundle Lh over a Riemann surface X in four different ways:

• As a restriction on the allowed maps on the bundle (through the given holomorphic
trivialisations and transition functions in Definition 2.20);

• As a differential operator ∂L, which essentially serves as an extension of the Dolbeault
operator ∂ to Lh (as in Definition 2.21);

• As a special connection ∇ on the line bundle, under which h is parallel (as in Theorem
2.27);

• As a finite linear combination of points in X (up to linear equivalence), representing
the zeros and poles of a meromorphic section on the line bundle (as in Theorem 2.32).
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2.6 The First Chern Class

Finally, we summarise some basic theory regarding the topology of line bundles. Naturally,
such a topic will rely heavily on algebraic topology, and in our case we will be using Čech
cohomology theory extensively; for a summary of the notation and the main theorems we
will be using, see the Appendix.

It turns out that the topology of line bundles is completely classified by a single invari-
ant, a singular cohomology class called the first Chern class. There are several equivalent
definitions of the first Chern class, and we will present the definition which most clearly
relates to line bundles. We need the following lemma:

Lemma 2.33. Let X be a complex manifold. Every line bundle over X corresponds uniquely
to an element of H1(X,E ∗), the first Čech cohomology space of X over the sheaf E ∗ of
nowhere-vanishing smooth C-valued functions on X.

Proof. Throughout this proof, we take the group operation in Čk(U ,F ) to be multiplica-
tive. Choose a good cover U = {Uα}α∈I of X, and let (Uα, Uβ, Uγ) be a set of intersecting
open sets in U . Let g ∈ C1(U ,E ∗) be a cochain for which (δ1g)(Uαβγ) = 0; then

g(Uαβ)g(Uαγ)−1g(Uβγ) = 1 (2.37)

on Uαβγ , so g satisfies the cocycle condition for line bundles. We can therefore use each
g(Uαβ) = gαβ as transition functions for a line bundle, so we have a homomorphism
ker(δ1) → Pic(X) which is clearly surjective.

The kernel of this homomorphism consists of transition functions which result in a
globally trivial bundle; this happens precisely when a global section f of E ∗ can be found.
Now, if the bundle made by g ∈ H1(U ,E ∗) is trivial, the requirement that g is a set of
transition functions for f translates precisely to the statement that g = δ0f . It follows that
the kernel consists of coboundaries, meaning Pic(X) ∼= ker(δ1)/im(δ0) = H1(X,E ∗).

Now, consider the exponential sheaf exact sequence 0 → Z → E → E ∗ → 1, where Z is
the constant sheaf on X. From this short exact sequence we get a long exact sequence of
cohomology spaces, including the following exact subsequence:

H1(X,E ) → H1(X,E ∗) c1−→ H2(X,Z) → H2(X,E ).

Because H1(X,E ) = H2(X,E ) = 0, exactness implies that the map c1 is an isomorphism.
Thus, we make the following definition:

Definition 2.34. Let π : L → X be a line bundle over a compact Riemann surface. L
is uniquely represented by an element of H1(X,E ∗); the image of L under the connecting
morphism c1 : H1(X,E ∗) → H2(X,Z) is called the first Chern class of L, and is denoted
by c1(L).

As we have defined it, the first Chern class is a complete invariant for smooth line
bundles over Riemann surfaces. It turns out there is an important correspondence between
the first Chern class and the degree of a divisor on a line bundle; namely, they are Poincaré
duals.



20 CHAPTER 2. COMPLEX GEOMETRY

Theorem 2.35. Let X be a compact Riemann surface with a divisor D, and let c1(LD) ∈
H2(X,Z) be the first Chern class of the line bundle associated to D. Specify an orientation
on X by choosing a fundamental class [X] ∈ H2(X,Z). Then ⟨c1(LD), [X]⟩ = deg(D).

Proof. Refer to [Huy05].

We can also compute the first Chern class analytically, using connections on our line
bundles:

Theorem 2.36. Let ∇ be any connection on a line bundle L over X. Then the de Rham
cohomology class of (i/2π)F∇ ∈ Ω2(X) corresponds to a class in H2(X,Z) ↪→ H2(X,R),
and this class is precisely c1(L).

Proof. We use the fact that the sheaves of differential k-forms Ωk are all fine, meaning
their nontrivial cohomology vanishes. We also use the snake lemma to produce an explicit
formula for the connecting homomorphisms in homology sequences. For details, see the
Appendix.

We choose a good open cover {Uα}α∈I of X, and we refine it so that L is locally trivial
over each Uα. Then L corresponds to a set of transition functions gαβ : Uαβ → C∗, and
by Lemma 2.33, these transition functions correspond to an element of H1(X,O∗). By the
snake lemma, the corresponding element of H2(X,Z) is as follows:

c1(L) =
{ 1
2πi(log(gαβ) + log(gβγ) + log(gγα))

}
α,β,γ∈I

. (2.38)

Here, by log(f), we are referring to any function for which elog(f) = f . This choice is not
unique, but it is guaranteed not to have an effect on c1(L) by the snake lemma. We wish
to show that [ 1

2πiF
∇] is equal to this class.

To do this, observe that we have the following short exact sequences of sheaves:

0 → R → Ω0 d−→ K 1 → 0; (2.39)

0 → K 1 → Ω1 d−→ K 2 → 0, (2.40)

where K p denotes the sheaf of closed differential p-forms. By the long exact cohomology
sequence and the fineness of Ωp, we obtain the following exact sequences:

0 → H1(X,K 1) a−→ H2(X,R) → 0, (2.41)

Ω1 d−→ K 2 b−→ H1(X,K 1) → 0, (2.42)

where a : H1(X,K 1) → H2(X,R) and b : K 2 → H1(X,K 1) are connecting homomor-
phisms. The first exact sequence shows that a is an isomorphism, and the second shows that
b induces an isomorphism from H2

dR(X) → H1(X,K 1). We claim that a ◦ b : H2
dR(X) →

H2(X,R) takes the cohomology class of i
2πF

∇ to an integral cohomology class which cor-
responds to c1(L).

Given Uα, let σα ∈ ΓUα(L) be nonvanishing. We write F∇ in terms of connection forms;
that is, F∇|Uα = dAα where Aα ∈ Ω1(Uα) satisfies Aασα = ∇σα. By the snake lemma, we
find that

b([F∇]) = {Aα −Aβ}α,β∈I . (2.43)
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This is clearly a well-defined cocycle in H1(X,K 1). However, we have the following com-
putation for any α, β ∈ I:

(Aα −Aβ)(σα) = ∇σα − gβα∇σβ = ∇(gβαeβ)− gβα∇σβ = (dgβα)σβ = −(g−1
αβ dgαβ)σα.

(2.44)

Since σα spans L|Uα , it follows that Aα −Aβ = −d log gαβ, so b([F∇]) = {−d log gαβ}α,β∈I .
We can find the explicit form of the isomorphism a using the snake lemma, and we conclude
that

(a ◦ b)([F∇]) = {− log(gαβ)− log(gβγ)− log(gγα)}α,β,γ∈I . (2.45)

Dividing by 2πi concludes the proof.

Thus, we have several different ways of thinking about the topology of line bundles on
Riemann surfaces:

• As a cohomology class in H2(X,Z), corresponding to the class in H1(X,E ∗) repre-
senting the line bundle.

• As an integer d ∈ Z ∼= H0(X,Z), corresponding to the net number of zeros and poles
a meromorphic section is allowed to have.

• As the integral cohomology class associated to the curvature 2-form of any connection.

We have only needed the first Chern class to classify line bundles, but the more general
notion of k-th Chern classes is important for classifying higher-rank vector bundles. For a
more comprehensive discussion of Chern classes and their relationship to vector bundles,
see [Hat03].
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Chapter 3

Vortex Equations

Now that we have defined the relevant background, we are able to discuss the vortex equa-
tions themselves; it is the purpose of this chapter to define and understand these equations.
We start by defining the Yang-Mills-Higgs functional, and showing that its minima can
be characterised as solutions to the vortex equations. Then, we provide a brief discussion
of moment maps, before showing that the vortex equations can be naturally interpreted
in terms of a moment map. We will find a moment map which represents the 0-vortex
equations, and then we will slightly alter the moment map to represent the general vortex
equations.

Throughout the rest of this chapter, we will be working with a fixed compact Riemann
surface X with metric g and associated volume/Kähler form volg, and a Hermitian line
bundle Lh → X of degree d ∈ Z+ with Hermitian inner product h. (We choose the degree
to be nonnegative so that holomorphic solutions exist.) The gauge group G = Map(X,U(1))
acts on Γ(L) by inverted multiplication and on A h by conjugation, and its Lie algebra is
g = iE (X). The complexified gauge group G C = Map(X,C∗) acts similarly, though its Lie
algebra is given by gC = Map(X,C).

3.1 The Yang-Mills-Higgs Functional

With this structure, we are able to define the functional:

Definition 3.1. The Yang-Mills-Higgs functional is a functional depending on a real num-
ber τ (called the vortex parameter), which takes a section φ ∈ Γ(L) and a connection
∇ : Γ(L) → Ω1(L), and returns a nonnegative real number according to the following
formula:

YMHτ (∇, φ) =
∥∥∥F∇

∥∥∥2
L2

+ ∥∇φ∥2L2 + 1
4

∥∥∥|φ|2 − τ
∥∥∥2
L2
. (3.1)

(Where the context is clear, we will omit the L2-subscript on norms.)
We are interested in the minima of this functional up to gauge equivalence; these will

be called τ -vortices. In order to find these minima, it will be convenient to rewrite the
functional.

23
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Proposition 3.2. The Yang-Mills-Higgs functional can be rewritten as follows:

YMHτ (∇, φ) = 2
∥∥∥∇0,1φ

∥∥∥2
L2

+
∥∥∥iΛF∇ + 1

2(|φ|
2
h − τ)

∥∥∥2
L2

+ 2πτd. (3.2)

Proof. We make use of the Nakano identities (Proposition 2.28). In particular, since X
has real dimension 2, they reduce to the following: Λ∇1,0 = −i(∗ ◦ ∇1,0 ◦ ∗) and Λ∇0,1 =
i(∗ ◦ ∇0,1 ◦ ∗). Note also that −(∗ ◦ ∇0,1 ◦ ∗) is precisely the formal adjoint of ∇1,0 with
respect to the inner product on k-forms, and likewise −(∗ ◦ ∇1,0 ◦ ∗) is the formal adjoint
of ∇0,1.

We expand the second term in Equation 3.1:∥∥∥iΛF∇ + 1
2(|φ|

2
h − τ)

∥∥∥2 = ∥∥∥ΛF∇
∥∥∥2 + ∥∥∥ i2(|φ|2h − τ)

∥∥∥2 + 2Re(⟨iΛF∇, 12 |φ|
2
h⟩ − ⟨iΛF∇, τ2 ⟩).

