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We consider Real bundle gerbes on manifolds equipped with an in-
volution and prove that they are classified by their Real Dixmier–
Douady class in Grothendieck’s equivariant sheaf cohomology. We
show that the Grothendieck group of Real bundle gerbe modules
is isomorphic to twisted KR-theory for a torsion Real Dixmier–
Douady class. Using these modules as building blocks, we introduce
geometric cycles for twistedKR-homology and prove that they gen-
erate a real-oriented generalised homology theory dual to twisted
KR-theory for Real closed manifolds, and more generally for Real
finite CW-complexes, for any Real Dixmier–Douady class. This is
achieved by defining an explicit natural transformation to analytic
twisted KR-homology and proving that it is an isomorphism. Our
model both refines and extends previous results by Wang [55] and
Baum–Carey–Wang [9] to the Real setting. Our constructions fur-
ther provide a new framework for the classification of orientifolds
in string theory, providing precise conditions for orientifold lifts of
H-fluxes and for orientifold projections of open string states.
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1. Introduction and summary

In [2] Atiyah introduces the notion of KR-theory for a space M with an
involution τ : M →M as a common generalisation of real and complex K-
theory. This is defined on the semi-group of complex vector bundles which
are ‘Real’ in the sense that the involution τ lifts to an anti-linear involution
on the total space. In this paper we provide a definition of twistedKR-theory,
as well as its dual homology theory, and describe some new approaches to
the construction of orientifolds of Type II string theory, using modules for
a certain kind of bundle gerbe.

To motivate the mathematical ideas that we use, note that an involution
τ acting on a space M is equivalent to an action of Z2 where τ defines the
action of the non-trivial element in Z2. There is an induced action of Z2 on
the space of functions f : M → C given by τ(f)(m) = f(τ(m)). As a result
this space has two distinguished subsets: the ‘Real’ functions which satisfy
τ(f) = f̄ and the ‘invariant’ functions which satisfy τ(f) = f . Notice that
Real does not mean that the function is real-valued unless τ acts trivially
on M .

When we replace functions by more complicated geometric objects such
as U(1)-bundles L→M , then the definitions of Real and invariant also
involve a choice of isomorphism τ−1(L) ≃ L∗ or τ−1(L) ≃ L which, in an
appropriate sense, squares to the identity. In the latter case we will call
the line bundle L ‘equivariant’ rather than invariant because it corresponds
exactly to a lift of the Z2-action on M to L.

When we pass to bundle gerbes, we have to also deal with the fact that
there are two kinds of isomorphism for bundle gerbes, so it is possible to
define the Z2-action to be either by isomorphisms or by stable isomorphisms.
The former leads to the notion of Real bundle gerbes [45] and the latter to the
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notion of Jandl bundle gerbe [50]. In this paper, we elucidate the relation
between these two kinds of gerbes and show that both notions, equipped
with the appropriate idea of stable isomorphism, are sufficient to capture
Grothendieck’s equivariant sheaf cohomology group H2(M ;Z2,U(1)) [35]
through a Real version of the Dixmier–Douady class.

Once these preliminaries are in place, it is relatively straightforward to
extend the results of [14, 19] to Real bundle gerbes. In particular, we define
Real bundle gerbe modules and prove that they model twisted KR-theory
for a torsion Real Dixmier–Douady class by establishing a Real version of
the Serre–Grothendieck theorem. We then introduce a geometric model for
twisted KR-homology using Real bundle gerbe modules. This is where the
latter come into their own, since the geometric cycles work for arbitrary
twisting classes. A merit of our model is that it uses actual Real bundle gerbe
modules and not merely twisted KR-theory data in the definition of cycles.
We define an assembly map to analytic twistedKR-homology and prove that
for Real closed manifolds, and more generally for Real finite CW-complexes,
it is an isomorphism by constructing an explicit inverse. Consequently, the
Real bundle gerbe cycles define a real-oriented generalised homology theory
dual to twisted KR-theory.

Twisted KR-homology is a primary theory in the sense that it subsumes
complex, real and quaternionic K-homology as special cases. For a twist-
ing class [H] we recover the construction of complex twisted K-homology
by Wang for compact manifolds from [55] and the Baum–Carey–Wang con-
struction for finite CW-complexes from [9] via KR(M ⨿M, [H]⨿−[H]) =
K(M, [H]), where the involution acts by exchanging the two copies of M
and sends ([H]⨿−[H]) to (−[H]⨿ [H]). Moreover, our model subsumes the
Deeley–Goffeng model from [23] which uses closed spinc PU(n)-manifolds. In
the complex setting our Real bundle gerbe cycles are closely related to their
projective K-cycles, but unlike in [23] where they use PU(n)-equivariant
maps, our proof that the assembly map is an isomorphism works for ar-
bitrary twistings. When the involution τ is trivial, we obtain a geometric
model for twisted KO-homology, KR(M, [H]) ∼= KO(M, [H]). We note that
this isomorphism holds under the condition that the sign choice associated
to the twisting class [H] is positive. On the other hand, when the sign choice
of [H] is negative and the corresponding complex Dixmier–Douady class van-
ishes, we obtain a geometric model for untwisted quarternionic K-homology,
KR(M, [H]) ∼= KSp(M) (see Example 7.8). We address the question of sign
choices, as well as connective structures on Real bundle gerbes, in detail in
the sequel [36].
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Spaces with involutions give an efficient way to construct new string
backgrounds, which in the presence of fluxes are important for model build-
ing in string theory; in this setting the pair (M, τ) is called an ‘orientifold’.
Part of the motivation behind this work is to better sharpen the current un-
derstanding of orientifold constructions in string theory in the presence of
background H-flux, as Ramond-Ramond charges and currents in these back-
grounds are classified by twisted (differential) KR-theory [13, 15, 24, 32, 56].
The mathematical formalism that we develop in this paper provides a new
framework in which to investigate various features of orientifolds. In partic-
ular, there are four problems that can be tackled using our perspective.

Firstly, the Dirac quantization condition on the B-field must be imple-
mented by locating its quantum flux in a suitable cohomology group, so
that the usual class [H] ∈ H3(M,Z) of the H-flux must be equivariant in an
appropriate sense. In this paper we give for the first time a necessary and
sufficient condition (including torsion) for an H-flux to lift to an orientifold
H-flux via a long exact sequence in Grothendieck’s equivariant sheaf coho-
mology. Secondly, the orientifold projection conditions on open string states
are known only in some simple examples; in the following we give a general
definition of Real bundle gerbe D-branes appropriate to an orientifold back-
ground, and in particular our construction of twistedKR-homology precisely
defines the orientifold projections of open string states. Thirdly, in a given
situation one may be interested in D-branes not only on top of an orientifold
plane (O-plane); our homological classification naturally accounts for these
open string states as well and provides new consistency conditions for D-
branes in orientifolds. Finally, in Type II orientifolds, D-branes on top of an
O-plane can have either an SO(n) or Sp(n) gauge symmetry depending on
the choice of orientifold action; this defines the ‘type’ of an O-plane. Con-
ditions for the allowed distributions of O-plane types for a given involution
τ are discussed more systematically in [36]. For some recent progress in this
direction, see [24, 27, 28, 32].

In summary the paper proceeds as follows. In Section 2 we review the
theory of bundle gerbes and bundle gerbe modules, and explain how it was
used in [14, 19] to define twisted K-theory. Up to stable isomorphism, bun-
dle gerbes over M are classified precisely by their Dixmier–Douady class in
H2(M,U(1)) = H3(M,Z). In the case of Real bundle gerbes there is a cor-
responding Real Dixmier–Douady class which lives in Grothendieck’s equiv-
ariant sheaf cohomology group H2(M ;Z2,U(1)) [35], and we develop the
necessary parts of this theory in Section 3. As an introduction to the notion
of Real bundle gerbes, we first consider Real line bundles in Section 4. In
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Section 5 we introduce the definition of Real bundle gerbes, and briefly dis-
cuss their relationship with the apparently weaker notion of Jandl bundle
gerbes. The corresponding notion of Real bundle gerbe module is introduced
in Section 6 and related to twisted KR-theory. In Section 7 we describe some
applications of our formalism to the orientifold construction in string the-
ory, and introduce the notion of Real bundle gerbe D-brane which serves
as an impetus for the definition of geometric twisted KR-homology that we
give in Section 8. The paper concludes with the construction of the Real
assembly map to analytic twisted KR-homology and a proof that it gives
an isomorphism.

2. Bundle gerbes and their modules

In this section we will briefly review the various facts about bundle gerbes
and bundle gerbeK-theory that will be relevant for us in later sections; more
details can be found in [14, 46]. The reader familiar with bundle gerbes and
their modules can safely skip this section.

