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Abstract. We study equivariant Seiberg–Witten Floer theory of rational ho-

mology 3-spheres in the special case where the group action is given by an

involution. The case of involutions deserves special attention because we can

couple the involution to the charge conjugation symmetry of Seiberg–Witten

theory. This leads to new Floer-theoretic invariants which we study and apply

in a variety of applications. In particular, we construct a series of delta-

invariants δE∗ , δR∗ , δS∗ which are the equivariant equivalents of the Ozsváth–

Szabó d-invariant. The delta-invariants come in three types: equivariant, Real

and spin depending on the type of the spinc-structure involved. The delta-

invariants satisfy many useful properties, including a Frøyshov-type inequal-

ity for equivariant cobordisms. We compute the delta-invariants in a wide

range of examples including: equivariant plumbings, branched double covers

of knots and equivariant Dehn surgery. We also consider various applications

including obstructions to extending involutions over bounding 4-manifolds,

non-smoothable involutions on 4-manifolds with boundary, equivariant em-

beddings of 3-manifolds in 4-manifolds and non-orientable surfaces bounding

knots.

1. Introduction

In the paper [5] we introduced and studied an equivariant version of Seiberg–

Witten Floer theory for group actions on rational homology 3-spheres. In [6], we

applied this theory to cyclic group actions on Brieskorn spheres, obtaining obstruc-

tions for such actions to extend over a bounding 4-manifold. In this paper we focus

specifically on the case that the group action is given by an involution. Our moti-

vation for considering involutions is that there are special features of the involutive

case which makes it possible to define a new set of invariants. We demonstrate the

utility of these invariants with a variety of applications.

Let Y be a rational homology 3-sphere and σ : Y → Y an orientation preserving

involution. Our Floer-theoretic invariants of (Y, σ) will come in three variations:

equivariant (E), Real (R) and odd spin (S). Corresponding to these three types, we

have three different notions of compatibility between σ and a spinc-structure s:

• s is equivariant if σ∗(s) is isomorphic to s. In this case σ can be lifted to a

C-linear involution on the spinor bundle corresponding to s.
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• s is Real if σ can be lifted to an antilinear involution on the spinor bundle

corresponding to s.

• s is odd spin if s is the spinc-structure underlying a spin structure and σ

admits a lift to the spin bundle which squares to −1.

The equivariant case is precisely what was considered in [5]. The Real and

odd spin cases yield new invariants. For each of the three types T ∈ {E,R, S} we

construct a corresponding Seiberg–Witten Floer cohomology theory HSW ∗
T (Y, s, σ)

which is a graded module over the equivariant cohomology ring H∗
GT

s
(pt), where

GT
s is a certain group depending on the type of spinc-structure. In type E, GE

s
∼=

S1 × Z2, in type R, GR
s
∼= O(2) and in type S, GS

s is a certain extension of Z2 by

Pin(2), see Section 2.1 for details.

As one might expect, the Floer cohomology groups are typically difficult to

compute. However we use the Floer cohomology to derive a collection of numerical

invariants which are much easier to work with. We call these the delta-invariants

of (Y, s, σ) of type E,R, or S. These invariants play the role of the Ozsváth–Szabó

correction term d(Y, s) in the presence of an involution. For convenience we define

the (ordinary) delta-invariant of (Y, s) to be half the d-invariant: δ(Y, s) = d(Y, s)/2.

• In types T = E or R, the delta-invariants are a sequence δTj (Y, s, σ) ∈ Q of

rational numbers, where j ≥ 0 is an integer.

• In type S, the delta-invariants δSi,j(Y, s, σ) ∈ Q depend on two integers

i, j ≥ 0 subject to the condition that either i = 0 or j ≤ 1.

Throughout the paper our Floer cohomology groups will be defined with respect

to the coefficient ring F = Z/2Z. This is not strictly necessary and is chosen for

convenience.

The delta-invariants δT∗ (Y, s, σ) are equivariant rational homology cobordism in-

variants (see Remark 3.19 for the precise statement). They satisfy a long list of

properties which we summarise below. For notational convenience we write δT∗ to

denote either δTj for some j ≥ 0 if T = E,R, or δSi,j for some i, j if T = S.

Theorem 1.1. The δ-invariants satisfy the following properties:

(1) δT∗ (Y, s, σ) = δ(Y, s) (mod Z) for any T .

(2) δS∗ (Y, s, σ) = µ(Y, s) (mod 2Z) where µ(Y, s) is the generalised Rokhlin

invariant.

(3) For T = E,R, the sequence δTj (Y, s, σ) is decreasing and is eventually con-

stant.

(4) δSi′,j′(Y, s, σ) ≤ δSi,j(Y, s, σ) whenever i
′ ≥ i, j′ ≥ j. The values of δS0,j(Y, s, σ),

δSj,0(Y, s, σ) and δ
S
j,1(Y, s, σ) are independent of j for large enough j.

(5) δT∗ (Y, s, σ) + δT∗ (−Y, s, σ) ≥ 0.

(6) If Y is an L-space, then δT∗ (Y, s, σ) = δ(Y, s) for all T, ∗.
(7) If T = E,R, δT0 (Y, s, σ) ≥ δ(Y, s).

(8) (i) δS0,0(Y, s, σ) ≥ α(Y, s),

(ii) δSi,j(Y, s, σ) ≥ β(Y, s) for i+ j = 1,
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(iii) δSi,j(Y, s, σ) ≥ γ(Y, s) for i+ j = 2,

where α, β, γ are the invariants defined in [30].

(9) δT∗1+∗2
(Y1#Y2, s, σ) ≤ δT∗1

(Y1, s1, σ1) + δT∗2
(Y2, s2, σ2).

(10) If T = E,R, then δTj (Y, s, σ) ≥ (l(Y, s) − j)/2 where l(Y, s) is the lowest

degree in which HF+
∗ (Y, s) is non-zero. Similarly δSi,j(Y, s, σ) ≥ (l(Y, s) −

i− j)/2.

In addition to the above properties, there is a spectral sequence (Theorem 3.3)

which relates HSW ∗
T to HSW ∗. This can sometimes be used to compute the

delta-invariants.

By far the most important property of the delta-invariants is their behaviour

under equivariant cobordism, namely they satisfy an equivariant version of the

Frøyshov inequality.

Theorem 1.2. Let W be a smooth, compact, oriented 4-manifold with boundary

and with b1(W ) = 0. Suppose that σ is an orientation preserving smooth involution

on W . Let s be a spinc-structure on W of type T ∈ {E,R, S}. Suppose each

component of ∂W is a rational homology sphere and that σ sends each component

to itself.

Suppose that ∂W = Y1 ∪ −Y0. Then:

(1) In type T = E, suppose that the σ-invariant subspace of H2(W ;R) is neg-

ative definite. Then

δEj+b+(W )(Y0, s|Y0
, σ|Y0

) +
c(s)2 − σ(W )

8
≤ δEj (Y1, s|Y1

, σ|Y1
)

for all j ≥ 0.

(2) In type T = R, suppose that the σ-anti-invariant subspace of H2(W ;R) is

negative definite. Then

δRj+b+(W )(Y0, s|Y0
, σ|Y0

) +
c(s)2 − σ(W )

8
≤ δRj (Y1, s|Y1

, σ|Y1
)

for all j ≥ 0.

(3) In type T = S, let b+(X)σ, b+(X)−σ denote the dimensions of the σ-

invariant/anti-invariant subspaces of H+(X). Then

δSi+b+(W )σ,j+b+(W )−σ (Y0, s|Y0
, σ|Y0

)− σ(W )

8
≤ δSi,j(Y1, s|Y1

, σ|Y1
)

for all i, j ≥ 0 such that either i+ b+(W )σ = 0 or j + b+(W )−σ ≤ 1.

1.1. Calculations. One of the strengths of our delta-invariants is that they can

be calculated in a wide variety of situations. These calculations are carried out in

Section 4. Here we summarise some of the main results.

Equivariant plumbing. Let Γ be a plumbing graph and YΓ the boundary

of the plumbing on Γ (see §4.1). We consider two classes of involutions that can

be constructed on such plumbings. The first type of involution that we consider

is complex conjugation cΓ (§4.1.1), obtained by plumbing together the complex
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Figure 1. Bipartite graph. White vertices have at most two edges

joining them.

conjugation involutions on each disc bundle. Such involutions can be constructed

for any plumbing graph. The second kind of involution that we consider will be

referred to as Z2-equivariant plumbing (§4.1.3) and denoted asmΓ. Such involutions

can be constructed for plumbings where Γ satisfies the following conditions (i) the

degrees of all disc bundles in the plumbing are even, (ii) Γ is a bipartite graph

(vertices can be coloured black or white in an alternating fashion) and (iii) white

vertices have at most two edges joining them. If Γ satisfies these conditions we will

call it a Z2-equivariant plumbing graph. See Figure 1 for an example.

To any plumbing graph Γ we define an invariant j(Γ) ∈ Z. The definition is

given in Section 4.1. Here we simply note that if Γ has k vertices, then j(Γ) ≤ k.

Theorem 1.3. Let Γ be a connected plumbing graph whose degrees are all even

and let YΓ be the boundary of the plumbing XΓ according to Γ. Let s denote the

restriction to YΓ of the unique spinc-structure on XΓ with c(s) = 0.

(1) δEj (YΓ, s, cΓ) = δS0,j(YΓ, s, cΓ) = −µ(Y, s|Y ) for all j ≥ j(Γ).

(2) Suppose that Γ is a Z2-equivariant plumbing graph. Then δRj (YΓ, s,mΓ) =

δSj,k(YΓ, s,mΓ) = −µ(Y, s|Y ) for all j ≥ j(Γ) and k = 0, 1.

In this theorem, µ(Y, s|Y ) is the generalised Neumann–Seibenmann invariant [38,

§4].

A particularly interesting class of plumbed 3-manifolds are the Brieskorn homol-

ogy spheres Σ(a1, . . . , an). With the exception of S3 and Σ(2, 3, 5), the Brieskorn

spheres have a geometry modelled on the universal cover of SL(2,R). They have

symmetry group O(2) which combines the circle action of the Seifert fibration

with complex conjugation (viewing Σ(a1, . . . , an) as the link of a complex sin-

gularity). By [31, Theorem 2.1], any smooth, orientation preserving involution

on Σ(a1, . . . , an) is conjugate to an involution in O(2). There are precisely two

conjugacy classes, m, the element of order 2 in the circle action and c, complex

conjugation. Concerning the delta-invariants of (Y,m), (Y, c), we have the follow-

ing:
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Theorem 1.4. Let Y = Σ(a1, . . . , an) be a Brieskorn sphere. Then

(1) δEj (Y, c) = δRj (Y,m) = −µ(Y ) for all j ≥ 1.

(2) δE0 (Y, c) = δR0 (Y,m) = δ(Y ).

(3) δEj (−Y, c) = δRj (−Y,m) = µ(Y ) for all j ≥ 0.

(4) δSj,0(Y,m) = δSj,1(Y,m) = δS0,j(Y, c) = δSj,1(Y, c) = −µ(Y ) for j ≥ 1.

(5) δSj,0(−Y,m) = δSj,1(−Y,m) = µ(Y ) for all j ≥ 1.

(6) δSi,j(−Y, c) = µ(Y ) for all i, j with i = 0 or j ≤ 1.

(7) δRj (Y, c) ≥ −µ(Y ) and δRj (−Y, c) ≤ µ(Y ) for all j ≥ 0.

Remark 1.5. This theorem complements the results in [5, 6] in which the delta-

invariants δEj (±Y,m) are studied. For instance if p, q are odd and coprime, then

δEj (Σ(2, p, q),m) = −λ(Σ(2, p, q)) for all j ≥ 0, where λ is the Casson invariant ([5,

Proposition 7.2]).

Branched double covers. Let K be a knot in S3 and let Y = Σ2(K) be the

double cover of S3 branched over K. Then Y is a rational homology sphere and

there is a unique spin structure on Y (see §4.2). The corresponding spinc-structure

will be denoted s0. Let σ : Y → Y be the covering involution of the branched

double cover. By uniqueness, s0 is preserved by σ and is an odd spin involution.

The delta-invariants of (Y, s0, σ) define knot invariants of K as follows.

Definition 1.6. LetK be a knot in S3. We define the delta-invariants δEj (K), δRj (K)

and δSi,j(K) of K to be the corresponding delta-invariants of (Σ2(K), s0, σ).

For a knot K in S3 we let σ(K) denote the signature and g4(K) the smooth slice

genus.

Theorem 1.7. Let K be a knot in S3.

(1) δEj (K), δRj (K), δSk,l(K) depend only on the smooth concordance class of K.

(2) δEj (K), δRj (K), δSk,l(K) ∈ 1
4Z.

(3) δEj (K) = δRj (K) = −σ(K)/8 (mod Z). δSk,l(K) = −σ(K)/8 (mod 2Z).
(4) δEj (K) = δS0,j(K) = −σ(K)/8 for j ≥ g4(K)− σ(K)/2.

(5) If K is quasi-alternating, then δEj (K) = δRj (K) = δSk,l(K) = −σ(K)/8 for

all j ≥ 0 and all (k, l) with k = 0 or l ≤ 1.

(6) If g4(K) = −σ(K)/2, then δR∞(K) ≥ −σ(K)/8 and δR0 (−K) ≤ σ(K)/8.

(7) If g4(K) = 1 − σ(K)/2, then δSi,j(K) ≥ −σ(K)/8 for all i, j with i = 0 or

j = 0 and δS0,1(−K) ≤ σ(K)/8.

Additionally, the knot invariants δE∗ , δ
R
∗ , δ

S
∗ are sub-additive in the sense that

δEi+j(K1#K2) ≤ δEi (K1) + δEj (K2) and similarly for δR∗ , δ
S
∗ (Proposition 4.11).

Amongst other things Theorem 1.7 says that the delta-invariants for a quasi-

alternating knot K are all equal to −σ(K)/8. Another class of knot where the

delta-invariant can be computed are the torus knots Tp,q. This is because the

branched double cover Σ2(Tp,q) is a Seifert fibre space and the covering involution

is the element of order 2 in the circle action. In particular, when p, q are odd,
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Σ2(Tp,q) is the Brieskorn sphere Σ(2, p, q) and we can apply Theorem 1.4. If p or

q is even, then Σ2(Tp,q) is not a Brieskorn sphere, but it is still the boundary of a

plumbing on a star-shaped graph Γ and the covering involution coincides with mΓ,

so we can apply Theorem 1.3. A third class of knots for which the delta-invariants

can be readily computed are Montesinos knots. Let L =M(b; (a1, b1), . . . , (an, bn))

denote a Montesinos link (see §4.2). Assume that exactly one of the ai is even. In

this case L is a knot. We have the following:

Theorem 1.8. Let K = M(b; (a1, b1), . . . , (an, bn)) be a Montesinos knot where

exactly one ai is even. Let e = b −
∑n

i=1 bi/ai. If e > 0, then δEj (K) = −σ(K)/8

for all j ≥ 0. If e < 0, then δEj (K) = −σ(K)/8 for all j ≥ 1 and δE0 (K) =

δ(Σ2(K), s0).

Equviariant Dehn surgery. Let L be a link in S3 and suppose that L is sent

to itself under some orientation preserving, smooth involution σ : S3 → S3. Let F
denote a framing of L and let Y = Y (L,F) be obtained from S3 by performing Dehn

surgery along L with framing F . Suppose that the framing is σ-invariant in the

sense that for any component K of L which is not sent to itself by σ, the framings

of K and σ(K) coincide. Then we can carry out Dehn surgery equivariantly with

respect to σ and the extension is unique up to conjugacy by diffeomorphisms isotopic

to the identity (see [44, §2] for details). We denote the induced involution on Y by

σ.

We say that L is 2-periodic if σ sends each component of L to itself and has no

fixed points on L. We say that L is strongly invertible if σ sends each component

of L to itself orientation reversingly. We will say that the framing F is even if

all the framing coefficients are even integers. In this case Y (L,F) bounds a spin

4-manifold X, the trace of the surgery on L. There is a unique spinc-structure on

X which comes from a spin structure. By restriction to the boundary, this defines a

spinc-structure on Y which we denote by s0. This spin
c-structure has type S with

respect to σ. Our first main result concerns the delta-invariants of (Y (L,F), s0) in

the case of even surgery.

Theorem 1.9. Let (L, σ) be a 2-periodic or strongly invertible link. Let Y be the

3-manifold obtained by Dehn surgery on Y with respect to some framing F and

denote by σ the induced involution on Y . Suppose that F is even and let s0 denote

the distinguished spin structure. Let A denote the linking matrix of (L,F). Then

(1) If L is 2-periodic, then δRj (Y, s0, σ) = −σ(A)/8 for j ≥ b−(A).

(2) If L is strongly invertible, then δEj (Y, s0, σ) = −σ(A)/8 for j ≥ b−(A).

In the case of non-integral surgery coefficients, it is still possible to calculate

the delta-invariants in some cases. Consider for example a strongly invertible knot

K and let Y = Sp/q(K) be the Dehn surgery on K with surgery coefficient p/q.

Assume that p is odd and q is even. Since p is odd, there exists a unique spinc-

structure s on Y which comes from a spin structure. Further, there exist even inte-

gers a0, a1, . . . , am such that p/q = [a0, . . . , am] (Lemma 4.1), where [a0, a2, . . . , am]
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is the negative continued fraction

[a0, a1, . . . , am] = a0 −
1

a1 − . . . − 1
am

.

Theorem 1.10. Let K be a strongly invertible knot and let Y = Sp/q(K) where p

is odd and q is even and non-zero. Let p/q = [a0, a1, . . . , an] where a0, . . . , an are

even integers and let Aij be the matrix Aii = ai, Aij = 1 for |i − j| = 1, Aij = 0

for |i− j| > 1. Then δEj (Sp/q(K), s, σ) = −σ(A)/8 for j ≥ b−(A).

1.2. Applications. Obstructions to extending involutions. Suppose we are

given a rational homology 3-sphere Y with orientation preserving involution σ and a

spinc-structure s of type E,R or S. Suppose that X is a compact, oriented smooth

4-manifold which bounds Y and that s extends to a spinc-structure on X. We can

use Theorem 3.17 to obstruct the existence of an extension of σ to an involution

on X, under some assumptions on how σ acts on H2(X;Z).

For simplicity we focus on the case that Y is an integral homology sphere so

that there is only one spinc-structure on Y , which we omit from the notation.

We consider four cases of interest: (1) X is negative definite, (2) b+(X) = 1,

(3) homologically trivial involutions, (4) σ acts as −1 on H2(X;Z). These are

summarised by the following four propositions:

Proposition 1.11. Let X be a compact, oriented, smooth 4-manifold with boundary

an integral homology sphere Y . Assume H1(X;Z2) = 0 and that X is negative

definite. Let σ be an orientation preserving involution on X. Then

(1) If c ∈ H2(X;Z) is a characteristic element and σ(c) = c, then

c2 + b2(X)

8
≤ min{δE∞(Y, σ),−δE0 (−Y, σ)}.

(2) Assume that the fixed point set of σ contains non-isolated points. If c ∈
H2(X;Z) is a characteristic element and σ(c) = −c, then

c2 + b2(X)

8
≤ min{δR∞(Y, σ),−δR0 (−Y, σ)}.

(3) If X is spin and σ is odd, then

b2(X)

8
≤ min{δS0,∞(Y, σ), δS∞,1(Y, σ),−δS0,0(−Y, σ)}.

Proposition 1.12. Let X be a compact, oriented, smooth spin 4-manifold with

boundary an integral homology sphere Y . Assume H1(X;Z2) = 0 and that b+(X) =

1. Let σ be an odd involution on X. Let H+(X) denote a σ-invariant maximal

positive definite subspace of H2(X;R). Then:

(1) If σ acts trivially on H+(X), then

−σ(X)

8
≤ min{δS∞,0(Y, σ),−δS1,0(−Y, σ)}.
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(2) If σ acts non-trivially on H+(X), then

−σ(X)

8
≤ min{δS0,∞(Y, σ), δS∞,1(Y, σ),−δS0,1(−Y, σ)}.