(3.3)

The first term is clearly just ∥F∇∥2 and the second is clearly 1
4
∥∥|φ|2h − τ

∥∥2. Note also that
[iF∇] = 2πc1(L) ∈ H2(X,R), meaning every remaining term is real (so they are equal to
their real parts, and we can omit the projection onto the real part in Equation 3.3). We
simplify the remaining two terms separately:

• ⟨iΛF∇, |φ|2h⟩: Expanding this using our definitions, this is equal to
ˆ
X
iΛF∇h(φ, φ)volg. (3.4)

On the other hand, since iΛF∇ ∈ Ω0(X) is simply a real-valued function, it can be
moved inside of h; thus, the term reduces toˆ

X
h(iΛF∇φ, φ)volg =

〈
iΛF∇φ, φ

〉
. (3.5)

On the other hand, ΛF∇φ = Λ∇(∇φ) = Λ(∇1,0∇0,1 + ∇0,1∇1,0)φ on a Riemann
surface. We now use the Nakano identities to commute Λ through these operators,
and then we apply the formal adjoint property; we eventually find that〈

iΛF∇φ, φ
〉
= i

〈
(−i(∗ ◦ ∇1,0 ◦ ∗)∇0,1 + i(∗ ◦ ∇1,0 ◦ ∗)∇1,0)φ, φ

〉
=

〈
∇1,0φ,∇1,0φ

〉
− ⟨∇0,1φ,∇0,1φ⟩

= ∥∇1,0φ∥2 − ∥∇0,1φ∥2.

(3.6)

We rewrite this slightly by observing that ∥∇φ∥2 = ∥∇1,0φ +∇0,1φ∥2 = ∥∇1,0φ∥2 +
∥∇0,1φ∥2 + 2Re(⟨∇1,0φ,∇0,1φ⟩), but this last term is 0 (since Ω0,1 and Ω1,0 are or-
thogonal with respect to the induced inner product). As such, we find that

⟨iΛF∇, |φ|2h⟩ = ∥∇φ∥2 − 2∥∇0,1φ∥2. (3.7)

• ⟨iΛF∇, τ⟩: Using the fact that [iF∇/2π] = c1(L), we compute this term explicitly:

⟨iΛF∇, τ⟩ =
ˆ
X
iτΛF∇volg

= 2πτ
ˆ
X

i

2πF
∇ = 2πτd.

(3.8)
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Substituting each term into Equation 3.3, and the resulting term into Equation 3.2, the
equivalence follows.

In this form, it is clear that the Yang-Mills-Higgs functional is bounded below by 2πτd.
If this lower bound is achieved by some (∇, φ), then they necessarily satisfy the following
equations:

∇0,1φ = 0,

ΛF∇ − i

2(|φ|
2
h − τ) = 0.

(3.9)

These equations are called the τ -vortex equations. Observe that the equations are also in-
variant under the action of G , meaning a solution (∇, φ) and a unitary gauge transformation
g ∈ G give rise to another solution (g−1∇g, g−1φ). Quotienting the space of solutions by
G , we get the moduli space of τ -vortices.

Note that, by the Chern correspondence, the first equation simply states that φ is
holomorphic with respect to the holomorphic structure induced by ∇. It is therefore the
second equation which is of the most interest, and the most difficult to solve. Nevertheless,
we can obtain a constraint on the existence of solutions fairly easily:

Proposition 3.3. If there is a solution to the τ -vortex equations, then d < τVol(X)
4π (where

Vol(X) =
´
X volg).

Proof. Let (∇, φ) be a solution to the second equation. Multiplying through by (i/2π)volg
and integrating, we see that

ˆ
X

i

2πF
∇ +
ˆ
X

1
4π (|φ|

2
h − τ)volg = 0. (3.10)

But since |φ|2h ≥ 0, this means that
ˆ
X

i

2πF
∇ <

τ

4πVol(X). (3.11)

The result follows from the observation that [(i/2π)F∇] = c1(L).

This proposition sheds light on the parameter τ : if τ is sufficiently large, we are able to
avoid an obstruction which depends on the volume of X. We therefore naturally interpret
τ as a scaling factor for Vol(X), and we will eventually find that the moduli space does not
depend on the value of τ we choose (insofar as τ satisfies the constraint we just derived).

3.2 Moment Maps

It turns out that the vortex equations can be naturally interpreted in terms of a map on the
space of sections and connections, called a moment map. Thus, in this section, we introduce
the concept of a moment map. The basic idea comes from physics, in which the state of
a system evolves based on an energy function H. Geometrically, this idea manifests as a
symplectic manifold, wherein the space of all states is a manifoldM with a symplectic form
ω, and the dynamics of the state space is given by the flow of the Hamiltonian vector field
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XH (which is ω-dual to the covector field dH, i.e. XH ⌟ω = dH). A well-known theorem in
physics is Noether’s theorem, which states that every differentiable symmetry of the laws of
physics (represented by a Lie group G acting on the state space) corresponds to a quantity
which is conserved over time. The corresponding symplectic notion is the moment map.

Definition 3.4. Let (M,ω) be a (possibly infinite-dimensional) symplectic manifold, and
let G be a Lie group which acts symplectically on M (i.e. for any g ∈ G we have g∗ω = ω).
Let g be the Lie group of G, and given ξ ∈ g, denote by ξ̃ ∈ Γ(TM) the fundamental
vector field of ξ (i.e. the vector field generated by the flow (t, p) 7→ exp(tξ) · p; explicitly,
ξ̃p = d

dt |t=0(etξ · p)). Then a moment map is a smooth map µ : M → g∗ satisfying the
following conditions:

• Equivariance: for any g ∈ G and any p ∈M , the map µ must satisfy

µ(g · p) = Ad∗g(µ(p)). (3.12)

• Hamiltonian property: for any ξ ∈ g, we must have

d⟨µ, ξ⟩ = ξ̃ ⌟ω. (3.13)

We also have the dual notion of a co-moment map:

Definition 3.5. Let (M,ω) be a symplectic manifold on which a Lie group G (with Lie
algebra g) acts symplectically. A co-moment map is a smooth map µ∗ : g → C∞(M)
satisfying the following conditions:

• If C∞(M) is equipped with the Poisson bracket, then µ∗ is a Lie algebra homomor-
phism.

• For any ξ ∈ g, we must have that dµ∗(ξ) = ξ̃ ⌟ω.

A moment map gives rise to a co-moment map by taking µ∗(ξ) = ⟨µ, ξ⟩.

There are some circumstances in which a moment map can necessarily be found. For
example, let ξ be an element of the Lie algebra with fundamental vector field ξ̃. The fact
that G acts symplectically implies that Lξ̃(ω) = 0, where L is the Lie derivative. But
by Cartan’s homotopy formula (and the fact that ω is closed), it follows that d(ξ̃ ⌟ω) = 0.
Now, if H1(M,R) = 0 (which happens whenever M is an affine space, for instance), it
follows that there is some function µX ∈ C∞(M) such that dµξ = ξ̃ ⌟ω. We can patch
together these maps to obtain a moment map which may not be equivariant, and then we
can adjust the redundant parameters to make the map equivariant. Moreover, if we can
find a moment map then it is essentially unique:

Proposition 3.6. Let µ, ν :M → g∗ be moment maps for a connected symplectic manifold
(M,ω) with a symplectic action by G. Then µ− ν :M → g∗ is constant over M .

Proof. Consider the co-moment map difference µ∗ − ν∗ : g → C∞(M). For any ξ ∈ g, we
know that d(µ∗−ν∗)(ξ) = 0 since they both have the Hamiltonian property. It follows that
(µ∗ − ν∗)(ξ) is locally constant, and since M is connected, we have a well-defined function
c∗ : g → R for which µ∗(ξ) − ν∗(ξ) = c∗(ξ). It can be easily verified that c∗ is linear,
meaning it is an element of g∗, and we therefore find that µ− ν = c∗.
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We will also be interested in combining and reducing moment maps on different spaces.
The following proposition (for which the proof is simply a matter of working through defi-
nitions) gives us a canonical method for combining them:

Proposition 3.7. Let (M1, ω1) and (M2, ω2) be symplectic manifolds, and let G be a Lie
group acting symplectically on both M and N . Let g be the Lie algebra of G, and let
µ1 :M1 → g∗ and µ2 :M2 → g∗ be corresponding moment maps. Then (M1 ×M2, ω1 ⊕ ω2)
is a symplectic manifold, and µ1 + µ2 is a moment map.

Moreover, the following proposition (whose proof is found in [Mar+07]) allows us to combine
moment maps of different actions:

Proposition 3.8. Let (M,ω) be a symplectic manifold, and let G,H be Lie groups acting
symplectically onM with Lie algebras g, h, in such a way that the actions commute with each
other (which guarantees that there is a canonical action of G×H on M). Let µG :M → g∗

and µH : M → h∗ be corresponding moment maps, and assume that µG is H-invariant
and µH is G-invariant. Then µG × µH : M → g∗ × h∗, defined so that (µG × µH)(p) =
µG(p) + µH(p), is a moment map for G×H.

Proof. The Hamiltonian property follows simply by the observation that (̃ξ, η) = ξ̃ + η̃

for ξ ∈ g and η ∈ h, which means that (̃ξ, η) ⌟ω = ξ̃ ⌟ω + η̃ ⌟ω = d⟨µG, ξ⟩ + d⟨µH , η⟩ =
d⟨µG × µH , (ξ, η)⟩. Equivariance follows from the equivariance of each moment map with
respect to their own group, and the invariance of each moment map with respect to the
complementary group.

It follows from these results that the moment map for a quotient of Lie groups corresponds
to the difference between the two moment maps, if it exists.

In fact, the main practical reason we are interested in moment maps is that they allow
us to reduce a problem of finding zeros to finding minima:

Theorem 3.9. Let (M, g, ω, J) be a Kähler manifold on which a Lie group G acts sym-
plectically and isometrically, and endow the Lie algebra g with a G-invariant inner product
(·, ·). Let µ :M → g∗ be a moment map for G. If ∥µ∥2 has a minimum at p when restricted
to an orbit of GC (the complexification of G), and if the isotropy subgroup of GC at p is
trivial, then µ has a zero on this orbit.

Proof. Throughout this proof, we identify g and g∗ using the inner product. Define f :
M → R by taking f(p) = ∥µ(p)∥2 = (µ(p), µ(p)). For any vector field v ∈ Γ(TM), we have
the following:

g(grad(f)p, vp) = dfp(vp) = dvp(µ(p), µ(p)) = 2(dvpµ(p), µ(p)), (3.14)

where we have used the Leibniz rule and the symmetry of (·, ·) in the last equality. On
the other hand, if ξ ∈ g does not depend on the point in M , we know that dvp⟨µ(p), ξ⟩ =
⟨dvpµ(p), ξ⟩. It follows from the Hamiltonian property that

g(grad(f)p, vp) = 2(µ̃(p) ⌟ω)(vp), (3.15)
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where µ̃(p) is the fundamental vector field of µ(p) ∈ g evaluated at p. One can use the
compatibility of g and ω to show that ω(µ̃(p), vp) = g(Jµ̃(p), vp). Since this holds for any
vp and g is nondegenerate, we have that grad(f) = 2Jµ̃(p). Thus, the flow lines of grad(f)
must be contained in the orbits of GC.

Next, suppose f has a minimum at p inside an orbit Γ of GC. Then grad(f)(p) must be
orthogonal to the tangent vectors along which one remains in Γ; but by the above formula,
this implies that the gradient is 0. It follows that µ̃(p) = 0. Now, suppose µ(p) is nonzero;
we will relabel µ(p) by ξ, and µ̃(p) by ξ̃p. We then have that d

dt(etξp) = 0, which implies
that d

dt(etξ(esξp)) = 0 for any s ∈ R. Observe that the set of all such esξp is a 1-dimensional
submanifold N of M on which ξ̃ = 0 (they must all be distinct points since p has trivial
isotropy), and this clearly forces the action of etξ on N to be trivial for all t. But we claimed
that the isotropy subgroup of GC at p ∈ N was finite, which is a contradiction. It follows
that µ(p) must be zero.

