EQUIVARIANT INDEX ON TORIC CONTACT MANIFOLDS

PEDRAM HEKMATI AND MARCOS ORSELI

ABSTRACT. We compute the equivariant index of the twisted horizontal Dol-
beault operator on compact toric contact manifolds of Reeb type. The operator
is elliptic transverse to the Reeb foliation and its equivariant index defines a
distribution on the torus. Using the good cone condition, we show that the
symbol localises to the closed Reeb orbits corresponding to the edges of the
moment cone and obtain an Atiyah-Bott-Lefschetz type formula for the index.
For the horizontal Dolbeault operator, we obtain an expression for the index as
a sum over the lattice points of the moment cone, by applying an adaptation of
the Lawrence-Varchenko polytope decomposition to rational polyhedral cones.

1. INTRODUCTION

There has been considerable interest in K-contact and Sasaki manifolds in recent
years, in part due to their role in theoretical physics as backgrounds in supersym-
metric gauge theories [11] 25] and the AdS/CFT correspondence [12] 13| 22] 23].
Let (M, H) be a (2n + 1)-dimensional compact co-oriented contact manifold with
contact form « and associated Reeb vector field R,. We say that (M, H) is toric if
it carries an effective action by a torus G of dimension n + 1 preserving the contact
structure. Recall that (M, H) is of Reeb type if the Reeb vector field is generated
by a one-parameter subgroup of G. Toric contact manifolds of Reeb type carry
an invariant Sasakian structure [4] and as shown by Lerman [I7], they admit a
combinatorial description in terms of their moment map images, which are strictly
convex rational polyhedral cones. This structure has been exploited to compute
various invariants of toric contact manifolds, such as the volume [14] 22], the first
and second homotopy groups [I8], the equivariant cohomology ring [2I] and the
cylindrical contact homology [2].

In this paper, we consider the index of the horizontal Dolbeault operator on
compact toric contact manifolds of Reeb type endowed with an invariant Sasakian
structure. This operator is the odd dimensional analogue of the Dolbeault oper-
ator in Kéhler geometry. It appears for instance in [II}, 25] in the calculation of
perturbative partition functions of certain supersymmetric field theories, in [20]
in relation to deformations of Sasakian structures and in [5] to compute the di-
mension of moduli spaces of instantons on contact 5-manifolds. The operator is
elliptic transverse to the Reeb foliation and on toric Sasaki manifolds, it is elliptic
in directions transversal to the G-orbits.

In [3], Atiyah-Singer proved that a pseudodifferential operator A that is G-
transversally elliptic may have an infinite-dimensional kernel and cokernel, but

they define a virtual trace-class representation of G. The index of A can therefore
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be defined as a generalised function on G by
ind2 (A)(t) = tr(t|xer 4) — tr(t|cokera)-

Decomposing ker A and cokerA into isotypical components, we have

indgf (A)(t) = > m(u)xy,

neG

where m: G — 7 encodes the multiplicities of the irreducible G-representations
appearing in the index character. We will compute explicitly the function m when A
is the horizontal Dolbeault operator 0y and more generally, we derive a localisation
theorem for the index when 0y is coupled to a holomorphic bundle.

Our first main result is an Atiyah-Bott-Lefschetz type formula for the twisted
horizontal Dolbeault operator:

Theorem 1.1. Let gi be the horizontal Dolbeault operator on a compact toric
Sasaki (2n + 1)-manifold M twisted by a G-equivariant transversally holomorphic
bundle E over M. For anyte G,

n 1 *
M ¢ gk
indg 6H Z Xe|, (t H( t—w2> S(1 —thr),
LeE(C)
where E(C) is the set of edges of the moment cone C, {w},...,w}} are the isotropy
weights and py, is the weight of the action of G on the closed Reeb orbit correspond-
ing to L.

The signs + dictate whether the denominator is expanded about ¢ = 0 or ¢ = o0
and are fixed by the pairing of the isotropy weights with a polarizing vector, see
Section {4 for detailed explanations.

Our method is based on Atiyah’s algorithm outlined in [3] to stratify M using the
torus action and reduce the index calculation to computations on lower dimensional
submanifolds. Using the good cone property of toric contact manifolds of Reeb
type, we construct a deformation vector field that in fact localises the index to
contributions from a finite number of closed Reeb orbits corresponding to the edges
of the moment cone. We note that a general cohomological formula for the index
of G-transversally elliptic operators was obtained in [6l, [7] and more specifically
for contact manifolds in [I0]. These formulas are however not well-adapted to
computing the multiplicities since they provide an expression for the index that is
valid only on a neighbourhood of each ¢t € G. Even in the elliptic case, deducing
the function m from the Atiyah-Segal-Singer fixed point theorem is not easy. Our
approach is to exploit the combinatorial structure of the manifold M to determine
the function m as explicitly as possible. For instance, Theorem can be readily
applied to compute the dimensions of moduli spaces of instantons [5] and transverse
Seiberg-Witten monopoles [I6] on toric Sasaki manifolds.

We further remark that in Theorem [l the Sasakian structure is not assumed to
be quasi-regular and the formula applies in particular to the irregular Y77 spaces
[13]. When the Sasakian structure is quasi-regular, the manifold is an orbifold
circle bundle over a toric Kahler orbifold X. In this case, one could also apply the
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equivariant orbifold index theorem to the Dolbeault operator on X twisted by the
character line bundles of the circle.

Our second result is an expression for the index of 0y in terms of the integral
points of the moment cone:

Theorem 1.2. The index of the horizontal Dolbeault operator Oy is given by

indd @r)(t) = (=1)" >, e+ Yt

peConzZE pe(—C)nZ

where Z§, denotes the dual integral lattice of g, C° the interior of the moment cone
and —C the negative cone.

This follows by adapting and applying a version of the Lawrence-Varchenko
formula to the polar decomposition of cones over a polytope (Proposition .
Another key ingredient in the proof is Lerman’s local description of toric contact
manifolds [I7], that allows us to relate the weights of the torus action to the mo-
ment cone and identify the localisation formula in Theorem with the Lawrence-
Varchenko formula for rational polyhedral cones.

In [23], Martelli-Sparks-Yau considered the Dolbeault operator on an orbifold
resolution of the non-compact Kéhler cone of a Sasaki manifold and showed that
the equivariant index equals the integral points of the moment cone. This cor-
responds essentially to the second term of the index of 0y in Theorem A
similar limiting argument as in [23] applied to this term would compute the volume
of the momentum polytope, which up to a constant equals the volume of the toric
Sasaki manifold. Another related recent work is by Lin-Loizides-Sjamaar-Song [20],
where they study the equivariant index of the basic Dirac operator on Riemannian
foliations whose leaf space is symplectic and establish a quantization commutes
with reduction theorem. This includes toric K-contact manifolds as a special case,
however their setup is complementary to ours as their operator only acts on basic
sections, corresponding to the invariant part of our index.

The paper is structured as follows. In Section [2| we provide a brief review of
contact and Sasakian structures, recall some results from [I7] including a local
normal form for toric contact manifolds and Lerman’s construction of a toric contact
manifold from a good cone. We also introduce the main object of this paper, the
horizontal Dolbeault operator. Section [3] introduces the fundamental concepts in
the theory of G-transversally elliptic operators and our main computational tool,
Atiyah’s algorithm for localising the index. In Section [ we introduce a deformation
vector field and apply the localisation argument to derive Theorem [I.1] Finally, in
Section [5] we prove a cone version of the Lawrence-Varchenko formula and apply it
to the index of the horizontal Dolbeault operator to obtain an explicit lattice point
formula.

2. TORIC CONTACT MANIFOLDS

Let M be a smooth compact manifold of dimension 2n+ 1. Recall that a contact
structure on M is a hyperplane distribution H < T'M defined globally by H = ker «
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for a 1-form « such that da|y is non-degenerate. The contact form a defines a
volume form a A (da)™ on M and its conformal class determines a co-orientation of
the pair (M, H). Associated to every co-oriented contact manifold is a symplectic
cone (C(M),w) defined by

C(M)=M xR and w =d(e"a),

where r is the coordinate in R and 26—‘? is the Liouville vector field. The Reeb
vector field associated to « is the unique vector field R, satisfying tp, o = 1 and
tr,da=0. We let V< T'M denote the rank one sub-bundle spanned by R,,.

A contact metric structure on (M, «, R,,) is a reduction of structure of the tan-
gent bundle to U(n) < GL(2n + 1,R). Alternatively, it consists of an endomor-
phism ®: TM — TM and a Riemannian metric g such that ®> = —I + a @ R,
and g(®X,PY) = ¢(X,Y) — a(X)a(Y) for all vector fields X,Y. This yields
an orthogonal decomposition TM = V @ H together with a unitary structure on
H. The restriction J = ®|g of ® to H defines the complex structure on H and
da(X,Y) = g(X, ®Y) restricted to H is the Hermitian 2-form associated to .J.