Let M be a manifold and Y
π−→M a surjective submersion. We denote

by Y [p] the p-fold fibre product of Y with itself, that is Y [p] = Y ×M Y ×M

· · · ×M Y . This is a simplicial space whose face maps are given by the
projections πi : Y

[p] → Y [p−1] which omit the i-th factor. A bundle gerbe

(P, Y ) (or simply P when Y is understood) over M is defined by a prin-
cipal U(1)-bundle (or a hermitian line bundle) P → Y [2] together with a
bundle gerbe multiplication given by an isomorphism of bundles π−1

3 (P )⊗
π−1
1 (P ) → π−1

2 (P ) over Y [3], which is associative over Y [4]. On fibres the mul-
tiplication looks like P(y1,y2) ⊗ P(y2,y3) → P(y1,y3) for (y1, y2, y3) ∈ Y [3]. This

implies that if (y1, y2, y3, y4) ∈ Y [4], then

P(y1,y2) ⊗ P(y3,y4) ≃ P(y1,y2) ⊗ P(y2,y3) ⊗ P(y3,y4) ⊗ P(y3,y2)(2.1)

≃ P(y1,y4) ⊗ P(y3,y2).

We can multiply two bundle gerbes over M together. Namely, we define
(P, Y )⊗ (Q,X) := (P ⊗Q, Y ×M X), where here P and Q are pulled back
to (Y ×M X)[2] by the obvious maps to Y [2] and X [2].

The dual of (P, Y ) is the bundle gerbe (P ∗, Y ), where by P ∗ we mean the
U(1)-bundle which is P with the action of U(1) given by p · z = p z̄ = p z−1,
that is, as a space P ∗ = P , but with the conjugate U(1)-action.

Given a map f : N →M and a bundle gerbe (P, Y ) over M , we can pull
back the surjective submersion Y →M to a surjective submersion f−1(Y ) →
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N and the bundle gerbe (P, Y ) to a bundle gerbe

f−1(P, Y ) :=
((
f [2]
)−1

(P ), f−1(Y )
)

overN , where f [2] : f−1
(
Y [2]

)
→ Y [2] is the map induced by f : f−1(Y ) → Y .

A bundle gerbe (P, Y ) over M defines a class in H3(M,Z), called the
Dixmier–Douady class of P , as follows. Let U = {Uα}α∈I be a good cover of
M with sections sα : Uα → Y , where as usual we write Uα0···αp

:= Uα0
∩ · · · ∩

Uαp
. On double overlaps Uαβ they define sections (sα, sβ) of Y [2] by m 7→

(sα(m), sβ(m)). Choose sections σαβ of the pullback bundle (sα, sβ)
−1(P ) →

Uαβ . Using the bundle gerbe multiplication we have

σαβ σβγ = σαγ gαβγ ,

for some maps gαβγ : Uαβγ → U(1) on triple overlaps which satisfy the co-
cycle condition and hence define a class in H2(M,U(1)) = H3(M,Z). We
call this element the Dixmier–Douady class of P and denote it by DD(P ).
Conversely, any class [H] ∈ H3(M,Z) defines a bundle gerbe (P, Y ) over M
with DD(P ) = [H].

An isomorphism between two bundle gerbes (P, Y ) and (Q,X) over M
is a pair of maps (f̂, f) where f : Y → X is an isomorphism that covers
the identity on M , and f̂ : P → Q is a map of U(1)-bundles that covers
the induced map f [2] : Y [2] → X [2] and commutes with the bundle gerbe
product. Isomorphism is too strong to be the right notion of equivalence
for bundle gerbes, since there are many non-isomorphic bundle gerbes with
the same Dixmier–Douady class. The correct notion of equivalence is stable
isomorphism [47] defined below, which has the property that two bundle
gerbes are stably isomorphic if and only if they have the same Dixmier–
Douady class.

We say that a bundle gerbe (P, Y ) is trivial if there exists a U(1)-
bundle L→ Y such that P is isomorphic to δL := π−1

1 (L)⊗ π−1
2 (L)∗ with

the canonical multiplication

(δL)(y1,y2) ⊗ (δL)(y2,y3) = L∗
y1

⊗ Ly2
⊗ L∗

y2
⊗ Ly3

= L∗
y1

⊗ Ly3
= (δL)(y1,y3).

A choice of L and an isomorphism P ≃ δL is called a trivialisation; any two
trivialisations differ by the pullback of a line bundle on M . The Dixmier–
Douady class is precisely the obstruction to the bundle gerbe being trivial.
Two bundle gerbes are stably isomorphic if Q⊗ P ∗ is trivial, and a stable
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isomorphism P → Q is a choice of trivialisation of Q⊗ P ∗. Explicitly, if
(P, Y ) and (Q,X) are stably isomorphic bundle gerbes overM , then a stable
isomorphism P → Q is a bundle R→ Y ×M X such that

(2.2) P(y1,y2) ⊗R(y2,x2) ≃ R(y1,x1) ⊗Q(x1,x2).

If f : (P, Y ) → (Q,X) is an isomorphism of bundle gerbes then using (2.1)
we have

(Q⊗ P ∗)(x1,x2,y1,y2) = Q(x1,x2) ⊗ P ∗
(y1,y2)

= Q(x1,x2) ⊗Q∗
(f(y1),f(y2))

= Q(x1,f(y1)) ⊗Q∗
(x2,f(y2))

.

Hence there is an induced stable isomorphism given by Q⊗ P ∗ = δL, where
L→ X ×M Y is given by L(x,y) = Q∗

(x,f(y)).
In the case that two bundle gerbes are defined over the same surjective

submersion, the situation is slightly simpler. If (P, Y ) and (Q, Y ) are bundle
gerbes, a stable isomorphism is a bundle R→ Y [2] and the isomorphism (2.2)
becomes

P(y1,y2) ⊗R(y2,y′

2)
≃ R(y1,y′

1)
⊗Q(y′

1,y
′

2)
,

for y1, y2, y
′
1, y

′
2 all in the same fibre of Y . Since we can include Y into Y [2]

as the diagonal, we can restrict Q⊗ P ∗ to Y and this induces a stable iso-
morphism (Q⊗ P ∗, Y ) → (Q⊗ P ∗, Y [2]). Hence (Q⊗ P ∗, Y ) is trivial if and
only if (Q⊗ P ∗, Y [2]) is trivial. From the theory of bundle gerbe modules
and the fact that a trivialisation is a bundle gerbe module of rank one (see
below), it follows that there is a bijective correspondence between trivialisa-
tions of (Q⊗ P ∗, Y ) and trivialisations of (Q⊗ P ∗, Y [2]). Thus we can regard
a stable isomorphism R : (P, Y ) → (Q, Y ) as a bundle R→ Y together with
isomorphisms

P(y1,y2) ⊗Ry2
≃ Ry1

⊗Q(y1,y2).(2.3)

Given stable isomorphisms R : (P, Y ) → (Q,X) and S : (Q,X) → (T, Z)
there is a general theory of how to compose them. In the case Y = X = Z
it reduces to the following. Assume we have (2.3) and

Q(y1,y2) ⊗ Sy2
≃ Sy1

⊗ T(y1,y2) .
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Then we induce maps

P(y1,y2) ⊗ (Ry2
⊗ Sy2

) ≃ Ry1
⊗Q(y1,y2) ⊗ Sy2

≃ (Ry1
⊗ Sy1

)⊗ T(y1,y2)

which define the product.
Any stable isomorphism (2.3) induces an inverse Q→ P ,

Q(y1,y2) ⊗R∗
y2

≃ R∗
y1

⊗ P(y1,y2),

and a dual P ∗ → Q∗,

P ∗
(y1,y2)

⊗R∗
y2

≃ R∗
y1

⊗Q∗
(y1,y2)

.

Given a map τ : M →M and a stable isomorphism R : (P, Y ) → (Q, Y )
there is a stable isomorphism τ−1(R) : τ−1(P, Y ) → τ−1(Q, Y ).

If (P, Y ) is a bundle gerbe, then a bundle gerbe module is a vector bundle
E → Y with a family of bundle maps

P(y1,y2) ⊗ Ey2
≃ Ey1

satisfying the natural associativity condition that on any triple (y1, y2, y3) ∈
Y [3] the two maps

P(y1,y2) ⊗ P(y2,y3) ⊗ Ey3
−→ P(y1,y3) ⊗ Ey3

−→ Ey1

and

P(y1,y2) ⊗ P(y2,y3) ⊗ Ey3
−→ P(y1,y2) ⊗ Ey2

−→ Ey1

are equal. We denote by Mod(P, Y ) the semi-group of bundle gerbe modules
under direct sum and by Kbg(M,P ) the corresponding Grothendieck group
which we call the bundle gerbe K-theory group of (P, Y ).