Proposition 1.13. Let X be a compact, oriented, smooth spin 4-manifold with

boundary an integral homology sphere Y . Assume H1(X;Z2) = 0. Let σ be a

smooth odd involution on X which acts homologically trivially on X. Then:

σ(X) = −8δR∞(Y, σ).

Furthermore, we have

b−(X) ≥ jR(Y, σ), b+(X) ≥ jR(−Y, σ).

Proposition 1.14. Let X be a compact, oriented, smooth spin 4-manifold with

boundary an integral homology sphere Y . Assume H1(X;Z2) = 0. Let σ be a

smooth odd involution on X which acts as −1 on H2(X;Z). Then:

σ(X) = −8δE∞(Y, σ).

Furthermore, we have

b−(X) ≥ jE(Y, σ), b+(X) ≥ jE(−Y, σ).

In particular, Propositions 1.13 and 1.14 can be used to bound b±(X) for bound-

ing 4-manifolds over which σ extends under the condition that σ acts as +1 or −1

on H2(X;Z).

For example, suppose Y = Σ(a1, . . . , an) is a Brieskorn sphere where ai is even

for some i and that σ = m. Then δR∞(Y,m) = −µ(Y ). Let X be a spin manifold

bounding Y with H1(X;Z2) = 0 and with σ(X) ̸= 8µ(Y ). Then m does not extend

to a homologically trivial smooth involution on X. On the other hand, m does

extend to a smooth homologically trivial diffeomorphism on X. This is because

the involution m belongs to a circle action on Y , hence is smoothly isotopic to the

identity.

This non-extension result contrasts with the fact that m does extend to a ho-

mologically trivial involution on the plumbing XΓ on a star-shaped graph Γ whose

boundary is Y .

Non-smoothable involutions on 4-manifolds with boundary. Our ob-

struction results can be used to give examples of orientation preserving, locally

linear involutions which are non-smoothable in the sense that they are not smooth

with respect to any differentiable structure on the manifold. One such construction

is as follows. Let X0 be a compact, oriented, spin, smooth 4-manifold with bound-

ary Y , an integral homology sphere. Assume that H1(X;Z2) = 0. Suppose σ0 is a

smooth, orientation preserving odd involution on X0 and that σ0 acts either as +1

or −1 on H2(X0;Z). Such 4-manifolds are easy to construct, for example X0 could

be an equivariant plumbing, as in §1.1.

Consider two involutions σ+, σ− on S2 × S2, where σ+ = ϕ × ϕ, is the product

to two rotations of S2 by π and σ− = r × r is the product of two reflections of
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S2. Let X±(m) be an equivariant connected sum of (X0, σ0) with m copies of

(S2 × S2, σ±), where we use + if σ0 acts as +1 on H2(X0;Z) and we use − if σ0
acts as −1 on H2(X0;Z). Now let W be any closed, simply-connected, topological

4-manifold whose intersection form is even, negative definite and has non-zero rank.

Let X(m) = X±(m)#2W . Then we can define an involution σ on X(m) in such a

way that the two copies of W are exchanged. Clearly σ is locally linear. In Section

5.2 we show the following:

Proposition 1.15. Suppose that m > 3b2(W )/8. Then X(m) admits a smooth

structure. However σ is not smooth with respect to any smooth structure on X(m).

Taking equivariant connected sums with (S2 × S2, σ+) or (S2 × S2, σ−) can

be thought of as two kinds of equivariant stabilisation. The above proposition

shows that the involution σ on X(m) remains non-smoothable upon stabilisation

by (S2×S2, σ±), where the sign is chosen as previously described. We do not know

whether there exist locally linear involutions which remain non-smoothable under

both kinds of stabilisation.

Equivariant embeddings of 3-manifolds in 4-manifolds. Let Y be a ra-

tional homology 3-sphere and σ an orientation preserving smooth involution on Y .

Consider the problem of embedding Y into a closed, oriented, smooth 4-manifold

X in such a way that σ extends to an orientation preserving involution on X. The-

orem 3.17 can be used to give constraints on the existence of such embeddings. We

will focus on the case of embeddings into S4 or connected sums of S2 × S2.

Every orientable 3-manifold embeds in #n(S2 × S2) for some sufficiently large

n [1, Theorem 2.1]. Aceto–Golla–Larson define the embedding number ε(Y ) to be

the least such n such that Y embeds in #n(S2×S2). We consider three equivariant

versions of ε.

Definition 1.16. Let Y be an orientable 3-manifold and σ an orientation preserv-

ing smooth involution on Y . Define the following invariants of (Y, σ):

(1) ε(Y, σ) is the least n such that Y embeds inX = #n(S2×S2) and σ extends

to an orientation preserving smooth involution on X. If no such n exists,

then we set ε(Y, σ) = ∞.

(2) ε+(Y, σ) is the least n such that Y embeds in X = #n(S2 × S2) and σ

extends to a homologically trivial, orientation preserving smooth involution

on X. If no such n exists, then we set ε+(Y, σ) = ∞.

(1) ε−(Y, σ) is the least n such that Y embeds in X = #n(S2 × S2) and σ

extends to an orientation preserving smooth involution on X which acts as

−1 on H2(X;Z). If no such n exists, then we set ε−(Y, σ) = ∞.

In Section 5.3 we obtain upper bounds for ε(Y, σ), ε±(Y, σ) by constructing suit-

able embeddings. On the other hand we also prove the following lower bounds:

Proposition 1.17. Let Y be an integral homology 3-sphere and σ an orientation

preserving smooth involution on Y . We have:
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(1) If the delta-invariants δT∗ of (Y, σ) do not all vanish, then ε(Y, σ) ≥ 2.

(2) ε+(Y, σ) ≥ max{jR(Y, σ), 2jR(Y, σ)− 8δR∞(Y, σ)}.
(3) ε−(Y, σ) ≥ max{jE(Y, σ), 2jE(Y, σ)− 8δE∞(Y, σ)}.
(4) If δS0,1(Y, σ), δ

S
1,0(Y, σ) are both non-zero, then ε(Y, σ) ≥ 4.

(5) If the Rokhlin invariant of Y is non-zero and if δS0,∞(Y, σ), δS∞,0(Y, σ), δ
S
∞,1(Y, σ)

do not all have the same sign, then ε(Y, σ) ≥ 10.

For example, if Y = Σ2(T3,13) and σ is the covering involution. Then Y embeds

in S4 [9, Theorem 2.13], so ε(Y ) = 0. But we will show that ε−(Y, σ) = 24 and

2 ≤ ε(Y, σ) ≤ 6. In particular, ε(Y ), ε(Y,m), ε−(Y,m) take distinct values.

Topology of non-orientable surfaces bounding knots. Let K be a knot

in S3 and let S be a connected, properly embedded, non-orientable surface in D4

which bounds K. We consider a constraint on the topology of S obtained from the

type R delta-invariants of K. A similar application was considered in [20]. The

main difference is that our invariant can be calculated for a larger class of knots.

Let e(S) denote the relative Euler class of S with respect to the zero framing

on K. Since e(S) is valued in the orientation local system, we will identify e(S)

with an integer. Note that e(S) is always even because its value mod 2 is the

mod 2 self-intersection number of S, which is zero since H2(D4, S3;Z2) = 0. A

natural question to ask is for a given K, what possible values of (e(S), b1(S)) can

be attained? This problem is studied for torus knots in [2]. Here b1(S) is the first

Betti number of S.

Set x = σ(K) − e(S)/2 and y = b1(S). Then x, y ∈ Z, y ≥ 0, |x| ≤ y and

x = y (mod 2) (see Proposition 5.22). The following result concerns the boundary

case x = −y (the case x = y is similar, simply replace K by −K in the proposition).

Proposition 1.18. Suppose that x = −y, or equivalently σ(K)−e(S)/2 = −b1(S).
Then there exists a spinc-structure s on Σ2(K) for which δR∞(Σ2(K), s, σ) ≥ 0 and

δR0 (−Σ2(K), s, σ) ≤ 0, where σ is the covering involution on Σ2(K). Futhermore,

if δR∞(Σ2(K), s, σ) = 0 or δR0 (−Σ2(K), s, σ) = 0, then s is the unique spin structure

on Σ2(K).

If K is quasi-alternating (or more generally, if Σ2(K) is an L-space), then there

exists a spinc-structure s on Σ2(K) for which δ(Σ2(K), s) ≥ 0, with equality only

if s is the spin structure.

For example, we will show that if K belongs to one of the following classes

of knots then there does not exists a non-orientable surface S bounding K with

σ(K)− e(S)/2 = −b1(S):

(1) Torus knots Tp,q with p, q odd and µ(Σ(2, p, q)) > 0.

(2) Montesinos knots M(e; (a1, b1), . . . , (an, bn)) where a1, . . . , an are coprime,

ai is even for some i, e −
∑n

i=1 bi/ai = 1/(a1 · · · an) and satisfying

µ(Σ(a1, . . . , an)) < 0.
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1.3. Relation to other works. Recently there have been some papers related to

Seiberg–Witten Floer theory for Real spinc-structures [19, 20, 35]. The main dif-

ference between these works and ours is they are based on Seiberg–Witten theory

for σ-invariant configurations, while ours is based on σ-equivariant Seiberg–Witten

theory for the full space of configurations. Naturally one might expect a relation-

ship between the σ-invariant and σ-equivariant theories. However the relationship

is not as straightforward as one might initially expect. The construction of the

Seiberg–Witten Floer spectrum SWF (Y, s) involves desuspension by certain met-

ric dependent quantities. This metric dependence leads to difficulties in comparing

the two theories.

The paper [20] introduces a delta-invariant δR(Y, s, σ) for spin
c-structures of type

R and a pair of delta-invariants δR(Y, s, σ), δR(Y, s, σ) for spin structures of type S.

Some of the applications considered in this paper could possibly also be obtained

using these invariants. However, the invariants introduced in this paper have some

advantages. A main one is the existence of a spectral sequence (Theorem 3.3) which

relates HSW ∗
T to HSW ∗. We use this spectral sequence to deduce that our delta-

invariants coincide with the ordinary delta-invariant δ(Y, s) for L-spaces. There is

no corresponding result known for δR, δR, δR. Even for 3-manifolds which are not

L-spaces, the spectral sequence can be used to compute, or at least constrain the

value of the invariants. See the proof of Theorem 4.3 and [6, §3] illustrations of this.

A second advantage is that because our invariants δT∗ (Y, s, σ) depend on an index ∗,
they can provide more refined information than can be obtained from a single delta-

invariant. Rather than a single Frøyshov-type inequality, we obtain a whole series

of such inequalities. Furthermore, we can define invariants jE(Y, s, σ), jR(Y, s, σ)

to be the smallest value of j for which the sequences δEj (Y, s, σ), δRj (Y, s, σ) stabilise

(Definition 3.14). The invariants jE , jR have a number of applications as seen in

Propositions 5.6, 5.8, 5.16 which would not be possible to obtain with only a single

delta-invariant.

Also related to our work are the papers [32, 33]. These papers study equivariant

Seiberg–Witten Floer theory for spin structures. However, the invariants in these

papers are K-theoretical, whereas ours are cohomological.

1.4. Structure of the paper. In Section 2 we establish some preliminary re-

sults about involutions and the three types of spinc-structures featured in the pa-

per. In Section 2.1 we introduce and study the equivariant Seiberg–Witten Floer

cohomology groups for spinc-structures of the three types. We define the corre-

sponding delta-invariants and establish their key properties. The central result

is the equivariant Frøyshov inequality, Theorem 3.17. In Section 4 we consider

various constructions of rational homology 3-spheres with involution and calculate

their delta-invariants. The three types of constructions considered are equivari-

ant plumbing (§4.1), branched double covers of knots (§4.2) and equivariant Dehn

surgery (§4.3). In Section 5 we consider various applications of the delta-invariants,

namely obstructions to extending involutions over bounding 4-manifolds (§5.1),
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non-smoothable involutions on 4-manifolds with boundary (§5.2), equivariant em-

beddings of 3-manifolds in 4-manifolds (§5.3) and the topology of non-orientable

surfaces bounding knots (§5.4).

Acknowledgments. The first author was financially supported by an Australian

Research Council Future Fellowship, FT230100092. The second author was sup-

ported by the RDF Grant 3727359.

2. Involutions and spinc-structures

Let M be an oriented smooth manifold of dimension n = 3 or 4, let σ be an

orientation preserving smooth involution onM and let g be a σ-invariant metric on

M . Let s be a spinc-structure and P → M the corresponding principal Spinc(n)-

bundle. Let τ : Spinc(n) → Spinc(n) be the automorphism which is the identity

on Spin(n) and is complex conjugation on U(1). A Real or Quaternionic structure

on s is a lift σ̃ : P → P of σ such that σ̃(pg) = p̃τ(g) for all p ∈ P , g ∈ Spinc(4),

σ̃ projects to the derivative of σ on the frame bundle of M and σ̃2 = 1 in the Real

case, σ̃2 = −1 in the Quaternionic case.

If s is any spinc-structure onM and P →M the corresponding Spinc(n)-bundle,

then we obtain a new spinc-structure −s, the charge conjugate of s by declaring the

Spinc(n)-bundle of −s to be P τ , where P τ is the same underlying space as P , but

equipped with the right action (p, g) 7→ pτ(g). It follows that if s admits a Real or

Quaternionic structure, then σ∗(s) ∼= −s.

Let S → M denote the spinor bundle associated to s. A lift σ̃ : P → P τ of σ

to P induces a lift of σ to S which we will also denote by σ̃ : S → S. The map

σ̃ : S → S is antilinear, preserves the Hermitian structure and is compatible with

Clifford multiplication in the obvious way. Conversely a lift of σ to S with these

properties corresponds to a lift σ̃ : P → P τ . We will use these two points of view

interchangeably.

Proposition 2.1. Assume that b1(M) = 0. Let s be a spinc-structure on M . Then

s admits a Real or Quaternionic structure if and only if σ∗(s) ∼= −s. In such a

case the Real or Quaternionic structure is unique up to isomorphism (in particular

s can not admit both a Real and a Quaternionic structure).

Proof. We have already seen that if s admits a Real or Quaternionic structure, then

σ∗(s) ∼= −s. We prove the converse. Suppose that σ∗(s) ∼= −s. Then we can choose

an antilinear lift σ̃ : S → S of σ which covers the derivative of σ on the frame bundle.

The derivative of σ is an involution, hence σ̃2 = h for some U(1)-valued function

h. Since σ̃h = σ̃3 = hσ̃, we see that σ∗(h) = h−1. Since b1(M) = 0, we can write

h = e2πiu for some real-valued function u. The condition σ∗(h) = h−1 implies that

σ∗(u) = −u+ n for some integer n. Now let v be any real-valued function and set

g = e2πiv. Then g−1σ̃ is another antilinear lift of σ which covers the derivative of σ

on the frame bundle. Furthermore we have (g−1σ̃)2 = g−1σ∗(g)h = e2πi(u+σ∗(v)−v).
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We choose v = u/2. Then

u+ σ∗(v)− v = u+
1

2
σ∗(u)− 1

2
u = u+

1

2
(−u+ n)− 1

2
u = n/2.

Hence (g−1σ̃)2 = eπin = (−1)n and we get a Real or Quaternionic structure ac-

cording to whether n is even or odd. This proves existence.

For uniqueness, suppose that σ̃ is a lift of σ such that σ̃2 = ϵ = ±1. Any other

antilinear lift of σ which agrees with the derivative on the frame bundle is given by

g−1σ̃ for some S1-valued function g. Furthermore since b1(M) = 0, we can write g =

e2πiu for some real-valued function u. Then (g−1σ̃)2 = g−1σ∗(g)ϵ = e2πi(σ
∗(u)−u)ϵ.

For this to be a Real or Quaternionic structure we need σ∗(u)− u = n/2 for some

integer n. So σ∗(u) = u+ n/2. Then u = σ∗(σ∗(u)) = σ∗(u+ n/2) = u+ n, which

is only possible if n = 0. In particular, g−1σ̃ must have the same type as σ̃ (both

Real or both Quaternionic). Set h = eπiu. Then σ∗(h) = h and h2 = g. Therefore

h−1 ◦ σ̃ ◦ h = h−1σ∗(h)−1σ̃ = g−1σ̃.

Hence h : (S, g−1σ̃) → (S, σ̃) is an isomorphism of Real or Quaternionic structures.

□

For the purposes of Seiberg–Witten theory, it is convenient to choose a spinc-

connection which is preserved by a Real or Quaternionic structure. The following

result shows that this is possible in a strong sense.

Proposition 2.2. Assume that b1(M) = 0. Suppose that σ∗(s) ∼= −s. Let A be any

spinc-connection such that σ∗(FA) = −FA, where FA is the curvature of A. Then

there exists an antilinear lift σ̃ of σ which equals the derivative of σ on the frame

bundle, preserves A and squares to ±1. The lift σ̃ is unique up to multiplication by

an element of S1.

Proof. Choose any antilinear lift σ̃ of σ which equals the derivative on the frame

bundle. Then σ̃∗(A) = A + iµ for some real 1-form µ. Since σ∗(FA) = −FA, it

follows that dµ = 0. Since b1(M) = 0, we can write µ = du for a real-valued

function u. Then σ1 = eiσ
∗(u)σ̃ preserves A. It follows that σ2

1 = c for some

constant c ∈ S1. But cσ1 = σ3
1 = σ1c, hence c = c−1 and so c = ±1. Hence σ1 is

a Real or Quaternionic structure preserving A. The uniqueness statement follows

since the only gauge transformations preserving A are constants. □

Now suppose that s is a spinc-structure satisfying σ∗(s) ∼= s. Then in a similar

manner to Proposition 2.1, it can be shown that σ admits a linear involutive lift σ̃.

Moreover if A is any spinc-connection such that σ∗(FA) = FA, then we can choose

the lift to preserve A. If σ̃ is one such lift, then the only other lift is −σ̃. See [5,

§3.2] for more details.

Lastly, suppose that s is a spin-structure satisfying σ∗(s) ∼= s. Let σ̃ be a lift of

σ to the spinor bundles. In this case there are precisely two lifts and if σ̃ is one

of the lifts, then the other is −σ̃. These two lifts automatically preserve any spin
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connection. We then have σ̃2 = ±1 because σ̃2 is an automorphism of the spin

bundle covering the identity on the frame bundle. Recall that σ is said to be even

if σ̃2 = 1 and odd if σ̃2 = −1. If S is the complex spinor bundle associated to a

spin structure, then we have an antilinear map j : S → S called charge conjugation

which satisfies j2 = −1. Observe that if σ̃ is a linear lift of σ then, jσ̃ is an antilinear

lift. Moreover, σ̃ commutes with j, so (jσ̃)2 = −σ̃2. Therefore σ is even/odd if and

only the underlying spinc-structure of s is Quaternionic/Real.

In what follows, we will mainly be interested in the case of Real spinc-structures

or odd spin involutions. The reason for this is the following:

Proposition 2.3. Let M be an oriented 3-manifold. Let σ : M → M be an ori-

entation preserving involution with non-empty fixed point set. Then there are no

Quaternionic spinc-structures on M .

Proof. First recall that if σ is an orientation preserving involution which preserves

a spin structure, then every component of the fixed point set of σ has codimension

0 (mod 4) in the even case and codimension 2 (mod 4) in the odd case [3, Propo-

sition 8.46]. If M is a 3-manifold and the fixed point set is non-empty, then it

necessarily has codimension 2, so any spin involution must be odd. The argument

carries over to the spinc case, because any spinc-structure can locally be reduced

to a spin structure. □

We will treat spin structures (in dimensions n = 3 or 4) as spinc-structures

equipped with a charge conjugation symmetry. In other words, a spin structure

can be thought of as a spinc-structure s together with a map j : P → P τ , where

P →M is the principal Spinc(n)-bundle corresponding to s such that j covers the

identity on the frame bundle and j2 = −1.