We say that M is a K -contact manifold if R, is a Killing vector field with respect
to g. This is equivalent to the characteristic foliation generated by R, being a
Riemannian foliation. Extending g to the symplectic cone, we obtain a metric
h = dr? 4+ r?g on C(M) and an associated almost complex structure Jo defined
by h(X,JcY) = w(X,Y). A contact metric structure («, Ro, ®,g) on M is called
Sasakian if (h, Jo,w) is a Kahler structure on C(M). Sasaki manifolds constitute
the most important class of K-contact manifolds and are the odd dimensional
counterparts to Kahler manifolds.

Example 2.1. Geometric quantisation provides examples of quasi-regular K-contact
manifolds, that is when all leaves of the characteristic foliation are circles. Let (B, w)
be a symplectic manifold such that [w] € H?(B,Z). Let M denote the principal
S1-bundle over B with Chern class equal to [w]. There is a connection form a on M
such that da = 7*w. Since w is symplectic, we have a A (da)™ = a AT*w™ # 0, s0 «
is a contact form and its Reeb vector field R, is the generator of the free S!-action
on M. Such contact manifolds are regular and the projection 7: M — B is known
as the Boothby-Wang fibration [§]. This construction generalises to symplectic orb-
ifolds (B,w) such that [w] € H?(B,R) admits a lift to a class c € H2, (B,Z), the
degree 2 orbifold cohomology of B. Then c defines a Seifert fibration 7: M — B
carrying a pseudo-free S'-action and M admits the structure of a quasi-regular K-
contact manifold. When B is a Ké&hler orbifold, M acquires a Sasakian structure.

Let G be a torus of dimension n+ 1, g its Lie algebra and g* its dual Lie algebra.
We will denote by Zg = ker(exp: g — G) the integral lattice of g. Suppose that
G acts on a manifold M. If v € g, we denote by v(p) € T, M the tangent vector
induced by the action of G on M.

Definition 2.2. A contact manifold (M, H) of dimension 2n + 1 is called toric if
there is an effective action by an (n + 1)-dimensional torus G on M preserving the
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contact form. The a-moment map ¢, : M — g* is defined by
(0a(p), v) = ap(v(p))
for all pe M and v € g. The moment cone associated with ¢, is defined by
C = {t¢a(p) |t =0,pe M},

and can be identified with the union of {0} with the image of the moment map
e" ¢, of the lifted Hamiltonian G-action on C (M), where G acts trivially on R.

The classification of compact toric contact manifold was completed by Lerman
[17]. In dimensions greater than three and when the G-action is not free, the contact
toric manifolds are classified by their moment cones, which are good cones:

Definition 2.3. A cone C' < g* is good if there exists a minimal set of primitive

vectors vy,...,vq € Zg, with d = n + 1, such that:
d
(i) C= N{yeg*| (y,v;) =0},
j=1

(ii) Any codimension-k face of C, 1 < k < n, is the intersection of exactly k
facets whose set of normals can be completed to an integral base of Zg.

Remark 2.4. Good cones are rational polyhedral, meaning that the normals to the
facets are integral vectors.

Toric contact manifolds can be further divided into Reeb and non-Reeb types.
We say that M is of Reeb type if R, is generated by an element R € g.

Theorem 2.5 ([], [I7]). If (M, @) is a toric contact manifold of Reeb type, then its
moment cone C is a strictly convex good cone. The image of the a-moment map ¢,
is a compact convex simple polytope P given by the intersection of the characteristic
hyperplane

H={neg" | nR) =1},

determined by the vector R, with the moment cone C.

Remark 2.6. Strictly convex means that C' contains no linear subspaces of positive
dimension, so it is a cone over a polytope. Toric contact manifolds with good
moment cones C that are not strictly convex are diffeomorphic to T x Sk+2—1,
for some k > 1,1 > 0 [19].

Toric contact manifolds with an invariant K-contact structure must be of Reeb
type [18] and they always admit an invariant Sasakian structure [4]. In the sequel,
we will therefore assume that our toric contact manifolds are of Reeb type of di-
mension greater than three and equipped with an invariant Sasakian structure. We
will need the following result characterising the Reeb vector fields associated to a
Sasakian structure:

Theorem 2.7 ([22]). Let vy,...,vq € g be the defining integral normals of the
moment cone C' € g* associated with a toric contact manifold of Reeb type (M, H).
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A wvector R € g generates the Reeb vector field of an invariant Sasakian 1-form «
such that H = ker a if and only if
d
R = Z ajv;, with aj € RY forall j=1,...,d.

j=1
Example 2.8. Returning to Example if (B,w) is an integral toric symplectic
manifold, then the principal S'-bundle over B is a good toric contact manifold with
moment cone

C={r(z,1)eR*" xR |z € P,r >0},
where P < R"™ is the integral Delzant polytope associated with B.

Example 2.9. For each pair of coprime integers p, ¢ with 0 < g < p, the YP'4 spaces
are toric Sasaki-Einstein metrics on S2? x S3. The Sasakian structure is irregular
of rank 2 whenever 4p? — 3¢? is a not perfect square [13]. In higher dimensions
they generalise to the family of toric contact manifolds N, ,f%rl, n>=2k>1and
0 < m < kn, associated to the good cones C(k,m) < (R"*1)* defined by the
normals

n—1

Vi =€ + €ent1, Unp = — Z e; +me, + ent1, V- = kep +epy1, V4 = —€n + €ny1,
i=0

where e; € (R"™1), i = 1,...,n, are the canonical basis vectors of R"*1. Unlike the

YP49 spaces, N ,fiﬁ;:l are not all diffeomorphic [I].

2.1. Lerman’s construction. The classification of toric contact manifolds of Reeb
type is analogous to Delzant’s classification of toric symplectic manifolds [4], [17].
In this section, we briefly recall the construction of a toric contact manifold from
its moment cone and elucidate the relation with the isotropy weights.

Let C' < g* be a strictly convex good cone given by

d
O =(inea* | n(w) >0},

i=1
where v; € Z¢g, i = 1,...,d, are the inward pointing normals of C' and dim g* > 2.
Let {e1,...,eq} denote the standard basis of R% and define the map 3: R? — g
by B(e;) = v;. Denote by £ the kernel of 5. Since C is strictly convex, J is surjective
and we have the short exact sequences
*
0>t5RL g 50 and 0 g* 2 R 5 e 0.
Since B(Z%) < Zg,  induces a map B:Td = RY/Z% — g/Zc = G. Let
d
K = {[t] eT? | Ztivi GZg}
i=1

denote the kernel of B . It is a compact abelian subgroup with Lie algebra € = ker([3).
Consider the standard action of T¢ on (C%,wy; = i/27 Z;‘l=1 dz; A dZ;) given by

[t] : (Zla ceey Zd) = (ezﬂitlzla sy €2Tritdzd)'
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The corresponding moment map ¢: C* — (Rd)* is given by

(]52,’1,..., Z|ZJ2 *,

where {ef} is the basis dual to the canonical basis {e;}. Since K is a subgroup of
T9, it acts on C? with moment map

gf)KZl,... ZJ|2 * EE*

||MR.

The reduced space Wg = W is a toric symplectic cone with symplectic form

wce induced by wg. It carries an action of G = ']I‘d/ K induced by the T-action and
an action of R induced by the standard radial R-action on C¢.

Let o be a section of B: R? — g, giving a splitting R? =~ 1(£) ® o(g). Since o is
injective, its image defines an n-torus o(G)  T?. The action of G on (¢ (0 )\{O})
via (@) < T? is Hamiltonian with moment map ¢ = o* o ¢: (¢ (0)\{0}) — g*.
The G-action and the moment map gb descend to the quotient WC making it a
Hamiltonian G-space with moment map

pc: We — g*
[21,. -, za] = *(d(21, .-, 24)),
where we denote by [z1, .. .,24] € W the class of (21, .., 24) € (¢ (0)\{0}) in the

quotient. The image of ¢¢ is the cone C\{0}. The sphere S2~! = {z € C%;|z|} is
a T%invariant hypersurface of contact type in C¢ and

-1 2d—1
0 s
Mo~ GE O NS
K
is a G-invariant hypersurface of contact type in W. Therefore it has a toric contact

structure induced by the G-invariant contact form o = ix.wc, where X is the
Liouville vector field induced by the R-action on W¢. The moment cone of (M¢, a)
is C.