It is shown in [14, Proposition 4.3] that if (P, Y ) and (Q,X) are bundle
gerbes over M then any stable isomorphism R : (P, Y ) → (Q,X) induces a
semi-group isomorphismMod(P, Y ) → Mod(Q,X) and thus an isomorphism
Kbg(M,P ) ≃ Kbg(M,Q). There is an important subtlety that needs noting.
Different stable isomorphisms between bundle gerbes can give rise to differ-
ent isomorphisms on twisted K-theory. So while Kbg(M,P ) and Kbg(M,Q)
are isomorphic if DD(P ) = DD(Q) the actual isomorphism is not determined
until a stable isomorphism is chosen. It is a common abuse of notation how-
ever to write Kbg(M, [H]) to mean a group in the isomorphism class of
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Kbg(M,P ) for some bundle gerbe (P, Y ) with DD(P ) = [H] ∈ H3(M,Z).
In [19] it was shown that for any torsion class [H] ∈ H3(M,Z), the group
Kbg(M, [H]) is isomorphic to the twisted K-theory K(M, [H]).

Example 2.4. If (P, Y ) is trivial so that P = δK, then the bundle gerbe
module action P(y1,y2) ⊗ Ey2

≃ Ey1
implies K∗

y1
⊗Ky2

⊗ Ey2
≃ Ey1

and so

Ky2
⊗ Ey2

≃ Ky1
⊗ Ey1

,

which are descent data for the bundle K ⊗ E → Y . Conversely, if F is a
bundle on M then δK acts on K∗ ⊗ π−1(F ) and so it defines a module.
This gives an isomorphism from the semi-group of bundle gerbe modules
Mod(δK, Y ) to the semi-group of vector bundles Vect(M), which implies
that the bundle gerbe K-theory of a trivial bundle gerbe onM is isomorphic
to the K-theory of M .

3. Grothendieck’s equivariant sheaf cohomology

In his famous Tohoku paper [35], Grothendieck introduced a cohomology
theory for sheaves with group actions. We will be concerned with the case
that the group is the cyclic group Z2.

Let M be a manifold with an involution τ : M →M ; this is of course
the same thing as an action of Z2 on M . The pair (M, τ) is called a Real

manifold and we will simply writeM when there is no risk of confusion. Real
manifolds are objects in a category whose morphisms f : (M, τ) → (M ′, τ ′ )
are equivariant smooth maps, that is f ◦ τ = τ ′ ◦ f .

Let S be a sheaf of abelian groups with an action of Z2 covering that on
M [35]. Again we only need to describe the action of the non-trivial element
of Z2 which must be involutive and is also denoted τ . For any such Z2-
sheaf denote by ΓZ2

M (S) the space of Z2-invariant sections of S. Grothendieck
denotes the right derived functors of ΓZ2

M applied to S by Hp(M ;Z2,S). We
are interested primarily in the case when S is the sheaf of smooth functions
taking values in the group U(1) which we denote by U(1). We will adopt
this same notation when we give this sheaf the trivial Z2 action and denote
it U(1) when we give it the conjugation action τ(f) = f̄ ◦ τ .

We want to calculate this cohomology via a Čech construction using
[35, Section 5.5]. Following [45] we say that an open cover U = {Uα}α∈I of
M is Real if Uα ∈ U implies that τ(Uα) ∈ U and the indexing set I has an
involution denoted α 7→ ᾱ such that τ(Uα) = Uᾱ. It is always possible to
choose a good cover with the property that the involution on I has no fixed



✐

✐

“5-Murray” — 2020/5/15 — 12:43 — page 2102 — #10
✐

✐

✐

✐

✐

✐

2102 Hekmati, Murray, Szabo, and Vozzo

points. For this, pick a metric on M and make it τ -invariant by averaging.
Then the image of any geodesically convex set under τ is again a geodesically
convex set, so a family of geodesically convex subsets and their τ -translates
provide a good cover ofM . We can further extend the indexing set I so that
α and ᾱ are never the same index. This can be done by replacing I with
I × Z2 so that (α,± 1) = (α,∓ 1) and letting U(α,1) = Uα and U(α,−1) = Uᾱ.
We will not make this replacement explicit but simply assume that I has
the required property. For later use we note the trivial fact that if I is a
finite set with an involution without fixed points, then |I| is even, and I is
the disjoint union of two subsets I+ and I− that are interchanged by the
involution.

Given a Z2-sheaf S, we can introduce the space Cp(U ;Z2,S) of all
cochains σ which are invariant under τ , that is

σα0···αp
= τ(σᾱ0···ᾱp

◦ τ).

The associated Čech cohomology groups are defined in the usual way as the
inductive limit over refinements of Real open covers. For the particular cases
of the sheaves U(1) and U(1) it follows from [35, Corollary 1, p. 209] that
the limit is in fact achieved for a Real good cover with free action on its
indexing set.

Explicitly the two cases of interest are as follows. Given a map

gᾱ0···ᾱp
: Uᾱ0···ᾱp

−→ U(1)

then

gᾱ0···ᾱp
◦ τ : Uα0···αp

−→ U(1),

and we can define an involution τ∗ on Cp(U ,U(1)) by τ∗(g)α0···αp
= gᾱ0···ᾱp

◦
τ for g ∈ Cp(U ,U(1)). We are interested in two natural subcomplexes of the
ordinary Čech complex Cp(U ,U(1)) defined by how cochains behave under
τ∗. Firstly there is Cp(U ;Z2,U(1)), the subgroup of Real cochains which
satisfy τ∗(g) = ḡ or

ḡα0···αp
= gᾱ0···ᾱp

◦ τ.
Secondly there is Cp(U ;Z2,U(1)), the subgroup of invariant cochains which
satisfy τ∗(g) = g or

gα0···αp
= gᾱ0···ᾱp

◦ τ.
The groups Hp(M ;Z2,U(1)), Hp(M,U(1)) and Hp(M ;Z2,U(1)) are re-

lated by a long exact sequence which we now describe. If S is any sheaf
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of abelian groups on M then S ⊕ τ−1(S) is a Z2-sheaf and H
p(M ;Z2,S ⊕

τ−1(S)) = Hp(M,S). Then there is a short exact sequence of Z2-sheaves

0 −→ U(1) −→ U(1)⊕ τ−1
(
U(1)

)
−→ U(1) −→ 0

where the maps are f 7→ (f, f̄ ◦ τ) and (g, h) 7→ g (h ◦ τ). Exactness is
straighforward.

It follows that there is a long exact sequence in cohomology and we are
particularly interested in the lowest degree groups
(3.1)

0 // H0(M ;Z2,U(1)) // H0(M,U(1)) 1×τ∗

// H0(M ;Z2,U(1))

// H1(M ;Z2,U(1)) // H1(M,U(1)) 1×τ∗

// H1(M ;Z2,U(1))

// H2(M ;Z2,U(1)) // H2(M,U(1)) 1×τ∗

// H2(M ;Z2,U(1)) // · · · .

In Sections 4 and 5 we will provide geometric interpretations of the groups
in this sequence and the homomorphisms between them. In particular,
H1(M ;Z2,U(1)) will be shown to correspond to Real isomorphism classes of
Real line bundles and H2(M ;Z2,U(1)) to Real stable isomorphism classes
of Real bundle gerbes. The homomorphism

Hp(M ;Z2,U(1)) −→ Hp(M,U(1))

corresponds to forgetting the Real structures involved. The long exact se-
quence is a tool for addressing important questions surrounding this forgetful
map such as when a line bundle or bundle gerbe admits a Real structure, or
can be “lifted” to an equivalent Real object, how many such lifts there are
and which Real objects are trivial after we forget their Real structure.

We conclude by elucidating the relation to ordinary equivariant coho-
mology. Denote by Z and R the sheaf of functions with values in Z and R

respectively, by the same notation the correspondings Z2-sheaves with trivial
action of τ and by Z and R the corresponding Z2-sheaves with τ acting as
multiplication by −1. Consider the exponential sequence for the Z2-sheaves

1 −→ Z −→ R −→ U(1) −→ 1.