We will eventually show that the solutions to the vortex equations correspond precisely
to the zeros of a certain moment map, and we will therefore find solutions by minimising
∥µ∥2 on each orbit of G C and applying Proposition 3.9. Furthermore, we will find that
there is exactly one zero on each orbit of G C, up to unitary gauge equivalence. Recall that
we quotient the space of solutions by unitary gauge transformations to obtain the moduli
space; to this end, the following theorem will be useful:

Theorem 3.10 (Marsden-Weinstein). Let (M,ω) be a symplectic manifold with a symplectic
action by a Lie group G, and let µ : M → g∗ be a moment map for this action. Suppose
the action of G is free and properly discontinuous. Define c ∈ g∗ to be regular if µ−1(c) is
a manifold and µ∗p is surjective for every p ∈ M . Then, for any regular value c ∈ g∗, the
quotient space µ−1(c)/G is a manifold. Further, the manifold inherits a symplectic structure
from M .

Proof. See [MW74].

3.3 The Yang-Mills-Higgs Functional as a Moment Map

The space of solutions to the vortex equations is a subspace of A h×Γ(L), the space of pairs
of unitary connections and sections of L. Moreover, by taking ∇ 7→ g−1∇g and φ 7→ g−1φ
for each g ∈ G , we get a natural action of G on this space. In this section, we will construct
a moment map for this space with respect to G . We will do so by considering both A h

and Γ(L) independently, and demonstrating that they are infinite-dimensional (Hilbert)
manifolds. Then, we will put a symplectic structure on them which is compatible with the
action of G , and we will then explicitly construct a moment map for each action. Finally,
we will use Proposition 3.7 to combine them.

We start by analysing A h. By the Chern correspondence (Theorem 2.27), we can
characterise its structure using the following observation.

Proposition 3.11. Let Lh be a Hermitian line bundle over the Riemann surface X, and
let C be the space of holomorphic structures on L. Then C is an affine space modelled on
Ω0,1(X).
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Proof. We must prove three things:

• C is nonempty. This follows from the fact that every complex manifold has a unitary
connection (we can always define a unitary connection locally, and then stitch them
together using a partition of unity), of which we can take the (0, 1)-part to get a
holomorphic structure.

• The difference of any two elements ∂L, ∂
′
L ∈ C is a (0, 1)-form. It follows quickly

from the Leibniz rule that ∂L− ∂
′
L is homogeneous of degree 1 over C∞(X), and it is

clearly additive, so it is tensorial. Moreover, since it takes as input a tangent vector
and a section of L and returns a section of L, it is a section of Ω1(End(L)) ∼= Ω1(X)
(since End(L) ∼= X × C, being a trivial complex line bundle). It is also easy to check
that ∂L − ∂

′
L annihilates (1, 0)-vectors, meaning it is a (0, 1)-form.

• Given ∂L ∈ C and α ∈ Ω0,1(X), the sum ∂L + α is another holomorphic structure.
But this follows simply from the linearity of all of the operators involved, and from
the fact that ∂L already satisfies the Leibniz rule.

By choosing a reference point in C , we can identify C with Ω0,1(X); moreover, the latter
space is a vector space with a natural inner product (given by Equation 2.11). It follows
that C has the natural topology of an infinite-dimensional manifold. We can therefore also
think of A h as an affine space over Ω0,1(X); in fact, we have the following:

Proposition 3.12. Let ∂L ∈ C be a holomorphic structure, and let ∇ be the Chern con-
nection for ∂L. If ∂L 7→ ∂L + α for α ∈ Ω0,1(X), then ∇ 7→ ∇+ α− α.

Proof. The Chern connection for ∂L+α is the unique h-unitary connection with (0, 1)-part
given by ∂L + α. Thus, we only need to check that ∇ + α − α satisfies these conditions.
We can check that h is parallel under the new connection by a computation: if σ, η ∈ Γ(L),
then

((∇+ α− α)h)(σ, η) = d(h(σ, η))− h(∇σ + ασ − ασ, η)− h(σ,∇η + αη − αη)
= (∇h)(σ, η)− αh(σ, η) + αh(σ, η)− αh(σ, η) + αh(σ, η)
= 0 + 0 = 0,

(3.16)

where in the second equality we have used the sesquilinearity of h to conjugate α and α.
Moreover, since α is a (0, 1)-form and α is a (1, 0)-form, the (0, 1)-part of ∇ + α − α is
indeed ∂L + α.

Note that, because of these relationships, the tangent bundles of both A h and C are trivial
with tangent space isomorphic to Ω0,1(X). As such, we will often refer to a (0, 1)-form-
valued function on A h as a vector field.

As we have remarked previously (Equation 2.11), the Hodge star induces a natural inner
product on the spaces of (p, q)-forms. If we think of C as an infinite-dimensional manifold,
this amounts to the existence of a natural Hermitian form on C : for α, β ∈ T

∂L
C ∼= Ω0,1(X),

we define a Hermitian form as follows:

⟨α, β⟩ =
ˆ
X
α ∧ ∗β. (3.17)
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We also get a natural 2-form by essentially taking the imaginary part:

ω(α, β) = i(⟨α, β⟩ − ⟨β, α⟩) = i

ˆ
X
α ∧ ∗β − β ∧ ∗α. (3.18)

Since the 2-form ω does not depend on the point ∂L, it is clear that dω = 0 and hence ω
is a symplectic form. We therefore find that A h is a symplectic manifold (and indeed a
Kähler manifold).

As we have mentioned previously, there is a natural action of G on A h. There is also a
natural action on C given by ∂L 7→ g−1∂Lg, and it is easy to show that these two actions are
compatible under the Chern correspondence. In fact, one can show that the action of g ∈ G
on C is simply a translation by g−1∂g ∈ Ω0,1(X), meaning the tangent spaces Ω0,1(X) are
invariant under the action of G , so ⟨·, ·⟩ and ω are also invariant under G . In short, the
gauge group G acts symplectically on A h. This indicates the possibility of a moment map
on A h with respect to the Lie group G . Indeed, the following moment map was found in
[AB83]:

Proposition 3.13. Define a map µ : A h × g → R as follows: if iξ ∈ g and ∇ ∈ A h, then

µ(∇, iξ) =
ˆ
X
iξF∇. (3.19)

Then µ induces a moment map with respect to G .

Proof. First, we show that µ is G -equivariant, which is to say that µ(∇g,Adg(iξ)) =
µ(∇, iξ). Since G is abelian, we know that the adjoint action on g is trivial. Moreover,
we know that F∇g = g−1F∇g, and once again the commutativity of G shows that this is
simply F∇. Equivariance follows at once.

The main difficulty in the proof is showing that µiξ has the Hamiltonian property for
each ξ ∈ E (X). Before we can start this, we need to have a formula for the fundamental
A h-vector field (i.e. the (0, 1)-form-valued function on A h) induced by iξ, which we denote
by ĩξ. Let ∇ ∈ A h be arbitrary; by definition, the vector field is given by

ĩξ∇ = d
dt

∣∣∣
t=0

(
eiξt · ∇

)
= lim

t→0
1
t

(
e−iξt ◦ ∇ ◦ eiξt −∇

)
.

(3.20)

This limit is most easily evaluated by applying it to a section σ ∈ Γ(L) and using the
Leibniz rule:

1
t

(
e−iξt ◦ ∇ ◦ eiξt −∇

)
σ = 1

t

(
∇σ + (it∂ξ)σ −∇σ

)
= i∂ξσ, (3.21)

from which it follows that ĩξ∇ = i∂ξ.
Now that we have this, let α ∈ T∇A h ∼= Ω0,1(X); we wish to show that dα∇⟨µ, iξ⟩ =
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(ĩξ ⌟ω)(α). We first compute dα∇⟨µ, iξ⟩ using a limit:

dα∇⟨µ, iξ⟩ = lim
t→0

1
t (µ(∇+ (α− α)t, iξ)− µ(∇, iξ))

= lim
t→0

1
t

ˆ
X
iξ
(
F∇+(α−α)t − F∇

)
= lim

t→0

1
t

ˆ
X
iξ
(
F∇ + d(α− α)t− F∇

)
=
ˆ
X
iξd(α− α),

(3.22)

where we have used the fact that F∇+a = F∇ + da for any 1-form a. Our goal is to show
that this is equal to (ĩξ ⌟ω)(α), or equivalently ω(−i∂ξ, α).

Expanding this expression in terms of integrals, we see that

(ĩξ ⌟ω)(α) = −
ˆ
X
∂ξ ∧ ∗α+ α ∧ ∗∂ξ. (3.23)

However, the term α ∧ ∗∂ξ can be rewritten as ∂ξ ∧ ∗α (in fact v ∧ ∗w = w ∧ ∗v for any
v, w on a 1-dimensional complex vector space). Moreover, because the real dimension of X
is 2 and each derivative of ξ is wedged with a 1-form, we can replace ∂ξ and ∂ξ with dξ
wherever they appear. It follows that

(ĩξ ⌟ω)(α) = −
ˆ
X
dξ ∧ ∗α+ dξ ∧ ∗α = −

ˆ
X
dξ ∧ ∗(α+ α). (3.24)

Integrating by parts and using Stokes’ theorem, we can transfer the d over to the α terms:

−(ĩξ ⌟ω)(α) =
ˆ
X
ξd(∗(α+ α)). (3.25)

Distributing, identifying d with ∂ and ∂ where possible, and using the Hodge star to rein-
troduce the volume element, we see that

(ĩξ ⌟ω)(α) =
ˆ
X
ξ
(
∗∂(∗α) + ∗∂(∗α)

)
volg. (3.26)

On the other hand, we may use the Kähler identities −∗∂∗ = i[Λ, ∂], and −∗∂∗ = −i[Λ, ∂]
to simplify this expression. Moreover, since X has real dimension 2, ∂Λ = ∂Λ = 0. We can
thus rewrite the expression accordingly:

(ĩξ ⌟ω)(α) =
ˆ
X
iξ
(
Λ∂α− Λ∂α

)
volg

=
ˆ
X
iξ
(
∂α− ∂α

)
=
ˆ
X
iξd(α− α) = dα∇⟨µ, iξ⟩.

(3.27)

So µ does have the Hamiltionian property, meaning it is indeed a moment map.

We now turn attention to Γ(L). Since Γ(L) is a vector space with an inner product (in-
duced by h and the volume element), we can consider it as an infinite-dimensional manifold
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with tangent space naturally isomorphic to Γ(L). A symplectic structure naturally arises
on Γ(L) from this inner product: for σ, η ∈ TφΓ(L) ∼= Γ(L), we define

ω(σ, η) = i

2(⟨σ, η⟩ − ⟨η, σ⟩) = i

2

ˆ
X
(h(σ, η)− h(η, σ))volg. (3.28)

Again, since ω does not depend on the point φ, we have dω = 0 and hence ω is a symplectic
form. It follows immediately that ω is preserved by G , since each g ∈ G is pointwise
unit-length. Again, we are able to find a moment map for this action:

Proposition 3.14. Define a map ν : Γ(L) × g → R as follows: if iξ ∈ g and φ ∈ Γ(L),
then

ν(φ, iξ) = − i

2

ˆ
X
|φ|2(iξ)volg. (3.29)

Then ν induces a moment map with respect to G .