Lemma 2.10. ¢! (0) = ¢~ 1(3*(0))

*
Proof. Since 0 — g* £z, (R¥)* e L0 s exact, we have (.*)71(0) = B*(g*).
*

)
Therefore ¢z (0) = (1* 0¢)7'(0) = ¢~ ((:*)71(0)) = &7 (B*(g*)) = ¢~ (B*(g*) 0
#(C9)). Tt follows from

B*(a%) n &(C*) = {B*(n) | n € g*and (B*(n), e;) > O for all i}
= {B*(n) | n € g*and (n, B(e;)) = 0 for all i}
= {B*(n) | n € g*and (n,v;) = 0 for all i}
={6*(n) | neC}
that ¢K (0) = o~ 1(B*(C)). 0

The following lemma informs us how to read the isotropy groups from the mo-
ment cone.
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Lemma 2.11. Let (M, «) be a toric contact manifold of Reeb type with moment
cone C. Let p e M and n = ¢o(p) the image of p under the a-moment map. If
n(v;) = 0, for a subset of indices i € I < {1,...,d}, then its isotropy Lie algebra g,
is generated by the vectors v;, i € I.

Proof. Lerman’s construction implies that M =~ M¢ and that C' = ¢g(W¢). There-
fore n(v;) = 0 if and only if ¢g(p)(v;) = 0, where we are considering p as an ele-
ment of W¢ via the inclusion M =~ Mo < We. From Lemma 2.10] we have that
o (0) = ¢~ 1(B*(C)). Let z = (21,...,24) € ¢ (0) be such that 5*(n) = ¢(2).
Then
251" = (6(2), €5) = (B*(n), e5) = (n, Ble)) = (n,v;) .

Therefore z; = 0 if and only if 7(v;) = 0. The torus T¢ acts on ¢y (0) = C? via
the standard action and nv;) = 0 if and only if e; € t¢. The G-action on ¢y (0)
is given by a section ¢ of f: T — G. Since K = ker 3, we have ox(vj) = €j + k,
where k € £ and o is the Lie algebra map induced by o. It follows that g, = /¢,
therefore [o4(v;)] = [e;] € t¢/t. Since the G-action is given by the section o, we
have that v; € g, is equivalent to [o4(v;)] € tZ/€, and therefore v; € g,, if and only
if n(v;) = 0. Since C is a good cone, the v; satisfying n(v;) = 0 form an integral
basis of g,,. O

Next we consider the weights of the isotropy representations. First we need a
lemma from [9]:

Lemma 2.12. Let p: G — GL(V) be a faithful representation of a torus G pre-
serving a symplectic form w such that dimV = 2dim G. If p is faithful, then its
weights form a basis of the weight lattice ZF. of G.

We have the following specialisation of Lerman’s local normal form for the mo-
ment map [I7], when restricted to a vertex.

Theorem 2.13. Let p € M be such that ¢o(p) is a vertex of the convex polytope
P = ¢o(M) and let V. = H, be the fibre of the contact distribution on p. The
isotropy group G, acts on V preserving the symplectic form daly. Then

9; = R¢q (p>
and we can choose a splitting
0" =0, D9, = Rou(p) Doy

Let i: g;; — g* be the corresponding embedding. Then there exists a G-invariant
neighbourhood U of the zero section G - [1,0] in

N=G><GpV

and an open G-equivariant embedding ¢: U — M with ¢([1,0]) = p and a G-
invariant 1-form an on N such that

(1) o*a =efay form some function f e C*(U);
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(2) the an-moment map ¢u, is given by

ban ([a,0]) = da(p) +i(¢v (v)),

where ¢y : V. — g* is the moment map for the representation of G, on V.

Consequently,

a0 @([a,v]) = (e day)([a,v]) = /1D (@0 (p) + (v (v)))

for some G-invariant function f on N.

The following corollary shows how the isotropy weights relate to the moment
cone.

Corollary 2.14. Let p € M be such that ¢ (p) is a vertex of the convex polytope
P = ¢o(M). Then the representation G, — GL(V) is faithful, and the weights of
the action of the isotropy group G, on'V = Hp, the fibre of the contact distribution
at p, form a basis of the weight lattice ZZP of gy that is dual to the basis {of,... 0P
of 9p, where v¥,... vl are the normals to the faces of the moment cone C(¢q)
meeting at ¢o(p).

Proof. Theorem [2.13| ensures that there is a neighbourhood of G - p that is G-
equivariantly diffeomorphic to a neighbourhood of the zero section of N = G'x¢g, V.
Since the action of G on N is effective, the representation of G, on V must be
faithful. The image of the moment map ¢y is

{281 | si =0 }C9;7

where the w; are the weights of the isotropy action of G, on V' = H,. Therefore
the weights w; generate the edges of the cone ¢y (V). Lemma shows that the
weights w;) form a basis of the integral lattice of g;. It follows that the weights

i(w)) € g* satisfy i(w])(vy) = djx. This implies that w}(v}) = d;x, where we are
viewing the normals v}, ... v as elements of g,. Thus w;, cowp € g; is the dual
basis to o], ... vP. O

Remark 2.15. Corollary allows us to read the weights of the isotropy represen-
tation G, — GL(V) from the moment cone; one simply needs to choose a vector
v} completing the set {v],...,v2} to an integral basis of the lattice Z¢g < g.

2.2. The horizontal Dolbeault operator. Let M be a toric contact manifold of
Reeb type with dim M > 3 endowed with a Sasakian structure (o, Ry, ®,g). The
transverse complex structure J = ®| g allows us to introduce a horizontal Dolbeault
operator 0y, and more generally 55 twisted by a transverse holomorphic bundle
E. We briefly recall the definitions.

Let Q% (M) = {w e Q¥(M) | tp,w = 0} = (M, A" H*) denote the space of
horizontal k-forms. The projection operators Py = a A tg, and Py = 1 — Py
determine a splitting

OF (M) = Q5 (M) @ Q5 (M) = Py (2%(M)) @ Pu (2%(M))
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into horizontal and vertical forms, and dy = Py o d is a differential on Q¥ (M).
The transverse complex structure gives the usual decomposition of Q% (M)®C into
horizontal (p, ¢)-forms and defines the horizontal Dolbeault complex:

0 — Q%O 22, Q%Y () 2,

with the associated symbol complex

’ E—H) Q(}}H(M) -0,

0 = TN H#) SO (N ) SO, L O, (AT ) s,
where m: T*M — M is the projection and O'(EH)(p,g)(U_}) = 50;[1 A w, where (p,§) €
T*M, © e N""H*|, and &' = Py (€)' is the (0,1)-component of the horizontal
projection of &.

A G-equivariant vector bundle 7g: E — M is transversally holomorphic if with
respect to an open cover {U,} of M, it is determined by transition functions g.gs

satisfying dx(gaps) = 0. The twisted horizontal Dolbeault operator gi is given
locally by
a5 QYR (M, B) — QUMY (M, E)
W R Uy — O (W) @ Uqg.
and we have the twisted horizontal Dolbeault complex
.y

0— QY0 (M, B) T 0% (01, ) s .. D 00 (0, B) — 0
H ) H ’ H ’ ’

with the symbol 0(55)@,5) (W ®e) =& A b®E where D ® € € /\O’kH|p ® E|,.

3. EQUIVARIANT INDEX

3.1. Transversally elliptic operators. In this section, we collect relevant facts
about transversally elliptic operators [3] 24].

Let G be a compact Lie group and M a compact G-manifold. We denote by
m: T*M — M the natural projection. A complex of G-invariant pseudodifferential
operators is called transversally elliptic, if it is elliptic in the directions transversal
to G-orbits. More precisely, let TiZM < T*M be the closed subset defined by the
union of conormals to the G-orbits,

TEM = {(p,€) € T*M | €(v(p)) = 0 for all v € g}.
A complex of G-invariant pseudodifferential operators P is a sequence
0 — D(E%) 25 (B 2 25 D(B™) -0,

where the P; are G-invariant pseudodifferential operators and T'(E?) is the space of
sections of the G-vector bundle E?, i = 1,...,n. Its symbol op on T*M is given
by the complex

0—7*E" 2% p*pt 22 .0 20 p¥ B ),
where o; = o(P;) is the symbol of the pseudodifferential operator P;. Let
Char(op) = {(p,&) e T*M | op(p, &) is not exact}
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denote the characteristic set of the complex.

Definition 3.1. A complex of G-invariant pseudodifferential operators P is G-
transversally elliptic if Char(op) (TEM is compact.

A G-transversally elliptic symbol op defines an element [op] € K (TEM). Con-
versely, given a symbol class [o] € K&(TAEM), there is a G-transversally elliptic
pseudodifferential operator A: I'(M, E) — T'(M, F) such that o(A) = 0. Let G
be the set of isomorphism classes of irreducible complex representations of G and
R(G) be the space of Z-valued functions on G. The elements V € R(G) are thus
infinite series

V= Z m(p)xv,
neG
with m(u) € Z. The kernel of A is not finite-dimensional, but it is shown in [3] that
for every p1 € G the space Homg(V,, ker(A)) is a finite dimensional vector space of
dimension m(V,, A). The integer m(V,,, A) — m(V,, A*) depends only on the class
of the symbol 0(A) in K& (T¢EM) and the index of o is defined by

indff (o) = > (m(Vy,, A) = m(V,,, A*))xv,,
e

where the adjoint A* of A is also a G-transversally elliptic pseudo-differential op-
erator and defined by choosing a G-invariant metric. Atiyah showed in [3] that
indg (o) defines a distribution on G. The index depends only on the symbol class
o] € KE(TEM) and descends to a map

indY : KE(TEM) — R(G).
The following basic example will be important in the sequel.