As explained in [30, p. 10], this gives rise to an isomorphism

Hp(M ;Z2,U(1)) ≃ Hp+1(M ;Z2,Z)
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since R is a fine Z2-sheaf. As Z2 is finite, it follows from [52, Section 6] that
the group Hp(M ;Z2,Z) is naturally isomorphic to the Borel equivariant
cohomology with local coefficients defined by

Hp
Z2
(M,Z(1)) = Hp(EZ2 ×Z2

M,Z(1)),

for p ≥ 1, where the local system Z(1) on EZ2 ×Z2
M is defined by the Z2-

action of the fundamental group π1(EZ2 ×Z2
M) by −1 on Z through the

natural homomorphism in the homotopy exact sequence

π1(M) −→ π1(EZ2 ×Z2
M) −→ Z2

for the fibration M → EZ2 ×Z2
M → BZ2. There is further a Leray–Serre

spectral sequence associated to this fibration,

Ep,q
2 = Hp

gp(Z2, H
q(M,Z)⊗ Z(1)) =⇒ Hp+q

Z2
(M,Z(1)),

where Hp
gp(Z2, H

q(M,Z)⊗ Z(1)) denotes the group cohomology of Z2 with
values in the Z2-module Hq(M,Z)⊗ Z(1). Since these cohomology groups
are torsion in all non-zero degrees, it follows that rationally Ep,q

2 = 0 for
p ̸= 0. Thus the spectral sequence collapses at the second page and the only
contribution comes from the degree zero group cohomology given by the
invariants of the module (cf. also [30, Proposition 3.26] for an alternative
proof)

Hq
Z2
(M,R(1)) ≃R E

0,q
2 =

{
x ∈ Hq(M,R)

∣∣ τ∗(x) = −x
}
.

4. Real and equivariant line bundles

Let M be a Real manifold. To understand the sequence (3.1) it is useful to
explore the geometric interpretations of the various terms. First we consider
the degree zero terms.

Proposition 4.1. If M is one-connected, then the sequence

0 −→ H0(M ;Z2,U(1)) −→ H0(M,U(1)) g 7→g g◦τ−−−−−→ H0(M ;Z2,U(1)) −→ 0

is exact.

Proof. Let f :M → U(1) be invariant. Since we can regard f : M → R/Z
andH1(M,Z) = 0, we can lift f to a map f̂ : M → R. As f satisfies f ◦ τ = f
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we have f̂ ◦ τ = f̂ + k for k ∈ Z a constant because M is connected. But

τ2 = 1 so that f̂ = f̂ ◦ τ + k and thus k = 0. If we let ĝ = f̂
2 and project ĝ

to g : M → U(1) then (g ◦ τ) g = f . □

Consider the very similar case that f : M → U(1) is Real, that is f ◦ τ =
f̄ . Then it is tempting to conclude that there is a map g : M → U(1) such
that f = (g ◦ τ) ḡ. This is however not true in general. Consider a lift f̂ of f ,
then f̂ ◦ τ + f̂ = k for some k ∈ Z, and the image of k in Z2 is well-defined
independently of the lift of f ; call it ϵ(f). If ϵ(f) = 0, then we can define

ĝ = − f̂
2 and

ĝ ◦ τ − ĝ =
f̂

2
− f̂ ◦ τ

2
= f̂

so that (g ◦ τ) ḡ = f . Hence we have

Proposition 4.2. If M is one-connected, then the sequence

0 −→ H0(M ;Z2,U(1)) −→ H0(M,U(1))
g 7→ḡ g◦τ−−−−−→ H0(M ;Z2,U(1)) ϵ−−→ Z2 −→ 0

is exact.

Notice that ϵ(f) can also be defined as follows. AsM is one-connected we
can choose a square root of f and consider

√
f (

√
f ◦ τ) which is independent

of the choice of square root. Then (
√
f (

√
f ◦ τ))2 = f (f ◦ τ) = 1 so that√

f (
√
f ◦ τ) = (−1)ϵ(f) defines a constant element of Z2. In particular if

f = −1, then ϵ(f) = 1.
Now we consider the degree one terms. For this, we say that a line

bundle L→M is Real if there is a complex anti-linear map τL : L→ L
covering τ : M →M whose square is the identity. We will usually suppress
the subscript on τL.

Proposition 4.3. The group H1(M ;Z2,U(1)) classifies isomorphism

classes of Real line bundles on M .

Proof. Let L→M be a Real line bundle with Real structure τ : L→ L. Let
U be a good cover as in Section 3. Split the indexing set I for U into I+

and I− interchanged by τ . Then choose sections sα : Uα → L for α ∈ I+ and
for ᾱ ∈ I− define sᾱ = τsα ◦ τ . Because τ2 = 1 it follows that sᾱ = τsα ◦ τ
for all α ∈ I, and if gαβ satisfies sα = sβ gαβ then gᾱβ̄ = ḡαβ ◦ τ is a Real
cocycle.
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Let gαβ be a Real cocycle representing a class in H1(M ;Z2,U(1)). We
can find a line bundle L→M with local sections sα such that sα = sβ gαβ .
If v = vα sα ∈ L, then define τ(v) = v̄α (sᾱ ◦ τ). If we change to v = vβ sβ ,
then vα gαβ = vβ so that

v̄β (sβ̄ ◦ τ) = v̄α ḡαβ (sᾱ g
−1
ᾱβ̄

◦ τ)

= v̄α (sᾱ ◦ τ) ḡαβ (g−1
ᾱβ̄

◦ τ)

= v̄α (sᾱ ◦ τ),

giving a well-defined Real structure because gαβ is Real. It is easy to see
that τ2 = 1 as required. □

Remark 4.4. We may refer to H1(M ;Z2,U(1)) as the Real Picard group

of M , and the class in H1(M ;Z2,U(1)) corresponding to a Real line bundle
L→M as the Real Chern class of L.

If M is one-connected, then the sequence

0 −→ H1(M ;Z2,U(1)) −→ H1(M,U(1)) 1×τ∗

−−−→ H1(M ;Z2,U(1)) −→ · · ·

is exact. In particular if a line bundle L→M admits a Real structure, then
the Real structure is unique up to isomorphism. We can prove this directly
as follows. Assume that τ : L→ L is a Real structure. Then any other Real
structure takes the form f τ for a map f : M → U(1). Because (f τ)2 = 1
and τ2 = 1, we deduce that (f ◦ τ) f̄ = 1. So f : M → U(1) is invariant and
thus f = (g ◦ τ) g for some g : M → U(1). It follows that (L, τ) and (L, f τ)
are isomorphic by the isomorphism L→ L induced by multiplication with g.

We similarly say that a line bundle L→M is equivariant if we lift
τ : M →M to a complex linear isomorphism τ : L→ L with τ2 = 1; we call
the lift of τ a τ -action on L. We have

Proposition 4.5. The group H1(M ;Z2,U(1)) classifies isomorphism

classes of equivariant line bundles on M .

Proof. We omit the proof as it is very similar to the case of Real line bun-
dles in Proposition 4.3. It also follows by combining [34, Theorem 5.2 and
Lemma 4.4] and [52, Section 6]. □

If τ : L→ L is a lift of τ : M →M making the line bundle L→M equiv-
ariant, then so is −τ . We can show that, up to isomorphism, these are the
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only possible τ -actions when M is one-connected. Indeed, as in the Real
case any new τ -action takes the form f τ and thus (f ◦ τ) f = 1 so that
f : M → U(1) is Real. Now whether or not we can make (L, τ) and (L, f τ)
the same up to isomorphism depends on the sign of ϵ(f), so there are only
the two possibilities.

We can now interpret the terms in the second row of the exact sequence
(3.1) geometrically as follows. If f : M → U(1) is invariant, then the image
of the coboundary homomorphism is the trivial line bundle with the Real
structure induced by f , that is the Real structure induced by multiplying
the trivial Real structure with f . The map H1(M ;Z2,U(1)) → H1(M,U(1))
forgets the Real structure, while the map H1(M,U(1)) → H1(M ;Z2,U(1))
sends a line bundle J →M representing a class in H1(M,U(1)) to the equiv-
ariant line bundle J ⊗ τ−1(J) with the τ -action induced by the obvious iso-
morphism

J ⊗ τ−1(J) −→ τ−1(J ⊗ τ−1(J)) ≃ τ−1(J)⊗ J.

We postpone the description of the maps in the third row of the sequence
(3.1) until Section 5, where we give a way of geometrically realising classes in
H2(M ;Z2,U(1)) as Real stable isomorphism classes of Real bundle gerbes.

Remark 4.6. If L→M is a U(1)-bundle then L⊗ τ−1(L) →M is
naturally equivariant using the obvious identification τ−1(L⊗ τ−1(L)) =
τ−1(L)⊗ L = L⊗ τ−1(L). A Real structure on L is precisely an invariant
section of L⊗ τ−1(L). If τ is a Real structure, then s(m) = ℓ⊗ τ(ℓ) is an
invariant section where ℓ ∈ Lm, and vice-versa.