Proof. It is clear that ν is well-defined and G -equivariant. To show that it is a moment map,
we must show that it satisfies the Hamiltonian property, that is, dσφ⟨ν, iξ⟩ = ω(ĩξφ, σφ) for
any iξ ∈ g and σφ ∈ TφΓ(L) ∼= Γ(L). The term dσφ⟨ν, iξ⟩ can be evaluated explicitly:

dσφ⟨ν, iξ⟩ = lim
t→0

1
t (ν(φ+ tσ, iξ)− ν(φ, iξ))

= lim
t→0

1
2t

ˆ
X
ξ
(
|φ+ tσ|2 − |φ|2

)
volg

= lim
t→0

1
2t

ˆ
X
ξ
(
th(σ, φ) + th(φ, σ) + t2|σ|2

)
volg

= 1
2

ˆ
X
ξ(h(σ, φ) + h(φ, σ))volg.

(3.30)

To evaluate the term ω(ĩξφ, σφ), observe that

ĩξφ = d
dt

∣∣∣
t=0

(e−itξφ) = −iξφ; (3.31)

we then simply use the definition of ω:

ω(ĩξφ, σφ) =
i

2

ˆ
X
(h(−iξφ, σ)− h(σ,−iξφ))volg

= 1
2

ˆ
X
ξ(h(φ, σ) + h(σ, φ))volg = dσφ⟨ν, iξ⟩.

(3.32)

Thus, the map ν satisfies the Hamiltionian property, making it a moment map.

We have now defined a moment map on both A h and Γ(L). By Proposition 3.7, each
moment map can be combined into a single moment map on A h × Γ(L) by simply adding
the two moment maps together:

µiξ(∇, φ) =
ˆ
X
iξ

(
ΛF∇ − i

2 |φ|
2
)
volg. (3.33)

We can write this as a map µ : A h × Γ(L) → g by defining a natural inner product on
g and identifying g∗ with g; for iξ, iη ∈ g = iE (X), we define ⟨iξ, iη⟩ = −

´
X(iξ)(iη)volg.
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Using this inner product, it is clear that the moment map is induced by the following map
µ : A h × Γ(L) → g:

µ(∇, φ) = ΛF∇ − i

2 |φ|
2. (3.34)

Moreover, we restrict our attention to the following submanifold of A h × Γ(L):

N = {(∇, φ) ∈ A h × Γ(L) : ∇0,1φ = 0, φ is not identically 0}. (3.35)

This subspace is clearly closed under the action of G , and it is also a Kähler submanifold
of the entire space, so the same moment map µ can be used on N . The elements of this
space automatically satisfy the first vortex equation, meaning we can focus our attention
on the second.

3.3.1 Introduction of the Vortex Parameter

Observe that the integrand in µ is identical to the τ -vortex equation for τ = 0, meaning the
0-vortex equations are satisfied precisely when µ is equal to 0. We would like to redefine the
setup so that the τ -vortex equations may be represented for arbitrary τ . In fact, we will do
this by highlighting a dimension-1 subgroup of G whose moment map will be a constant,
and using Proposition 3.8 to subtract the resulting moment map out.

We consider the subgroup U(1) ⊆ G consisting of constant maps. Restricting to a
subgroup clearly does not affect equivariance or the Hamiltonian property, so we can get
the moment map for the action of U(1) simply by restricting the moment map for G .
Identifying u(1) with iR and u(1)∗ with u(1) by using the inner product, we see that the
moment map is given by

µ̃(∇, φ) = − i

2Vol(X)

ˆ
X
|φ|2volg. (3.36)

Given any c ∈ iR−, we will be able to solve the equation µ̃(∇, φ) = c, and it is easy to
check that every such c is a regular value for µ̃. Thus, by Theorem 3.10, we can reduce
to Ñ = µ̃−1(c)/U(1). Furthermore, Proposition 3.8 allows us to simply subtract these
moment maps to get the moment map on Ñ for G /U(1), which we will define to be G̃ . We
subtract an extra constant term in this moment map, and conclude that a moment map for
G̃ on Ñ is the following:

µ(∇, φ) = ΛF∇ − i

2 |φ|
2 + 2πid

Vol(X) − c. (3.37)

We define iτ/2 to be this entire constant term; when this is done, the requirement that c is
strictly negative is precisely the requirement that τ > 4πd/Vol(X). It follows that, on the
manifold Ñ , the moment map with respect to G̃ is given by

µ(∇, φ) = ΛF∇ − i

2 |φ|
2 + i

2τ. (3.38)

Thus, the τ -vortex equations are satisfied precisely when µ(∇, φ) = 0, so the problem of
finding solutions reduces to finding zeros of µ. As indicated previously, Theorem 3.9 allows
us to reduce the problem further to finding minima of |µ|2 on orbits of G̃ C.
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We have been conceptualising G̃ C as the complexification of G̃ , which has a natural
action on Ñ . However, we can also realise it explicitly as the group G C modulo the
constant gauge transformations C∗. Under this interpretation, the action of g ∈ G C on an
element (∇, φ) ∈ N gives rise to the corresponding action of [g] ∈ G̃ C on [(∇, φ)] ∈ Ñ :
we choose a representative g′ of [g] in G̃ C for which ∥g′φ∥L2 = ∥φ∥L2 . Henceforth, we will
essentially identify elements of G̃ C acting on Ñ with elements of G C acting on N in this
way.

In the coming chapter, we will find a zero for µ on every orbit of G̃ C, so long as τ
satisfies the constraint in Proposition 3.3; furthermore, it will be unique up to the action of
G . This will establish a correspondence between the moduli space of solutions and Ñ /G̃ C.
However, observe that elements of G̃ C correspond to nonzero complex-valued maps on X
up to constant multiples, and elements of Ñ correspond to elements of N with a certain
average value of |φ|2 up to constant unitary transformations. It follows with thought that
each element of Ñ /G̃ C corresponds to a family of holomorphic maps φ whose zeros agree
(with multiplicity), meaning we can identify the quotient with the set of divisors on X. In
more concise terms, we have the following:

Proposition 3.15. The quotient space Ñ /G̃ C is diffeomorphic to SdX, the dth symmetric
power of X.

Thus, once we show that every G̃ C-orbit has a unique zero up to the action of G , we will
have that the moduli space is precisely SdX.



Chapter 4

Existence Proof

We have now established that the moduli space of vortices can be naturally interpreted
in terms of a moment map, and we have further demonstrated that a zero can be found
if we have a minimum on an orbit of G C. This insight was used by Garcia-Prada in
[Gar94] to characterise the structure of the moduli space of vortices. In this chapter,
therefore, we reproduce Garcia-Prada’s existence proof in clear and self-contained language.
We emphasise the big picture of the proof throughout the chapter, and provide background
on the relevant functional analysis.

Before we continue, we briefly restate the main constructions of Chapter 3, and the
overarching strategy of the existence proof. We have a space Ñ = µ̃−1(c)/U(1) with a
natural action of G̃ C = Map(X,C∗)/C∗, and a moment map µ : Ñ → C∞(X) given by
the Yang-Mills-Higgs functional (up to a constant). The approach is to find a minimum
of ∥µ∥2 on a G̃ C-orbit of Ñ . We shall do this by constructing an infinite sequence in a
G̃ C-orbit Γ ⊆ Ñ which minimises ∥µ∥2, and constructing a subsequence which converges
to an element of Γ (up to gauge equivalence); this limit will therefore attain the desired
minimum.

4.1 Generalised Sections and Connections

The goal of attaining a minimum for ∥µ∥2 by finding a convergent sequence of sections and
connections is hindered by the fact that spaces of smooth functions tend to be incomplete.
We will therefore be interested in the completions of these spaces; in particular, we take the
completion with respect to the Sobolev norm to get spaces of Sobolev sections and connec-
tions. Before discussing the spaces of sections and connections, we give a brief overview of
Sobolev spaces and elliptic operator theory.

4.1.1 Sobolev Spaces

Let (X, g) be a compact n-dimensional Riemannian manifold, and let π : E → X be
a vector bundle. Though the space Γ(E) of C∞ sections is well-behaved pointwise, its
natural topologies are quite poorly behaved. More concretely, Γ(E) is incomplete under
every possible p-norm. The natural solution is to take the metric completion under a

35
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chosen p-norm, which results in the spaces Lp(E); however, these spaces do not carry any
derivative information, so they are not suitable for analysis on PDEs. The corresponding
notion to solve this problem is that of a Sobolev space.

In order to define the space Lpk(E), we need some extra structure on our vector bundle.
First, we put a bundle metric h on E; we will take it to be a Hermitian metric in our context.
Then we take a Hermitian connection ∇ on E, as well as the Levi-Civita connection ∇ on
X. This induces connections on every tensor power of E and X, and in particular, the
tensor power (T ∗X)⊗k ⊗ E for every k ∈ N. Now, by the definition of a connection, we
have for any σ ∈ Γ(E) a section ∇σ ∈ Γ(T ∗X ⊗ E); but by the above extension, we also
have sections ∇jσ ∈ Γ((T ∗X)⊗j ⊗ E) for every j ∈ N. Additionally, the metric on X and
the Hermitian metric on E extends to a metric on all tensor powers; in particular, we can
define |∇jσ| for all j (and it will be a smooth function on X).

We now define a series of norms on Γ(E):

Definition 4.1. Let (E, h,∇) → (X, g,∇) be as above. Given p ∈ [1,∞] and k ∈ N, the
(k, p)-Sobolev norm on σ ∈ Γ(E) is defined as follows:

∥σ∥Lp
k
=

k∑
j=0

∥∇jσ∥Lp =
k∑
j=0

(ˆ
X
|∇jσ|p volg

)1/p
. (4.1)

Note that we recover the usual Lp-norm if we take k = 0.

Unsurprisingly, the space Γ(E) is incomplete under this norm; we therefore complete it in
just the same way as the Lp spaces:

Definition 4.2. The (k, p)-Sobolev space of sections of E, or the Lpk space of sections, is
the completion of Γ(E) with the (k, p)-Sobolev norm. It is denoted by Γ(E)Lp

k
. Moreover,

if E is the trivial R-bundle or C-bundle, the space is simply denoted by Lpk.

Observe that a section of E is Lpk if and only if its components are real-valued Lpk functions
in a local trivialisation.

Though we need to make several choices throughout the construction, the choice of
connection leads to no topological difference.

Proposition 4.3. Fix k ∈ N and p ∈ [1,∞]. Any two (k, p)-Sobolev norms corresponding
to different metric connections on E are equivalent.

Proof. For a proof in the k = 1 case, see [Hay24]. The general case is similar.

The notion of a Sobolev space readily applies to three new kinds of spaces:

• Since differential ℓ-forms are sections of the bundle Λℓ(T ∗X); we therefore have the
notion of differential ℓ-forms of class Lpk, denoted by Ωℓ(X)Lp

k
.

• Recalling that the space A of smooth connections forms an affine space over Ω0,1(X),
we can generalise the notion of a connection by fixing some ∇ ∈ A and adding
elements of Ω0,1(X)Lp

k
instead; this gives the notion of an Lpk connection. If p = 2, we

denote the space of such connections by A k.
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• Conceptualising the gauge groups G = Map(X,U(1)) and G C = Map(X,C∗) as spaces
of sections of trivial U(1)-bundles or C∗-bundles, we therefore have the notion of an
Lpk gauge transformation. If p = 2, we denote the corresponding groups by (G )k and
(G C)k respectively.

We will need three important results from the theory of Sobolev spaces.