Definition 2.4. Let M be a smooth, oriented manifold of dimension n = 3 or 4

and assume that b1(M) = 0. Let σ be a smooth orientation preserving involution

on M and let g be a σ-invariant metric. Let s be a spinc-structure on M and S the

associated spinor bundle. We say that s is

• equivariant type if σ∗(s) ∼= s. In this case σ can be lifted to a linear

involution on S.

• Real type if σ can be lifted to an antilinear involution on S. If n = 3 and the

fixed point set of σ is non-empty, this is equivalent to saying σ∗(s) ∼= −s.

• odd spin type if s is the spinc-structure underlying a spin structure for which

σ is an odd involution. In this case S admits a charge conjugation symmetry

j and a linear lift σ̃ of σ such that j and σ̃ commute and σ̃2 = −1.

We will use the letters E,R, S to denote the above three types of spinc-structure,

E for equivariant, R for Real and S for odd spin. We will sometimes use a letter T

to refer to any one of these three types, thus T ∈ {E,R, S}.
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2.1. Symmetry groups. Let M be a smooth, oriented manifold of dimension

n = 3 or 4 and assume that b1(M) = 0. Let σ be a smooth orientation preserving

involution on M and let g be a σ-invariant metric. Let s be a spinc-structure on

M and S the associated spinor bundle. Suppose that s has type T ∈ {E,R, S}.
Let A be a spinc-connection for s and let FA denote the curvature. Assume that

σ∗(FA) = FA in type E, σ∗(FA) = −FA in type R and assume that A is a spin

connection in type S (in particular, FA = 0). We define a group GT
s whose elements

are certain bundle maps of S covering the identity or σ:

• GE
s is the group generated by S1 and all linear lifts of σ to S which preserve

A.

• GR
s is the group generated by S1 and all antilinear lifts of σ to S which

preserve A.

• GS
s is the group generated by S1, j and all linear lifts of σ to S which

preserve A.

Note that different choices of spinc-connection A yield conjugate subgroups of

endomorphisms of S.

In types T = E,R, GT
s is an extension of Z2 = ⟨σ⟩ by S1:

1 → S1 → GT
s → Z2 → 1

In type E, σ lifts to a linear involution, so GE
s
∼= Z2 × S1. In type R, σ lifts to an

antilinear involution, so GR
s
∼= O(2).

In type S, GS
s is an extension of Z2 = ⟨σ⟩ by the group Pin(2) = S1 ∪ jS1:

1 → Pin(2) → GT
s → Z2 → 1.

Moreover, σ admits a lift σ̃ which squares to −1 and commutes with Pin(2).

Throughout this paper all cohomology groups will use coefficient field F = Z/2Z,
unless stated otherwise. Of particular interest will be the ring R∗

T = H∗
GT

s
(pt), the

GT
s -equivariant cohomology of a point (with F-coefficients). We have:

Proposition 2.5. We have isomorphisms:

(1) R∗
E
∼= F[s, u], deg(s) = 1, deg(u) = 2.

(2) R∗
R
∼= F[w1, w2], deg(w1) = 1, deg(w2) = 2.

(3) R∗
S
∼= F[s, v, q]/(v(v + s)2), deg(s) = 1, deg(v) = 1, deg(q) = 4.

In type E, the above isomorphism depends on a choice of splitting Z2 → GS
s .

The two isomorphisms R∗
E
∼= F[s, u] corresponding to the two different splittings are

related by the automorphism u 7→ u+s2, s 7→ s. In type R and S, the isomorphisms

do not depend on a choice of splitting.

Proof. Case (1) follows easily from the Künneth theorem since GE
s
∼= Z2 × S1. For

case (2), we note that since GR
s

∼= O(2), R∗
R is the ring of characteristic classes

for O(2) with coefficients in F, which is well known to be a polynomial ring in the

Stiefel–Whitney classes w1, w2.



16 DAVID BARAGLIA AND PEDRAM HEKMATI

Now we consider case (3). Recall [30] that H∗
Pin(2)(pt)

∼= F[v, q]/(v3) where

deg(v) = 1, deg(q) = 4 and H∗
Z2
(pt) ∼= F[s] where deg(s) = 1. We have a short

exact sequence

1 → Pin(2) → GS
s → Z2 = ⟨σ⟩ → 1.

Choose a lift σ̃ of σ which squares to −1 and commutes with Pin(2). This deter-

mines a splitting Z2 → GS
s of the above sequence which maps σ to jσ̃. Then it

follows from the Lyndon–Hochschild–Serre spectral sequence that

H∗
GS

s
(pt) ∼= F[s, v, q]/(v3 + · · · )

where v3 + · · · denotes a degree 3 polynomial in v and s. The unknown terms in

v3 + · · · are some linear combination of v2s, vs2 and s3.

The class s is the pullback of the generator of H1
Z2
(pt) to H∗

GS
s
(pt) under the

homomorphism ϕσ : G
S
s → Z2 which sends σ̃ to −1 and j to +1. Similarly, v is the

pullback under the homomorphism ϕj : G
S
s → Z2 which sends σ̃ to +1 and j to −1.

We must have a relation of the form v3 + Av2s + Bvs2 + Cs3 = 0 for some

A,B,C ∈ F. Consider the homomorphism ψ : Z2 → GS
s which sends −1 to iσ̃.

Since the composition ϕσ ◦ ψ : Z2 → Z2 is the identity, we see that ψ∗(s) is the

generator of H∗
Z2
(pt). On the other hand, ϕj ◦ ψ : Z2 → Z2 is the trivial map and

hence sends v to 0. Therefore the relation v3+Av2s+Bvs2+Cs3 = 0 when pulled

back by ψ gives Cs3 = 0, hence C = 0.

Next we consider the Lyndon–Hochschild–Serre spectral sequence {Ep,q
r , dr} as-

sociated to O(2) → GS
s → Z2. Here the map ϕ : GS

s → Z2 is the product of ϕj
and ϕσ. Letting ρ ∈ H1

Z2
(pt) denote a generator of the cohomology of this copy

of Z2, then we have ϕ∗(ρ) = v + s. Recall that H∗
O(2)(pt)

∼= F[w1, w2]. Since

H1
GS

s
(pt) ∼= F2, there is no differential on E0,1

2 . Since H2
GS

s
(pt) ∼= F3, we must have

a non-zero differential in the (p, q) = (0, 2) position. In fact, either d2(w2) ̸= 0 or

d2(w2) = 0, d3(w2) ̸= 0. In the latter case we must then have d3(w2) = ρ3 = (v+s)3,

which would imply that v3 + v2s + vs2 + s3 = 0 and hence A = B = C = 1.

But this contradicts our previous calculation which showed that C = 0. Hence

d2(w2) ̸= 0. This means d2(w2) = ρ2w1. Now since w1 = v (mod (v + s)) and

d2(w2) = ρ2w1 = (v + s)2w1, we get (v + s)2v = 0 (mod (v + s)3). Hence either

v(v+s)2 = 0 or v(v+s)2 = (v+s)3. The former gives v3+vs2 = 0, the latter gives

v2s + s2 = 0 which is not possible. So the relation satisfied by v is v(v + s)2 = 0

and hence

H∗
GS

s
(pt) ∼= F[s, v, q]/(v(v + s)2).

We now show that the above isomorphism does not depend on the choice of lift σ̃.

For this it is helpful to interpret the ring F[s, v, q]/(v(v+s)2) as follows. Define the

ring H∗
S to be the image of H∗

Z2×Z2
(pt) under the pullback H∗

Z2×Z2
(pt) → H∗

GS
s
(pt)

induced by the homomorphism GS
s → Z2 × Z2. Then H∗

S
∼= F[s, v]/(v(v + s)2)

and H∗
GS

s
(pt) ∼= H∗

S [q]
∼= F[s, v, q]/(v(v + s)2), the isomorphism depending only on

the choice of a class q ∈ H4
GS

s
(pt) which restricts to q ∈ H4

Pin(2)(pt) under the

inclusion Pin(2) → GS
s . We show below that the class q can be chosen in a manner
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that does not depend on the choice of lift. We can take q to be q = w4(Hi),

where Hi is defined as follows. Let H be the quaternion representation of Pin(2).

There are exactly two ways to extend this to a representation of G, namely we

can take σ̃ to act as +i or as −i. We denote these two representations as Hi,H−i.

Notice however that if we change the lift σ̃ to −σ̃ then the roles of Hi,H−i are

reversed. Now since Hi is a complex representation its odd Stiefel–Whitney classes

are zero and its even ones are the mod 2 reductions of the Chern classes. In

particular w2(Hi) = c1(det(Hi)). Now eiθ and j act trivially on det(Hi), but σ̃ acts

as det(i, i) = i2 = −1. It follows that w2(Hi) = s2. Then, since H−i = Hi⊗RR1,−1,

where R1,−1 denotes the representation where j = 1, σ̃ = −1, it follows that

w4(H−i) = q + s2w2(Hi)s
2 + s4 = q + s4 + s4 = q. Thus, changing the splitting

does not change q. □

3. Seiberg–Witten Floer theory for involutions

In this section we construct equivariant versions of Seiberg–Witten Floer coho-

mology for a rational homology 3-sphere equipped with a spinc-structure of type

E,R, or S.

Let Y be a rational homology 3-sphere (a compact, oriented, smooth 3-manifold

with b1(Y ) = 0) and let s be a spinc-structure on Y . Let g be a metric on Y .

Manolescu constructed an S1-equivariant stable homotopy type SWF (Y, s, g) [29]

and defined the Seiberg–Witten Floer cohomology HSW ∗(Y, s) of (Y, s) by setting

HSW ∗(Y, s) = H̃
∗+2n(Y,s,g)
S1 (SWF (Y, s, g))

where

n(Y, s, g) =
1

2
η(DA)−

1

2
k(DA)−

1

8
ηsign

where A is a flat spinc-connection, DA is the associated Dirac operator, η(DA) is

the eta invariant of DA, k(DA) is the complex dimension of the kernel of DA and

ηsign is the eta invariant of the signature operator. The definition of HSW ∗(Y, s)

appears to depend on the choice of metric g (and on some other auxiliary choices

used to construct SWF (Y, s, g)), but it is shown in [29] that the cohomology groups

for different choices are related by canonical isomorphisms. From the definition it is

clear that the group HSW ∗(Y, s) is a graded module over the ring H∗
S1(pt) ∼= F[u]

where deg(u) = 2.

The Seiberg–Witten Floer cohomology groups are known to be isomorphic to

other types of Floer cohomology, namely monopole Floer [27] and Heegaard Floer

homology [21, 22, 23, 24, 25, 10, 11, 12, 49]. To be precise, we have isomorphisms

of F[u]-modules:

HSW ∗(Y, s) ∼= HF ∗
+(Y, s)

where HF ∗
+(Y, s) denotes the plus version of Heegaard Floer cohomology with co-

efficients in F. In the case that s is a spin structure, the stable homotopy type
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SWF (Y, s, g) can be constructed Pin(2)-equivariantly and following Manolescu [30]

we can define a Pin(2)-equivariant version of Seiberg–Witten Floer cohomology

HSW ∗
spin(Y, s) = H̃

∗+2n(Y,s,g)
Pin(2) (SWF (Y, s, g))

(the notation HSW ∗
spin(Y, s) is non-standard, but is chosen to avoid confusion with

equivariant Seiberg–Witten Floer cohomology as defined below).

In [5], we constructed an equivariant version of Seiberg–Witten Floer cohomology

in the presences of a finite group G acting orientation preservingly on Y which

preserves the isomorphism class of s. In more detail, suppose we fix a G-invariant

flat spinc-connection A. Then we define Gs to be the group of all possible linear

lifts of G to the spinor bundle of s which preserves A. This group is a central

extension of G by S1. One can carry out Manolescu’s construction of the stable

homotopy type SWF (Y, s, g) equivariantly with respect to Gs. Then we defined

the G-equivariant Seiberg–Witten Floer cohomology of (Y, s) by

HSW ∗
G(Y, s) = H̃

∗+2n(Y,s,g)
Gs

(SWF (Y, s, g)).

Suppose now that G = Z2 = ⟨σ⟩ is a group of order 2 generated by an involution

on Y . Suppose that s has type T ∈ {E,R, S}. In Section 2.1 we constructed a group

GT
s which acts on the spinor bundle of s. By a straightforward extension of the

construction in [5], we can construct SWF (Y, s, g) equivariantly with respect to the

group GT
s . Then we can use this to define an appropriate notion of Seiberg–Witten

Floer cohomology of types E,R, S.

Definition 3.1. Let Y be a rational homology 3-sphere, σ a smooth, orientation

preserving diffeomorphism and s a spinc-structure of type T ∈ {E,R, S}. We define

the type T Seiberg–Witten Floer cohomology of (Y, s, σ) by

HSW ∗
T (Y, s, σ) = H̃

∗+2n(Y,s,g)

GT
s

(SWF (Y, s, g)).

By this definition HSW ∗
T (Y, s, σ) is an invariant of the triple (Y, s, σ). Moreover

it is a graded module over the ring R∗
T .

Remark 3.2. The case T = E is simply the equivariant Seiberg–Witten Floer coho-

mology of (Y, s) as defined in [5] in the special case that G ∼= Z2. The cases T = R

and T = S are new.

In all three types T ∈ {E,R, S}, GT
s contains a canonically defined S1 subgroup.

Let QT
s be the quotient so that we have a short exact sequence

1 → S1 → GT
s → QT

s → 1.

In types T = E,R, we have QT
s
∼= Z2 and in type T = S we have QS

s
∼= Z2 × Z2.

Note that S1 acts trivially on HSW ∗(Y, s) and so the natural action of GT
s on

HSW ∗(Y, s) factors though QT
s and makes HSW ∗(Y, s) into a QT

s -module.
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Theorem 3.3. Let Y be a rational homology 3-sphere, σ a smooth, orientation

preserving diffeomorphism and s a spinc-structure of type T ∈ {E,R, S}. There is

a spectral sequence Ep,q
r abutting to HSW ∗

T (Y, s, σ) whose second page is

Ep,q
2 = Hp(BQT

s ;HSW
q(Y, s)).

Proof. This is a straightforward extension of [5, Theorem 3.2]. □

We say that Y is an L-space with respect to spinc-structure s and coefficient

group F if HSW ∗(Y, s) (taken with F-coefficients) is a free F[u]-module of rank 1,

where F[u] = H∗
S1(pt) is the S1-equivariant cohomology of a point.

Corollary 3.4. Suppose Y is an L-space with respect to s. Then HSW ∗(Y, s) is

a free R∗
T -module of rank 1 with generator in degree d(Y, s), the d-invariant of Y

(with respect to s and F).

Proof. In the case T = E, this follows from [5, Theorem 3.5]. The idea of the proof

is that if Y is an L-space, then the spectral sequence of Theorem 3.3 can be shown

to degenerate as E2. The cases T = R,S are very similar so we omit the proof. □

For T ∈ {E,R, S}, let H∗
T be the graded ring which is the image of the map

H∗
QT

s
(pt) → H∗

GT
s
(pt) = R∗

T induced by the quotient map GT
s → QT

s . Then from

Proposition 2.5 it follows that:

(1) H∗
E
∼= F[s] and R∗

E
∼= H∗

E [u].

(2) H∗
R
∼= F[w1] and R

∗
E
∼= H∗

R[w2].

(3) H∗
S
∼= F[s, v]/(v(v + s)2) and R∗

S
∼= H∗

S [q].

Let H∗≥j
T =

⊕
k≥j H

k
T . Let I∗T = H∗≥1

T . If M∗ is a graded H∗
T -module (in partic-

ular, M∗ could be a graded R∗
T -module, which by restriction can be regarded as a

H∗
T -module), then we let M̂∗ denote the I∗T -adic completion of M∗.

Lemma 3.5. Let S be the multiplicative subset of R∗
E = F[s, u] generated by u

and u + s2. Let M∗ be a graded R∗
E-module. Then we have an isomorphism

Ŝ−1M∗ ∼= û−1M∗, where u−1M∗ denotes the localisation of M∗ with respect to

the multiplicative subset generated by u. In particular, if M∗ = R∗
E, then Ŝ

−1R∗
E
∼=

(F[u, u−1])[[s]].

Proof. Since S is generated by u and u + s2, it suffices to show that u + s2 is

invertible in û−1M∗. In fact, we have 1 = (u+ s2)(u−1+u−2s2+u−3s4+ · · · ). □

Proposition 3.6. Let Y be a rational homology 3-sphere, σ a smooth, orientation

preserving diffeomorphism and s a spinc-structure of type T ∈ {E,R, S}. Then we

have an isomorphism:

(1) ̂u−1HSW
∗
E(Y, s, σ)

∼= (F[u, u−1])[[s]]θ for some homogeneous element θ ̸=
0 (mod I∗E).
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(2) ̂w−1
2 HSW

∗

R(Y, s, σ)
∼= (F[w2, w

−1
2 ])[[w1]]θ for some homogeneous element

θ ̸= 0 (mod I∗R).

(3) ̂q−1HSW
∗
S(Y, s, σ)

∼= (F[q, q−1])[[s, v]]/(v(v + s)2)θ for some homogeneous

element θ ̸= 0 (mod I∗S).

Proof. We consider case (1), the other cases being similar. Here we have GE
s

∼=
Z2 × S1. Recall [5, §3] that SWF (Y, s, g) has the form SWF (Y, s, g) = Σ−V C

where V is some finite dimensional representation of GE
s and C is the Conley index

of a finite-dimensional approximation of the gradient flow of the Chern–Simons–

Dirac functional.

Let S be the multiplicative subset ofH∗
GE

s
(pt) ∼= F[s, u] generated by u and u+s2.

We will apply the localisation theorem [13, III (3.8)] to the inclusion ι : CS1 → C,

where CS1

is the fixed point set of the S1 subgroup. In order to apply the localisa-

tion theorem we need to check that every orbit type in C \CS1

is of the form GE
s /H

where H ∈ F(S) = {H | S∩Ker(H∗
GE

s
(pt) → H∗

H(pt)) ̸= ∅}. Since S1 acts freely on

C\CS1

[5, §2,3], we see that the only possible stabilisers areH = {1}, ⟨σ⟩, ⟨(−1, σ)⟩.
In the case H = ⟨σ⟩, u ∈ Ker(H∗

GE
s
(pt) → H∗

H(pt))). In the case H = ⟨(−1, σ)⟩,
u + s2 ∈ Ker(H∗

GE
s
(pt) → H∗

H(pt))). So the localisation theorem applies and says

that ι∗ : S−1H̃∗
GE

s
(CS1

) → S−1H̃∗
GE

s
(C) is an isomorphism. It can be shown (see [5,

§2,3]) that CS1

is the one-point compactification of a finite-dimensional represen-

tation of GE
s , hence H̃

∗
GE

s
(CS1

) ∼= F[s, u]θ for some θ, by the Thom isomorphism.

So the localisation theorem gives an isomorphism S−1H̃∗
GE

s
(pt) ∼= S−1F[s, u]θ. Ap-

plying Lemma 3.5 gives

̂
u−1H̃∗

GE
s
(C) ∼= ̂

S−1H̃∗
GE

s
(C)

∼= ̂S−1F[s, u]θ
∼= (F[u, u−1])[[s]]θ.

The result follows since HSW ∗
E(Y, s, σ) and H̃

∗
GE

s
(C) are equal, up to a grading

shift. □

Remark 3.7. In [5] the localisation theorem [13, III (3.8)] was incorrectly applied to

the multiplicative subset generated by u alone. However this error does not affect

any of the results of [5] as we now explain. We saw in the proof of Proposition 3.6,

in the case G = Z2, one needs to use the multiplicative subset generated by u and

u+ s2. More generally, for any finite group G, one should localise with respect to

the multiplicative set S generated by elements of the form u+a, where a ranges over

H2
G(pt). However, the analogue of Lemma 3.5 shows that localising with respect

to S and localising with respect to u alone become isomorphic upon completion

in the I∗-adic topology. Now we observe that the definition of the δ-invariants

[5, Definition 3.7] in that paper only uses truncation to finite order in the I∗-adic

topology. Hence they are unaffected by taking a completion.
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The element θ in Proposition 3.6 is not uniquely determined, however it is unique

modulo I∗T and powers of u (or w2 or q). That is, if θ, θ′ are two elements for which

the isomorphism in Proposition 3.6 holds, then θ′ = ξkθ (mod I∗T ) for some k ∈ Z,
where ξ = u,w2, or q depending on T .