Example 3.2. Let M = S! with S' acting on M by left translation. Let E =
M x C be the trivial line bundle and F = M x {0}. Then I'(M, E) = C*(S') and
I'(M, F) = 0. The operator D = 0: I'(M, E) — I'(M, F) has symbol

op: m*E — *F
(& €) = (£,0).
Since T& M = M x {0}, the operator D is S I_transversally elliptic. The index of
op is

ind¥ (op)(t) = 3 xv, (1) = 1,

nez nez

where V,, = C is the S'-module with the action ¢ - z = t"z.

Let M be a (2n + 1)-dimensional toric contact manifold of Reeb type, n > 1,
=E
with an invariant Sasakian structure. Let 0 be the twisted horizontal Dolbeault
complex on M as defined in Section 2.2

Proposition 3.3. 0’(551) is a G-transversally elliptic symbol.
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=E * 0,k 77 * 0,k+1 7% .
Proof. Recall that the symbol o (0y): 7*(/\""H* ® E) — 7*(A\ H*®E)is
given by
7E _ _ _ _
k(0 ) (p,e) (W ®€E) = 60},11 AURE,
where (p,§) e T*M, v ®e¢ € /\O’kH|p ® E|,. The complex a(éﬁ)(m is exact so

long as 501;,1 # 0, that is when £ is not a multiple of the contact form «. Since M is
of Reeb type, a vector R € g generates the Reeb vector field. We have

(p, &) e TEM = £(v(p)) =0 for all v € g.

Since the action of G generates the Reeb vector field, we have {(R(p)) = 0. By

ap(R(p)) = 1, it follows that ¢ is not a multiple of a, and therefore a(ai)(p’,;-) is
exact.

O

We conclude by recalling the multiplicative and excision properties of the index
[B]. Consider a compact Lie group G acting on two manifolds M; and My and
assume that another compact Lie group G; acts on M7 commuting with the action
of G5. The exterior product of vector bundles induces a multiplication map

(31) X KG1 XGz(TC*hMl) ®KG2(T(>§2M2) - KG1><G2(T(>§1><G’2(M1 X MQ))

Theorem 3.4 (Multiplicative Property). For any o1 € Kg,xa,(Tg, M1) and any
03 € Kg, (T, Ma), we have

indg S5 (01 K o2) = indy 'y g, (01)indg? (02).

Theorem 3.5 (Excision Property). Let j: U — M be an open G-embedding into a
compact G-manifold M. We have a pushforward map jy: Ka(TEU) — Ka(TEM)
and the composition

* Jx ® indl -
Ko(TEU) 5 Ka(TEM) —= R(G)
is independent of j: U — M.

The product of a symbol ¢ by a G-equivariant vector bundle E is the symbol
given by

(c®E)(p, &) =o(p, &) ®1dg.

Note that the symbol 0(55) is of this form.

Proposition 3.6. Let 0 € Kq(TgEM), E a G-module and E the corresponding
trivial G-equivariant bundle over M, then

ndY (0 ® E) = ind¥ (6) @ x5 € R(G),

where xg is the character of the G-module E.
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3.2. Localisation. In this section, we review the K-theoretic localisation method
for computing the index of transversally elliptic operators developed in [3]. The
core idea is to choose a filtration of the manifold that allows one to decompose the
symbol into contributions from lower dimensional spaces, essentially reducing the
problem to a computation on vector spaces. The main ingredient involved in the
computations is Atiyah’s pushed symbol o€.

Let G be an (n + 1)-dimensional torus acting on C™ with no fixed vector and
weights w? € g*, i = 1,...,m. A G-invariant Riemannian metric A on C™ induces
an isomorphism

TC'TTL N T*C7n
v— 0= h(v,).

Given € € g we will denote by ¢(p) € T,C™ the vector generated by € at p and by

e(p) € T,FC™ its image under the isomorphism defined by h. Let ¢(d) be the symbol

0 — 7T* (/\O,OT*Cm) a(9) s (/\O,IT*Cm) a(9) o a(0) W*(/\O’mT*Cm) - 07

where 7: T*C™ — C™ is the projection and o, ¢)(9)(w) = &€ A w. The symbol

o (0) is exact away from the zero section of T*C™, in fact, Char(c(d)) = C x {0}.
Since Char(c(0)) N TEC™ = Char(o(d)) is non-compact, it is not a G-transversally
elliptic symbol. Atiyah shows in [3] how to obtain a G-transversally elliptic symbol
o by deforming o(0) using the G-action. Namely, let H; = {e € g | w'(e) = 0} be
the hyperplane in g determined by the weight w® and pick a vector € € g away from
the hyperplanes H;.

Definition 3.7. Atiyah’s pushed symbol o€ is defined by

06pe(®) = 00, e sqenan (@) = €+ a(l € De)f!

Aw,

where ¢(p) € T,C™ is the tangent vector generated by € at p, (p,§) € T*C™,
w e /\O’kT*(Cm and g is a bump function supported in a small neighbourhood of 0,
so that o coincides with o away from the zero section of T*C™.

Since o is an isomorphism away from the zero section of T*C™, we know that

—~

o¢(p, &) fails to be an isomorphism if and only if £ + g(| £ |)e(p) = 0. Therefore,

—~

Char(0) = {(p,§) € T"C™ | £+ g(| £ [)e(p) = 0}
is still non-compact. If (p,§) € TEC™|,, let t € Ry be such that g(| t§ |) > 0. Then

—~ —_—~

te+ g(| t€ )e(p) = 0 = t&(e(p)) + g(| t€ Ne(p)(e(p)) = 0
— g(| t& h(e(p), e(p)) = 0

—~

= €(p) =0 = €e(p) =0
= {=0and p=0,
where we have used the facts that {(v(p)) = 0 for all v € g if (p,§) € TEC™|,, and

e(p) = 0 if and only if p = 0 since the torus acts with no fixed vectors. Therefore
Char(c€) n TEC™ = {0} x {0} and o€ is a G-transversally elliptic symbol.
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Definition 3.8. Let t € G and « € g*, then

1 + 0 . 1 — 0 .
= — the d — ke
(1—ta> kgl a (1—:5&) Z ’

k=0

are the expansions in positive and negative powers of a. In other words, (-)* are

the Laurent expansions of a rational function around ¢ = o0 and t = 0, respectively.

Theorem 3.9. Let 0¢ be Atiyah’s pushed symbol, then

w090 =11 (1= ) RO,

AN

where s; = + if a;(€) > 0 and s; = — if aj(e) < 0.
Proof. See [3] (Theorem 8.1) or [7]. O

Atiyah shows in [3] how to extend the ideas above to evaluate the index for
symbol classes in Kq(Tg&M), when M is a compact manifold with an action of a
(n + 1)-dimensional torus G. The G-action provides M with a filtration by closed
subsets

M:M03M13-~-:)Mn+1 DMnJrQ:@
where M; = {pe M | dim G, > i}. This filtration determines a split exact sequence
for each 4,

0;

-

0 — Ka(TE(M — M;)) — Ko(TE(M — M) — Ka(TEM | (v, -,y y)) — 0,

and a decomposition

n+1
Kg(Tg«M) = @ GIK(;(TC*;M‘(MI,MHI))
i=0
Note that TEM|(as,—n,,,) is a complex vector bundle over TFG(M; — M;y1),
therefore we can compose the splittings 6; with the Thom isomorphism, which we
denote by ¢;, and obtain
n+1

Ko(TEM) = @ ¢iKa(TE(M; — Miyr)).
i=0

This decomposition allows us to break up a symbol and evaluate its index on
each piece separately. For instance, if [0] € Kq(T&M), then

n+1

lndg(o) = Z indgl((bi(a‘Mi*MiJrl))'
=0

The Thom isomorphism is well-understood, so in order to evaluate the maps ¢;,
let us recall the definition of the splitting maps 6; from [3].

To define 6; it suffices to consider each connected component Y of M; — M; 4
separately. These components are open submanifolds of a unique fixed point set
MT" of a subtorus T% = G. The key ingredient in the construction of 6; is a vector
field v on a neighbourhood U of Y, such that v vanishes only on Y. One can
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then proceed as in the discussion following Definition [3.7] and obtain an element
of Kq(TAU), which is mapped into Kg(T&M) via the natural map Kq(TEU) —
Kq(TEM) induced by the open inclusion TEU — TEM. Such vector fields exist in
general, as Atiyah shows with the following argument. Since Y is an open subset
of M Ti, T acts on the normal bundle N of Y leaving no non-zero vector fixed.
Identifying N with a tubular neighbourhood U of Y, each vector € € Lie(T*) will
generate a vector field on U that vanishes only on Y.