Example 4.7. Let M = pt be a point. A line bundle over a point is a
one-dimensional vector space. Up to isomorphism there is a unique Real
structure on C given by conjugation so H1(pt;Z2,U(1)) = 0. On the other
hand, the equivariant line bundles over a point are just the collection of
possible involutions on C which are ± 1, so H1(pt;Z2,U(1)) = Z2.

Example 4.8. Let τ = idM be the trivial involution onM . Then τ−1(L) =
L for any line bundle L on M , and any Real line bundle can be naturally
regarded as an ordinary real line bundle on M [2], so H1(M ;Z2,U(1)) ≃
H1(M,Z2). Any line bundle L→M is trivially equivariant and there are two
non-isomorphic lifts± idL of τ = idM , soH1(M ;Z2,U(1)) ≃ Z2 ⊕H2(M,Z).

Example 4.9. Let N be any manifold and let M = N × Z2 with the free
action τ : (n, x) 7→ (n,−x). The space M is two copies of N labelled by
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± 1, and τ exchanges the two copies. Any line bundle L→M is a pair
of line bundles (L+, L−) on N × {+1} and N × {−1}, respectively, with
τ−1(L) = (L−, L+). Thus any Real line bundle over M is of the form (J, J∗)
and so is completely determined by the complex line bundle J → N [2], hence
H1(M ;Z2,U(1)) ≃ H1(N,U(1)) = H2(N,Z). Similarly any equivariant line
bundle over M is of the form (J, J) and there are two non-isomorphic τ -
actions, hence

H1(M ;Z2,U(1)) ≃ Z2 ⊕H2(N,Z).

The map which sends H1(M,U(1)) ≃ H1(N,U(1))⊕H1(N,U(1)) into
H1(M ;Z2,U(1)) is (L+, L−) 7→ (L+ ⊗ L−, L+ ⊗ L−).

Example 4.10. As an example of the theory we have developed, we classify
the Real and equivariant line bundles L on S2 for any Real structure τ : S2 →
S2. First note that we have shown generally that if M is 1-connected and
L→M then it has zero or one Real structures and zero or two equivariant
structures. Second note from [21, Theorem 4.1] that up to conjugation by
a diffeomorphism (what they call equivalence) any involution is of three
types: (a) it is homotopic to the identity, (b) it is equivalent to the antipodal
map; or (c) it is equivalent to conjugation on CP 1 or reflection (x, y, z) 7→
(x, y,−z) in the equator. It is a straightforward exercise to show that if τ
is an involution and τ̃ = χ−1τχ for a diffeomorphism χ then L has a Real
or equivariant structure for τ if and only if χ−1L has a Real or equivariant
structure for τ̃ .

First notice that if L = C× S2 any involution τ lifts to a Real structure
τ(u, z) = (τ(u), z̄) and to two equivariant structures τ(u, z) = (u,±z) for
any Real structure.

Assuming now that L is not trivial we use various topological facts. First
we have deg(τ) = ±1 depending if it is homotopic to the identity map or the
antipodal map. Moreover L has Real structure τ−1(L) ≃ L∗ so that deg(τ) =
−1 and if L has an equivariant structure τ−1(L) ≃ L so that deg(τ) = 1.
Bearing this in mind we consider the three possibilities for τ .

(a) τ is homotopic to the identity map so τ−1(L) ≃ L for any line bundle
L→ S2 (this includes the equivalence classes of the identity and the rotation
by π). In that case a class in H1(S2;Z2,U(1)) represents a line bundle for
which L ≃ τ−1(L)∗ ≃ L∗ which is only possible if L = S2 × C is trivial and
there is a unique Real structure on it so H1(S2;Z2,U(1)) = 0. Let L→ S2

be a line bundle, and let ϕ be the isomorphism τ−1(L) ≃ L. Then ϕ2 = g for
a map g : S2 → U(1) and it can be checked that g = g ◦ τ , so we can solve
f (f ◦ τ) g = 1 which enables us to show that if τ = f ϕ, then τ2 = 1 so L
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is equivariant. There are two solutions of course so H1(S2;Z2,U(1)) ≃ Z2 ⊕
Z. The inclusion H1(S2,U(1)) → H1(S2;Z2,U(1)) sends L 7→ L⊗ τ−1(L) =
L2 and hence maps k ∈ Z to 2k.

(b) τ is equivalent to the antipodal map so τ−1(L) ≃ L∗ for any line
bundle L→ S2. Consider first the case that τ is the antipodal map and the
Hopf bundle H → S2 = CP 1. We can lift the antipodal map τ([z0, z1]) =
[−z̄1, z̄0] to an anti-linear map on fibres of H by τ(w0, w1) = (−w̄1, w̄0) but
then τ2 = −1. As we have seen above this choice cannot be modified to
give a Real structure. So the Hopf bundle does not admit a Real struc-
ture in this case. However any even power of the Hopf bundle does. So
H1(S2;Z2,U(1)) ≃ Z and it contains the isomorphism classes of H2k with
the Real structure above, which map to the even Chern classes in H2(S2,Z).
Consider now an equivariant bundle L→M . It then admits an isomorphism
L ≃ τ−1(L) ≃ L∗ which is only possible if L is trivial and hence has the iden-
tity and −1 as non-isomorphic τ -actions. So H1(S2;Z2,U(1)) = Z2. Every
line bundle L in H1(S2,U(1)) maps to L⊗ τ−1(L) ≃ L⊗ L∗ ≃ S2 × C. A
simple calculation shows that if L = H we obtain the trivial line bundle with
−1 as τ -action. So if L has odd Chern class it maps to the trivial bundle
with τ -action −1 while if L has even Chern class it maps to the trivial line
bundle with the identity as τ -action.

In the case that τ is only equivalent to the antipodal map by a diffeo-
morphism χ then the arguments above apply to χ−1(H) which is either H
or H∗ so we deduce the same results.

(c) τ is equivalent to the reflection about the equator, or equivalently
to the conjugation map τ([z0, z1]) = [z̄1, z̄0], so again τ−1(L) ≃ L∗ for any
line bundle L→ S2. Again consider first the case that τ is this involution.
This time, however, the conjugation lifts to an anti-linear map on the fi-
bres of H as τ(w0, w1) = (w̄1, w̄0) with τ2 = 1, which is the standard Real
structure on the Hopf bundle. Hence again H1(S2;Z2,U(1)) ≃ Z, but now
the map H1(S2;Z2,U(1)) → H1(S2, U(1)) is the identity. Similarly to the
previous case, we have H1(S2;Z2,U(1)) = Z2, where now every line bundle
L in H1(S2,U(1)) maps to the trivial line bundle with identity τ -action.

Again if τ is only equivalent to the conjugation we can make the same
argument.

Example 4.11. Let M be two-connected, for example a connected and
simply-connected Lie group with the Cartan involution. Then all line bundles
onM are trivial, and so carry τ -actions. There is a unique Real structure by
Proposition 4.1, so H1(M ;Z2,U(1)) = 0, and there are two non-isomorphic
τ -actions by Proposition 4.2, hence H1(M ;Z2,U(1)) = Z2.
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5. Real bundle gerbes

In this section we will describe a particular modification of the definition
of bundle gerbes, which realises the cohomology group H2(M ;Z2,U(1)) in
the same way that bundle gerbes realise H2(M,U(1)). Our notion of Real
bundle gerbes coincides with that by Moutuou in the setting of groupoids
[45, Definition 2.8.1], but we omit the gradings which are not necessary for
our purposes.

5.1. Definitions and examples

Let M be a manifold with an involution τ : M →M .

Definition 5.1. A Real structure on a bundle gerbe (P, Y ) over M is a
pair of maps (τP , τY ) where τY : Y → Y is an involution covering τ : M →
M , and τP : P → P is a conjugate involution covering τ

[2]
Y : Y [2] → Y [2] and

commuting with the bundle gerbe multiplication. A Real bundle gerbe over
M is a bundle gerbe (P, Y ) over M with a Real structure.

By a conjugate involution we mean that τP (p z) = τP (p) z̄ and τ
2
P = idP .

Often we will suppress the subscripts on τP and τY .

Remark 5.2. At first this definition appears to be far too strict, as it in-
volves isomorphism of bundle gerbes rather than stable isomorphism. There
is indeed a weaker notion—known as a Jandl bundle gerbe—which we will
discuss in Section 5.4. However, we shall see that every Jandl bundle gerbe is
in fact equivalent to a Real bundle gerbe and this stronger notion is sufficient
to represent the cohomology classes in question.

Remark 5.3. Occasionally it will be important to emphasise the difference
between (P, Y ) thought of as a Real bundle gerbe and (P, Y ) thought of as
just a bundle gerbe obtained by forgetting the Real structure. In this case
we will refer to the latter as a U(1)-bundle gerbe.