Definition 3.8. Let Y be a rational homology 3-sphere, σ a smooth, orientation

preserving diffeomorphism and s a spinc-structure of type T ∈ {E,R, S}. Set ξ = u,

w2, or q according to whether T is E,R, or S. Let

φ : ̂ξ−1HSW ∗
T (Y, s, σ) → Ĥ∗

T [ξ, ξ
−1]θ

be an isomorphism as in Proposition 3.6. Let c ∈ H∗
T be a non-zero homogeneous

element of degree |c|. Define

dTc (Y, s, σ) = min{i | ∃x ∈ HSW i
T (Y, s, σ) ξ

nφ(x) = cξkθ (mod (I∗T )
|c|+1)} − |c|.

It is easily verified that this does not depend on the choice of φ or θ.

We set dT0 (Y, s, σ) = 0. Finally, if c ∈ H∗
T is any non-zero element, write c =

c0+c1+· · ·+ck, where ci has degree i. Then we set dTc (Y, s, σ) = maxi{dTci(Y, s, σ)}.

For convenience we also define δTc (Y, s, σ) by setting δTc (Y, s, σ) = dTc (Y, s, σ)/2.

The following properties of the delta-invariants follows by a straightforward ex-

tension of [5, §3.5-3.7].

Proposition 3.9. The δ-invariants satisfy the following properties:

(1) δTc1+c2(Y, s, σ) ≤ max{δTc1(Y, s, σ) + δTc2(Y, s, σ)}.
(2) δTc1c2(Y, s, σ) ≤ min{δTc1(Y, s, σ), δ

T
c2(Y, s, σ)}.

(3) δT1 (Y, s, σ) ≥ δ(Y, s), where 1 ∈ H∗
T is the identity element and δ(Y, s) is

the ordinary δ-invariant of (Y, s).

(4) If Y is an L-space with respect to s and F, then δTc (Y, s, σ) = δ(Y, s) for all

non-zero c.

(5) For all T and c, δTc (Y, s, σ) = δ(Y, s) (mod Z). Furthermore δSc (Y, s, σ) =

µ(Y, s) (mod 2Z) where µ(Y, s) is the generalised Rokhlin invariant, as

defined in [30].

Remark 3.10. We can extend the definition of (ordinary and equivariant) Seiberg–

Witten Floer cohomology and (ordinary and equivariant) delta-invariants to the

case that Y is a (possibly empty) disjoint union of rational homology spheres,

provided that σ preserves the connected components of Y . To do this, suppose that

Y = ∪n
i=1Yi where the Yi are the connected components of Y . Then we simply define

SWF (Y, s, g) to be the smash product SWF (Y, s, g) = ∧n
i=1SWF (Y, s|Yi , g|Yi) (in

the case Y is empty, SWF (Y, s, g) = S0). Then we can define HSW ∗(Y, s) =

H̃
∗+2n(Y,s,g)
S1 (SWF (Y, s, g)) and when s has type T ,HSW ∗

T (Y, s) is defined similarly.

Then we can define the (ordinary and equivariant) delta-invariants of Y in exactly

the same way as in the connected case. It follows easily from the Eilenberg–Moore

spectral sequence that δ(Y, s) =
∑n

i=1 δ(Yi, s|Yi
).
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Definition 3.11. Let Y be a rational homology 3-sphere, σ a smooth, orientation

preserving diffeomorphism and s a spinc-structure of type T ∈ {E,R, S}. We define

the following invariants:

(1) If T = E, we set δEj (Y, s, σ) = δEsj (Y, s, σ) for j ≥ 0.

(2) If T = R, we set δRj (Y, s, σ) = δR
wj

1

(Y, s, σ) for j ≥ 0.

(3) If T = S, we set δSi,j(Y, s, σ) = δSvi(v+s)j (Y, s, σ) for i, j ≥ 0.

Note that in type S, since v(v+ s)2 = 0, we have δSi,j(Y, s, σ) = −∞ unless i = 0

or j ≤ 1. So the interesting invariants in this case are of the form δS0,j(Y, s, σ),

δSj,0(Y, s, σ) or δ
S
j,1(Y, s, σ).

Remark 3.12. Suppose that Y is an integral homology 3-sphere with an orientation

preserving involution σ. Then Y has a unique spinc-structure s which has all three

types with respect to σ. In this case we will sometimes omit s from the notation.

Proposition 3.13. The delta-invariants have the following properties:

(1) For T = E or R, the sequence δTj (Y, s, σ) is decreasing and there is an

N ≥ 0 such that δTj (Y, s, σ) is independent of j for j ≥ N .

(2) For T = S, δSi,j(Y, s, σ) is decreasing in the sense that δSi′,j′(Y, s, σ) ≤
δSi,j(Y, s, σ) whenever i

′ ≥ i, j′ ≥ j. There is an N ≥ 0 such that δS0,j(Y, s, σ),

δSj,0(Y, s, σ) and δ
S
j,1(Y, s, σ) are independent of j for j ≥ N .

(3) For T = E or R, δTi (Y, s, σ) + δTj (−Y, s, σ) ≥ 0 for all i, j. Similarly for

T = S, δSi,j(Y, s, σ) + δSk,l(−Y, s, σ) ≥ 0 for all i, j, k, l with i = k = 0 or

j + l ≤ 1.

Proof. Once again, these properties follow from a straightforward extension of the

proofs in [5]. □

In light of Proposition 3.13, we can make the following definitions:

Definition 3.14. Let Y be a rational homology 3-sphere, σ a smooth, orientation

preserving diffeomorphism and s a spinc-structure of type T ∈ {E,R, S}. We define

the following invariants:

(1) If T = E or R, we define δT∞(Y, s, σ) = limj→∞ δTj (Y, s, σ) and we let

jT (Y, s, σ) denote the smallest j ≥ 0 such that δTj (Y, s, σ) = δT∞(Y, s, σ).

(2) If T = S, we define δS0,∞(Y, s, σ) = limj→∞ δS0,j(Y, s, σ). We define δS∞,0(Y, s, σ)

and δS∞,1(Y, s, σ) similarly.

Let Y1, Y2 be rational homology 3-spheres equipped with orientation preserving,

smooth involutions σ1, σ2. Assume that the fixed point sets of σ1, σ2 are non-empty.

Since σ1, σ2 act orientation preservingly, their fixed point sets are 1-dimensional.

This implies that σ1, σ2 have the same local form about any fixed point. Let y1 ∈ Y1,

y2 ∈ Y2 be fixed points. Then we can remove σi-invariant balls B1, B2 around y1, y2
and identify their boundaries orientation reversingly to form the Z2-equivariant
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connected sum Y = Y1#Y2 with involution σ = σ1#σ2. The construction of σ

depends on the choice of points y1, y2, but we do not indicate this in the notation.

Let s1, s2 be σi-invariant spin
c-structures on Y1, Y2 and set s = s1#s2. If s1, s2

both have type T ∈ {E,R, S}, then so does s. The proof of [4, Proposition 3.1] can

easily be adapted and gives the following.

Proposition 3.15. If T = E or R, then

δTi+j(Y, s, σ) ≤ δTi (Y1, s1, σ1) + δTj (Y2, s2, σ2)

for all i, j ≥ 0. If T = S, then

δSi+k,j+l(Y, s, σ) ≤ δSi,j(Y1, s1, σ1) + δSk,l(Y2, s2, σ2)

for all i, j, k, l ≥ 0 such that i = k = 0 or j + l ≤ 1.

Let l(Y, s) ∈ Q denote the lowest degree in which HSW ∗(Y, s) is non-zero (or

equivalently, the lowest degree in whichHF+
∗ (Y, s) is non-zero). From [42, Corollary

6.3] we see that l(Y1#Y2) ≥ l(Y1) + l(Y2).

Proposition 3.16. Let Y be a rational homology 3-sphere, σ a smooth, orienta-

tion preserving diffeomorphism and s a spinc-structure of type T ∈ {E,R}. Then

δTj (Y, s, σ) ≥ (l(Y, s) − j)/2 and jT (Y, s, σ) ≥ l(Y, s) − 2δT∞(Y, s, σ). Similarly

δSi,j(Y, s, σ) ≥ (l(Y, s)− i− j)/2.

Proof. Set δ = δTj (Y, s, σ). By the definition of δTj (Y, s, σ), there exists some x ∈
HSW 2δ+j

T (Y, s, σ) such that ξnφ(x) = cjξkθ (mod (I∗T )
j+1) where ξ, φ, θ are as in

Definition 3.8 and c = s if T = E, c = w1 if T = R. But from the spectral sequence

of Theorem 3.3 we see that the lowest degree in which HSW ∗
T (Y, s, σ) is non-zero

is at least l(Y, s). Hence 2δ + j ≥ l(Y, s), or δTj (Y, s, σ) ≥ (l(Y, s) − j)/2. In the

case j = jT (Y, s, σ) we have δ = δTj (Y, s, σ) = δT∞(Y, s, σ) and thus jT (Y, s, σ) ≥
l(Y, s) − 2δT∞(Y, s, σ). The proof that δSi,j(Y, s, σ) ≥ (l(Y, s) − i − j)/2 follows by

essentially the same argument. □

3.1. Behaviour under cobordisms. The most important property of the delta-

invariants is their behaviour under cobordisms. Suppose that W is smooth, com-

pact, oriented 4-manifold with boundary a disjoint union of rational homology

spheres and with b1(W ) = 0. Suppose that σ is an orientation preserving smooth

involution onW . Let s be a spinc-structure onW of type T . Since the boundary of

W is a union of rational homology 3-spheres, we have H2(W,∂W ;R) ∼= H2(W ;R)
and hence we obtain a non-degenerate intersection form on H2(W ;R). Let H+(W )

denote a σ-invariant maximal positive definite subspace of H2(W ;R). Since the

space of σ-invariant, maximal positive definite subspaces of H2(W ;R) is connected,
it follows that the isomorphism class of H+(W ) as a Z2-module does not depend

on the choice of subspace.

For (W, s) as above, we define δ(W, s) ∈ Q by

δ(W, s) =
c1(s)

2 − σ(W )

8
.
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The following result is a straightforward adaptation of [5, Theorem 4.1, Theorem

5.3]:

Theorem 3.17. Let W be a smooth, compact, oriented 4-manifold with boundary

and with b1(W ) = 0. Suppose that σ is an orientation preserving smooth involution

on W . Let s be a spinc-structure on W of type T ∈ {E,R, S}. Suppose each

component of ∂W is a rational homology sphere and that σ sends each component

to itself.

Suppose that ∂W = Y1 ∪ −Y0. Then:

(1) In type T = E, suppose that the σ-invariant subspace of H2(W ;R) is neg-

ative definite. Then

δEj+b+(W )(Y0, s|Y0 , σ|Y0) + δ(W, s) ≤ δEj (Y1, s|Y1 , σ|Y1)

for all j ≥ 0.

(2) In type T = R, suppose that the σ-anti-invariant subspace of H2(W ;R) is

negative definite. Then

δRj+b+(W )(Y0, s|Y0
, σ|Y0

) + δ(W, s) ≤ δRj (Y1, s|Y1
, σ|Y1

)

for all j ≥ 0.

(3) In type T = S, let b+(X)σ, b+(X)−σ denote the dimensions of the σ-

invariant/anti-invariant subspaces of H+(X). Then

δSi+b+(W )σ,j+b+(W )−σ (Y0, s|Y0
, σ|Y0

) + δ(W, s) ≤ δSi,j(Y1, s|Y1
, σ|Y1

)

for all i, j ≥ 0 such that either i+ b+(W )σ = 0 or j + b+(W )−σ ≤ 1.

Remark 3.18. In Theorem 3.17, we can allow Y0, Y1 to be a (possibly empty) union

of rational homology spheres. In this case the delta-invariants of Yi should be de-

fined as per Remark 3.10. In particular, if Y0 or Y1 is empty, then the corresponding

delta-invariant is zero.

Remark 3.19. Theorem 3.17 implies in particular that δEj , δ
R
j , δ

S
i,j are equivariant

rational homology cobordism invariants. To be precise, this means the following.

Let Y0, Y1 be rational homology 3-spheres. For i = 0, 1 let σi be a smooth orien-

tation preserving involution on Yi and let si be a spinc-structure on Yi of type T

(same type for Y0 and Y1). Let W be a smooth, compact, oriented cobordism from

Y0 to Y1 and suppose that the inclusions Yi →W for i = 0, 1 induce isomorphisms

in rational cohomology. Suppose that there is an orientation preserving smooth

involution σ on W which restricts to σi on Yi and a spinc-structure on W of type T

which restricts to si on Yi. Then δ
T
j (Y0, s0, σ0) = δTj (Y1, s1, σ1) for all j if T = E,R

or δSi,j(Y0, s0, σ0) = δSi,j(Y1, s1, σ1) for all i, j if T = S.

4. Constructions

4.1. Plumbing graphs. Let Γ be a plumbing graph. By definition this means that

Γ is a finite undirected graph with no cycles and at most one edge between any two

vertices. Γ can be disconnected in which case we will interpret the corresponding
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b

a11 a12 a13 a1m1

a21 a22 a23 a2m2

an1 an2 an3 anmn

a31

Figure 2. Star-shaped plumbing graph.

plumbed 4-manifold to be a disjoint union. Let x1, . . . , xn be the vertices of Γ.

Associate to each vertex xi an integer weight di, which we will refer to as the degree

of the vertex.

Let us recall the construction of the plumbing according to Γ [39, §2], [47, §1.1.9].

Let D2 denote the closed unit disc in C. Associate to each vertex xi the D
2-bundle

Xi over S2 with Euler class di. If xi has ki edges connected to it, choose ki
disjoint closed discs Dij in the base of Xi, one for each j such that xj is joined to

xi by an edge. Since Dij is a disc, Xi|Dij can be identified with the trivial disc

bundle Xi|Dij
∼= D2 ×D2. Now glue Xi and Xj together by identifying Xi|Dij

and

Xj |Dji
, exchanging the base and fibre coordinates. This construction produces a

manifold with corners. Smoothing the corners yields a compact, oriented smooth

4-manifold XΓ with boundary. We call XΓ a plumbing (according to Γ). The

boundary YΓ = ∂XΓ will be called the boundary of the plumbing (according to Γ).

The connected components of XΓ and YΓ are in bijection with the components of

Γ and each component of XΓ is simply-connected.

The cohomology group H2(XΓ, YΓ;Z) has a basis {ei} given by the Poincaré

duals of the zero sections of the disc bundles Xi → S2. Let A(Γ) = A(Γ)ij be

the matrix where A(Γ)ii = di, A(Γ)ij = 1 if i, j are distinct and xi, xj are joined

by an edge and A(Γ)ij = 0 otherwise. The intersection form on H2(XΓ, YΓ;Z)
is given by ⟨ei, ej⟩ = A(Γ)ij . If Γ is connected, then YΓ is a rational homology

sphere if and only if det(A(Γ)) ̸= 0. If this holds then |H1(YΓ;Z)| = |det(A(Γ))|.
More generally, each component of YΓ is a rational homology sphere if and only

if det(A(Γ)) ̸= 0. All plumbing graphs considered in this paper will be assumed

to satisfy this condition. We define σ(Γ), b+(Γ), b−(Γ) to equal the corresponding

invariants of XΓ.

A particularly interesting class of plumbed 3-manifold are those given by plumb-

ing on a star-shaped graph, see Figure 2. All such plumbings are Seifert fibre

spaces. Given integers b, α1, . . . , αn, β1, . . . , βn where αi, βi are coprime and βi ̸= 0
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for all i, define the Seifert manifold Y (b; (α1, β1), . . . , (αn, βn)) to be surgery on

the framed link given in Figure 3. This is a rational homology sphere if and only

if b −
∑n

i=1 βi/αi ̸= 0. The Seifert structure on Y = Y (b; (α1, β1), . . . , (αn, βn))

completely determines the values of b, α1, . . . , αn, β1, . . . , βn up to a sequence of

transformations of the form b 7→ b+ k, βi 7→ βi + kαi for some i.

For integers a0, . . . , am, let [a1, a2, . . . , am] be the negative continued fraction

[a1, a2, . . . , am] = a1 −
1

a2 − . . . − 1
am

.

The Euclidean algorithm implies that any rational number can be written as a

negative continued fraction. Now write αi/βi = [ai1, a
i
2, . . . , a

i
mi

] for some integers

{aij}. Then we claim that the boundary YΓ of the plumbing in Figure 2 is the

Seifert manifold Y (b; (α1, β1), . . . , (αn, βn)). To see this, recall that the boundary of

a plumbing graph Γ can also be constructed as surgery on a link whose components

are all unknots [47, §1.1.9]. Applying this to the pluming graph of Figure 2 and

repeatedly performing the reverse slam dunk operation ([17, §5.3]), we obtain the

surgery diagram in Figure 3.

b

α1

β1

α2

β2

• • • •

αn

βn

Figure 3. Surgery diagram for Y (b; (α1, β1), . . . , (αn, βn)).

We will be particularly interested in the case of plumbing graphs Γ where every

vertex has even degree, for this is precisely the condition for the plumbing XΓ to

be spin.

Lemma 4.1. Let r = p/q ∈ Q be a rational number where p, q are coprime and p

or q is even. Then there exists even integers a1, . . . , an such that r = [a1, . . . , an].

Proof. Let a be the closest even integer to r. Note that a is unique, for if there are

exactly two even integers closest to r then r is an odd integer, which is impossible

since then r = r/1 = p/q, so p = r and q = 1 are both odd. If r is an even integer,
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then r = a and we are done. Otherwise r = a− 1/r′, where r′ = 1/(a− r). Write

p = αq + b where 0 < b < q. Then a is either α or α+ 1. If a = α, then r′ = −q/b.
If a = α + 1, then r′ = q/(q − b). In either case the denominator of r′ is strictly

less than q. Hence iterating this process will eventually terminate. □

Corollary 4.2. Every Seifert manifold Y = Y (b; (a1, b1), . . . , (an, bn)) with at least

one ai even is the boundary of a star-shaped plumbing graph with every vertex having

even degree.

Proof. If ai and bi are both odd, replace bi by bi + ai and b by b + 1. Hence

we can assume for each i that at least one of ai, bi is even. After making these

replacements, if b is odd, choose an i such that ai is even and replace bi by bi + ai
and b by b+ 1. By Lemma 4.1 we may write ai/bi = [ai1, . . . , a

i
mi

] where aij is even

for all i, j. Then Y is the boundary of the plumbing graph given in Figure 2, where

all the degrees are even. □

By an equivariant plumbing we mean that we perform plumbing on a graph Γ in

such a way that each individual disc bundle has a group action and these actions

fit together when we perform the plumbing. In what follows, we will consider a few

different types of equivariant plumbing.

4.1.1. Complex conjugation. Every plumbingXΓ can be made into a Z2-equivariant

plumbing as follows. Identify S2 with the Riemann sphere CP1 and identify the

disc bundle Xi → S2 of Euler class di with the unit disc bundle in the total space

of the complex line bundle O(di) → CP1 (with respect to a choice of Hermitian

metric). The action on CP1 by complex conjugation lifts to an antiholomorphic

involution c : O(di) → O(di). By restriction this defines an orientation preserving

involution c : Xi → Xi. We assume that each disc Dij ⊂ CP1 is chosen to be

conjugation invariant. Then we can choose the trivialisation Xi|Dij
∼= D2 ×D2 so

that c acts as complex conjugation on both factors. Since this commutes with the

map D2 × D2 → D2 × D2 which swaps base and fibre coordinates, we obtain an

orientation preserving involution cΓ : XΓ → XΓ which is given by c on each disc

bundle. We call cΓ a complex conjugation involution of the plumbing XΓ. Note

that cΓ is not uniquely determined because it depends on the relative locations of

the discs Dij whose centres must lie on the circle S1 ⊂ CP1 fixed by c. Thus the

construction of cΓ requires that for each vertex xi we choose a cyclic ordering of

the edges passing through xi. This ordering specifies the order in which the discs

Dij should be placed.