This approach to evaluating the index has some practical limitations, as it utilises
different vector fields around the connected components and it requires computing
the contributions from all levels of the filtration. The following proposition provides
criteria for a single vector field on M to satisfy the requirement for the construction
of 6; around each connected component of M; — M,;,1, and to localise away the
contributions from 6; below a certain filtration level. This differs from Atiyah’s
approach in that it uses a global vector field rather than multiple vector fields
defined locally, and it renders this method computationally feasible.

Proposition 3.10. Let [c] € Kg(TEM) and let v be a vector field on M such that:
o o(p,& + Ao(p)) is an isomorphism for every p € M\M;, A € R\{0}, £ €
(TEM), and some j €{1,...,n+1};
e v(p) is tangent to the orbit G - p;
e v(p) =0 if and only if p € M;;
where © = h(v,-) for a G-invariant Riemannian metric h on M. Then for i < j,
we can use v(p) to construct the map 0; and we have 0;(c) = 0.

Proof. We may assume that o is the symbol of a transversally elliptic operator,
since the group K¢(T¢M) is generated by those symbols (see [3]), hence o(p, §) is
invertible when £ € (TgEM ), is non-zero. Let i be an integer such that i < j. Note
that M; < M; and the vector field v is non-vanishing on M; — M;4,. To decompose
the symbol o, we first restrict it to M; — M; 1 obtaining o|(as,—n,,,). We identify
U with the normal bundle N of M; — M;,1 and denote by p: U — M; — M, the
projection. The pullback p*(co|(ar,—as,,,)) is the extension of the restriction of o to
U. We note that p*(o|(as,—n,,,)) is not equal to the restriction of o to U.

Since o(p,§) is non-invertible when & = 0, the pullback p*(o|(ar,—n,,,)) does
not define an element of K¢ (TAU) as its support U is not compact. However, the
vector field v can be used to deform this map so that its support becomes compact.
To avoid clutter, we will use o below to denote the extension p*(o|(ar,—as,,,)) to
U. We define 6; using v as follows. Let

a(p, &) =a(p,§+g(l € )i(p)),

where (p,§) € (TEU)p, g is a bump function supported on a small neighbourhood
of the zero section of TAU and o is denoting the extension to U of the restriction
of 0. Since o(p,§) is an isomorphism for £ # 0 it follows that &(p, £) fails to be an
isomorphism exactly when £ + g(| £ |)0(p) = 0. Since v(p) is tangent to G - p and &
is orthogonal to G - p, we have

§+9(1€Dolp) =0 <= £ =0and v(p) =0.
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Therefore the support of 6(p,§) is compact and it defines an element of K¢ (TAU).
The class 0;(0) is defined as the image of ¢ under the natural homomorphism
Ko(TEU) - Ka(TE(M — M) induced by the open inclusion TEU — TE(M —
M, 11). Furthermore, we have that v(p) = 0 if and only if p € M;. In particular, v
does not vanish on M; — M; 1. Therefore

E+g(l&No(p) #0

for every (p,&) € TEU and ¢ is an isomorphism everywhere. It follows that &
represents the trivial class in Kg(T&U) and 0;(0) = 0.
O

Remark 3.11. Proposition [3.10] is particularly useful in the following situation.
Suppose that there is a k € {1,...,n + 1} such that M; = ¢J for all j > k. If there
is a vector field v(p) satisfying the above hypothesis for j = k, then only the level
k of the filtration contributes to the index and we have

indf (o) = indgy éx (0] ar,)-

=E
4. THE INDEX OF Oy

Adopting the localisation technique outlined in Section we will compute the
index of the twisted Dolbeault operator dj; and show that the contributions to the
index come from a finite number of closed Reeb orbits.

Let M be a (2n + 1)-dimensional toric contact manifold of Reeb type, n > 1,
equipped with an invariant Sasakian structure. We proceed by constructing a vector
field satisfying the hypothesis of Proposition[3.10]for j = n. Let us fix a vector R € g
that generates the Reeb vector field. Given a closed Reeb orbit L, corresponding
to an edge of the moment cone, the good cone condition (Definition ii)) ensures
the existence of a vector v € Zg such that v¥, vf, ... vE forms an integral basis of

Zc, where vF, i = 1,...,n, are the cone normals at L. There is a unique element

79
det € A" g* such that
det(vl, v, ... vE) =1.
Since {v¥,vE, ... vE} is an integral basis of Zg, its dual basis {ur,wk,... w7}
is an integral basis of the integral weights lattice Z¢. We expand

R= ,uL(R)vOL + wi(R)vlL + ot wZ(R)vﬁ.

Since R generates the Reeb vector field, its infinitesimal action is non-zero every-
where. Therefore its v§ component, py,(R), cannot be zero, since the infinitesimal
action of ’UZL, i=1,...,n,on L is zero. It follows that

det (R,vf,...,vﬁ) = ur(R) # 0,

and {R,vF, ... vE} forms a basis of g (not necessarily integral).

Given a vector € € g, we will define the vector field e as its orthogonal comple-
ment with respect to the Reeb vector field. More precisely, let € € g and L; be a
Reeb orbit corresponding to an edge of the moment cone. Write

e =L, ()R + g, (or* + - +nf (v,



EQUIVARIANT INDEX ON TORIC CONTACT MANIFOLDS 17

Let U; be an open neighbourhood of L; and V; a closed neighbourhood such that
L; c V; < U;. We can assume that the U;’s are all disjoint. Define

¢ (p) = {

and extend it to smoothly interpolate between 0 and —ny,, (€) on U;\V;, defining a
smooth bump function. Projecting out the Reeb vector field component corresponds
to shrinking the contribution of R to the vector field generated by e. We define -
as

0 ifpe M\UZ,
—nr,(e) ifpeV,

N
e (p) = €(p) + Y, 6" (D) R(p).
i=1

Definition 4.1. An element € € g is called a polarizing vector if n% (€) # 0 for i =
1,...,n and for every L c M,,. We say that a vector field e* is a good deformation

vector field for [o] € Kq(TEM) if it satisfies the hypothesis of Proposition for
J=n.

Proposition 4.2. If € € g is a polarizing vector, then e is a good deformation
vector field for 0(55) € Kg(TgEM).

Proof. By construction e*(p) is tangent to the G-orbits. The symbol o (05 )(p, v(p))
is invertible if v(p) is not parallel to the Reeb vector field R(p), so we only need to
prove that e (p) = 0 if and only if p € M,,. Let p € U; and suppose that e*(p) = 0.
Let L = L; be the orbit corresponding to the normals v{, ... v and write

N
e (p) = (ne(e) + Z ¢ (p))R(p) + 0 (e)vr (p) + -+ nE(e)vy; (p) = 0.
This implies that
N
(ne€) + 3, " )R+ np(e)or + -+ nE(e)vy € gy,

For p € U;, there is a finite number of possible isotropy algebras g,; they are all
generated by a subset of {v¥, ... vE}. This implies that

(nL(e) + Z o™ (p)) =0,

and since {v¥,...,vE} is a linearly independent set, we have ij € g, forall j =

1,...,n. It follows that the image of p under the moment map lies in the intersection
of the faces determined by the normals v, ... vZ, so p is a point in the orbit L.

Let pe M\U;V:1 Uj, we have

N 0
L(p) = e(p) + Y OEHIR(p) = €(p).
=1

Let L be one of the orbits L; and write

e=nL(R+ng(e)vf + - +ni(e)v).
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Since R, vE, ... vk is a basis of g and G acts freely on M\ Ujvzl U;, we have 17} (¢) #

€

0 and €(p) must be non-zero. Hence, ¢ is a good deformation vector field for o(dx)

=E c e
and also for o(dy) as they have the same characteristic sets. (]

The level n filtration M,, = M is a disjoint union of closed Reeb orbits L. indexed
by the set F(C) of edges of the moment cone C,

M,, = |_| L.

eeE(C)
Since M, 41 = &, it follows by Proposition [£.2] that

indg/ (0(0n)) = nd¢y du(o(@m)lar,) = D) ndg ¢u(0(@m)lz,)-
eeE(C)

Given an orbit L = M,, and a vector € € g, we denote by €7 the vector
L (e)or + - g (e)vy € g.
1

In a neighbourhood of each closed orbit L < M,,, there is a vector €7 € g generating
the vector field et.

Proposition 4.3. Let L < M, be a closed Reeb orbit. For anyte€ G, we have

ind ¢, (0(Pr)|1)(t) = <1>51L (P;MZ)L 6(L—trr),

1—t v
where {pp,wi,...,wh} is a basis of the weight lattice Z% dual to {vf,... vk},
st =+ ifwi(ex) >0 and st = — if wt(ex) <O0.