Theorem 4.4 (Sobolev Embedding). Let p, q ∈ [1,∞) and let k, ℓ ∈ N. Consider the
Sobolev spaces Lpk(E) and Lqℓ(E) on an n-dimensional manifold M with a vector bundle
E → M . If k − n/p ≥ ℓ − n/q and k ≥ ℓ, then Lpk(E) ⊂ Lqℓ(E). Furthermore, if the
inequalities are strict, then the inclusions are compact operators. Additionally, if k−n/p >
ℓ, then there is a compact inclusion Lpk(E) ⊂ Cℓ.

Proof. See [Heb96].

Theorem 4.5 (Weak compactness). Any bounded subset of the space Γ(E)Lp
k
is weakly

compact for p ∈ (1,∞) and k ≥ 0. That is, every bounded sequence of Lpk sections of E
has a subsequence which converges weakly, in that their images under any bounded linear
functional converge in R.

Proof. The space Γ(E)Lp
k
can be embedded in a finite product of reflexive spaces, namely

the Lp spaces over the possible multi-indices up to order k. A finite product of reflexive
spaces is reflexive, and Lpk is therefore a closed subspace of a reflexive space, making it
reflexive. The result then follows from a corollary of Alaoglu’s theorem, namely that the
unit ball in every reflexive space is weakly compact (see [Con90]).

Theorem 4.6 (Sobolev Multiplication). Let n be the dimension of the manifold, and let
k1, k2, k be natural numbers and p1, p2, p ∈ [1,∞) be real numbers satisfying the following
constraints:

• k ≤ k1, k2;

• ki − k ≥ n
(

1
pi

− 1
p

)
for each i;

• k1 + k2 − k > n
(

1
p1

+ 1
p2

− 1
p

)
≥ 0.

Then the multiplication map Lp1k1 ×Lp2k2 → Lpk is continuous and well-defined. In particular,
the multiplication map L2

k ×L2
k → L2−ε

k is continuous and well-defined for every k ∈ N and
every ε > 0.

Proof. The case for which the underlying manifold is Rn and the underlying vector bundle
is trivial is done in [FWX25]. The general case follows from the fact that the statement is
purely local, and every vector bundle over a manifold can be locally reduced to this case.
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4.1.2 Differential Operators and Ellipticity

The vortex equations utilise several operators which belong to a certain class: namely, they
are elliptic linear differential operators. We will define this class of operators, demonstrate
that ∇0,1 and ∂ are of this class, and state some important results from elliptic operator
theory.

A linear differential operator between vector bundles is, roughly speaking, a sum of
partial derivatives in any coordinate system. More precisely:

Definition 4.7. Let E,F → X be vector bundles of rank a and b over a smooth manifold
X, and let L : Γ(E) → Γ(F ) be a linear map. Let U ⊆ X be open and homeomorphic to
Rn through a chart x : U → Rn, and further suppose E and F are both locally trivial over
U with local diffeomorphisms φE : π−1

E (U) → U × Ra and φF : π−1
F (U) → U × Rb. Then

L is a linear differential operator of order k if, for every such U , there is some operator
L̃ : Map(U,Ra) → Map(U,Rb) of the form

L̃(f) =
∑
|α|≤k

Aα(x)
∂|α|f

∂xα
(4.2)

for every f : U → Ra (where Aα : U → Ra×b for each multi-index α), such that φF ◦ L =
L̃ ◦ φE .

It is clear that this definition is independent of the coordinate chart x : U → Rn, and also
independent of the local trivialisations.

Elliptic operators are those differential operators which are locally “well-behaved.” The
notion of local behaviour is captured by the principal symbol:

Definition 4.8. Let the k-th order differential operator L : Γ(E) → Γ(F ), the open set
U , and the local representation L̃ : Map(U,Ra) → Map(U,Rb) be as above. The principal
symbol of L at x ∈ X is the map σ(L) : Rn → Ra×b defined as follows:

[σ(L)](ω) =
∑
|α|=k

Aα(x)ωα, (4.3)

where we define ωα = ωα1
1 · · ·ωαn

n for the multi-index α = (α1, . . . , αn).

Once again, this can be shown to be independent of coordinates. We then have the notion
of an elliptic operator:

Definition 4.9. A linear differential operator L : Γ(E) → Γ(F ) is elliptic if, for any
ω ∈ Rn\{0}, its principal symbol [σ(L)](ω) is invertible.

Note that all of our definitions only apply to smooth sections. Nevertheless, they can be
extended to Sobolev spaces (refer to [Hay24]):

Proposition 4.10. Any k-th order differential operator L : Γ(E) → Γ(F ) admits a unique
bounded extension to a map L : Γ(E)L2

ℓ
→ Γ(E)L2

ℓ−k
.



4.1. GENERALISED SECTIONS AND CONNECTIONS 39

We will essentially regard these two maps as the same, without further comment.
The standard example of an elliptic linear operator is the Laplacian ∆ : C∞(Rn) →

C∞(Rn), defined by taking ∆(f) = ∂2f
∂x21

+ · · · + ∂2f
∂x2n

. By definition, it is a second-order
differential operator on the trivial Rn-bundle on Rn. The principal symbol of ∆ is simply
[σ(∆)](ω) = (ω2

1 + · · · + ω2
n)idRn , and this is clearly invertible whenever each ωi ̸= 0. Two

more relevant examples are as follows:

Proposition 4.11. If X is a Riemann surface, the Dolbeault operator ∂ : Ω0,0(X) →
Ω0,1(X) is an elliptic differential operator.

Proof. In a holomorphic coordinate system, the Dolbeault operator is represented as ( ∂∂x +
i ∂∂y )dz; this is clearly a first-order differential operator. Its principal symbol is given by

(ωx, ωy) 7→ (ωx + iωy)dz, (4.4)

which is clearly invertible whenever ωx or ωy are nonzero, making ∂ elliptic.

Corollary 4.12. If L → X is a line bundle over a Riemann surface, the holomorphic
structure ∂L : Ω0,0(L) → Ω0,1(L) is an elliptic differential operator.

Proof. In a holomorphic coordinate system on X, the holomorphic structure is represented
as ∂ + τ where τ ∈ Ω0,1(X), which is clearly a first-order differential operator. Moreover,
its highest-order part coincides with ∂, which we just proved is elliptic.

Our motivation for introducing this theory is the powerful results that can be obtained
for elliptic operators. We will be using two in particular:

Theorem 4.13 (Elliptic regularity). Let D : Γ(E) → Γ(F ) be any elliptic ℓ-th order
differential operator. If φ is a section of E for which Dφ is an L2

k section of F , then φ is
L2
k+ℓ. In particular, ker(D) consists of smooth sections of E.

Theorem 4.14 (Elliptic estimate). Let σ ∈ Γ(E) be an L2
2 section of a vector bundle E over

a compact manifold X, and let D : Γ(E) → Γ(F ) be a k-th order elliptic operator. Then
there is some C ∈ (0,∞) which does not depend on σ, such that the following inequality
holds:

∥σ∥L2
2
≤ C(∥Dσ∥L2

1
+ ∥σ∥L2). (4.5)

Furthermore, if σ is L2-orthogonal to kerD, we may omit the ∥σ∥L2 term.

For proofs of each of these theorems, see [Hay24].

4.1.3 Application to Gauge Theory

When we come to prove the existence of vortices, most of the work will be done within
the space of L2

1 connections (which we denote by A 1), the space of L2
1 sections (which we

denote by Γ(L)L2
1
), and the spaces of L2

2 gauge transformations (which we denote by G 2

and (G C)2). We first check that the action of L2
2 on L2

1 is well-defined.

Lemma 4.15. Lpj is a topological Lpk-module whenever j ≤ k and k > n/p.



40 CHAPTER 4. EXISTENCE PROOF

Proof. The statement to be proved is that the multiplication map on Lpj × Lpk maps con-
tinuously into Lpj . This clearly follows if it is true on every open subset of X, so it can be
reduced to the local statement (i.e. multiplication of two Sobolev functions over Rn). But
this is a special case of Theorem 6.1 in [BH21].

Setting j = 1, k = 2, p = 2 and n = 2 gives that L2
1 is a topological L2

2-module, and hence
that (G C)2 acts continuously on A 1. Additionally, we need to check that the Yang-Mills-
Higgs functional still makes sense on these extended spaces:

Proposition 4.16. The Yang-Mills-Higgs functional can be continuously extended to L2
1

sections and connections.

Proof. It is first shown that the output of a map taking an L2
1 connection to its curvature

is L2; our method here is based on the method in [Uhl82]. Let ∇′ ∈ A 1 be an arbitrary
element; then ∇′ = ∇+α, where ∇ is smooth and α ∈ Ω1(X)L2

1
. Then F∇′ = F∇+dα; the

first term is smooth, and the second is L2 (since α has sufficiently regular zeroth and first
derivatives, so dα will only have sufficiently regular zeroth derivative). This makes F∇′ an
L2 object.

Next, the Sobolev inclusion L2
1(E) ⊆ L4(E) shows that any φ ∈ L2

1(E) is also in L4(E),
and this implies that |φ|2h is in L2. But since the Yang-Mills-Higgs functional is essentially
the L2-norm of F∇′ and |φ|2h, this means that it is well-defined in the extended sense.

In the existence proof, we shall eventually produce a zero of µ on an orbit of (G C)2
consisting of an L2

1 section and connection, thus producing an L2
1 solution to the vortex

equations. On the other hand, we are interested in producing smooth solutions up to unitary
gauge equivalence. Contrary to what one might expect, there is no way to transform an
arbitrary L2

1 pair into a smooth pair using an L2
2 gauge transformation; if ∇ has nonsmooth

curvature, any gauge transformation will preserve this nonsmooth curvature and hence
cannot map ∇ to a smooth connection. However, if an L2

1 pair is a solution to the vortex
equations, such a gauge transformation does exist. Instrumental to finding such a gauge
transformation is the following result, which establishes the existence of the Coulomb gauge
in a special case (this was initially proved in [Uhl82]):

Theorem 4.17 (Uhlenbeck). Let B2 be the unit disk in C, let L → B2 be the trivial line
bundle, and let ∇ be an L2

1 connection on L. Then there is some κ > 0 and some c <∞ such
that, whenever ∥F∇∥L2 < κ, the connection ∇ is L2

2-gauge equivalent to an L2
1 connection

d +A for which the following conditions hold:

d∗A = 0;
∥A∥L2

1
≤ c∥F∇∥L2 .

(4.6)

Once we show that L2
1 solutions can be gauge-transformed into smooth solutions, we can

proceed with L2
1 sections and connections without further issues.

With this preparation, we can state the two major convergence theorems that we will
use to construct our solution. The first is the weak compactness of Lpk, which we have
already stated and proved. The second is Uhlenbeck’s weak compactness theorem:
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Theorem 4.18 (Uhlenbeck Weak Compactness). Let X be a compact Riemann surface
with a vector bundle E → X, and let (Ak)k∈N ∈ A 1 be a sequence of connections on E for
which ∥FAk∥ is uniformly bounded. Then there is a subsequence (Aki)i∈N and a sequence
of unitary gauge transformations gi ∈ G 2 such that gi(Aki) converges weakly in A 1, where
weak convergence refers to convergence in the weak topology.

More concisely, this theorem states that any closed and bounded subset of A 1 is compact
in the weak topology, up to gauge equivalence. For a proof, see [Weh04].

There is one more result that we will need, and it relates to the Dolbeault cohomology
of the Riemann surface. To illustrate the issue, we consider the following question: if we
enlarge the space of differential (0, 1)-forms to the Sobolev space Ω0,1(X)L2

1
, should we

compute the Dolbeault cohomology in terms of these k-forms or the smooth k-forms? It
turns out that the distinction is immaterial for a Riemann surface.