Since cΓ acts as complex conjugation on each disc bundle Xi → CP1, it sends

the zero section of Xi to itself orientation reversingly. Hence cΓ acts as −1 on

H2(XΓ;Z).

Since (each component of) XΓ is simply-connected, a spinc-structure s on XΓ

is uniquely determined by its characteristic element c(s) ∈ H2(XΓ;Z). It follows

that every spinc-structure on XΓ is of type R with respect to cΓ. Furthermore, if
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all the degrees di are even, then XΓ is spin and the unique spinc-structure on XΓ

with c(s) = 0 is of types E and S with respect to cΓ.

4.1.2. S1-equivariant plumbing. Let Dd → S2 denote the unit disc bundle over S2

with Euler class d. Consider a circle action on Dn which covers a circle action on

S2 and acts linearly on the fibres. The simplest case is to take a trivial action on

S2 in which case the action is given by scalar multiplication on the fibres with some

arbitrary weight w ∈ Z. If the action on S2 is non-trivial, it must be conjugate

to a rotation with some weight m. More precisely, let S1 act on S2 by rotation

about some axis. The action has two fixed points p+, p− ∈ S2 and the action on

the tangent spaces at p+, p− has weights +1, −1. We will regard this standard

action as having weight m = 1. Then a weight m action is given by precomposing

with the map S1 → S1, z 7→ zm of degree m. The resulting action of S1 on S2

has weight m on Tp+S
2 and weight −m on Tp−S

2. Note that the actions of weight

m and −m are conjugate to each other through a map that interchanges p+ and

p−. However for the purpose of equivariant plumbing we wish to distinguish the

roles of the two points p+, p−, so it is convenient to distinguish between positive

and negative values of m.

Now consider a lift of the weight m circle action on S2 to the total space of Dd.

We will regard S2 as P1 and take the weight m circle action to be ρ[u, v] = [u, ρmv].

Then p+ = [1, 0], p− = [0, 1]. Consider the projection map C2\{0} → P1. The total

space of C2\{0} can be thought of as the total space ofO(−1) minus the zero section

(since O(−1) is the tautological line bundle). There is a lift of the S1-action to

O(−1) which is defined on the complement of the zero section by ρ(u, v) = (u, zmv)

and which clearly extends over the zero section. Taking tensor powers of this action

we obtain an S1-action on O(d) for any n. Let w+, w− denote the weights of this

action over p+, p−. It follows from this construction that w+ = 0, w− = −dm,

hence w+ − w− = dm. Combining such an action with scalar multiplication of

weight k allows us to produce a new S1-action with weights (w+ + k,w− + k) for

any k. Hence any solution to w+ − w− = dm defines a circle action on O(d) (and

by restriction on Dd) with weights (w+, w−).

Now suppose we attempt to undertake plumbing equivariantly. Consider a vertex

N0 with degree d0 and with base weight m. If m = 0 then the circle action is scalar

multiplication on the fibres by some weight w. Since each point in the base is fixed,

we can have as many edges leaving the vertex as we wish. It is clear from the

requirement that the plumbing is equivariant that all adjacent vertices will have a

non-trivial circle action on the base. Let N1 be one such vertex adjacent to N0.

The circle action for N1 will then have exactly two fixed points which are zeros

in the fibres over p+, p−. To do the plumbing equivariantly we need to attach

vertices using fixed points, thus the attachment must take place at either p+ or

p−. As a convention we assume the attachment takes place at the point p− of

N1. The base and fibre weights of N0 are (0, w) (at any point). If the vertex

N1 has base weight m1 and fibre weights w+
1 , w

−
1 over p+, p−, then the base and

fibre weights over p− are (−m1, w
−
1 ). The plumbing swaps base and fibre, hence
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(0, w) = (w−
1 ,−m1). That is, m1 = −w, w−

1 = 0. Then since N1 has degree d1, we

have w+
1 − w−

1 = d1m1 = −d1w. Hence[
m1

w+
1

]
=

[
0 −1

1 −d1

] [
m0

w+
0

]
where m0 = 0, w+

0 = w.

Similarly, if we have two vertices N1, N2 with circle actions with possibly non-

zero base weights m1,m2, with degrees d1, d2 and with fibre weights w±
1 , w

±
2 and

we attach p+ of N1 to p− of N2, then because the plumbing swaps base and fibre

we get (w+
1 ,m1) = (−m2, w

−
2 ). Together with w

+
2 − w−

2 = d2m2, this gives[
m2

w+
2

]
=

[
0 −1

1 −d2

] [
m1

w+
1

]
.

Now if we start with a vertex N0 with base weight m0 = 0, fibre weight w0

(which we can assume is equal to ±1 since we want the generic orbit to be free)

then for each vertex N1 that we attach, the circle action must be non-trivial in the

base of N1. This means there are only two points p+, p− at which we can attach

vertices to N1. Then since we use p− to attach N1 to N0, this leaves only one

remaining point p+ on which to do further attachments. Each time we attach an

additional vertex, the exact same situation occurs, unless the circle action in the

base is trivial. There are only two fixed points p+, p− and we use p− to attach the

new vertex to the previous one leaving only p+ for further attachment.

From this we see that S1-equivariant plumbing can be achieved for any star-

shaped graph. Moreover, the weights of the circle action are completely deter-

mined, up to an overall sign. There are other graphs which can be S1-equivariantly

plumbed, but there is a non-trivial condition on the degrees of the vertices for this

to happen (see [39, §2] for further details).

Consider a sequence of vertices N0, N1, . . . , Nn, where m0 = 0, w+
0 = 1 and Ni

is attached to Ni−1 by joining p+ of Ni−1 to p− of Ni. To simplify notation write

wi for w
+
i . Then [

mi

wi

]
=

[
0 −1

1 −di

] [
mi−1

wi−1

]
.

From which one finds (assuming the mi are all non-zero) that
wn

mn
= [dn, dn−1, . . . , d2, d1].

If m1, . . . ,mk are non-zero and mk+1 = 0, then since mk+1 = −wk, we see that

[dk, dk−1, . . . , d2, d1] = 0. When this happens we can have more than one vertex

with a trivial circle action on the base.

4.1.3. Z2-equivariant plumbing. Consider Z2-equivariant plumbings. We will con-

struct these along the same lines as S1-equivariant plumbings but with the group

Z2 in place of S1. The main difference is that for Z2, the weights are now to

be considered as integers mod 2. More precisely, the trivial representation is as-

signed weight 0 and the sign representation is assigned weight 1. Our discussion of
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equivariant plumbing in Section 4.1.2 carries over almost verbatim except that the

weights m,w+, w− are now valued in Z2 instead of Z. Suppose we attach vertex

N1 to N2 such that if m1 ̸= 0, then the attachment takes place at p+ on N1 and

if m2 ̸= 0 then the attachment takes place at p− on N2. Then as before we have a

relation [
m2

w2

]
=

[
0 1

1 d2

] [
m1

w1

]
(we have omitted minus signs since we are working over Z2). But now mi, wi ∈ Z2

and they can not both be zero (otherwise the involution is trivial), so there are only

three possibilities (mi, wi) ∈ {(0, 1), (1, 0), (1, 1)}. The case (0, 1) corresponds to a

trivial action on the base.

We make a simplifying assumption that all the degrees di are even. Then one of

two things can happen:

(1) Every vertex has m = w = 1. In particular the plumbing graph (if con-

nected) is linear and so the boundary is a lens space.

(2) Every vertex has either (m,w) = (0, 1) or (1, 0) in an alternating fashion,

that is, each edge connects a vertex of type (0, 1) to a vertex of type (1, 0).

Equivalently, we have a bipartite graph, as in Figure 1. The vertices of type

(0, 1) (coloured black) can have arbitrarily many edges but the vertices of

type (1, 0) (coloured white) can have at most two edges.

Case (1) is not particularly interesting since the boundary must be a lens space.

On the other hand Case (2) is quite interesting since there is a wide variety of

plumbing graphs of this form.

Thus if Γ is a plumbing graph where all the vertices have even degree and weights

mi, wi ∈ Z2 can be assigned according to Case (1) or Case (2), then we can carry

out the plumbing Z2-equivariantly. We will refer to Γ as a Z2-equivariant plumbing

graph and we refer to XΓ as a Z2-equivariant plumbing. The resulting involution on

XΓ will be denoted asmΓ. SincemΓ preserves the zero section of each disc bundle of

XΓ in an orientation-preserving manner, we see that mΓ acts trivially on H2(X;Z).
Thus, every spinc-structure on XΓ is of type E with respect to mΓ. Furthermore,

since we assumed that each di is even, XΓ is spin and the unique spinc-structure s

with c(s) = 0 has types R and S with respect to mΓ (the involution mΓ is always

odd since it is constructed from gluing together odd involutions on disc bundles).

We now describe a construction that gives rise to cobordisms between boundaries

of plumbings (cf. [46, §3]). Let Γ be a plumbing graph and let Γ′ be a subgraph

of Γ with the property that if e is an edge of Γ that does not belong to Γ′, then

at most one vertex of e belongs to Γ′. We will also assume that det(A(Γ′)) ̸= 0.

A subgraph satisfying this property will be said to be admissible. Recall that XΓ

is constructed by plumbing together unit disc bundles {Xi}. For each vertex xi
of Γ which belongs to Γ′, let X ′

i be the closed disc bundle over S2 of radius 1/2

and Euler class di. Plumbing together the X ′
i gives the plumbed 4-manifold XΓ′ .

Identifying X ′
i with a subspace of Xi, we obtain an inclusion XΓ′ → XΓ. Let XΓ′,Γ
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denote the closure in XΓ of the complement of XΓ′ . Then XΓ′,Γ is a compact,

simply-connected 4-manifold with boundary YΓ ∪−YΓ′ . So we can regard XΓ′,Γ as

a cobordism from XΓ′ to XΓ.

Since det(A(Γ′)) is assumed to be non-zero, the boundary of XΓ′ is a union

of rational homology spheres. Mayer–Vietoris gives H2(XΓ;Q) ∼= H2(XΓ′ ;Q) ⊕
H2(XΓ′,Γ;Q) where the direct sum is orthogonal with respect to the intersection

form. Hence we can identify H2(XΓ′,Γ;Q) with the orthogonal complement of

H2(XΓ′ ;Q) in H2(XΓ;Q).

Observe that the cobordism XΓ′,Γ′ is equivariant with respect to the complex

conjugation involution defined in Section 4.1.1. Similarly, if XΓ is an S1- or Z2-

equivariant plumbing, then the same is true of XΓ′ by restriction and XΓ′,Γ has an

S1- or Z2-action.

Let a1, . . . , an be coprime positive integers. Define the Brieskorn homology

sphere Σ(a1, . . . , an) to be the unique Seifert manifold Y (b; (a1, b1), . . . , (an, bn))

for which b−
∑n

i=1 bi/ai = −1/a1 · · · an. The Brieskorn spheres other than S3 and

Σ(2, 3, 5) have an ˜SL(2,R) geometry with symmety group O(2) which combines the

circle action of the Seifert fibration with complex conjugation (viewing Σ(a1, . . . , an)

as the link of a complex singularity). Let m ∈ O(2) correspond to the unique el-

ement of order 2 within the circle subgroup and let c ∈ O(2) denote complex

conjugation. By [31, Theorem 2.1] (or [8, 14] for the spherical cases S3 , Σ(2, 3, 5)),

any smooth, orientation preserving action of a finite group on Y = Σ(a1, . . . , an) is

conjugate to a subgroup of this O(2)-action (or to a subgroup of SO(4) in the case

of S3). In O(2) there are precisely two conjugacy classes of involution, represented

by m and c. Thus any smooth, orientation preserving involution on a Brieskorn

sphere other than S3 is conjugate to m or c (in the case of S3, there is again two

conjugacy classes of involutions in SO(4), but this time m and c are both conjugate

to diag(1, 1,−1,−1) since they are both odd involutions).

Suppose that Γ is a star-shaped plumbing graph such that YΓ = Σ(a1, . . . , an).

Then we obtain two involutions mΓ, cΓ. Since Γ is star-shaped, we obtain an S1-

action on the plumbing. Together with complex conjugation, this defines an action

of O(2) on the plumbing which then restricts to an action of O(2) on YΓ. This action

preserves a Seifert structure on YΓ. If YΓ is not S3, then the Seifert structure is

unique. It follows that mΓ is conjugate to m and cΓ is conjugate to c. In the case

of S3, mΓ and cΓ are odd involutions, so they must be conjugate to m and c.

Theorem 4.3. Let Y = Σ(a1, . . . , an) where a1, . . . , an are coprime positive inte-

gers. Then

(1) δEj (Y, c) = δRj (Y,m) = −µ(Y ) for all j ≥ 1, where µ is the Neumann–

Siebenmann invariant.

(2) δE0 (Y, c) = δR0 (Y,m) = δ(Y ).

(3) δEj (−Y, c) = δRj (−Y,m) = µ(Y ) for all j ≥ 0.

(4) δSj,0(Y,m) = δSj,1(Y,m) = δS0,j(Y, c) = δSj,1(Y, c) = −µ(Y ) for j ≥ 1.

(5) δSj,0(−Y,m) = δSj,1(−Y,m) = µ(Y ) for all j ≥ 1.
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(6) δSi,j(−Y, c) = µ(Y ) for all i, j with i = 0 or j ≤ 1.

(7) δRj (Y, c) ≥ −µ(Y ) and δRj (−Y, c) ≤ µ(Y ) for all j ≥ 0.

Proof. We will first prove (1) and (3)-(6). Consider the case that ai is even for

some i. Corollary 4.2 implies that Y = YΓ is the boundary of the plumbing XΓ on

the graph Γ given in Figure 2 where all the degrees are even. Applying Theorem

3.17 to XΓ and −XΓ, we deduce that

δE∞(Y, c) = δR∞(Y,m) = δS0,∞(Y, c) = δS∞,0(Y,m) = δS∞,1(Y,m) = −σ(Γ)/8 = −µ(Y )

and

δE∞(−Y, c) = δR∞(−Y,m) = δS0,∞(−Y, c) = δS∞,0(−Y,m) = δS∞,1(−Y,m) = µ(Y ).

Let Γ′ be the admissible subgraph obtained by removing the central vertex of

Γ. Then Γ′ is a disjoint union of n linear graphs and YΓ′ is a union of lens spaces.

Thus XΓ′,Γ is a cobordism from a union of lens spaces to Y and b+(XΓ′,Γ) = 0,

b−(XΓ′,Γ) = 1. Applying Theorem 3.17 to XΓ′,Γ and −XΓ′,Γ gives (1) and (3)-(6).

To see this, consider for example the invariants δEj (Y, c). Since b+(XΓ′,Γ) = 0,

b−(XΓ′,Γ) = 1, Theorem 3.17 implies that δEj (Y, c) is independent of j for all j ≥ 1.

Hence δEj (Y, c) = δE∞(Y, c) = −µ(Y ) for j ≥ 1. The other cases of (1) and (3)-(6)

follow similarly.

Now suppose all the ai are odd. Since Σ(a1, . . . , an) = Σ(a1, a2, . . . , an, 1) we

can assume n is odd by inserting a 1 if necessary. Choose integers b1, . . . , bn such

that
∑n

i=1 bi/ai = 1/(a1 · · · an) so that Y = Y (0; (a1, b1), . . . , (an, bn)). Since all

the ai are odd, this implies that
∑n

i=1 bi = 1 (mod 2) and hence an odd number of

bi are odd. If bi1 , bi2 are both even, then we can replace them by bi1 + ai1 , bi2 − ai2
to make them odd. Since n is odd, by making such substitutions it is possible to

choose the bi so that they are all odd. Furthermore for each i > 1, we can replace

bi by bi+2kai and b1 by b1− 2ka1 for sufficiently large k and hence we can assume

bi > 0 for i > 1. Since
∑n

i=1 bi/ai = 1/(a1 · · · an), it follows that b1 < 0.

a1m1
a11 0

0 0 a21 a2m2

0 0 an1 anmn

Figure 4. Plumbing graph in case where all ai are odd

Choose integers aij with ai/bi = [ai1, . . . , aimi
]. Then Y = YΓ is the boundary

of the plumbing XΓ on the graph shown in Figure 4. Let Γ′
i denote the subgraph of
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Γ indicated by the i-th circle in Figure 4. Let Γ′ = ∪n
i=1Γ

′
i. By [46, Proposition 7],

we have that XΓ′,Γ is spin and has signature
∑n

i=1 sign(ai/bi)− 1. Since bi > 0 for

i > 1 and b1 < 0, we get σ(XΓ′,Γ) = n− 3 and b+(XΓ′,Γ) = 1. Let w ∈ H2(XΓ;Z)
denote the Wu class (the unique characteristic which when written in terms of the

basis {ej} of H2(XΓ;Z) has the form w =
∑n

i=1 uiei where the ui are 0 or 1). The

boundary of XΓ′
i
is the lens space L(bi, ai). Therefore H1(∂XΓ′

i
;Z2) = 0 and we

get an orthogonal decomposition

H2(XΓ;Z2) =

n⊕
i=1

H2(XΓ′
i
;Z2)⊕H2(XΓ′,Γ;Z2).

Let wi denote the Wu class of XΓ′
i
(which is unique since det(Γ′

i) = ±bi is odd).

Then since XΓ′,Γ is spin, it follows that w = w1 + · · · + wn (mod 2). But the

coefficients of w and wi are all 0 or 1, hence w = w1 + · · · + wn. Let s denote

the unique spin structure on XΓ′,Γ. By uniqueness s is necessarily of type S with

respect to both m and c. Now (1) and (3)-(6) will follow by applying Theorem 3.17

to (XΓ′,Γ, s). We will show this for (1). The cases (3)-(6) will follow by similar

reasoning. By Theorem 3.17, we find

δEj (Y, c) = δRj (Y,m) = −σ(XΓ′,Γ)

8
+

n∑
i=1

δ(L(bi, ai), si)

for j ≥ 1, where si denotes the unique spin structure on L(bi, ai) (recall that bi is

odd). But for lens spaces L(p, q) with p odd, one has δ(L(p, q), s) = −µ(L(p, q))
where s denotes the spin structure [48]. Hence

δEj (Y, c) = δRj (Y,m) = −σ(XΓ′,Γ)

8
+

n∑
i=1

δ(L(bi, ai), si)

= −σ(XΓ′,Γ)

8
−

n∑
i=1

µ(L(bi, ai))

= −σ(XΓ′,Γ)

8
− 1

8

n∑
i=1

(
σ(XΓ′

i
)− w2

i

)
= −1

8

(
σ(XΓ)− w2

)
= −µ(Y )

where in the second to last line we used that w = w1 + · · ·+ wn.

Next we prove (7). For this recall that Y = YΓ is the boundary of a negative

definite plumbing XΓ ([47, Example 1.17]). Any characteristic in H2(XΓ;Z) is

necessarily anti-preserved by cΓ and so corresponds to a spinc-structure of type R.

In particular, there is a spinc-structure s of type R for which µ(Y ) = (σ(Γ)−c(s)2)/8
[47, §7.2.3]. Applying Theorem 3.17 gives δRj (Y, c) ≥ −µ(Y ) for all j ≥ 0. Thinking

of −Y as an ingoing boundary of XΓ Theorem 3.17 also gives δRj (−Y, c) ≤ µ(Y )

for all j ≥ 0.

It remains to prove (2). First note that YΓ is the boundary of a negative definite

plumbing whose plumbing graph has only one bad vertex in the terminology of [43].
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Then it follows from [43, Corollary 1.4] that HF+(−Y ) is concentrated in even

degrees. Consequently d(Y ) is even and HF+
red(Y ) is concentrated in odd degrees.