Proof. To evaluate the index, we need to understand the symbols ¢, (c(0x|)z.)-
The map ¢, is a composition of the Thom isomorphism with the splitting homo-
morphism 6,,. Let L be a connected component of M, and let N be its normal
bundle in M. Since L < M is an embedded circle, N is a trivial complex bundle
N =~ L x C". Write G = G, x S}, where G, is the isotropy group associated with
L and S} the circle generated by the vector v} € Zg. Taking G1 = G, G2 = S8,
M; = L and My = C"™ in , we get

®: Ko(THL) ® K, (T8, C") — K, s (T8, g1 (L x C) = Kg(TEN).

L xSt
The map ¢, is given by taking the Bott element [aef] € Kg, (Tg,C") in this
product. That is, given o € K¢ (T{L) we have
L
¢n(0) =0 XKoL € Kg(TEN).

Identifying N with a tubular neighbourhood U of L in M and using excision to
extend the symbol to M, we obtain ¢, (0) = o 0T € Kq(TgM). It follows from
Theorem B.4] that

ind¥ ¢,,(@x|1) = ind5, (o )indZ(0),

where 0 is the zero operator on L =~ S! discussed in Example According to

Theorem
1 n
Lo, L 1 L 1 Sz
indg, (0°C)(g) = (1_g—a1> (1_9_%) ,
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where «a1,...,a, are the weights of the Gp-action on C", g € Gp, s}, = + if
ai(ef) > 0 and st = — if ¥ (e£) < 0. By Corollary [2.14] the weights ar,...,a,
determine a basis of the weight lattice Z§ < g* that is dual to {vf,..., vk} < gr.

Writing G = G, x S}, the G-action on L is given by

= (g,8) - p = sp,

where t = (g,s) € G = G x S} and p € L. We identify the subgroup S§ = G
generated by v} with S! via

e27risv§ — e27ris c Sl.
This identification is determined by the weight pr, € Z§, defined by ur(v{) = 1 and

pr(vf) = 0,7 # 0. In fact, let s = 2T ¢ S§. Then sir = e2misun(vy) = g2mis ¢
S1 and therefore

ind4(0)(g) = ind}, , g1 (0)(t, s) = ind (0)(s*).
Since S§ acts freely and transitively on L we have
ind§, (0)(s"%) = Z sPHL = §(1 — sH'E).
k=—w0

We extend the weight vectors o;; € Z§ , i =1,...,n to Z¥ by defining o (vf) = 0.
Denote these extensions by w’L € Zg, i =1,...,n. Note that {uL,wL, S wih s
a basis of Z¥ dual to {vf,vF,... 0L} and wL(ei) = a;(et). Let t = (g,5) € G =
G x S} and n € g*. We will wrlte t" = (g,8)" = ¢g"s". Since G, is generated by
{vf, ... vl} and S} is generated by v{, we have t¥i = (g, s)%i = g¥is¥i = g% and
the = (g, s)PE = ghL st = shL. Given t = (g,8) € G = G, x S}, we have

(
indg ¢n(0(0m)[)(t) = inde, 51 (0(Pm)[) (g, 9)
deL(& L (g)de xsl( )(9,5)

o(1 —tHE).
<l—t_wL (1—75 “’L) ( )

Next we allow for twistings by an auxiliary bundle and derive the main result

O

of this section, which is a Lefschetz type formula for the index of 55. Let L be a
closed orbit corresponding to an edge of the moment cone C' and let E — M be a
G-equivariant transversally holomorphic bundle. Since L = G/Gp, the restriction
E|r, to L is a vector bundle of the form G x¢, Fr, for some G-module Fy. Since
G = L x GG, we have

Gxg, F=(LxG)xg, F=LxF.

Recall that M, is the disjoint union of closed Reeb orbits L. indexed by the edges
of the moment cone C.
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Theorem 4.4. Let gi be the horizontal Dolbeault operator on a toric compact
Sasaki manifold twisted by a G-equivariant transversally holomorphic bundle E.
For any t e G,

indgy o Z HXE\L ( 1w >SL §(1 —thr),

Lc M, i=1
where X g, 1s the character of the G,-module associated to the restriction E|r, and
. +  ifwi(ef) >0,
S, = .
- ifwi(ef) <0.
Proof. We have that
. =E . =E
ind¥o (@) = Y ind¥é.(0(@)|L)-

LeM,
Restricting U(ég) to L = M, we get the symbol o(dx)|r ® E|r. If follows that

E|p = L x Fp, for some Gp-module Fy, and XE|, = XF,- By the multiplicative
property of the index, Proposition [3.6] and Proposition [£.3] we get

ind ¢ (o (35| (t) = mdg (0(@r)|)XEy
= ind5, (2,2)(t)ind4 (0 >< )xays (t)

1 s
= . — _ ML
XElL < t_wL) (1_th) 5(1 t )

The result follows by summing over all the closed Reeb orbits in M, . O

5. A LATTICE POINT FORMULA

In this section, we relate the index of the horizontal Dolbeault operator dg to
the lattice points of the moment cone.

5.1. Polar decomposition of polytopes. The Lawrence-Varchenko formula ex-
presses the characteristic function of a polytope as an alternating sum of character-
istic functions of certain cones associated to vertices of the polytope. By extending
the formula to polyhedral rational cones, it will allow us to collect the multiplicities
in the expression for the index in Theorem [4:4] once expanded into power series.

We begin by presenting the formula and relating the characteristic function of
the interior of a polytope to the dual cones. Let P be a simple convex polytope in
an n-dimensional vector space V*. Let F be a face of P. The tangent cone to P
at F' is defined by

Cr={y+r(x—y)|r=0,ye F,xze P}

Let 01, ...,04 denote the facets of P. Since P is simple, exactly n facets intersect
at each vertex. We will denote the set of vertices of P by Vert(P). For each face
Fof P, let Ir < {1,...,d} be the set of indices of the facets meeting at F' so that

i € Ir if and only if F' c ;.

In particular, if F' = p € Vert(P) we have i € I,, if and only if v € o;.
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Let p € Vert(P) and denote by wy, i € I, the edge vector emanating from p that
lies along the unique edge at p which is not contained on the facet o;. Notice that

the w; are only determined up to a positive scalar.

Definition 5.1. A vector £ € V such that all the pairings <w;,§> are non-zero is
called a polarizing vector for P.

Let Hi,...,Hy be the hyperplanes in V' determined by the edges of P under
the pairing between V and V*. A vector £ € V is a polarizing vector for P if and
only if it belongs to the complement

VPIV\(H1U'-'UHN).

The connected components of Vp are called chambers. The signs of the pairings
<w1’;, §> depend only on the chamber of Vp containing &.

Definition 5.2. Let £ € Vp be a polarizing vector. For each vertex p € Vert(P)
and each edge vector w; emanating from p, we define the corresponding polarized
edge vector to be

w

e Jwh o if (w), &) >0,
P fw;? if <w;,§> < 0.
Definition 5.3. Given a polarizing vector £ € Vp, the polarized tangent cone at
p € Vert(P) is defined by
C;% =p + Z R<0’UJ + Z Rzow,
weEF (£) weE, (€)
where
By (&) = {w, | (w),€) >0} and E, (§) = {w, | (w},&) <0}.

Theorem 5.4 (Lawrence-Varchenko). Let P < V* be a simple convex polytope
and & € Vp a polarizing vector for P. Then for any x € V*, we have

.
(5.1) 1p(@) = Y, (—)IE Ol @),
pe Vert(P)

where 14 1is the characteristic function of the polarized cone C’#.
P
Proof. See Theorem 3.2 in [15]. O

Next we show that by flipping the cones in (5.1)) yields a cone decomposition of
the interior of the polytope P.

Definition 5.5. Define the dual polarized tangent cone at p € Vert(P) by
C/’Zg: =p + Z R>0w + Z Rgo'w
weB (€) weEy, (€)

Suppose that £ € V' lies in one of the walls H; separating the chambers of Vp.
Let e be an edge of P perpendicular to this wall and let p be an endpoint of e. The
edge vectors at p are wg for j € I., and an edge vector that lies along e is denoted
by w¢.

P
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Definition 5.6. The dual polarized tangent cone at the edge e is defined by

Cv'f =p+ Rwj, + Z Rooqw + Z Reow.
weE; (€) weEy, (€)

One verifies that the cone Cv’f is independent of the choice of endpoint of the
edge e. We also note that if = € Cf, then

(5.2) (§x) = (& p)-
Indeed, if z € Cv'f we have
T=p+ Z AW + Z bypyw,
weE; (€) weE, (§)

where a,, > 0, b,, < 0. Therefore

=0 =0
— —
Eay=(p)+ D awGuwy+ D) b€ w) = (€ p)
weE; (£) weE, (€§)

Theorem 5.7. Let P < V* be a simple conver polytope and £ € Vp a polarizing
vector for P. Then for any x € V*, we have

(5:3) (“D)"pe(m) = Y, (DI ON (),
pe Vert(P)

where n = dimV and P° denotes the interior of P.