Proposition 4.19. On a Riemann surface X, the Dolbeault cohomology spaces H0,1(X)L2
1

and H0,1(X)C∞ are isomorphic.

Proof. Define a map F : Ω0,1(X)C∞ → H0,1(X)L2
1
by taking F (α) = [α]L2

1
, i.e. the map

F takes each smooth (0, 1)-form to its L2
1 cohomology class. Observe that kerF consists

of smooth (0, 1)-forms of the form ∂f , where f : X → C is of class L2
2. However, by elliptic

regularity, the smoothness of ∂f implies that f itself is smooth, meaning kerF consists
entirely of C∞-exact (0, 1)-forms. By the first isomorphism theorem, F induces the desired
isomorphism.

4.2 The Proof

We are now ready to begin the proof. Recall that, on each (G̃ C)2-orbit of Ñ , we wish to
attain a minimum of the squared norm of the moment map

µ(∇, φ) = ΛF∇ − i

2(|φ|
2
h − τ), (3.38)

which is equal to YMH(∇, φ) = ∥F∇∥2
L2 + ∥|φ|2h − τ∥2 up to a constant difference of 2πτd.

We begin with the following lemma:

Lemma 4.20. On any (G̃ C)2 orbit in Ñ , there is an L2
1-weakly convergent sequence of

sections and connections (∇n, φn) ⇀ (∇, φ) for which ∥µ(∇, φ)∥2 is the minimum possible
value of ∥µ∥2 on the orbit.

Proof. We begin by choosing a representative (∇0, φ0) of an orbit of (G̃ C)2. Since ∥µ∥2 is
a nonnegative real-valued function on this orbit, there is some L2

1 sequence (∇n, φn) such
that ∥µ(∇n, φn)∥2 converges to the minimum value of ∥µ∥2 on the orbit. It follows that
∥µ(∇n, φn)∥2 is uniformly bounded, and since ∥F∇n∥2 ≤ YMH(∇n, φn), we get a uniform
bound on the curvature of ∇n. By Uhlenbeck’s weak compactness theorem, there is a
subsequence of ∇n and a sequence of L2

2 unitary gauge transformations which transform
the subsequence to a weakly convergent subsequence in A 1. Henceforth, we relabel the
sequence (∇n, φn) so that ∇n converges weakly to ∇ ∈ A 1.
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We can similarly find a uniform upper bound on ∥φn∥L2
1
; to do this, we show that a

uniform upper bound on ∥φn∥L2 is sufficient. Note that ∇0,1
n is elliptic and φn satisfies the

equation ∇0,1
n φn = 0 (since it is in N ). By the elliptic estimate (Theorem 4.14), we find

that there are constants Cn > 0 for each ∇n (independent of φ ∈ Γ(L)) for which

∥φ∥L2
1
≤ Cn(∥∇0,1

n φ∥L2 + ∥φ∥L2) = Cn∥φ∥L2 , (4.7)

where the final equality holds if φ is holomorphic (which is the case for each φn). Now,
choose some φ ∈ Γ(L)L2

1
. Since ∇0,1

n converges weakly to ∇0,1, we have that ⟨∇0,1
n φ, α⟩

converges to ⟨∇0,1φ, α⟩ for any α ∈ Ω0,1(X)L2 ; in particular, if we choose an orthonormal
basis {ek} for Ω0,1(X)L2 , it follows that

lim
n→∞

∥∇0,1
n φ∥2L2 = lim

n→∞

∑
k

|⟨∇0,1
n φ, ek⟩|2 =

∑
k

|⟨∇0,1φ, ek⟩|2 = ∥∇0,1φ∥2L2 . (4.8)

On the other hand, we can take the constants Cn to be the following:

Cn = sup
φ ̸=0

∥φ∥L2
1

∥∇0,1
n φ∥L2 + ∥φ∥L2

. (4.9)

However, by the computation above, the limit of the denominator as n→ ∞ is ∥∇0,1φ∥L2 +
∥φ∥L2 , and it follows from the ellipticity of ∇0,1 that Cn also converges as n → ∞. But
then the constants Cn must be uniformly bounded over n, meaning we can replace all
the Cn by some universal constant C > 0 which is independent of ∇n. It follows that
∥φn∥L2

1
≤ C∥φn∥L2 for all n, so we need only find uniform bounds on ∥φn∥L2 .

To do this, observe that Hölder’s inequality gives us the estimate

∥1 · φn∥L2 ≤ ∥1∥L4∥φn∥L4 = Vol(X)1/4∥φn∥L4 . (4.10)

Moreover, since YMH(∇n, φn) is bounded, so too is ∥|φn|2h − τ∥2
L2 (see Equation 3.1). We

equivalently write this expression as follows:

∥|φn|2h − τ∥2L2 = ∥φn∥4L4 + τ2Vol(X)− 2τ∥φn∥2L2 . (4.11)

We then substitute 1
Vol(X)1/4 ∥φn∥L2 into this expression and multiply through by Vol(X);

the following expression is therefore also bounded:

∥φn∥4L2 − 2τVol(X)∥φ∥2L2 + (τVol(X))2

= (∥φn∥2L2 − 2τVol(X))2.
(4.12)

But this clearly implies an upper bound on ∥φn∥L2 , and hence on ∥φn∥L2
1
. By the weak

compactness of L2
1, we conclude that φn has a weakly convergent subsequence to some L2

1
section φ. If we take the corresponding subsequence of ∇n, it will still converge to ∇.

Thus, we obtain an L2
1 connection and section which attains the minimum possible value

of ∥µ∥2. However, it is not yet clear that they belong to the same orbit as (∇0, φ0); without
this detail, we cannot conclude that µ has a zero at all. The rest of the proof is devoted to
this fact.
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Lemma 4.21. Let (∇n, φn)⇀ (∇, φ) be a convergent sequence of L2
1 sections and connec-

tions for which each element of the sequence is in the same (G C)2 orbit. Then (∇, φ) is also
in the same (G C)2 orbit.

Proof. To be in the same orbit means that there is a sequence gn ∈ (G C)2 such that
(∇n, φn) = gn · (∇0, φ0), and therefore that the following hold for each n ∈ N:

∇0,1
n −∇0,1

0 = g−1
n ∂gn,

∥gnφ0∥L2 = ∥φ0∥L2 .
(4.13)

We wish to show that gn can be chosen to converge to a holomorphic isomorphism g between
(L,∇0,1

0 ) and (L,∇0,1).
Define αn = g−1

n ∂gn. By definition, this is a (0, 1)-form on X of class L2
1, and it defines a

cohomology class in H0,1(X)L2
1
since ∂ = 0 identically on (0, 1)-forms. Moreover, we showed

above (Proposition 4.19) that the cohomology of the space of L2
1 differential forms is the

same as the ordinary C∞ differential forms. This is isomorphic to H1(X,O), the first sheaf
cohomology of the sheaf of holomorphic functions, by the Dolbeault isomorphism. Thus,
we can identify the cohomology class of αn with a class in H1(X,O).

We will show that αn can be taken to be exact, meaning it is of the form ∂fn for some
fn ∈ L2

2, and we will do this by analysing the exponential exact sequence of sheaves. Note
that it induces the following subsequence of the long exact cohomology sequence:

H1(X,Z) → H1(X,O) exp(2πi·)−−−−−→ H1(X,O∗), (4.14)

and we can consider each αn to be an element of H1(X,O) via the Dolbeault isomorphism.
In fact, by Equation 2.5, we can write an explicit representation of αn in H1(X,O) in a
good open cover {Ui}i∈I by taking ∂-primitives of αn over each Ui and subtracting them
on overlaps. On the other hand, αn = ∂(ln(gn)) on small enough open sets, meaning the
differences between the primitives on overlaps can be chosen to be constant integer multiples
of 2πi. Each one evaluates to 1 under the exponential map, meaning the class defined by
αn is trivial in H1(X,O∗).

Now, by exactness, each αn is an image of a class in H1(X,Z) which is isomorphic to the
first singular cohomology of X. But X is compact, so this is finitely generated and hence
discrete. If we identify each αn with its corresponding harmonic representative, we see that
the Cauchy nature of αn implies that its sequence of classes is also Cauchy. (We choose the
harmonic representative because it has the smallest norm in the cohomology class of αn; for
more details on harmonic forms, see [Voi02].) But since H1(X,Z) is discrete, it follows that
the classes (and hence αn) must be eventually constant. We can even perform a complex
gauge transformation to make [αn] eventually equal to 0: if one of the representatives of
the eventual class is of the form g−1∂g for g ∈ G C, we can simply redefine αn as follows:

αn 7→ αg
−1
n = gg−1

n ∂(g−1gn). (4.15)

This necessarily converges to the zero class. Replacing each (∇n, φn) with g−1 · (∇n, φn), it
follows that [αn] is eventually 0. Thus, by applying g and shifting n, we can assume that
every αn is exact, and we can therefore take αn = ∂fn for some sequence fn ∈ L2

2. We
will additionally assume that

´
X fn volg = 0 for all n, since αn only determines fn up to a

constant.
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Now that we have shown that αn can be taken to be exact for every n, we will show that
gn can be taken to converge to a holomorphic isomorphism. By the weak convergence of the
αn, the sequence ∥αn∥L2

1
∈ R is uniformly bounded. We can use this fact and the elliptic

estimate (Theorem 4.14) to uniformly bound ∥fn∥L2
2
. Observe that any complex function

h for which ∂h = 0 must be holomorphic on X and hence constant, but this means that

⟨fn, h⟩ =
ˆ
X
fnh volg = h

ˆ
X
fn volg = 0. (4.16)

It follows that each fn is orthogonal to the kernel of ∂. Since ∂ is elliptic, we can use the
elliptic estimate to uniformly bound the norms of fn:

∥fn∥L2
2
≤ C∥αn∥L2

1
. (4.17)

Thus, ∥fn∥L2
2
must also be uniformly bounded. By the weak compactness of L2

2, the sequence
fn has a weakly convergent subsequence; we relabel fn to be weakly convergent in L2

2. But
by the Sobolev embedding theorems, there is a compact inclusion i : L2

2 ↪→ C0, so the
fn are also weakly convergent in (C0, ∥·∥∞) and hence must be uniformly bounded in the
sup-norm. Thus, we can find someM > 0 such that fn(x) ≤M for all x ∈ X and all n ∈ N.

We now have that g−1
n ∂gn = ∂fn where fn are uniformly bounded functions. The log

function exists locally in the complex plane, so this implies that ∂ log(gn) = ∂fn and hence
gn = Kne

fn for some nonzero constants Kn ∈ C∗. It follows that

|Kn|e−M ≤ |gn| ≤ |Kn|eM . (4.18)

However, recall that the G̃ C acts on φ by preserving its L2 norm; in particular, we must
have that ∥gnφ0∥L2 = ∥φ0∥L2 . Consequently, we have the following inequalities:

|Kn|e−M∥φ0∥L2 ≤ ∥gnφ0∥L2 = ∥φ0∥L2 ≤ |Kn|eM∥φ0∥L2 . (4.19)

Since φ0 ̸= 0, we see that |Kn|e−M ≤ 1 ≤ |Kn|eM , which implies that |Kn| ∈ [e−M , eM ].
Therefore, |gn| is bounded for n ∈ N, meaning ∥gn∥∞ is uniformly bounded. From the
Sobolev inclusion L2

2 ↪→ C0, it follows that ∥gn∥L2
2
is uniformly bounded, so by the weak

compactness of L2
2 it has an L2

2-weakly convergent subsequence. But then its weak limit is
a complex gauge transformation relating (∇0, φ0) to (∇, φ), demonstrating that (∇, φ) is in
the same orbit.