Furthermore, HF+(−Y ) may be computed from the graded roots algorithm [37].

The algorithm implies that HF+
red(−Y ) is concentrated in degrees at least −d(Y ).

Dually it follows that HF+
red(Y ) is concentrated in degrees at most d(Y )− 1.

We have δ(Y ) ≥ −µ(Y ). This follows by applying the Frøyshov inequality to

any negative definite plumbing which bounds Y .

Now consider the spectral sequence Ep,q
2 for HSW ∗

E(Y, c) or HSW
∗
R(Y,m) given

in Theorem 3.3. If any of the differentials in the spectral sequence are non-zero,

then we must have δTj (Y, σ) > δ(Y ) for all j ≥ 0, where (T, σ) = (E, c) or (Y,m).

But δT1 (Y, σ) = −µ(Y ) ≤ δ(Y ). Hence the differentials must all be zero and it

follows (since HF+
red(Y ) is concentrated in odd degrees) that δT0 (Y, σ) = δ(Y ). □

For any plumbing graph Γ, let |Γ| denote the underlying vertex set. Let H(Γ)

denote Q|Γ| equipped with the bilinear form ⟨ei, ej⟩ = A(Γ)ij , where e1, . . . , e|Γ| is

the standard basis. If Γ′ is an admissible subgraph of Γ, let H(Γ′,Γ) denote the

orthogonal complement of H(Γ′) in H(Γ).

Definition 4.4. Let Γ be a plumbing graph. Define an invariant j(Γ) ∈ Z of Γ by

j(Γ) = min
Γ′

{b−(H(Γ′,Γ))}

where the minimum is taken over all admissible subgraphs Γ′ ⊆ Γ for which Γ′ is a

disjoint union of linear graphs.

Note that from the definition we clearly have j(Γ) ≤ |Γ|.

Theorem 4.5. Let Γ be a connected plumbing graph whose degrees are all even and

let YΓ be the boundary of the plumbing according to Γ. Let s denote the restriction

to YΓ of the unique spinc-structure on XΓ with c(s) = 0.

(1) δEj (YΓ, s, cΓ) = δS0,j(YΓ, s, cΓ) = −σ(Γ)/8 for all j ≥ j(Γ).

(2) Suppose that Γ is a Z2-equivariant plumbing graph. Then δRj (YΓ, s,mΓ) =

δSj,k(YΓ, s,mΓ) = −σ(Γ)/8 for all j ≥ j(Γ) and k = 0, 1.

Proof. We will prove (1). The proof for (2) is almost identical. Applying Theorem

3.17 to XΓ gives δEj (YΓ, s, cΓ) = −σ(Γ)/8 for all large enough j (in fact, for j ≥ |Γ|).
Hence δE∞(YΓ, s, cΓ) = −σ(Γ)/8.

Now choose an admissible subgraph Γ′ ⊆ Γ such that Γ′ is a disjoint union

of linear graphs and b−(H(Γ′,Γ)) = j(Γ). Applying Theorem 3.17 to XΓ′,Γ and

noting that YΓ′ is a union of L-spaces, we see that δEj (YΓ, s, cΓ) = −σ(H(Γ′,Γ))/8+

δ(YΓ′ , s|YΓ′ ) for all j ≥ j(Γ). In particular, this shows that the value of δEj (YΓ, s, cΓ)

is independent of j for j ≥ j(Γ). Therefore δEj (YΓ, s, cΓ) = δE∞(YΓ, s, cΓ) = −σ(Γ)/8
for all j ≥ j(Γ). A similar argument also shows that δS0,j(YΓ, s, cΓ) = −σ(Γ) for

j ≥ j(Γ). □
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Remark 4.6. If det(Γ) is odd, so that YΓ is a Z2-homology 3-sphere, then σ(Γ)/8 =

µ(Y ) is the Neumann–Siebenmann invariant of Y . More generally, for any σ(Γ)/8 =

µ(Y, s|Y ) where s is the unique spinc-struture on XΓ with c(s) = 0 and µ(Y, s|Y ) is
the generalised Neumann–Seibenmann invariant, as in [38, §4].

Corollary 4.7. Let Y be an integral homology 3-sphere which is the boundary of

the plumbing on a graph Γ with all vertices having even degree. If Y is an L-space,

then δ(Y ) = −µ(Y ).

Proof. Since Y = YΓ, Theorem 4.5 gives δE∞(Y, cΓ) = −µ(Y ). On the other hand,

Y is an L-space so δE∞(Y, cΓ) = δ(Y ). □

Remark 4.8. A result similar to Corollary 4.7 was proven in [48], but with different

assumptions on Y . Namely [48] requires that Y is the boundary of a negative

definite plumbing, but does not require the degrees of the plumbing graph to be

even.

4.2. Branched double covers. Let K be a knot in S3 and let Y = Σ2(K) be

the double cover of S3 branched over K. Then Y is a rational homology sphere, in

fact |H1(Y ;Z)| = det(K) [26, Corollary 9.2]. Since det(K) is odd, there is a unique

spin structure on Y . The corresponding spinc-structure will be denoted s0. Let

σ : Y → Y be the covering involution of the branched double cover. By uniqueness,

s0 is preserved by σ and is an odd spin involution. The delta-invariants of (Y, s0, σ)

define knot invariants of K as follows.

Definition 4.9. LetK be a knot in S3. We define the delta-invariants δEj (K), δRj (K)

and δSi,j(K) of K to be the corresponding delta-invariants of (Σ2(K), s0, σ).

In a similar fashion we also define invariants δE∞(K), jE(K) etc. to be equal to

the corresponding invariants of (Σ2(K), s0, σ).

Note that the invariant δj(K) defined in [5] is equal to 4δEj (K).

For a knot K in S3, we let σ(K) denote the signature and g4(K) the smooth

slice genus.

Theorem 4.10. Let K be a knot in S3.

(1) δEj (K), δRj (K), δSk,l(K) depend only on the smooth concordance class of K.

(2) δEj (K), δRj (K), δSk,l(K) ∈ 1
4Z.

(3) δEj (K) = δRj (K) = −σ(K)/8 (mod Z). δSk,l(K) = −σ(K)/8 (mod 2Z).
(4) δEj (K) = δS0,j(K) = −σ(K)/8 for j ≥ g4(K)− σ(K)/2.

(5) If K is quasi-alternating, then δEj (K) = δRj (K) = δSk,l(K) = −σ(K)/8 for

all j ≥ 0 and all (k, l) with k = 0 or l ≤ 1.

(6) If g4(K) = −σ(K)/2, then δR∞(K) ≥ −σ(K)/8 and δR0 (−K) ≤ σ(K)/8.

(7) If g4(K) = 1 − σ(K)/2, then δSi,j(K) ≥ −σ(K)/8 for all i, j with i = 0 or

j = 0 and δS0,1(−K) ≤ σ(K)/8.

Proof. This is a straightforward extension of the results in [5, §6] and so we omit

the details of the proof. □
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Proposition 4.11. For any knots K1,K2, we have δTi+j(K1#K2) ≤ δTi (K1) +

δTj (K2) for T = E or R and δSi+k,j+l(K1#K2) ≤ δSi,j(K1) + δSk,l(K2).

Proof. This follows easily from the fact that Σ2(K1#K2) is diffeomorphic to the

equivariant connected sum Σ2(K1)#Σ2(K2). □

Let L = M(b; (a1, b1), . . . , (an, bn)) denote a Montesinos link. We use the same

convention for Montesinos knots as [40, §3.2]. L is constructed by joining together n

rational tangles with slopes a1/b1, . . . , an/bn together with b half-twists. If exactly

one of the ai is even, then L is a knot. The branched double cover Y = Σ2(L) is the

Seifert fibre space Y (b; (a1, b1), . . . , (an, bn)) (this was shown in [34], but see also

[40, Proposition 3.3] where the orientation is worked out carefully. Note that our

definition of Y (b; (a1, b1), . . . , (an, bn)) corresponds to Y (−b; (a1, b1), . . . , (an, bn))
in [40]).

Theorem 4.12. Let K = M(b; (a1, b1), . . . , (an, bn)) be a Montesinos knot where

exactly one ai is even. Let e = b−
∑n

i=1 bi/ai. If e > 0, then δEj (K) = −σ(K)/8 for

all j ≥ 0. If e < 0, then δEj (K) = −σ(K)/8 for all j ≥ 1 and δE0 (K) = δ(Σ2(K), s0)

and for j ≥ 0.

Proof. Recall that Σ2(K) = Y (b; (a1, b1), . . . , (an, bn)) is the boundary of a plumb-

ing XΓ, where Γ is a star-shaped graph and all the degrees are even. We claim that

σ is the restriction to ∂XΓ of the complex conjugation involution cΓ constructed in

Section 4.1.1. This follows from the argument given in [45, §7.2]. Now the result

follows from Theorem 4.5 and the fact that Y (b; (a1, b1), . . . , (an, bn)) is given by

plumbing on a star-shaped graph Γ which has j(Γ) = 0 if e > 0 and j(Γ) = 1 if

e < 0. Note that σ(K)/8 = µ(Y ) [47, §7.2.3]. □

4.3. Equivariant Dehn surgery. Let L be a link in S3 and suppose that L is

sent to itself under some orientation preserving, smooth involution σ : S3 → S3.

The resolution of the Smith conjecture [7] implies that the fixed point set C of σ is

an unknot or is empty. Let K be a component of L. If σ(K) ̸= K, then σ exchanges

the two components K and σ(K). If σ(K) = K, then either σ acts freely on K, in

which case we say K is 2-periodic or σ has exactly two fixed points on K, in which

case we say K is strongly invertible. We say that L is 2-periodic if every component

of L is 2-periodic (with respect to σ) and we say that L is strongly invertible if

every component of L is strongly invertible (with respect to σ).

Let F denote a framing of L and let Y be obtained from S3 by performing Dehn

surgery along L with framing F . Suppose that the framing is σ-invariant in the

sense that for any component K of L which is not sent to itself by σ, the framings

of K and σ(K) coincide. Then we can carry out Dehn surgery equivariantly with

respect to σ and the extension is unique up to conjugacy by diffeomorphisms isotopic

to the identity (see [44, §2] for details). We denote the induced involution on Y by

σ.
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Note that 2-periodic links can further be subdivided into two types according

to whether or not σ acts freely on S3. However we will use the term 2-periodic to

refer to either of these possibilities.

If the framing coefficients (i.e. the slopes) are all integers then there is a cor-

responding 4-manifold X, the trace of the surgery on L, which is constructed by

adding 2-handles to the 4-ball along the components of L, with the framing specify-

ing the handle attachments, then smoothing out corners. The result is a compact,

oriented, simply-connected smooth 4-manifold X with boundary Y . Futhermore,

the involution σ is easily seen to extend to a smooth, orientation preserving invo-

lution on X.

H2(X;Z) has a natural basis corresponding to the 2-handles. Hence for each

component K of L there is a corresponding basis element eK ∈ H2(X;Z) (one also

needs to choose an orientation on L so that each eK is defined. Without choosing

an orientation, eK is only defined up to sign). The intersection form on H2(X;Z)
is given by ⟨eK1

, eK2
⟩ = lk(K1,K2), the linking number of K1,K2. In the case

K1 = K2, lk(K1,K2) is the self-linking number, which coincides with the framing

coefficient. Note that H2(X;Z) is spin if and only if all the framing coefficients are

even. The action of σ onH2(X;Z) is easy to describe: ifK is a component of L then

σ(eK) = ±eσ(K), where the sign is + or − depending on whether σ : K → σ(K)

is orientation preserving or reversing. In particular, if L is 2-periodic, then σ acts

as the identity on H2(X;Z) and if L is strongly invertible, then σ acts as −1 on

H2(X;Z).

If F is integral and L = K1 ∪ · · · ∪Kn is the decomposition of L into its com-

ponents, then we define the linking matrix A = [Aij ] of (L,F) by Aij = lk(Fi, Fj).

Then Y is a rational homology sphere if and only if det(A) ̸= 0. Moreover

|H1(Y ;Z)| = |det(A)|. The linking matrix defines a symmetric bilinear form, which

as explained above gives the intersection form on H2(X;Z). Let σ(A) denote the

signature of this intersection form, which is also the signature of X. Similarly, we

define b±(A) to be b±(X).

We will say that the framing F is even if all the framing coefficients are even

integers. In this case the trace X is spin and there is a unique spin structure s0 on

X for which c(s0) = 0. By restriction, s0 defines a distinguished spin structure on

Y . We have that σ is an odd spin involution. This follows because the fixed point

set of σ on Y is non-empty (recall that the original involution on S3 had fixed point

set an unknot in S3).

Theorem 4.13. Let (L, σ) be a 2-periodic or strongly invertible link. Let Y be

the 3-manifold obtained by Dehn surgery on Y with respect to some framing F and

denote by σ the induced involution on Y . Suppose that F is even and let s0 denote

the distinguished spin structure. Let A denote the linking matrix of (L,F). Then

(1) If L is 2-periodic, then δRj (Y, s0, σ) = −σ(A)/8 for j ≥ b−(A).

(2) If L is strongly invertible, then δEj (Y, s0, σ) = −σ(A)/8 for j ≥ b−(A).
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Proof. Let X be the trace of (L,F). Then σ extends over X. Since F is even, X

is spin and s0 extends to a unique spin structure s on X with c(s) = 0. Applying

Theorem 3.17 to X gives the results. □

In the case that L = K is a knot, we can improve upon Theorem 4.13. In this

case the framing F is a single rational number p/q and Y = Sp/q(K) is the Dehn

surgery along K with slope p/q. Note that it is sufficient to assume p/q > 0 since

S−p/q(K) = −Sp/q(−K).

Proposition 4.14. Let K be a 2-periodic or strongly invertible knot. For p > 0,

let Y = S2p(K) with the induced involution σ and distinguished spin structure s0.

If K is 2-periodic, then:

(1) δE0 (Y, s0, σ) ≤ −1/8, δE∞(−Y, s0, σ) ≥ 1/8.

(2) δRj (Y, s0, σ) = −1/8, δRj (−Y, s0, σ) = 1/8 for all j ≥ 0.

(3) δSj,0(Y, s0, σ) ≥ −1/8 for all j ≥ 0 and δS1,0(−Y, s0, σ) ≤ 1/8.

If K is strongly invertible, then:

(1) δEj (Y, s0, σ) = −1/8, δEj (−Y, s0, σ) = 1/8 for all j ≥ 0.

(2) δR0 (Y, s0, σ) ≤ −1/8, δR∞(−Y, s0, σ) ≥ 1/8.

(3) δSi,j(Y, s0, σ) ≥ −1/8 for all i, j with i = 0 or j = 0 and δS0,1(−Y, s0, σ) ≤
1/8.

Proof. Let X be the trace of the 2p-surgery on K and let s be the unique spinc-

structure on X with c(s) = 0. Applying Theorem 3.17 to (X, s) gives the result. □

We can also consider the delta-invariants for spinc-structures which are not spin.

In this case we can consider Y = Sp(K) where p > 0 need not be even. The spinc-

structures on Y form a torsor over Zp. The torsor can be identified with Zp as

follows. Let X be the traces of the Dehn surgery on K. For any c ∈ Z such that

c = p (mod 2), there is a unique spinc-structure s on X such that c(s) = c (where

we identify H2(X;Z) with Z). By restriction, s determines a spinc-structure s|Y
on Y . To s|Y , we associate the unique i ∈ Zp such that c = p+ 2i (mod 2p). Since

σ sends c to c in the 2-periodic case and to −c in the strongly invertible case, we

see that σ acts trivially on the spinc-structures on Y in the 2-periodic case and

acts by i 7→ −i in the strongly invertible case. Denote the spinc-structure on Y

corresponding to i ∈ Zp by si. Then each si is type E in the 2-periodic case and is

type R in the stronly invertible case.

Proposition 4.15. Let K be a 2-periodic or strongly invertible knot and p a positive

integer. Let Y = Sp(K) and let σ be the induced involution on Y . Let i be an integer

with |i| ≤ p/2.

(1) If K is 2-periodic, then

δE0 (Y, si, σ) ≤
(p− 2|i|)2

8p
− 1

8
, δE∞(−Y, si, σ) ≥ − (p− 2|i|)2

8p
+

1

8
.
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p/q = a− q′/p′

K K

U

σ ↷ ⇒ σ ↷

a ∈ Z

p′/q′

Figure 5. Slam dunk move performed equivariantly with respect

to a strong inversion.

(2) If K is strongly invertible, then

δR0 (Y, si, σ) ≤
(p− 2|i|)2

8p
− 1

8
, δR∞(−Y, si, σ) ≥ − (p− 2|i|)2

8p
+

1

8
.

Proof. Let X be the trace of the p-surgery on K. For any i with |i| ≤ p/2 we choose

the unique spinc-structure s on X with c = c(s) given by c = 2i − p if i ≥ 0, or

c = 2i+ p if i < 0. Then

δ(X, s) =
(p− 2|i|)2

8p
− 1

8
.

The result now follows by applying Theorem 3.17. □

Suppose that L is a strongly invertible link, and suppose that F is a framing

where the coefficients are not all integral. Let Y (L,F) be the 3-manifold obtained

by Dehn surgery on (L,F). In this case we do not immediately get a 4-manifold

bounding Y (L,F). However, we can obtain such a manifold by performing the slam

dunk operation to (L,F) [17, §5.3]. Suppose that (L′,F ′) is obtained from (L,F)

by performing a slam dunk on a component K of L. Hence Y (L,F) and Y (L′,F ′)

are diffeomorphic. In fact, by performing the slam dunk around a fixed point of

the strong inversion as in Figure 5, one can ensure that Y (L,F) and Y (L′,F ′) are

equivariantly diffeomorphic. By repeatedly performing equivariant slam dunks, we

can replace (L,F) by a pair (L′,F ′) where F ′ is integral. Hence we can obtain a

4-manifold X bounding Y (L,F) and such that σ extends over X.

For example, let K be any strongly invertible knot and let Y = S1/2p(K) be

the Dehn surgery along K with slope 1/2p, where p is any non-zero integer. Then

Y = Y (L,F) where L = K ∪ U , where U is an unknot with lk(K,U) = 1 and F is

the framing which is 0 on K and is −2n on U . The trace X = X(L,F) of (L,F)

is spin, the intersection form on H2(X;Z) is isomorphic to the hyperbolic lattice

and σ extends to X, acting as −1 on H2(X;Z). The unique spin structure on Y

extends to a spin structure s on X with c(s) = 0. Applying Theorem 3.17, we find
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Proposition 4.16. Let K be a strongly invertible knot and p a non-zero integer.

Then δEj (±S1/2p(K), s, σ) = 0 for all j ≥ 1.

More generally, let K be a strongly invertible knot and consider Y = Sp/q(K)

where p is odd and q is even and non-zero. Then by performing the slam dunk

move, we can write Y = Y (L,F), where L = K ∪U1 ∪U2 ∪ · · · ∪Un, U1, . . . , Un are

unknots, lk(K,U1) = lk(U1, U2) = · · · = lk(Un−1, Un) = 1, lk(K,Uj) = 0 for j > 1,

lk(Ui, Uj) = 0 for |i − j| > 1 and lk(K,K) = a0, lk(Ui, Ui) = ai are such that all

ai are even and p/q = [a0, a1, · · · , an]. Let A denote the linking matrix. Note that

since p is odd, Y has a unique spinc-structure s that comes from a spin structure.

Then applying 3.17 to the trace of (L,F), we find

Theorem 4.17. Let K be a strongly invertible knot and let Y = Sp/q(K) where p

is odd and q is even and non-zero. Let p/q = [a0, a1, . . . , an] where a0, . . . , an are

even integers and let Aij be the matrix Aii = ai, Aij = 1 for |i − j| = 1, Aij = 0

for |i− j|. Then δEj (Sp/q(K), s, σ) = −σ(A)/8 for j ≥ b−(A).