Proof. The proof proceeds along the same lines as that of [Theorem 5.4 in [I5]
and comes down to verifying the identity (5.3)) in three separate cases and proving

independence of the choice of polarizing vector £.

Case 1: Suppose that z € P°. Pick any polarizing vector £ € Vp. Let p € Vert(P)
be the vertex for which (£, p) is minimal. Then £ (§) = ¢ and we have
P° c Cv’# For any other vertex g € Vert(P), at least one of the wé’s is

flipped, and so éjf N P° = . Hence P° is disjoint from the cones éf for
all other ¢ # p and , when evaluated at z, reads (—1)" = (—=1)™.

Case 2: Suppose that © € dP. Let o be a facet that contains x and p € Vert(P)
be such that p € o. Assume that given another facet ¢’, we have = ¢ o’ if
p ¢ o'. Choose a polarizing vector £ € Vp such that

(& p) :ryrg}gl (& y).

We have E, (¢) = & and therefore z ¢ Cv'f because Cv'f =Cypandzeoc
0Cp. We show that x ¢ Cv’f for any other g € Vert(P). Suppose that ¢ — p
is not an edge of P. Let 0 = 0\J;¢;, 05, then og = C7. Since E (§) # &
we have that Cvl'f n Oy = & and therefore o4 N Cv’f = . Thus if z € g,
for some ¢ € Vert(P) we have z ¢ Cv'jf If ¢ — p is an edge of P, we have
(&,9 — p) > 0. Any element y of Cv’f can be written uniquely as

(5.4) y=q+alp—q) +r,
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where a < 0 and r is a linear combination of the edges wg that are not
parallel to the edge p — ¢. Since = € o, we can write x uniquely as

x=q+blp—q)+s,

where b > 0 and s is a linear combination of the edges wg that are not
parallel to the edge p — ¢. Since x does not belong to any facet that does
not contain p, we have that b # 0, and it follows from that o ¢ Cv’f
This proves that x ¢ éjt for any vertex g € Vert(P). Therefore (5.3), when
evaluated at z, reads 0 = 0.

Case 3: Suppose that = ¢ P. Choose a polarizing vector ¢ € Vp satisfying

(€ ) < géig<€,y>-

It follows from ([5.2) that x is not in 5’# for any p € Vert(P). Thus (5.3
for the polarizing vector £, when evaluated at x, reads 0 = 0.

The final step is to show that the right-hand side of is independent of &.
More precisely, we prove that the right-hand side of does not change when &
crosses the walls H;. Suppose H; is not perpendicular to any edge vectors at p.
The signs of <§ ,wg> do not change, so the cone éf does not change as & crosses
the wall. The vertices whose contributions to the right-hand side of change
as £ crosses H; come in pairs because each edge of P that is perpendicular to
Hj has two endpoints. For each such vertex p, denote by Q,(z) and @, (z) its
contributions to the right-hand side of before and after £ crossed H;. Let e be
an edge perpendicular to H; and p an endpoint of e. Let Q.(x) be the characteristic
function of the cone Cv’f corresponding to the value of £ as it crosses H;. We have

Qo) = (-1)F Mz and Q) () = (~1)/F 11 50,
therefore
Qp(w) = Sy() = (=) Ol gy — (-1 O 11,
= (_1)‘E;(§)|(1éf + 15"?)
= (=) Ol(1gp) = () D@ (x)
If ¢ is the other endpoint of e, then |E} (£)| = |ESf ()| £ 1. Hence

Qq(x) — QL (x) = (~D)IEIOIQ (z) = (~1)IF OF1Q, ()

and
(Qp(@) + Qq(@) — (Qp() + Q) = (1) O Q () + (-1)/F» OH1Q,(2) = 0
Thus crossing H; does not change the right-hand side of (5.3)). (I

Formulas (5.1)) and (5.3) also have an expression in terms of generating series.
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Definition 5.8. Let V be a vector space with basis ey, ..., e, and Zy its integral
lattice. If A < V* is a subset, we denote the generating series of A by

A(z) = Z ah,

ueAmZé
where Z3, is the dual of the integral lattice Zy, = (z1,...,2,) and z# =
(ah*y . oo k).

Theorem 5.9. Let P < V* be a simple convex polytope and £ € Vp a polarizing
vector for P. Then,

P)= Y (-nIFOlcte)

pe Vert(P)

Proof. The proof follows directly from We have
3 (—D)IE ©@lo# (2) = 3 (—1)lEF @] S

peVert(P) peVert(P) uec¥ NZE
+
_ Z (_1)|E1D (§)| Z 10#(/1')1'”
peVert(P) MEZ$

I

DI DI L Pl B

HEZH‘; peVert(P)

= Z 1p(p)zt = Z a* = P(x).

MEZ"E uerZ"’j

Similarly, for the dual Lawrence-Varchenko formula, we have:

Theorem 5.10.
()P = Y, ()OI @).
pe Vert(P)
5.2. Polar decomposition of cones. In this section we explain how to adapt the
Lawrence-Varchenko formula (5.1)) to produce a polar decomposition of a rational

polyhedral cone. More precisely, let P < V* be a simple polytope and let C'
V* x R* be the cone over P, i.e.

C={r(n,1*)eV*xR* | ne Pr=0}.

The cone C' is the lift of the left-hand side of from V* to V* x R*. Lifting
the right-hand side of , we can expect to obtain a polar decomposition of C.
We will see that this is almost true; one must introduce an error term to obtain an
identity.

Let p € P be a vertex of the polytope. We will denote by p, € Z}, x Z* the
primitive edge vector of C going through p. Given a polarizing vector £ € Vp for
P, let C’f be the polarized tangent cone of P at p and define

# _ O
KJm = CJ + Rup.
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Definition 5.11. Let S(z) be the function defined as

S = Y (DIEON @)

peVert(P)

The function S(x) is the lift of the right-hand side of (5.1)). Let H = {(n, %*) €
V* x R* | n e V*} be the characteristic hyperplane and let

Ha = {(n,\*) e V¥ x R* [ ne V¥, A* e R*},

be its parallel shifts. The polytope P is the intersection of C' with H and for A = 0
the intersection of H, with C will be denoted Py. The projection w: V* x R* — V*
identifies the hyperplanes H, with the vector space V* and the polytopes Py with
AP c V*. When A < 0, we define Py as the intersection Py = Hy n (—C). In this
case, 7 also identifies Py with AP < V*. If £ € Vp is a polarizing vector for P, then
¢ is a polarizing vector for every Pj.

Let p € P be a vertex, then Ap is a vertex of the polytope AP. The intersection
of H, with Kf is equal to Cf; for A = 0, where Ci’; is the polarized polarized
tangent cone cone at Ap. When A < 0 the intersection becomes Kf NHy = Cv'f;,
the dual polarized tangent cone at Ap. Therefore, restricting S to H) we get

Shy@) = > (DIEOI L @ = Y (IO, @)

peVert(P) peVert(P)
= Y )IE Ol @) = Py@),
peVert(P) i

if A > 0. Similarly, if A < 0 we have

+ +
Shn(@) = 2 (DIF O @) = Y (IO, L @)
peVert(P) peVert(P)
+ n o]
= > ()FOl g @) = (-1 Py (),
peVert(P) i

It follows that

(5.5) S(z) =1c(z) + (—1)"1_co (2).

In a similar manner for the dual polarized tangent cones, let
Iv(f = Cv'f + Ryt

We have I?# N Ha :Cv'j; for A = 0 and [v(#mH,\ :Cf;.

Definition 5.12. Let §(x) be the function defined by

.
Sy = Y, (nEOh @),
peVert(P)

This is the lift of the right-hand side of (5.3).
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Restricting to the hyperplanes H, we get

Shn@) = Y DIE Ol @)= > (1)

P

EFO|1-
( )\1K#mm($)

peVert(P) peVert(P)
r n po

= > ) Ol, @) = (-1 P (),

peVert(P) ?

when A\ > 0, and

Shin@) = Y (D)IFE O @) = Y (IO, L (@)

peVert(P) peVert(P)
= Y (O, @) = Py,
peVert(P) ’

when A < 0. Therefore
(5.6) S(x) = (=1)"Lee () + 1_c(a).
Formulas (5.5) and (5.6) can again be expressed in terms of generating series.

Proposition 5.13.

N ()IEOIKE (2) = Cla) + (~1)"(~C°)(x)

peVert(P)
Z z* + (=D)" Z .

HeCA(ZE xR*) pE(—CO)N(Z¥ xR*)

Proof. The proof is a straightforward application of (5.5]).