Example 5.4. IfR→ Y is a Real hermitian line bundle with Real structure
τR : R→ R∗, then (δR, Y ) is a Real bundle gerbe with Real structure given
by δτR : δR = π−1

1 (R)⊗ π−1
2 (R)∗ → π−1

1 (R)∗ ⊗ π−1
2 (R) = δR∗. We say that

a Real bundle gerbe (P, Y ) is Real trivial if there is a Real line bundle
R→ Y such that P = δR as Real bundle gerbes; this means that P = δR as
bundle gerbes and that the isomorphism commutes with the Real structures.
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A choice of Real bundle R and an isomorphism P ≃ δR is called a Real

trivialisation.

Example 5.5. If (P, Y ) and (Q,X) are Real bundle gerbes over M with
Real structures τP and τQ, respectively, then (P ⊗Q, Y ×M X) is a Real
bundle gerbe with the obvious Real structure τP ⊗ τQ : P ⊗Q→ P ⊗Q.

Example 5.6. If f : N →M is an equivariant map of Real spaces and
(P, Y ) is a Real bundle gerbe onM , then f−1(P, Y ) is a Real bundle gerbe on
N . Equivariance determines involutions τf−1(Y ) : f

−1(Y ) → f−1(Y ) covering

τY : Y → Y and τ(f [2])−1(P ) : (f
[2])−1(P ) → (f [2])−1(P ) covering τP : P → P .

Example 5.7. In the case that τ = idM and Q→ Y [2] is a Z2-bundle gerbe
(as in [43]) define P = Q×Z2

U(1), τY = idY and τP ([q, z]) = [q, z̄]. Then
(P, Y ) is a Real bundle gerbe. Conversely, if τ = idM and τY = idY , then
the fixed point set of τP is a reduction of the U(1)-bundle P → Y [2] to a
Z2-bundle making it a Z2-bundle gerbe.

Example 5.8. Let N be any manifold and let (P, Y ) be a bundle gerbe
on N . Let M = N × Z2 with the involution τ : (n, x) 7→ (n,−x), and set
Z = Y × Z2 with projection p = π × 1 and involution τZ : (y, x) 7→ (y,−x).
The fibre product Z [2] can be naturally identified as Y [2] × Z2 with the invo-

lution τ
[2]
Z : (y1, y2, x) 7→ (y1, y2,−x), and we set Q = (P, P ∗) → Z [2] with the

involution τQ which exchanges the two slots. Then (Q,Z) is a Real bundle
gerbe on M . Any Real bundle gerbe on M arises in this way.

Example 5.9 (The basic bundle gerbe). Let G be a compact, con-
nected, simply-connected, simple Lie group and ΩG its based loop group.
The universal ΩG-bundle is the path fibration PG→ G, where PG is the
space of based maps [0, 1] → G and the projection is evaluation at the end-
point. The lifting bundle gerbe for this bundle associated to the universal
central extension π : Ω̂G→ ΩG of the loop group is a model for the basic

bundle gerbe. This is given by the fibre product PG[2] → ΩG via (p1, p2) 7→ γ,
where p2 = p1 γ. The basic bundle gerbe Q→ PG[2] is then given by pulling
back the central extension Ω̂G→ ΩG and the bundle gerbe multiplication
is induced by the group multiplication in Ω̂G, that is

Q(p1,p2) = Ω̂Gp−1
1 p2

where if h ∈ ΩG then Ω̂Gh = π−1(h).
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Let G be equipped with the involution τ : g 7→ g−1. This lifts to an in-
volution τ : p 7→ p−1 on PG and if p2 = p1 γ then p−1

2 = p−1
1 (Adp1

(γ−1)).

By [6] the adjoint action Ad: PG→ Aut(ΩG) lifts to an action on Ω̂G and
hence we define a Real structure τ : Q(p1,p2) → Q(p−1

1 ,p−1
2 ) given by τ(q) =

Adp1
(q−1). If q12 ∈ Q(p1,p2) and q23 ∈ Q(p2,p3) then

τ(q12) τ(q23) = Adp1
(q−1

12 )Adp2
(q−1

23 )

= Adp1

(
q−1
12 Adp−1

1 p2
(q−1

23 )
)

= Adp1

(
q−1
12 q12 (q

−1
23 ) q

−1
12

)

= τ(q12 q23)

where here we use the fact that π(q12) = p−1
1 p2 so that the adjoint action

Adp−1
1 p2

on Ω̂G is conjugation by q12. We also have

τ2(q12) = τ
(
Adp1

(q−1
12 )
)
= Adp−1

1

(
(Adp1

(q−1
12 ))

−1
)

= Adp−1
1

(
Adp1

(q12)
)
= q12

and hence this is a Real structure.

Example 5.10 (The tautological bundle gerbe). Let M be two-
connected. Assume that τ : M →M has at least one fixed point m and
M admits an integral three-form H satisfying τ∗(H) = −H; for example,
these conditions are satisfied by the Lie groupM = SU(n) with τ(g) = g−1.

Recall the construction of the tautological bundle gerbe from [46]. Let
Y = PM be the space of paths based at m with endpoint evaluation as
projection to M . If p1, p2 ∈ Y have the same endpoint choose a surface
Σ ⊂M spanning them, that is the boundary of Σ is p1 followed by p2 with
the opposite orientation. Then the fibre of P → Y [2] consists of all triples
(p1, p2,Σ, z) modulo the equivalence relation (p1, p2,Σ, z) ∼ (p1, p2,Σ

′, z′ ) if
hol(Σ ∪ Σ′, H) z = z′. Here hol(S,H), for any closed surface S ⊂M , is the
usual Wess–Zumino–Witten term defined by

(5.11) hol(S,H) = exp

(
2π i

∫

B(S)
H

)

for a choice of three-manifold B(S) whose boundary is S, which is well-
defined because H is an integral form. The bundle gerbe product is

(p1, p2,Σ, z)⊗ (p2, p3,Σ
′, z′ ) 7−→ (p1, p3,Σ ∪ Σ′, z z′ ).
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We define a Real structure τ by the fact that

(p1, p2,Σ, z) 7−→ (τ(p1), τ(p2), τ(Σ), z̄)

descends through the equivalence relation to give a conjugate bundle gerbe
isomorphism P → τ−1(P ). We leave this easy check as an exercise for the
reader.

Example 5.12 (The lifting bundle gerbe). A Lie group G is Real if it
possesses an involutive automorphism σ : G→ G. If M is a Real space and
G is a Real Lie group then a Real G-bundle over M is a principal G-bundle
P with a Real structure τP that commutes with the involution on M and is
compatible with the right G-action, that is τP (p g) = τP (p)σ(g). A central
extension

1 −→ U(1) −→ Ĝ
π−−→ G −→ 1

of a Real Lie group G is called Real if Ĝ is a Real Lie group whose Real
structure descends to that on G with respect to the conjugation involution
on U(1). We apply the lifting bundle gerbe construction of [46] to Real G-
bundles. If P →M is a G-bundle then there is a map ρ : P [2] → G defined by
p2 = p1 ρ(p1, p2); then ρ(p1, p2) ρ(p2, p3) = ρ(p1, p3). The fibre Q(p1,p2) of the

lifting bundle gerbe over (p1, p2) is π−1(ρ(p1, p2)) ⊂ Ĝ. Thus Q = ρ−1(Ĝ)
where we regard Ĝ→ G as a U(1)-bundle; the group action on Ĝ de-
fines the bundle gerbe multiplication. If P →M is a Real G-bundle then
ρ(τP (p1), τP (p2)) = σ(ρ(p1, p2)) and the action of σ on G induces a Real
structure on Q(p1,p2) → Q(τP (p1),τP (p2)).

5.2. The Real Dixmier–Douady class of a Real bundle gerbe

Let M be a Real manifold and (P, Y ) a Real bundle gerbe over M . Just like
ordinary bundle gerbes in Section 2, we will now show that a Real bundle
gerbe gives rise to a cohomology class in H2(M ;Z2,U(1)).

Choose a good Real open cover U = {Uα}α∈I as in Section 3 and split
I as a disjoint union of I+ and I− which are interchanged under τ . For
α ∈ I+ choose sections sα : Uα → Y and define sᾱ : Uᾱ → Y by sᾱ = τsα ◦ τ .
Because τ is an involution we have sα = τsᾱ ◦ τ for all α ∈ I. Similarly
split I2 and for (α, β) ∈ I2+ choose σαβ(m) ∈ P(sα(m),sβ(m)), and define σᾱβ̄ =
τσαβ ◦ τ . Again it follows that σαβ(m) ∈ P(sα(m),sβ(m)) and σαβ = τσᾱβ̄ ◦ τ
for all (α, β) ∈ I2, where we used τ2P = idP .
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Define gαβγ : Uαβγ → U(1) by

σαβ σβγ = σαγ gαβγ .