Note that in the case that K is the unknot Y = Sp/q(K) = −L(p, q) is a lens

space. Since lens spaces are L-spaces, we get −σ(A)/8 = δEj (Sp/q(K), s, σ) =

−δ(L(p, q), s). Hence σ(A) = 8δ(L(p, q), s) and so feeding this in to Theorem 4.17,

we get δEj (Sp/q(K), s, σ) = −δ(L(p, q), s) for any strongly invertible knot K and

where j ≥ b−(A). Note also that b−(A) = (n + 1 − σ(A))/2, where n + 1 is the

number terms in the negative continued fraction p/q = [a0, . . . , an], ai ∈ 2Z.

Recall that the knot Floer complex of a knot K can be used to define a sequence

of knot invariants Vi(K), i ∈ Z [36]. The sequence Vi(K) is decreasing and is

eventually zero. Hom–Wu define ν+(K) to be the smallest i such that Vi(K) = 0

[18]. It is shown in [18] that ν+(K) ≥ 0 and equals zero if and only if V0(K) = 0.

Theorem 4.18. Let K be a strongly invertible knot and let Y = Sp/q(K) where p

is odd, q is even and q > p > 0. Let s denote the unique spinc-structure on Y which

comes from a spin structure. Then δE∞(−Y, s, σ) = δ(−Y, s)− V0(K). Moreover, if

ν+(K) > 0, then jE(−Y, s, σ) > 0.

Proof. By [36, Proposition 1.6] we have

δ(Sp/q(K), s) = δ(Sp/q(U), s)−max{V⌊ i
q ⌋
(K), V⌈ p−i

q ⌉(K)}

for some i, 0 ≤ i ≤ p−1, where we use s to denote the unique spinc-structure coming

from a spin structure for both Y and Sp/q(U). Since we have assumed q > p, this

simplifies to δ(Sp/q(K), s) = δ(Sp/q(U), s) − V0(K). Then from Theorem 4.17, we

have

δE∞(−Sp/q(K), s, σ) = δE∞(S−p/q(−K), s, σ) = δ(S−p/q(U), s) = −δ(Sp/q(U), s).

Hence δE∞(−Sp/q(K), s, σ) = δ(−Sp/q(K), s) − V0(K). Now if ν+(K) > 0, then

V0(K) > 0 and hence

δE0 (−Sp/q(K), s, σ) ≥ δ(−Sp/q(K), s) > δE∞(−Sp/q(K), s, σ),

which means that jE(−Sp/q(K), s, σ) > 0. □
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5. Applications

5.1. Obstructions to extending involutions. Suppose we are given a rational

homology 3-sphere Y with orientation preserving involution σ and a spinc-structure

s of type E,R or S. Suppose thatX is a compact, oriented smooth 4-manifold which

bounds Y and that s extends to a spinc-structure on X. We can use Theorem

3.17 to obstruct the existence of an extension of σ to an involution on X, under

some assumptions on how σ acts on H2(X;Z). In a similar manner, given two

triples (Y0, s0, σ0), (Y1, s1, σ1) of rational homology spheres with involutions and

spinc structures of type T ∈ {E,R, S} we can obstruct the existence of certain

equivariant cobordisms from Y0 to Y1.

To keep things relatively simple, we will mainly focus on the case that each

component of the boundary of X is an integral homology sphere. Consider first the

case that X is negative definite.

Proposition 5.1. Let X be a compact, oriented, smooth 4-manifold with boundary

Y empty or a union of integral homology spheres. Assume H1(X;Z2) = 0 and that

X is negative definite. Let σ be an orientation preserving involution on X that

sends each component of Y to itself. Then

(1) If c ∈ H2(X;Z) is a characteristic element and σ(c) = c, then

c2 + b2(X)

8
≤ min{δE∞(Y, σ),−δE0 (−Y, σ)}.

(2) Assume that the fixed point set of σ contains non-isolated points. If c ∈
H2(X;Z) is a characteristic element and σ(c) = −c, then

c2 + b2(X)

8
≤ min{δR∞(Y, σ),−δR0 (−Y, σ)}.

(3) If X is spin and σ is odd, then

b2(X)

8
≤ min{δS0,∞(Y, σ), δS∞,1(Y, σ),−δS0,0(−Y, σ)}.

Proof. Note that since H1(X;Z2) = 0, spinc-structures on X are in bijection with

characteristic elements. A characteristic c corresponds to a spinc-structure of type

E if σ(c) = c and to a spinc-structure of type R if σ(c) = −c. Now the result

follows from applying Theorem 3.17 twice, where we consider X as having outgoing

boundary Y or ingoing boundary −Y . Note that in case (2) we assume σ has non-

isolated fixed points to ensure that the spinc-structure corresponding to c has type

R. □

Remark 5.2. If Y = ∂X has multiple components, then we can get an extension

of Proposition 5.1 as follows. Partition the components of Y into two so that

Y = Y0 ∪ Y1. Treat Y1 as an outgoing boundary and −Y0 as an ingoing boundary.

Then in Proposition 5.1 (1), we get a bound (c2+b2(X))/8 ≤ δEj (Y1, σ)−δEj (−Y0, σ)
for any j ≥ 0. Similar bounds apply in cases (2) and (3).
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Example 5.3. Consider Y = Σ(2, 5, 11)#−2Σ(2, 3, 13) with involution σ the con-

nected sum of the m involution on each summand. Since Σ(2, 5, 11) = S−1(T2,5),

we have that Σ(2, 3, 13) = ∂X0, where X0 is the trace of the −1-surgery on T2,5.

We also have that Σ(2, 3, 13) bounds a contractible smooth 4-manifold W . Let X

be the boundary sum of X0 and two copies of −W . Then X is a negative definite

smooth 4-manifold bounding Y and b2(X) = 1. We claim that σ does not extend

to a smooth involution on X. Suppose on the contrary that σ extends to X. Let

s be the unique spinc-structure on X with c(s)2 = −1. Since H2(X;Z) ∼= Z, we
have that either σ(s) = s or σ(s) = −s. In the first case Proposition 5.1 (1) gives

δE∞(Y, σ) ≥ 0. But

δE∞(Y, σ) ≤ δE∞(Σ(2, 5, 11),m) + 2δE∞(−Σ(2, 3, 13),m)

= −λ(Σ(2, 5, 11)) + 2λ(Σ(2, 3, 13)) = 3− 4 = −1,

a contradiction. In the second case Proposition 5.1 (2) gives δR∞(Y, σ) ≥ 0. But

δR∞(Y, σ) ≤ δR∞(Σ(2, 5, 11),m) + 2δR∞(−Σ(2, 3, 13),m)

= −µ(Σ(2, 5, 11)) + 2µ(2, 3, 13) = −1,

a contradiction.

Proposition 5.4. Let X be a compact, oriented, smooth spin 4-manifold with

boundary Y empty or a union of integral homology spheres. Assume H1(X;Z2) = 0

and that b+(X) = 1. Let σ be an odd involution on X that sends each component

of Y to itself. Let H+(X) denote a σ-invariant maximal positive definite subspace

of H2(X;R). Then:

(1) If σ acts trivially on H+(X), then

−σ(X)

8
≤ min{δS∞,0(Y, σ),−δS1,0(−Y, σ)}.

(2) If σ acts non-trivially on H+(X), then

−σ(X)

8
≤ min{δS0,∞(Y, σ), δS∞,1(Y, σ),−δS0,1(−Y, σ)}.

Proof. The condition H1(X;Z2) = 0 ensures that X has a unique spin structure,

which is then necessarily preserved by S. Now the result follows from Theorem

3.17. □

Example 5.5. Consider Y = −Σ(2, 3, 12n − 5), n ≥ 1, with involution σ = m.

Then Y = Σ2(−T3,12n−5) and m coincides with the covering involution. Hence

δS0,∞(Y,m) = σ(T3,12n−5)/8 = −(2n − 1). Now suppose that X is a compact,

oriented, smooth spin 4-manifold bounding Y and thatH1(X;Z2) = 0 and b+(X) =

1. The Frøyshov inequality for spin cobordisms implies that σ(X) = −8. Such 4-

manifolds exist, for instance we could take X to be the plumbing on the graph in

Figure 6.

If m extends to an involution σ on X and σ|H+(X) = −1, then Proposition 5.4

(2) gives −σ(X)/8 ≤ δS0,∞(Y,m). But σ(X) = −8 and δS0,∞(Y,m) = 1− 2n, which
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−2 −2 −2 −2 −2

−2

−2 −2 −2 −2n

Figure 6. Plumbing graph for −Σ(2, 3, 12n− 5)

is impossible since n ≥ 1. We conclude that any extension of m to an involution on

X satisfies σ|H−(X) = 1. Moreover an example where m extends to an involution

is given by the plumbing on the graph in Figure 6, where the extension is given by

mΓ.

Next, we consider the extension problem in the case that the involution acts

homologically trivially.

Proposition 5.6. Let X be a compact, oriented, smooth spin 4-manifold with

boundary Y empty or a union of integral homology spheres. Assume H1(X;Z2) = 0.

Let σ be a smooth odd involution on X which acts homologically trivially on X and

sends each component of Y to itself. Then:

σ(X) = −8δR∞(Y, σ).

Furthermore, we have

b−(X) ≥ jR(Y, σ), b+(X) ≥ jR(−Y, σ).

Proof. Since H1(X;Z2) = 0, X has a unique spin structure, which is necessarily of

type R. The result follows by applying Theorem 3.17 to X and −X. □

Example 5.7. Let Y be an integral homology sphere and σ a smooth orientation

preserving involution on Y . It is very easy to construct examples of spin 4-manifolds

X bounding Y and such that σ does not extend to a homologically trivial involution

on X. Suppose X is a spin manifold bounding Y and H1(X;Z2) = 0. If σ(X) ̸=
−8δR∞(Y, σ), then σ does not extend homologically trivially to X by Proposition

5.6. If σ(X) = −8δR∞(Y, σ), then we can just replace X by X#X ′, where X ′ is any

closed spin 4-manifold with σ(X ′) ̸= 0 and H1(X
′;Z2) = 0.

Suppose for example that Y = Σ(a1, . . . , an) is a Brieskorn sphere where ai is

even for some i and that σ = m. Then δR∞(Y,m) = −µ(Y ). Let X be a spin

manifold bounding Y with H1(X;Z2) and with σ(X) ̸= 8µ(Y ). Then m does not

extend to a homologically trivial smooth involution on X. On the other hand, m

does extend to a smooth homologically trivial diffeomorphism onX. This is because

the involution m belongs to a circle action on Y , hence is smoothly isotopic to the

identity. We can choose an extension of m to X which consists of an isotopy from

m to the identity in some collar neighbourhood of Y and is the identity outside of

this neighbourhood.
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This non-extension result contrasts with the fact that m does extend to a ho-

mologically trivial involution on the plumbing XΓ on a star-shaped graph Γ whose

boundary is Y .

Lastly, we consider the extension problem under the assumption that the invo-

lution acts as −1 on H2(X;Z). The proof is essentially the same as for Proposition

5.6.

Proposition 5.8. Let X be a compact, oriented, smooth spin 4-manifold with

boundary Y empty or a union of integral homology spheres. Assume H1(X;Z2) = 0.

Let σ be a smooth odd involution on X which acts as −1 on H2(X;Z) and sends

each component of Y to itself. Then:

σ(X) = −8δE∞(Y, σ).

Furthermore, we have

b−(X) ≥ jE(Y, σ), b+(X) ≥ jE(−Y, σ).

5.2. Non-smoothable actions. In this section we will use the obstruction results

of Section 5.1 to give examples of orientation preserving, locally linear involutions

which are non-smoothable in the sense that they are not smooth with respect to

any differentiable structure on the manifold.

Suppose that X,X ′ are two topological 4-manifolds (possibly with boundary)

with orientation preserving locally linear involutions σ, σ′. Assume that σ, σ′ do

not act freely and that every component of the fixed point set has codimension 2.

By an equivariant connected sum (X,σ)#(X ′, σ′), we mean the following. Choose

fixed points x ∈ X, x′ ∈ X ′ of the involutions σ, σ′, where x, x′ lie in the interiors

of X,X ′. Since every component of the fixed point sets have the same codimension,

the involutions σ, σ′ have the same local form around any fixed points. Therefore we

can perform the connected sum X#X ′ in such a way that the involutions extend to

an involution σ#σ′ on the connected sum. Note that the isomorphism class of the

resulting involution σ#σ′ will depend on the choice of fixed points x, x′. Note that

since the fixed point sets of each summand are infinite, it is possible to construct

an equivariant sum with any number of summands.

A particular case of this construction that we will be interested in is when X ′ =

S2 × S2 and σ′ is either σ+ = ϕ× ϕ, where ϕ : S2 → S2 is rotation by π about an

axis or σ− = r × r, where r : S2 → S2 is the reflection about an equator. We have

that σ+ acts on H2(S2 × S2;Z) as the identity and σ− acts on H2(S2 × S2;Z) as
minus the identity.

Let X0 be a compact, oriented, spin, smooth 4-manifold with boundary Y , an

integral homology sphere. Assume also that H1(X;Z2) = 0. Suppose σ0 is a

smooth, orientation preserving odd involution on X0 and that σ0 acts either as

+1 or −1 on H2(X0;Z). Then according to Proposition 5.6, we have σ(X0) =

−8δT∞(Y, σ0), where T = R if σ0 acts trivially on H2(X0;Z) and T = E if σ0
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acts as −1 on H2(X0;Z). Assume that σ0 does not act freely. Let X±(m) be the

equivariant connected sum of (X0, σ0) with m copies of (S2 × S2, σ±).

Now letW be a closed, simply-connected, topological 4-manifold whose intersec-

tion form is even, negative definite and has non-zero rank (for example, the negative

definite E8 lattice). By Freedman [15], there exists a unique such W for every even

negative definite unimodular lattice. Let x ∈ X±(m) be such that σ′(x) ̸= x, where

σ′ denotes the involution on X±(m). Let X(m) = X±(m)#2W where the sign is

+ if σ0 acts trivially on H2(X0;Z) and is − if σ0 acts as −1 on H2(X0;Z). We

perform the connected sum by attaching copies of W at x and σ′(x). Then it is

clear that σ′ can be extended to a locally linear, orientation preserving involution

σ on X(m) which swaps the two copies of W .

Proposition 5.9. Suppose that m > 3b2(W )/8. Then X(m) admits a smooth

structure. However the locally linear involution σ is not smooth with respect to any

smooth structure on X(m).

Proof. Observe thatX(m) = X0#Z where Z = m(S2×S2)#2W . Then Z is closed,

simply-connected and has intersection form mH ⊕ 2L, where L is the intersection

form of W and H is the intersection form of S2 × S2. Since m > 0, we have that

mH ⊕ 2L ∼= m′H ⊕ k(3H ⊕ 2E8), where k = b2(W )/8 and m′ = m − 3k > 0

by the assumption that m > 3b2(X)/8. Thus Z is homeomorphic to m′(S2 ×
S2)#kK3 and hence is smoothable. On the other hand, since σ0 acts trivially on

H2(X0;Z) and since σ+ acts trivially on H2(S2 × S2;Z), it follows that σ acts

trivially on H+(X(m)). Suppose that X(m) admits a smooth structure in which σ

is smooth. Applying Theorem 3.17 to the unique spin structure on X(m) (which is

necessarily of type R), we get δT∞(Y, σ0) ≥ −σ(X(m))/8 = −σ(X0)/8 + b2(W )/4.

But δT∞(Y, σ0) = −σ(X0)/8, giving b2(W ) ≤ 0, which is a contradiction. Hence σ

is not smoothable. □

Remark 5.10. The non-smoothable involutions constructed in Proposition 5.9 have

the following stability property. They remain non-smoothable upon equivariant

connected sum with copies of (S2 × S2, σ±), where the sign is + if σ0 acts trivially

on H2(X0;Z) and is − if σ0 acts as −1 on H2(X0;Z). On the other hand, if we

connect sum with S2 × S2 equipped with a different involution, then it might be

possible that the involution will become smoothable.

5.3. Equivariant embeddings. Let Y be a rational homology 3-sphere and σ an

orientation preserving smooth involution on Y . Consider the problem of embedding

Y into a closed, oriented, smooth 4-manifold X in such a way that σ extends to an

orientation preserving involution on X. Suppose we are given such an embedding

Y → X. Then we get a decomposition X = X−∪Y X+ where X−, X+ are compact

smooth 4-manifolds ∂X− = Y , ∂X+ = −Y . If σ extends to X, then by restriction

σ acts on X+, X− and we can apply Theorem 3.17 to obtain constraints on the

existence of such embeddings. We will focus on the case of embeddings into S4 or

connected sums of S2 × S2.

The following is a straighforward extension of [5, Proposition 7.15]:
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Proposition 5.11. Let Y be an integral homology 3-sphere and σ an orientation

preserving smooth involution on Y . If Y can be equivariantly embedded in S4, then

all delta-invariants of Y vanish.

Every orientable 3-manifold embeds in #n(S2 × S2) for some sufficiently large

n [1, Theorem 2.1]. Aceto–Golla–Larson define the embedding number ε(Y ) to be

the least such n such that Y embeds in #n(S2×S2). We consider three equivariant

versions of ε.

Definition 5.12. Let Y be an orientable 3-manifold and σ an orientation preserv-

ing smooth involution on Y . Define the following invariants of (Y, σ):

(1) ε(Y, σ) is the least n such that Y embeds inX = #n(S2×S2) and σ extends

to an orientation preserving smooth involution on X. If no such n exists,

then we set ε(Y, σ) = ∞.

(2) ε+(Y, σ) is the least n such that Y embeds in X = #n(S2 × S2) and σ

extends to a homologically trivial, orientation preserving smooth involution

on X. If no such n exists, then we set ε+(Y, σ) = ∞.

(1) ε−(Y, σ) is the least n such that Y embeds in X = #n(S2 × S2) and σ

extends to an orientation preserving smooth involution on X which acts as

−1 on H2(X;Z). If no such n exists, then we set ε−(Y, σ) = ∞.

Clearly ε±(Y, σ) ≥ ε(Y, σ) ≥ ε(Y ). Note that equivariant embedding number

defined in [5, §7.4] corresponds (in the case of involutions) to ε− in this paper.

The following results give some upper bounds on ε, ε±:

Proposition 5.13. Suppose (Y, σ) is given by equivariant Dehn surgery on a framed

link L whose framing coefficients are all even integers. Then ε(Y, σ) ≤ k, where k

is the number of components of k. If L is 2-periodic, then ε+(Y, σ) ≤ k and if L is

strongly invertible, then ε+(Y, σ) ≤ k.

Proof. Let X denote the trace of the surgery on L and let D(X) = X ∪Y (−X) be

the double of X. Then Y embeds equivariantly in X. But X is diffeomorphic to

#k(S2×S2) [17, Corollary 5.1.6]. Thus ε(Y, σ) ≤ k. Furthermore, if L is 2-periodic

then σ acts trivially on H2(D(X);Z), hence ε+(Y, σ) ≤ k. Similarly, if L is strongly

invertible then σ acts as −1 on H2(D(X);Z), hence ε−(Y, σ) ≤ k. □

Proposition 5.14. Let Γ be a connected plumbing graph with all vertices having

even degrees. Then ε−(YΓ, cΓ) ≤ |Γ|, where |Γ| denotes the number of vertices in

Γ. If additionally Γ is a Z2-equivariant plumbing graph, then ε+(YΓ,mΓ) ≤ |Γ|.

Proof. YΓ equivariantly embeds in the double D(XΓ) of the plumbing XΓ. By [17,

Corollary 5.1.6], we have that D(XΓ) is diffeomorphic to #|Γ|(S2 × S2). Then

the result follows by noting that cΓ acts as −1 on H2(D(XΓ);Z) and mΓ acts as

+1. □

We also have [5, Proposition 7.18]:
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Proposition 5.15. Let K be a knot in S3 and Y = Σ2(K) the branched double

cover with covering involution σ. Then ε−(Y, σ) ≤ gds(K), where gds(K) is the

double slice genus of K [28, §5].