S EORF@ = Y (el

peVert(P) peVert(P) nek ¥ N (ZE xR¥)
= Y nlEel S 1 (e
peVert(P) pe(ZE xR*)

Z Z (71)|E;(§)|1K;¥<H) o

HG(Z§ xR*) \peVert(P)

D (el + ()" 1Ceoy(p) 2*

pe(ZE xR*)

= ) A > .

HeCA(ZE xR*) pe(—Co)n(ZFE xR¥*)

Similarly, we have:
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Proposition 5.14.
> IFOIRE @) = (—1)mC (@) + (-0)(@)
peVert(P)
= (=) > "+ > R
pECP® N (ZFE xR*) RE(—C)N(ZE xR*)

These results can be slightly generalised as follows. Let W* be a vector space
and let P < W* be a simple convex polytope sitting on a hyperplane

H={neW*| {nR) =1}
determined by a vector R € W. Let
C={rneW*[nePr=0}

be the cone over P and for each vertex p € P denote by p, the primitive edge
vector of C' going through p. Let £ € H} be a polarizing vector for P. As above,
for each vertex p € P denote by Cf c H the polarized tangent cone of P at p and
by Cv'f < H the dual polarized tangent cone of P at p.

Definition 5.15. Define the cones KZf and Iv{f by
Kjf = C’erRup and Kf = C’f + Ry

Let {e1,...,ent1} be a basis of W such that e,11 = R. Then {e¥,...,e*} isa
basis of H and we have a linear isomorphism
T: W* - H x R*
ei — (€7, 0)

er 10— (0,1%).
The map T takes H to the hyperplane
T(H) ={(n,1%) e H x R* | n e H}

and P to a polytope T(P) < T(H). Restricting T to H, we get a linear automor-
phism T: H — H that we will also denote by T. Let T~! be the inverse of T" and
(T~1)* its adjoint. Let v € H* and n € H, then

(n,0) = (T(n), (T71)*(v))

Since the edges of P are taken to the edges of T'(P), the vector (T—1)*(¢) induces a
polarization of T'(P) such that T'(C¥#) = C’;‘f(p) for every vertex p € P. The identity
(5.5) implies that

+ n
> DO (@) =120 (@) + ()" o)) @).
peVert(P) P
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Let S(2) = Xpeyers(py (— 1% O, 4 (2). Since K, | = T(K#), wehave 1,4 (x) =

lT(Kf)(Tx) and therefore
+ +
Sw =Y (EOh @)= 3 (nlEOh, (1)
peVert(P) peVert(P)

= 1T(C) (Tx) + (—1)”1(,71(0)0)(71.’13)
=1c(z) + (=1)"L(—co) (@),
In summary, we have:

Proposition 5.16. Let W* be a vector space and P < W* a simple convezx polytope
on a hyperplane H determined by a vector R € W. Then, given a polarizing vector
¢ € H},, we have

Sy = Y, (DO @) = 106) + (1)L e ().
peVert(P)

A similar argument applied to the dual polarized tangent cones K jf = 5’# + Ry,
gives:

Proposition 5.17.

Sy = Y (DF O (2) = (~1)"Les(2) + 1o ().
peVert(P) :
The identities involving generating series in Proposition and continue
to hold, with the lattice Z}j, in place of Z3,.

5.3. A formula for ind% (o0(d5)). Applying the results in the previous section,
we show next how to obtain explicitly the multiplicities m(u) associated to the
weights p € g* appearing in the index

indgf (0(@m)) (1) = Y m(u)t*.
MEZg

Let R € g be the generator of the Reeb vector field, H the characteristic hyperplane
determined by R and C' the moment cone. The polytope P = H n C is the
image of the a-moment map ¢,. Each vertex of P corresponds to an edge of C,
corresponding to a connected component L of M,,.

Given a vertex p € P, let L < M, be the closed Reeb orbit corresponding to
p. Since C is a good cone there is a vector v € g such that {vf,vl,... vl} is an
integral basis of Zg, where {v!,...,vL} is the set of normals to faces meeting at
p. Let {ur,wt,...,w?} be the dual basis of {v¥,v!,... 0L}, Theorem tells us
that if € € g is a polarizing vector, as in Definition then the index ind]GV[ (0(n))
is given by

indyy o(3g)(t) = 2 _ SlL--- _ K 5(1 —thr)
T & 1 T |
where st = + if (e£) > 0 and s% = — if (¢f) < 0. Define the index sets

Wi(er) ={ie{l,...,n} | wi(eg) > 0}
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and
WL_(ei‘) ={ie{l,...,n} | wi(et) <0}.

We can write

1 n
1 z 1 Sz oL
) — 1 — ey — ()W D) E: "
(1—1&%) (1—t—wL> 01 —t) = (=) v

ez me (e1)
since {ur,w},...,w}} is an integral basis of Z%, and Kf (e') is the cone defined
by
KFf(eh)=Rup+ Y Rsowi+ > Reouwp.
€W (ef) €W, (ef)
Since {ur,wk,...,w?} is the dual basis of {v{,...,vE}, the cone Kf(eL) can also

be written as

Ef(e)= () {weg*|wwf)>0 (] {weg*|wwl) <o}

iEW; (1) €Wy (1)
The following lemma gives yet another description of the cone Kf(el).

Lemma 5.18. Let {n',...,n"} < g* be a set of vectors satisfying ni(ij) = 0;5,
i,7=1,...,n and let K be the cone

K =Rpur + Z R>on' + Z R<on".

W (ed) €W, (er)
Then K = K7 (eb).
Proof. Let w e K and write

w=ru; + Z aint + Z bin,
€W (ef) €W (1)
where 7,a;,b; € R, a; > 0and b; < 0,i = 1,...,n. Computing w(vF)fori=1,...,n

we get

w(vF) = a; > 0, for i € W/ (ef) and w(vl) = b; <0 for i € W (7).

Therefore

Ko () fweg" [w@) >0} [ {weg"|w)<0}=KF().

€W (ef) €W, (et)
Let we K}f&(eL), since {ur,n’,...,n"} forms a basis for g* we can write
w=rpL+ Y, ann+ Y, b
€W (ef) €Wy (1)

Since w € Kf(el), computing w(vr), i = 1,...,n, we find that a; > 0 and b; < 0
which implies that w € K. Therefore K = Kf(el). O



30 PEDRAM HEKMATI AND MARCOS ORSELI

Let {nz,ng,...,n7} be the dual basis of {R,v{,..., vk}, then nj (v}) = 6;; and
Lemma [5.18 implies that

Kf(eh)=Rur+ > Reomp+ Y. Reonl.

€W (ef) €W, (ef)

The index sets W} (ez) and W, (ef) can also be expressed in terms of the basis
{771/777%7 s 7”%}-

Lemma 5.19.

Wiher)={ie{l,...,n} | wi(er) >0} ={ie{l,...,n} | ni(e) >0}

and

WE(eh) = fic {L,...,n} | wh(ef) <0} = {i € {1,...,n} | ni(e) <O},
Proof. Since the weights {aq,...,ay,} of the Gp-action on C™ form a dual basis to
{vF,...,vk} in g} and

er = nL(€)vf + - + L (e)vy,

we have a;(e1) = w? (e1) = nt (), fori = 1,...,n. O

Theorem 5.20. The index of the horizontal Dolbeault operator O is given by

indgf (0@m))(t) = (=)™ >+ Y

peCe (‘\Z’é ue(—C)mZg

Proof. We note that {n!,...,n?} are primitive vectors determining the edge direc-
tions of P at p, since nj,(R) = 0 for i = 1,...,n and nj (vf) = &;;. Let € € g be a
polarizing vector, as in Proposition that is, € satisfies % (¢) # 0 fori =1,...,n
and for all L ¢ M,. A polarizing vector for the polytope P is a vector in the
dual vector space H*. The vector € € g determines a polarizing vector ey for the
polytope P by

ex(n) = n(e), for all n e H.

Since the edge vectors {n},...,n7} satisfy eg(nt) =nt(e) #0,i=1,...,n, ey is
a polarizing vector for the polytope P. Since 7t (¢) = ex (7} ), Lemma implies
that

Wi (er) ={ie{l,...,n} | ni(e) <0} = E, (en)
and
Wi(er) = {ie {1,...,n} [ ni(e) > 0} = B (em),

where E- (ey) and E;f (eg) correspond to the edges 77, of P such that nj (eg) <0
and 0% (exr) > 0, respectively. The vector ey determines a cone K f, as in Definition
Since the vectors 7t are the edge vectors of P meeting at p, the identity
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K# = K} (') holds. It follows that

indYo@m)(t) = Y (1_111)) (1_1_11,) 5(1 — i)

LcM,
=N (—1)|WE ) 3 4
LeM, MGngKf(eJ—)
- ) (—1) 25 (em)] >
peVert(P) Mezéﬁk/f
and the result follows by applying Proposition (Il
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