Then gᾱβ̄γ̄ is given by

σᾱβ̄ σβ̄γ̄ = σᾱγ̄ gᾱβ̄γ̄ .

Applying τ to the first equation (and evaluating at τ(m)) we get

(τσαβ ◦ τ) (τσβγ ◦ τ) = (τσαγ ◦ τ) (ḡαβγ ◦ τ).

Hence gᾱβ̄γ̄ = ḡαβγ ◦ τ so the cocycle defined by gαβγ is Real. If we chose dif-
ferent sections σ′αβ satisfying σ′

ᾱβ̄
= τσ′αβ ◦ τ , then σ′αβ = σαβ hαβ for some

hαβ : Uαβ → U(1) satisfying hᾱβ̄ = h̄αβ ◦ τ , and thus gαβγ changes by a Real
coboundary.

We call the class defined by gαβγ the Real Dixmier–Douady class and
denote it by

DDR(P ) ∈ H2(M ;Z2,U(1)).

This shows how a Real bundle gerbe yields a cohomology class in
H2(M ;Z2,U(1)), which is natural with respect to pullbacks in the category
of Real spaces. We also immediately have DDR(P

∗) = −DDR(P ) and

Proposition 5.13. The Real Dixmier–Douady class satisfies DDR(P ⊗
Q) = DDR(P ) + DDR(Q).

We would like to define an equivalence relation on Real bundle gerbes
that means two Real bundle gerbes are equivalent precisely when they have
the same Real class. Following the approach of [47] for U(1)-bundle gerbes
we first prove

Proposition 5.14. The Real Dixmier–Douady class of a Real bundle gerbe

P vanishes precisely when P is Real trivial.

Proof. First suppose that DDR(P ) is trivial, so that if gαβγ is a representa-
tive for the Real Dixmier–Douady class, chosen relative to sections σαβ as
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before, then gαβγ = hαβ h̄αγ hβγ where hαβ satisfies hᾱβ̄ = h̄αβ ◦ τ . We have

σαβ σβγ = σαγ hαβ h̄αγ hβγ ,

and hence

σαβ h̄αβ σβγ h̄βγ = σαγ h̄αγ .

Therefore we may define sections σ̂αβ = σαβ h̄αβ which satisfy the cocycle
condition. They further satisfy the condition σ̂ᾱβ̄ = τ σ̂αβ ◦ τ since

σ̂ᾱβ̄ = σᾱβ̄ h̄ᾱβ̄ = (τσαβ ◦ τ) (hαβ ◦ τ) = τ(σαβ h̄αβ ◦ τ) = τ σ̂αβ ◦ τ .

Define Rα → π−1(Uα) by R
α
y = P(y,sαπ(y)). Then

∐
α∈I R

α defines a bundle
over

∐
α∈I π

−1(Uα) and σ̂αβ(π(y)) ∈ P(sαπ(y),sβπ(y)) = P ∗
(y,sαπ(y))

⊗ P(y,sβπ(y))

give descent data for
∐

α∈I R
α. This determines a bundle R→ Y such that

P = δR. Note that R is Real since τ(p) ∈ P ∗
(τ(y),τsαπ(y))

= P ∗
(τ(y),sᾱπ(τ(y)))

for
p ∈ P(y,sαπ(y)). Thus P is Real trivial.

Suppose instead that P = δR, where R→ Y is a Real bundle with Real
structure τR : R→ R∗; then (sα, sβ)

−1(P ) = s−1
α (R)∗ ⊗ s−1

β (R). Choose

sections hα : Uα → s−1
α (R) and define hᾱ = τRhα ◦ τ and sections σαβ of

(sα, sβ)
−1(P ) by σαβ = h∗α hβ . Since P = δR as Real bundles these sections

satisfy the Reality condition σᾱβ̄ = τσαβ ◦ τ . It follows that gαβγ = 1, and
hence the Real Dixmier–Douady class of P is trivial. □

We say that two Real bundle gerbes (P, Y ) and (Q,X) are Real stably

isomorphic if Q⊗ P ∗ is Real trivial. A Real stable isomorphism P → Q is
a Real trivialisation of Q⊗ P ∗. Propositions 5.13 and 5.14 imply that P
and Q are Real stably isomorphic if and only if DDR(P ) = DDR(Q), and
we have

Proposition 5.15. The Real Dixmier–Douady class induces a bijection

between Real bundle gerbes modulo Real stable isomorphism and

H2(M ;Z2,U(1)).

Proof. This follows from the discussion above and all that remains is to
show that every class in H2(M ;Z2,U(1)) gives rise to a Real bundle gerbe.
We use the same approach as [46] for U(1)-bundle gerbes. Suppose [gαβγ ] ∈
H2(M ;Z2,U(1)). Let Y :=

∐
α∈I Uα be the nerve of the open cover U , and

let P → Y [2] be given by
∐

α,β∈I Uαβ × U(1). The bundle gerbe multipli-
cation on P is given by (m,α, β, z)⊗ (m,β, γ, w) = (m,α, γ, z w gαβγ(m))
and the Real structure is (m,α, β, z) 7→ (τ(m), ᾱ, β̄, z̄). It is straightforward
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to show that the condition of being a Real cocycle implies that the Real
structure commutes with the bundle gerbe product. □

Let H be a complex separable Hilbert space with a conjugation v 7→ v̄.
This induces a complex anti-linear involution σ on the unitary operators
U(H) by σ(g)(v) = g(v̄) which also descends to the projective unitary group
PU(H). Then σ is a group homomorphism. For our discussion of twisted
KR-theory later on we need

Proposition 5.16. There is a bijection between isomorphism classes of

Real PU(H)-bundles and Real stable isomorphism classes of Real bundle

gerbes on M .

Proof. We apply the Real lifting bundle gerbe construction of Example 5.12
to PU(H)-bundles. In [30] it is shown that Real PU(H)-bundles are classified
up to isomorphism by their Real Dixmier–Douady classes in

H1(M ;Z2, PU(H)) ≃ H2(M ;Z2,U(1)).

It is straightforward to check that the Real Dixmier–Douady class of a Real
PU(H)-bundle is the same as that of its lifting bundle gerbe and the result
follows from Proposition 5.15. □

5.3. Equivariant line bundles and Real structures

Consider the following part of the long exact sequence (3.1) from Section 3
(5.17)

· · · // H1(M,U(1)) 1×τ∗

// H1(M ;Z2,U(1))

// H2(M ;Z2,U(1)) // H2(M,U(1)) 1×τ∗

// H2(M ;Z2,U(1)) // · · · .

We showed in the case of line bundles thatH1(M ;Z2,U(1)) classified isomor-
phism classes of equivariant line bundles. In a similar fashion it is possible to
show that H2(M ;Z2,U(1)) classifies equivariant bundle gerbes up to equiv-
ariant stable isomorphism. As we do not need this notion for our applications
we will not spell out the details other than to note that it amounts to sim-
ply removing the conjugate requirement in Definition 5.1 and appropriately
modifying the definitions and proofs in Section 5.2.

In fact it is possible as in [33] to cover both the Real and equivariant cases
at once. Just as in the line bundle case P ⊗ τ∗(P ) has a natural equivariant
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structure and the map 1× τ∗ is induced by the map P 7→ P ⊗ τ∗(P ). If P
is a bundle gerbe with Dixmier-Douady class in H2(M,U(1)) in the kernel
of 1× τ∗ then it is stably isomorphic, as a bundle gerbe, to a bundle gerbe
with a Real structure. The latter we have seen are classified up to Real sta-
ble isomorphism by their Real Dixmier-Douady class in H2(M ;Z2,U(1)). Of
course this will generally not be unique. In fact for a given class in the kernel
of 1× τ∗ the set of inequivalent Real bundle gerbes up to Real stable isomor-
phism is a torsor over H1(M ;Z2,U(1))/H1(M,U(1)). We have already de-
scribed the map H1(M,U(1)) → H1(M ;Z2,U(1)). Similarly, if P is a bundle
gerbe with Dixmier–Douady class in H2(M,U(1)) the map H2(M,U(1)) →
H2(M ;Z2,U(1)) is induced by the map that sends P to the equivariant bun-
dle gerbe P ⊗ τ−1(P ). The map H2(M ;Z2,U(1)) → H2(M,U(1)) is induced
by the forgetful map sending a Real bundle gerbe to the underlying U(1)-
bundle gerbe. Of course at the level of cohomology it sends the Real stable
isomorphism class of a Real bundle gerbe to the stable isomorphism class of
the underlying U(1)-bundle gerbe. Therefore, to understand this sequence
geometrically it remains to show how an equivariant line bundle gives rise
to a Real bundle gerbe.