Now we use Theorem 3.17 to obtain lower bounds on ε, ε±:

Proposition 5.16. Let Y be an integral homology 3-sphere and σ an orientation

preserving smooth involution on Y . We have:

(1) If the delta-invariants δT∗ of (Y, σ) do not all vanish then ε(Y, σ) ≥ 2.

(2) ε+(Y, σ) ≥ max{jR(Y, σ), 2jR(Y, σ)− 8δR∞(Y, σ)}.
(3) ε−(Y, σ) ≥ max{jE(Y, σ), 2jE(Y, σ)− 8δE∞(Y, σ)}.
(4) If δS0,1(Y, σ), δ

S
1,0(Y, σ) are both non-zero, then ε(Y, σ) ≥ 4.

(5) If the Rokhlin invariant of Y is non-zero and if δS0,∞(Y, σ), δS∞,0(Y, σ), δ
S
∞,1(Y, σ)

do not all have the same sign, then ε(Y, σ) ≥ 10.

Proof. Suppose that Y embeds equivariantly in X = #n(S2 × S2). Then Y =

X− ∪Y X+. Let L+, L− denote the intersection forms on X+, X−. Since Y is an

integral homology sphere, L+, L− are even unimodular lattices and L+ ⊕ L− ∼=
H2(X;Z) ∼= nH where H is the hyperbolic lattice.

If n < 2, then L+ or L− is zero. Applying Theorem 3.17 to X+ if L+ is zero or

X− if L− is zero, we see that all the delta-invariants of (Y, σ) must vanish. This

proves (1).

Suppose now that σ acts trivially on H2(X;Z), hence also on H2(X±;Z). Let

L− have signature (a, b). Then L+ has signature (n− a, n− b). Applying Theorem

3.17 to X− gives δRj (Y, σ) = (b − a)/8 for j ≥ b. Hence δR∞(Y, σ) = (b − a)/8

and b ≥ jR(Y, σ). Applying Theorem 3.17 to X+ gives δRj (Y, σ) = (b − a)/8 for

j ≥ n− a, hence n− a ≥ jR(Y, σ). Hence n = a+ b ≥ b ≥ jR(Y, σ) and

n = 2b+ (a− b) ≥ 2jR(Y, σ)− 8δRj (Y, σ).

Hence n ≥ max{jR(Y, σ), 2jR(Y, σ) − 8δRj (Y, σ)} proving (2). In the case that σ

acts as −1 on H2(X;Z) an identical argument proves (3).

Suppose ε(Y, σ) < 4. Then one of L+ or L− is either zero or H. Reversing

orientation on X if necessary, we can assume L+ is either zero or H. If L+ is zero

then δS0,1(Y, σ) = δS1,0(Y, σ) = 0 by (1). Now suppose L+ = H. Consider the action

of σ on H. There are four possible involutions on H. In each of the four cases one

finds (by applying Theorem 3.17 to X+) that either δ
S
0,1(Y, σ) = 0 or δS1,0(Y, σ) = 0.

This proves (4).

Lastly, suppose the Rokhlin invariant of Y is non-zero and n ≤ 9. Then either L+

or L− must be ±E8, where E8 denotes the negative definite E8 lattice. Reversing

orientation on X if necessary, we can assume L+ or L− is E8. If L
+ = E8, applying

Theorem 3.17 to X+ gives δSi,j(Y, σ) ≥ 1 for all i, j. Similarly if L− = E8, applying

Theorem 3.17 to X− gives δSi,j(Y, σ) ≤ −1 for all i, j. In either case we see that

δS0,∞(Y, σ), δS∞,0(Y, σ), δ
S
∞,1(Y, σ) all have the same sign. This proves (5). □
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In [4], we introduced a concordance invariant θ(2)(K) of knots which is defined

by

θ(2)(K) = max{0, jE(Σ2(K), σ)− σ(K)/2},
where σ is the covering involution on Σ2(K). But note that σ(K) = 8δE∞(−Σ2(K), σ),

so it follows from Proposition 5.16 (3) and Proposition 5.15 that

(5.1) 2θ(2)(K) ≤ ε−(Σ2(K), σ) ≤ gds(K).

Proposition 5.17. Let p, q be odd, positive, coprime integers. Then ε−(Σ2(Tp,q), σ) =

(p− 1)(q − 1).

Proof. For any knot K, we have 2g4(K) ≤ gds(K) ≤ 2g3(K), where g3 denotes the

3-genus. For a torus knot Tp,q, the 3-genus and 4-genus agree and hence gds(Tp,q) =

2g4(Tp,q) = (p− 1)(q− 1). On the other hand, [6, Theorem 1.1] gives 2θ(2)(Tp,q) =

(p− 1)(q − 1). So Equation 5.1 gives ε−(Σ2(Tp,q), σ) = (p− 1)(q − 1). □

Proposition 5.18. Let Γ be a negative definite plumbing graph with all vertices

having even degree and det(A(Γ)) = 1. Then ε−(YΓ, cΓ) = |Γ|, where |Γ| is the

number of vertices of Γ. If in addition Γ is a Z2-equivariant plumbing graph, then

ε+(YΓ,mΓ) = |Γ|.

Proof. Proposition 5.14 gives the bound ε−(YΓ, cΓ) ≤ |Γ| and Proposition 5.16 gives

the bound ε−(YΓ, cΓ) ≥ 2jE(−Y, σ)−8δE∞(−Y, σ) ≥ −8δE∞(−Y, σ) = −8µ(YΓ). But

Γ is negative definite with all degrees even, so µ(YΓ) = −|Γ|/8, hence ε−(YΓ, cΓ) =
|Γ|. The case of ε+(YΓ,mΓ) is similar. □

Example 5.19. We consider the embedding numbers of some Brieskorn spheres

equipped either of the involutions σ or c.

Y = Σ(2, 3, 5). Since µ(Y ) = 1, all embedding numbers are at least 8. But Y

is the boundary of the E8-plumbing over which both σ and c extend. So we get

ε(Y ) = ε(Y, c) = ε(Y,m) = ε+(Y,m) = ε−(Y, c) = 8. Since Y = Σ2(T3,5) with m

being the covering involution, Proposition 5.17 also gives ε−(Y,m) = 8. We do not

know the value of ε−(Y, c).

Y = Σ(2, 3, 7). Then ε(Y ) = 10 [1, Proposition 3.5]. On the other hand, Y

is the boundary of a plumbing graph shown in Figure 7. Hence ε+(Y,m) ≤ 10

and ε−(Y, c) ≤ 10. So this gives ε(Y,m) = ε(Y, c) = ε+(Y,m) = ε−(Y, c) = 10.

Proposition 5.17 gives ε−(Y,m) = 12. We do not know the value of ε+(Y, c).

2 2 2 2 2

2

2 2 2 2

Figure 7. Plumbing graph for Σ(2, 3, 7)
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Y = Σ(2, 3, 13). It is known that Y embeds in S4 [9, Theorem 2.13], so ε(Y ) = 0.

On the other hand, δE∞(Y,m) = −σ(T3,13)/8 = 2, so Proposition 5.16 (1) gives

ε(Y,m) ≥ 2. Furthermore, Proposition 5.17 gives ε−(Y,m) = 24. Next, since

Σ(2, 3, 13) = Y (0; (2,−1), (3, 2), (13,−2)) we can write Y = YΓ where Γ is given by

Figure 8. This graph has 6 vertices, so ε+(Y,m) ≤ 6, ε−(Y, c) ≤ 6. Furthermore,

we observe that Y = S−1/2(T2,3). The strong inversion on T2,3 corresponds to the

involution c on Y (it can not correspond to m since δE∞(Y,m) ̸= 0, which would

contradict Proposition 4.16). Using the slam dunk move we can write Y as surgery

on a two component link with even surgery coefficients. Therefore ε−(Y, c) ≤ 2.

Notice that ε(Y ) = 0, ε(Y,m) ∈ [2, 6], ε−(Y,m) = 24, so ε(Y ), ε(Y,m), ε−(Y,m)

take distinct values.

2 2 0 −6 2

−2

Figure 8. Plumbing graph for Σ(2, 3, 13)

Example 5.20. Let Y be the equivariant connected sum Σ(2, 3, 5)# −Σ(2, 3, 13)
with involution σ the connected sum of the m involutions on the two summands.

Then since ε(Σ(2, 3, 5)) = 8, ε(Σ(2, 3, 13)) = 0, if follows that ε(Y ) ≤ 8. On the

other hand ε(Y ) ≥ 8 since µ(Y ) = 1. So ε(Y ) = 8. In Example 5.19 we saw

that ε(Σ(2, 3, 5),m) = 8 and ε(Σ(2, 3, 13),m) ≤ 6, so ε(Y, σ) ≤ 14. We claim that

ε(Y, σ) ≥ 10. Suppose this were not the case. Then as in the proof of Proposition

5.16 (5), we get X = X− ∪Y X+ where L+ or L− is E8. If L
+ = E8, then Theorem

3.17 gives δE0 (Y, σ) ≤ −1. But δE0 (Y, σ) ≥ δ(Y ) = δ(Σ(2, 3, 5))−δ(Σ(2, 3, 13)) = 1, a

contradiction. If L− = E8, then Theorem 3.17 gives δE∞(Y, σ) ≥ 1. But δE∞(Y, σ) ≤
δE∞(−Σ(2, 3, 13),m)+δE∞(Σ(2, 3, 5),m) = −2+1 = −1, a contradiction. So we have

shown that ε(Y ) = 8 and 10 ≤ ε(Y, σ) ≤ 14.

Example 5.21. We will show that the differences ε+(Y, σ)−ε(Y ), ε−(Y, σ)−ε(Y )

can be arbitrarily large. We do not know whether this is also true for ε(Y, σ)−ε(Y ).

Take Y = Σ(2, 3, 12n − 1) with involution σ = m. Then Y = −S1/2n(T2,3) and

as in Example 5.19, this gives ϵ(Y ) ≤ 2. On the other hand, Proposition 5.17 gives

ε−(Y, σ) = 24n− 4.

Finding examples where ε+(Y, σ) − ε(Y ) is large requires a little more effort.

Let n1, . . . , nk be positive integers and take Y = #k
i=1Σ(2, 3, 12ni − 1) to be an

equivariant connected sum of Σ(2, 3, 12n1− 1), . . . ,Σ(2, 3, 12nk − 1), where we take

the m involution on each summand. We have l(Σ(2, 3, 12ni − 1)) = 1 and hence

l(Y ) ≥ k. Also δR∞(Y, σ) ≤
∑l

i=1 δ
R
∞(Σ(2, 3, 12ni−1),m) = −

∑k
i=1 µ(Σ(2, 3, 12ni−

1)) = 0. Hence Proposition 3.16, jR(Y, σ) ≥ k. On the other hand, jR(Y, σ) ≤
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i=1 j

R(Σ(2, 3, 12ni − 1),m) = k, so jR(Y, σ) = k. Hence ε+(Y, σ) ≥ 2k by

Proposition 5.16 (2).

5.4. Non-orientable surfaces bounding knots. Let K be a knot in S3 and let

S be a connected, properly embedded, non-orientable surface in D4 which bounds

K. In this section we consider a constraint on the topology of S obtained from the

type R delta-invariants of K. A similar application was considered in [20]. The

main difference is that our invariant can be calculated for a much larger class of

knots, in particular for all quasi-alternating knots.

Let e(S) denote the relative Euler class of S with respect to the zero framing

on K. Since e(S) is valued in the orientation local system, will identify e(S) with

an integer. Note that e(S) is always even becauses its value mod 2 is the mod 2

self-intersection number of S, which is zero since H2(D4, S3;Z2) = 0. A natural

question to ask is for a given K, what possible values of (e(S), b1(S)) can be at-

tained? This problem is studied for torus knots in [2]. Here b1(S) is the first Betti

number of S. The minimum possible value of b1(S) that such an S can attain is

known as the non-orientable 4-genus of S [16] and denoted by γ4(K).

Proposition 5.22. Let x = σ(K)− e(S)/2 and y = b1(S). Then x, y ∈ Z, y ≥ 0,

|x| ≤ y and x = y (mod 2).

Proof. Since e(S) is even, x is an integer. We have assumed that S is non-orientable,

so y = b1(S) > 1 (any non-orientable surface with one boundary component has

positive first Betti number).

Let X denote the double cover of D4 branched over S. Then X is a smooth, com-

pact, oriented 4-manifold with boundary Y = ∂(X) = Σ2(K). By a straightforward

computation (eg, [20, Lemma 4.5]) we have:

(5.2) b+(X) =
x+ y

2
, b−(X) =

y − x

2
.

The result follows, since b±(X) are non-negative integers. □

Suppose the surface S has x = σ(K)− e(S)/2, y = b1(S). By connect summing

S with an embedded copy of RP2 in S4, we can obtain a new surface S′ with values

(x ± 1, y + 1). This operation can not increase the value of y − |x|. Of particular

interest is the boundary case where |x| = y. In this case double cover X of D4

branched over S is positive (if x = y) or negative definite (if x = −y).

Proposition 5.23. Suppose that x = −y, or equivalently σ(K)−e(S)/2 = −b1(S).
Then there exists a spinc-structure s on Σ2(K) for which δR∞(Σ2(K), s, σ) ≥ 0 and

δR0 (−Σ2(K), s, σ) ≤ 0, where σ is the covering involution on Σ2(K). Furthermore,

if δR∞(Σ2(K), s, σ) = 0 or δR0 (−Σ2(K), s, σ) = 0, then s is the unique spin structure

on Σ2(K).

If K is quasi-alternating (or more generally, if Σ2(K) is an L-space), then there

exists a spinc-structure s on Σ2(K) for which δ(Σ2(K), s) ≥ 0, with equality only

if s is the spin structure.
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Proof. Let X be the double cover of D4 branched over S. Since x = −y, X is

negative definite. The covering involution σ on Y = Σ2(K) extends over X as the

covering involution of the double cover π : X → D4. We have that 1+σ∗ = π∗π∗ =

0, since H2(D4;Z) = 0. Hence σ acts as −1 on H2(X;Z). Furthermore, H2(X;Z)
has no 2-torsion [20, Lemma 4.5], so we can identify spinc-structures on X with

their characteristics. We also have b1(X) = 0. It follows that every spinc-structure

on X has type R. From the long exact sequence in cohomology of the pair (X,Y ),

we have

0 → H2(X,Y ;Z) → H2(X;Z) → H2(Y ;Z).

Let L = H2(X,Y ;Z)/tors denote the intersection lattice of X. Then it follows

that the discriminant group L̄ = L∗/L is isomorphic to a subquotient of H2(Y ;Z).
Moreover, |H2(Y ;Z)| = det(K), hence |L̄| divides det(K). In particular, |L̄| is odd.

Choose a spinc-structure s on X whose characteristic c ∈ H2(X;Z) attains the
maximum possible value of c2 (such a spinc-structure exists, since X is negative

definite). By [41, Theorem 1], we have c2 ≥ 1− n− 1/δ, where n is the rank of L

and δ = |L̄|. Hence (c2 − σ(X))/8 ≥ (1/8)(1− 1/δ) ≥ 0. Now the result follows by

applying Theorem 3.17 to (X, s, σ). Furthermore the inequalities δR∞(Σ2(K), s, σ) ≥
0 and δR0 (−Σ2(K), s, σ) ≤ 0 are strict unless δ = 1. But in this case L is unimodular

and it follows that s|Y is the unique spin structure on Y .

The last statement also follows, for if Y is an L-space, then δR∞(Y, s, σ) = δ(Y, s)

by Proposition 3.9 (4). □

Example 5.24. Let K = Tp,q be a torus knot, where p and q are odd. Then

det(K) = 1, so Y = Σ2(K) = Σ(2, p, q) has a unique spinc-structure. Suppose that

a non-orientable surface S bounding K has x = −y, where x = σ(K) − e(S)/2,

y = b1(S). Then by Proposition 5.23, δR∞(Y, σ) ≥ 0. In this case δR∞(Y, σ) =

−µ(Σ(2, p, q)). So we get µ(Σ(2, p, q)) ≤ 0. Similarly, suppose there is a surface S

with x = y. Then applying Proposition 5.23 to −K we get µ(Σ(2, p, q)) ≥ 0. So if

µ(Σ(2, p, q)) > 0, then x > −y and if µ(Σ(2, p, q)) < 0, then x < y.

Example 5.25. Let K = M(e; (a1, b1), . . . , (an, bn)) be a Montesinos knot where

a1, . . . , an are coprime, ai is even for some i and e −
∑n

i=1 bi/ai = 1/(a1 · · · an).
Then Σ2(K) = −Y , where Y is the Brieskorn sphere Σ(a1, . . . , an). Then by

Theorem 4.3, we have δR∞(Σ2(K), σ) ≤ −σ(K)/8 = µ(Y ). So if µ(Y ) < 0, then

δR∞(Σ2(K), σ) < 0. Applying Proposition 5.23 we see that if µ(Y ) < 0, then there

does not exist a non-orientable surface S boundingK with σ(K)−e(S)/2 = −b1(S).

References

1. P. Aceto, M. Golla, K. Larson, Embedding 3-manifolds in spin 4-manifolds. J. Topol. 10

(2017), no. 2, 301-323.

2. S. Allen, Nonorientable surfaces bounded by knots: a geography problem. New York J. Math.

29 (2023), 1038-1059.

3. M. F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications.

Ann. of Math. (2) 88 (1968), 451-491.



52 DAVID BARAGLIA AND PEDRAM HEKMATI

4. D. Baraglia, Knot concordance invariants from Seiberg–Witten theory and slice genus bounds

in 4-manifolds, arXiv:2205.11670 (2022).

5. D. Baraglia, P. Hekmati, Equivariant Seiberg–Witten–Floer cohomology, Algebr. Geom. Topol

(to appear), arXiv:2108.06855 (2021).

6. D. Baraglia, P. Hekmati, Brieskorn spheres, cyclic group actions and the Milnor conjecture,

arXiv:2208.05143 (2022).

7. H. Bass, J. W. Morgan, eds, The Smith conjecture. Pure and Applied Mathematics, 112.

Academic Press, Inc., Orlando, FL, (1984). xv+243.

8. M. Boileau, B. Leeb, J. Porti, Geometrization of 3-dimensional orbifolds. Ann. of Math. (2)

162 (2005), no. 1, 195-290.

9. R. Budney, B. A. Burton, Embeddings of 3-manifolds in S4 from the point of view of the 11-

tetrahedron census. Experimental Mathematics, DOI:10.1080/10586458.2020.1740836 (2020).

10. V. Colin, P. Ghiggini, K. Honda, The equivalence of Heegaard Floer homology and embedded

contact homology via open book decompositions I. arXiv:1208.1074, (2012).

11. V. Colin, P. Ghiggini, K. Honda. The equivalence of Heegaard Floer homology and embedded

contact homology via open book decompositions II. arXiv:1208.1077, (2012).

12. V. Colin, P. Ghiggini, K. Honda, The equivalence of Heegaard Floer homology and embedded

contact homology III: from hat to plus. arXiv:1208.1526, (2012).

13. T. tom Dieck, Transformation groups. De Gruyter Studies in Mathematics, 8. Walter de

Gruyter & Co., Berlin, (1987).

14. J. Dinkelbach, B. Leeb, Equivariant Ricci flow with surgery and applications to finite group

actions on geometric 3-manifolds. Geom. Topol. 13 (2009), no. 2, 1129-1173.

15. M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982),

no. 3, 357-453.

16. P. M. Gilmer, C. Livingston, The nonorientable 4-genus of knots. J. Lond. Math. Soc. (2) 84

(2011), no. 3, 559-577.

17. R. E. Gompf, A. I. Stipsicz, 4-manifolds and Kirby calculus.Graduate Studies in Mathematics,

20. American Mathematical Society, Providence, RI, (1999), xvi+558.

18. J. Hom, Z. Wu, Four-ball genus bounds and a refinement of the Ozsváth–Szabó tau invariant.
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