We now have an L2
1-solution on each orbit of G̃ C, and we need to be able to transform

these into smooth solutions using unitary gauge transformations.

Lemma 4.22. Let (∇, φ) be an L2
1 solution to the vortex equations. Then there exists an

L2
2 gauge transformation g for which (∇g, φg) is a smooth solution.

Proof. The proof for this lemma is an adaptation of the proof in [FWX25], which constructs
a similar gauge transformation for L2

1 solutions to the Hitchin equations.
Since (∇, φ) is a solution to the vortex equations, we know that ∥F∇∥L2 = 1

2∥|φ|
2 −

τ∥L2 < ∞, which means that we can make F∇|U have arbitrarily small norm by shrinking
an open set U ⊆ X. As such, we can choose a finite open cover {Ui}i≤n of X for which
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each Ui is diffeomorphic to the unit (open) disk in C, the line bundle L|Ui is trivial, and for
which ∥F∇|Ui∥L2 is arbitrarily small. On each open set Ui, we can write ∇ = d+A where A
is an L2

1 complex-valued 1-form, and we can interpret φ as an L2
1 complex-valued function

on Ui as long as we interpret the hermitian metric h as a smooth complex-valued function
on Ui as well. The local version of the vortex equations then becomes the following:

∂φ+A0,1φ = 0;

dA = i

2(h|φ|
2 − τ)volg.

(4.20)

Note that ∂ is an elliptic operator and A0,1φ ∈ L2−ε
1 for every ε > 0 by Theorem 4.6,

so by elliptic regularity we must have that φ ∈ L2−ε
2 . Moreover, taking d∗ of both sides

of the second equation, we have that d∗dA = i
2d∗(h|φ|2volg). But d∗dA = ∆A where

∆ = d∗d + dd∗ is the Laplacian, as long as A is in the Coulomb gauge (since d∗A = 0 in
the Coulomb gauge), and ∆ is known to be elliptic. By Theorem 4.17, the Coulomb gauge
always exists. Moreover, we have that d(h|φ|2) is L2−ε, and elliptic regularity ensures that
A is L2−ε

2 . By applying this method inductively, we see that A and φ are L2−ε
k for every k

and every ε > 0, which means they must be smooth (the intersection of Lpk over k is C∞).
We now have that (∇, φ) are locally gauge equivalent to a smooth pair, and we need to

glue these local gauge transformations into a global gauge transformation. To do this, we
first ensure that they can be written in terms of exp by finding arbitrarily small correspond-
ing gauge transformations. Let {gi : Ui → U(1)} be the local L2

2-gauge transformations for
which (∇|Ui)gi and (φ|Ui)gi are smooth. Since C∞ is dense in L2

2, there exist smooth
hi : Ui → U(1) such that ∥hi − g−1

i ∥L2
2
is arbitrarily small. It follows that ∥1− higi∥L2

2
can

also be made arbitrarily small, so by replacing each gi with higi, we can choose the gi to
be arbitrarily close to the constant function 1 on Ui. It follows also that the “transition”
gauge transformation gij := gig

−1
j can be made arbitrarily close to the identity. Observe

that gij [gj(∇, φ)|Ui∩Uj ] is smooth, meaning gij takes a smooth pair to a smooth pair. It is
a theorem of Atiyah that such a gauge transformation must itself be smooth, so each gij is
smooth. Now, since exp : iR → U(1) is a diffeomorphism close to the identity, we can write
each gij as exp(ifij) where fij : R → R is smooth. In other words, ln(gij) is well-defined.

We now begin the process of constructing a global smoothing gauge transformation. Let
d : X ×X → [0,∞) be the metric on X, and define

U δi = {p ∈ Ui : d(p, ∂Ui) > δ} (4.21)

for each δ > 0. Note that U δi is obtained from Ui by shrinking away from the boundary,
and if δ is sufficiently small, the collection {Unδi }i≤n is also an open cover of X (where n is
the number of open sets in the collection). We will find a global L2

2 gauge transformation
g̃ : X → U(1) for which g−1

i g̃ is smooth on each Unδi ; once this is done, we will have that
g̃(∇, φ) is smooth, since (g−1

i g̃)(gi(∇, φ)) is smooth on each Unδi . We construct a sequence
of local gauge transformations g̃(k) on ∪i≤kUkδi inductively as follows:

• We define the local gauge transformation g̃(1) on U δ1 by taking g̃(1) = g1|Uδ
1
. Clearly

g−1
1 g̃(1) is smooth, as it is constant.

• Suppose there is a local gauge transformation g̃(k) on ∪i≤kUkδi such that g−1
i g̃(k) is

smooth for every i ≤ k. We now define new local gauge transformations g̃(k+1)
i on

each U (k+1)δ
i in two cases:
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– If U (k+1)δ
k+1 ∩ (∪i≤kU (k+1)δ

i ) = ∅, we define g̃(k+1)
i = g̃(k)|

U
(k+1)δ
i

for i ≤ k and

g̃
(k+1)
k+1 = gk+1|U(k+1)δ

k+1
. We clearly have that g−1

i g̃(k+1) is smooth for every i ≤
k + 1.

– Otherwise, we know that there must be some smooth function φk+1 : U (k+1)δ
k+1 →

[0, 1] which is equal to 0 on U (k+1)δ
k+1 ∩(∪i≤kU (k+1)δ

i ), and is 1 on U (k+1)δ
k+1 \(∪i≤kUkδi )

(this follows from the fact that X is normal, being a Riemann surface). We now
define the local gauge transformations g̃(k+1)

i = g̃(k)|
U

(k+1)δ
i

for i ≤ k, and we

define g̃(k+1)
k+1 on U (k+1)δ

k+1 as follows:

g̃
(k+1)
k+1 =

g̃(k) exp
(
φk+1 · ln((g̃(k))−1gk+1)

)
on U (k+1)δ

k+1 ∩ (∪i≤kU (k+1)δ
i )

gk+1 otherwise.
(4.22)

Note that φk+1 is being used to interpolate between g̃(k) on ∪i≤kU
(k+1)δ
i and gk+1

on the rest of Uk+1. In fact, we have that g̃(k+1)
k+1 = g̃

(k+1)
i for i ≤ k, since φk+1 = 0

on the overlap. Thus, we can stitch together the local gauge transformations into
one gauge transformation g(k+1) on all of ∪i≤k+1U

(k+1)δ
i . Moreover, g−1

i g̃(k+1) is
smooth for every i ≤ k+1; for i ≤ k it is constant and for i = k+1 we have that

g−1
k+1g̃

(k+1)
k+1 = (g−1

k+1gi)(g
−1
i g̃(k) exp

(
φk+1 · ln((g̃(k))−1gig

−1
i gk+1)

)
(4.23)

on U
(k+1)δ
i . But this is smooth, as all of the components are smooth by con-

struction.

As such, we proceed inductively up to k = n to find a global gauge transformation g̃ = g̃(n)

for which g−1
i g̃ is smooth for every i. But then g̃(∇, φ) is a smooth solution to the vortex

equations.

Finally, we must verify that solutions are unique on an orbit of G̃ C, up to unitary gauge
equivalence.

Lemma 4.23. Let (∇, φ) ∈ Ñ , and let Γ be the orbit of (∇, φ) under G̃ C. Suppose
µ(∇, φ) = 0, and there is some g ∈ G̃ C for which µ(∇g, φg) = 0. Then g is a unitary gauge
transformation, meaning the element of Γ for which µ = 0 is unique up to unitary gauge
equivalence.

Proof. If µ(∇, φ) = µ(∇g, φg) = 0 then, by the definition of µ and the gauge invariance of
F∇, we must have the following:

|gφ|2h = τ − 2iΛF∇ = |φ|2h. (4.24)

Since g and φ are both smooth, this implies that |g|2 = 1 everywhere, making g a unitary
gauge transformation.

Theorem 4.24 (Bradlow, Garcia-Prada). There is a smooth solution to the vortex equa-
tions, and up to unitary gauge equivalence, it is uniquely determined by the positions of d
zeros on X. In other words, the moduli space of τ -vortices is diffeomorphic to Sd(X).
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Proof. In Lemma 4.20 we have shown that, on each (G̃ C)2 orbit in Ñ , there is an L2
1-weakly

convergent sequence of sections and connections for which ∥µ∥2 converges to its minimum
value on the orbit. We have also shown in Lemma 4.21 that the limit of this sequence is
in the same (G̃ C)2 orbit. Thus, we have an L2

1 pair (∇, φ) on each orbit which minimises
∥µ∥2, and by Lemma 4.22 we can apply a unitary gauge transformation to make it into a
C∞ pair. By Lemma 3.9 and the invariance of µ under G 2, this implies that µ(∇, φ) = 0,
meaning (∇, φ) satisfy the vortex equations.

This demonstrates that there is a solution on each orbit. Each one is unique up to
unitary gauge equivalence by Lemma 4.23, meaning each point of the quotient space Ñ /G̃ C

corresponds to a solution. But Ñ /G̃ C is diffeomorphic to Sd(X) by Proposition 3.15, which
completes the proof.

4.3 Further Directions

We have demonstrated that the moduli space of τ -vortices is isomorphic to SdX whenever
τ is sufficiently large. An interesting observation due to Garcia-Prada is that SdX inherits
a Kähler structure from this theorem. This is because N already has a Kähler structure
according to Equations 3.18 and 3.28, and symplectic reduction theory demonstrates that
this is preserved under the quotients by U(1) and G̃ C (for details see [Mar+07]).

As we mentioned in the Introduction, it was shown in [MOY97] that the moduli space of
the vortex equations on a Riemann surface X is essentially equivalent to the moduli space
of the Seiberg-Witten equations on a Seifert fibered 3-manifold over X. This result, in
conjunction with the theorem we have just proved, has interesting implications on the theory
of 3-manifolds. In a sense, however, the result is incomplete: even if we restrict to Seifert
fibered 3-manifolds which are orientable, there are some which fibre over non-orientable
surfaces such as RP2. On the other hand, every Riemann surface is necessarily orientable;
a complex atlas on any manifold constitutes an orientation, since the transition maps are
biholomorphisms and hence positively oriented. This leads to the following question: can
we define the vortex equations on non-orientable surfaces?

If the question is taken literally, the answer is no: the complex structure is necessary to
define holomorphic sections of a line bundle, and even if we drop this condition, the Hodge
star cannot be defined on non-orientable surfaces either. However, one can work around
these obstructions by forming the orientable double covering of the surface (an orientable
2-fold covering space, which always exists), performing the analysis on a holomorphic line
bundle over this space, and then projecting back down to the non-orientable surface. More
generally, one may consider a Riemann surface X with a Real structure on it, that is, an
anti-holomorphic involution σ, and form a Real holomorphic line bundle L over X, that is,
a holomorphic line bundle with an anti-holomorphic involution τ compatible with σ. (One
obtains a non-orientable surface by taking the quotient of X by σ.) A Riemann surface
with a Real structure is called a Klein surface.

In fact, this strategy is not new. It was shown in [Sch17] that the Yang-Mills equations
extend to Klein surfaces in this way, and that an important theorem (the Narasimhan-
Seshadri theorem) carried over as well. Thus, the moduli space of vortices on Klein surfaces
could conceivably be found using the same method we used for Riemann surfaces, and
subsequently be used to complete the work in [MOY97] to all Seifert fibered 3-manifolds.
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Appendix A

Cohomology Theory

We use cohomology theory extensively in Chapter 2 to characterise line bundles topologi-
cally, and again in Chapter 4 to demonstrate the exactness of certain differential forms. In
this appendix, we give a brief primer in cohomology.

Note that this introduction is very brief, and very few proofs are done. For a more
complete introduction to singular cohomology and de Rham cohomology, we refer the reader
to [BT82] and [Hat02]. For a more comprehensive discussion of Čech cohomology and
homological algebra, we refer the reader to [Bre97] and [Osb00].

A.1 Abstract Theory

We begin by defining cochain complexes.

Definition A.1. Fix a unital ring R (which we usually take to be Z or R). A cochain
complex with coefficients in R is a sequence of R-modules {Ai}i∈N together with module
homomorphisms di : Ai → Ai+1 called coboundary maps for which d2 = 0. Given two
cochain complexes (A•, d•) and (A•, δ•), a cochain map is a collection of module homomor-
phisms f i : Ai → Bi commuting with the coboundary maps. The collection of cochain
complexes forms a category, with cochain maps as morphisms.

That d2 = 0 implies that im(di−1) ⊆ ker(di) for every i. If the reverse inclusion holds
then the sequence is exact; if not, the cohomology measures the extent to which exactness
fails.

Definition A.2. Let (A•, d•) be a cochain complex. The nth cohomology group of the
chain complex is the following quotient group:

Hn(A;R) = ker(dn)
im(dn−1) . (A.1)

It is worth noting that there is a dual notion of a chain complex, obtained by reversing
all arrows and removing the prefix “co” wherever it appears. Given a cochain complex
(A•,d•), one can produce a chain complex (A•, ∂•) by taking each Ai to Ai := Hom(Ai, R)
and each coboundary map di : Ai → Ai+1 to the boundary map ∂i+1 = (di)∗ : Ai+1 → Ai.

49
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By taking ker(∂n)/im(∂n+1) for an arbitrary chain complex, we get the homology groups of
the chain complex.

We will also be interested in cohomology with coefficients in a sheaf over a topological
space. We therefore briefly define sheaves:

Definition A.3. Let X be a topological space, and denote by U (X) the category whose
objects are open sets and whose morphisms are inclusions. Then a presheaf of abelian groups
on X is a contravariant functor F : U (X) → Ab, the category of abelian groups. Given an
open set U , elements of the group F (U) are called sections; given an inclusion U ↪→ V , the
induced homomorphism F (V ) → F (U) is called a restriction morphism and is denoted by
σ 7→ σ|U .

A sheaf is a presheaf satisfying the following two conditions:

• If U ⊆ X is open, {Ui}i∈I is an open cover of U , and σ, η ∈ F (U) are sections for
which σ|Ui = η|Ui for all i, then σ = η.

• If U ⊆ X is open, {Ui}i∈I is an open cover of U , and {σi ∈ F (Ui)}i∈I is a family of
sections for which σi|Ui∩Uj = σj |Ui∩Uj for all i, j ∈ I, then there is a section σ ∈ F (U)
for which σ|Ui = σi for all i ∈ I.

We will make extensive use of several sheaves. Firstly, given any abelian group A and
any connected topological space X, we can form the constant sheaf A over X by defining
A(U) = A for every U ⊆ X, and making restriction morphisms trivial. We will be especially
interested in the constant sheaves Z and R. Less trivially, for many reasonable function
spaces, one can form a sheaf by taking U to the abelian group of sections over U , with the
corresponding restriction morphisms being simply restrictions of sections. For instance:

• If X is a connected smooth manifold, we can form the sheaf of smooth C-valued
functions E , as well as the subsheaf of nonvanishing smooth C-valued functions E ∗,
and the sheaves of differential k-forms Ωk.

• IfX possesses a complex structure, we can analogously define the sheaf of holomorphic
functions O and the sheaf of nonvanishing holomorphic functions O∗.

We can also define a morphism of sheaves: given two sheaves F and G on a topological
space X, a morphism α from F to G is just a natural transformation (i.e. a collection
of homomorphisms αU : F (U) → G (U) for each U ∈ U (X) which commutes with the
restriction morphisms). We can define a sheaf ker(α) onX by taking (ker(α))(U) = ker(αU ),
and it inherits restriction morphisms from F . We can also define a presheaf im(α) on X
by taking (im(α))(U) = im(αU ), and it inherits restriction morphisms from G . (This is not
a sheaf in general, but there is a process called sheafification which produces a unique sheaf
for each presheaf, so we can take this to be the image sheaf of α.) We define this machinery
because we are now able to speak of exact sequences of sheaves, and one important example
is as follows:

0 → Z → O
exp(2πi·)−−−−−→ O∗ → 1. (A.2)

This is called the exponential sheaf sequence. The inclusion Z → O is defined by mapping
any section n ∈ Z(U) to the constant holomorphic function p 7→ n for p ∈ X, and the
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surjection O → O∗ is defined by mapping a holomorphic function f : X → C to the
nonvanishing holomorphic function e2πif . It is clear that this sequence is exact. Moreover,
we can get an analogous sequence by replacing holomorphic functions with smooth functions.

A.2 Čech Cohomology

There is one cohomology theory we will use frequently for computations, namely Čech
cohomology. It is built out of a limit of Čech complexes, which in turn are defined based
on the combinatorics of open covers of topological spaces, so we will define these concepts
first.

Let X be a topological space with a sheaf F , and let U = {Ui}i∈A be an open cover
of X. An n-simplex is an ordered collection of n + 1 open sets with nonempty joint in-
tersection. We denote by α = (α0, α1, . . . , αn) an arbitrary n-simplex (with αi ̸= αj for
i ̸= j), corresponding to the collection (Uα0 , . . . , Uαn), and we denote by Uα ̸= ∅ the joint
intersection. A face of an n-simplex α is an (n− 1)-subsimplex with the same ordering. We
denote by α\αi the face of α with Uαi missing.

We now define the relevant cochain complex. An n-cochain is a function f on n-simplices
α ⊆ A, for which f(α) ∈ F (Uα). We denote by Čn(U ,F ) the abelian group of all n-
cochains. We then define the coboundary map δn : Čn(U ,F ) → Čn+1(U ,F ) as follows:

δn(f) =
n+1∑
k=0

(−1)kf(α\αk)|Uαk
, (A.3)

for all f ∈ Čn(U ,F ). It is easy to verify that δ2 = 0, meaning the collection of cochains
with the coboundary maps forms a cochain complex. We can therefore form a U -dependent
cohomology on X:

Ȟn(U ,F ) = ker(δn)
im(δn−1) . (A.4)

The dependence on the open cover U is inconvenient. However, if V is another open cover
which refines U , one can show that there is a map Ȟ•(U ,F ) → Ȟ•(V ,F ). We are now
finally ready to define the Čech cohomology:

Definition A.4. Let X be a topological space, and let F be a sheaf over X. The Čech
cohomology of X with coefficients in F is the following direct limit:

Ȟn(X,F ) = lim
−→

Ȟn(U ,F ), (A.5)

where the direct limit is taken over the directed system of open covers, with refinement as
the relation.

This cover-free definition is superficially much more cumbersome. It turns out that we
can work with open covers after all, so long as we choose sufficiently nice ones:

Theorem A.5. Let X be a topological space with a sheaf F , and suppose U is a good
open cover; that is, it is locally finite with contractible intersections. Then Ȟn(X,F ) ∼=
Ȟn(U ,F ).



52 APPENDIX A. COHOMOLOGY THEORY

Supplemented with the following theorem, this alleviates the issue:

Theorem A.6. Every paracompact manifold admits a good open cover.

Proof. See, for instance, [BT82].

There are two other cohomology theories we will make use of. The first cohomology
theory, singular cohomology, arises from the singular chain complex whose R-modules are
defined as follows: where ∆k is the standard k-simplex, we define

Csing
k (X,R) =

{∑
i

riσi : ri ∈ R, σi : ∆k → X

}
. (A.6)

The boundary maps are defined as follows:

∂σ =
∑
j

(−1)jσ|F j(∆k), (A.7)

where F j(∆k) is the j-th face of ∆k. Since ∂2 = 0, this naturally generates homology groups,
and we can dualise the chain complexes and boundary maps to obtain cohomology groups.
The second cohomology theory, de Rham cohomology, arises from the chain complex of
differential forms with each coboundary map given by the exterior derivative. It follows
that the cohomology of the de Rham complex consists of the space of closed forms modulo
exact forms.

One might wonder if the three cohomology theories are related. It turns out that they
are isomorphic in important cases:

Theorem A.7 (de Rham). If X is a smooth manifold, then H•
sing(X,R) ∼= H•

dR(X).

Theorem A.8. If X is a triangulable topological space, then Ȟ•(X,Z) ∼= H•
sing(X,Z).

Proof. For proofs of both of these results, see [GH94].

Since we are primarily interested in Riemann surfaces, which are smooth and triangu-
lable, we can essentially identify these cohomology groups. When there is no ambiguity, we
will write all cohomology groups as simply H•(X,F ) or H•(X,R).

A.3 Technical Results

We will be using some technical theorems in our proofs, which we will state but not fully
prove.

Theorem A.9 (Poincaré Duality). Let X be a connected, compact, orientable n-manifold.
Then Hn(X,Z) ∼= Z. Furthermore, if [X] is a choice of generator of Hn(X,Z) (called a
fundamental class), then there is an isomorphism α : Hk(X,Z) → Hn−k(X,Z) for each
k ∈ N defined by taking α(ω) = ω ⌢ [X] (where ⌢ is the cap product).

Proof. See [Hat02].
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Theorem A.10. Fine sheaves are acyclic. That is, if a sheaf F over a topological space
X admits partitions of unity on any open set U (meaning there is a collection of local
sections on any open cover of U which are locally finite and sum to the identity on U), then
Hk(X,F ) = 0 for k ≥ 1.

Proof. See [GH94].

Theorem A.11. The sheaves E and Ωk are fine, so by the above theorem, their nontrivial
cohomology vanishes.

Proof. See [GH94].

Theorem A.12 (Snake Lemma). Suppose the following diagram commutes in the category
of abelian groups, with exact rows:

A B C 0

0 A′ B′ C ′

f g

f ′

a

g′
b c

Then there is a map δ : ker(c) → coker(a) making the following sequence exact:

ker(a) ker(b) ker(c) coker(a) coker(b) coker(c).δ

In fact, δ = f−1 ◦ b ◦ (g′)−1, and this map is well-defined on ker(c) under the quotient
A→ coker(a).

Proof. See [Osb00].

Corollary A.13. Let 0 → F
a−→ G

b−→ H → 0 be an exact sequence of sheaves over a fixed
topological space X. Then there is an induced short exact sequence of chain complexes 0 →
Č•(U ,F ) a−→ Č•(U ,G ) b−→ Č•(U ,H ) → 0 for any open cover U of X, and consequently
there is a long exact sequence of abelian groups given as follows:

0 H0(X,F ) H0(X,G ) H0(X,H )

H1(X,F ) H1(X,G ) H1(X,H )

H2(X,F ) H2(X,G ) H2(X,H )

Hk(X,F ) Hk(X,G ) Hk(X,H ) · · ·

The connecting morphisms δ : Hk(X,H ) → Hk+1(X,F ) are given by dk ◦ b−1 on cocycles.
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