Suppose that P →M is an equivariant bundle so that τ−1(P ) = P . Let
Y =M × Z2 with the involution τ : (m,x) 7→ (τ(m), x+ 1) covering τ on
M . Let πM : Y →M be the projection. Then Y is two copies of M labelled
by 0 and 1 so that any bundle Q→ Y is a pair of bundles (Q0, Q1) on
M × {0} andM × {1}, respectively. For such a bundle Q we have τ−1(Q) =
(τ−1(Q1), τ

−1(Q0)), and if L→M is a line bundle then π−1
M (L) = (L,L) →

Y . Consider the bundle (U(1)M , P ) → Y where U(1)M =M × U(1) is the
trivial U(1)-bundle on M . Then (U(1)M , P ) is not Real, since

τ−1((U(1)M , P )
∗) = τ−1(U(1)M , P

∗)

= (τ−1(P ∗), U(1)M )

= (P ∗, U(1)M )

= (P ∗, P ∗)⊗ (U(1)M , P )

so that τ−1((U(1)M , P ))
∗ ⊗ π−1

M (P ) = (U(1)M , P ). Hence

δτ−1(U(1)M , P )
∗ = δ(U(1)M , P )

because δ(π−1
M (P )) is canonically trivial. It is straightforward to check that

the Real structure this defines satisfies τ2 = 1. Hence δ(U(1)M , P ) is a Real
bundle gerbe. The coboundary map H1(M ;Z2,U(1)) → H2(M ;Z2,U(1)) is
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then induced by P 7→ δ(U(1)M , P ). Then δ(U(1)M , P ) is trivial as a bun-
dle gerbe, so it is in the kernel of the forgetful map H2(M ;Z2,U(1)) →
H2(M,U(1)), but it is not in general trivial as a Real bundle gerbe. In fact
δ(U(1)M , P ) is Real trivial if and only if P = K ⊗ τ−1(K) for some bun-
dle K on M . To see this note first that any Real bundle on Y has the
form (K∗, τ−1(K)), so if δ(U(1)M , P ) is Real trivial then δ(U(1)M , P ) =
δ(K∗, τ−1(K)). Since (U(1)M , P ) and (K∗, τ−1(K)) are two trivialisations
of the same bundle gerbe, they differ by a line bundle L on M and thus

(U(1)M , P ) = (K∗, τ−1(K))⊗ (L,L) = (K∗ ⊗ L, τ−1(K)⊗ L)

so that P = K ⊗ τ−1(K). Conversely if P = K ⊗ τ−1(K) for some bundle
K →M then

(U(1)M , P ) = (U(1)M ,K ⊗ τ−1(K))

= (K∗, τ−1(K))⊗ (K,K) = (K∗, τ−1(K))⊗ π−1
M (K),

hence δ(U(1)M , P ) = δ(K∗, τ−1(K)) and thus δ(U(1)M , P ) is Real trivial.

Example 5.18. LetM = pt, so thatH1(pt,U(1)) = H2(pt,U(1)) = 0. The
long exact sequence (3.1) gives

0 −→ H1(pt;Z2,U(1)) −→ H2(pt;Z2,U(1)) −→ 0

and hence H2(pt;Z2,U(1)) = H1(pt;Z2,U(1)) = Z2 by Example 4.7. Recall
that the trivial line bundle has two possible lifts ± 1 of the trivial involution
on a point. Then the construction above gives rise to two Real bundle gerbes
over pt which are not Real stably isomorphic to each other.

Consider the Real open cover U0 = {pt} = U0̄, and define a Real two-
cochain g by taking g00̄0 = −1 = g0̄00̄ and gαβγ = 1 otherwise. Then δ(g) = 1
so g is a Real cocycle. Suppose σαβ is Real so that σ00 = σ̄0̄0̄ and σ00̄ = σ̄0̄0,
and set gαβγ = σαβ σ

−1
αγ σβγ . Then we find σ00 = σ0̄0̄ = 1 and |σ00̄|2 = −1,

and so g is a non-trivial cocycle in H2(pt;Z2,U(1)) = Z2 which gives rise to
a non-trivial Real bundle gerbe over pt by the construction in the proof of
Proposition 5.15 (cf. also [30, Example 3.27]).

Example 5.19. Let M = S2. Since H2(S2,U(1)) = H3(S2,Z) = 0, it fol-
lows from Example 4.10 and the long exact sequence (3.1) that if τ is ho-
motopic to the identity then H2(S2;Z2,U(1)) ≃ Z2 ⊕ Z2, if τ is equivalent
to the antipodal map then H2(S2;Z2,U(1)) = 0, while if τ is equivalent to
the reflection about the equator then H2(S2;Z2,U(1)) ≃ Z2.
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Example 5.20. Let G be a compact, connected, simply-connected, simple
Lie group, for example G = SU(n). Then G is two-connected so

H1(G,U(1)) = 0.

We have seen in Example 4.11 that H1(G;Z2,U(1)) = Z2 so that the long
exact sequence (3.1) reduces in part to

0 −→ Z2 −→ H2(G;Z2,U(1)) −→ H2(G,U(1)) = Z.

The final map is surjective since, as shown in Example 5.9, the basic bundle
gerbe on G admits a Real structure. Hence H2(G;Z2,U(1)) = Z2 ⊕ Z, and
hence each stable isomorphism class of bundle gerbe on G arises from exactly
two Real stable isomorphism classes of Real bundle gerbes overG. This result
also follows as a special case of [30, Proposition 4.2].

5.4. Jandl gerbes

A prior and alternative approach to the notion of Real bundle gerbes is that
of Jandl gerbes introduced in [50]. These can be regarded as replacing the
isomorphism between τ−1(P )∗ and P with a stable isomorphism. As we will
not need this notion for our results, we restrict ourselves here to some general
remarks indicating the connection with Real bundle gerbes. Note that the
discussion below refers to Jandl gerbes without connective structure.

Recall from Remark 4.6 that a Real structure on a line bundle L can
be understood as an invariant section of L⊗ τ−1(L). Applying this idea to
bundle gerbes, we could have defined a Real bundle gerbe to be a bundle
gerbe P with an equivariant trivialisation of P ⊗ τ∗(P ). It is not difficult to
see that P ⊗ τ−1(P ) being equivariantly trivial is equivalent to P being a
Jandl gerbe and that a choice of an equivariant trivialisation of P ⊗ τ−1(P )
is a choice of a Jandl structure for P .

Notice that given this, the Dixmier-Douady class of a bundle gerbe P is
zero under the second map 1× τ∗ below

H2(M ;Z2,U(1)) → H2(M,U(1)) 1×τ∗

→ H2(M ;Z2,U(1))

if and only if it admits a Jandl structure. This is in contrast to the Real
case where the vanishing of (1× τ∗)(DD(P )) only implies that P is stably
isomorphic (as a U(1)-bundle gerbe) to a bundle gerbe that has a Real
structure.
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6. Real bundle gerbe modules and twisted KR-theory

In this section we introduce the Real version of the notion of bundle gerbe
module which was defined in Section 2, and use it to provide a geometric
picture of twisted KR-theory; an analogous description also appears in [45]
in terms of Real twisted vector bundles.

6.1. Bundle gerbe KR-theory

We begin with some preliminary remarks that will be tacitly used below. Let
V be a hermitian vector space and R a U(1)-torsor. Define an equivalence
relation on R× V by (r z, v) ∼ (r, v z) for any z ∈ U(1). Denote the set of
equivalence classes [r, v] by R⊗ V and make it into a vector space by defining
[r, v] + [r, w] = [r, v + w] and λ [r, v] = [r, λ v] for λ ∈ C. Finally define an
inner product by ⟨[r, v], [r, w]⟩ = ⟨v, w⟩. For any r ∈ R the map V → R⊗ V
defined by v 7→ [r, v] is a hermitian linear isomorphism. There is a natural
isomorphism

R⊗ V ≃ R∗ ⊗ V

induced by the obvious identity on sets. If L is a one-dimensional hermitian
vector space and R is the set of vectors in L of length one, then R⊗ V ≃
L⊗ V .

Definition 6.1. LetM be a Real manifold and (P, Y ) a Real bundle gerbe
on M . Let E be a vector bundle on Y and τE : E → E a conjugate linear
involution of fibres commuting with the Real structure on Y . We say that
E is a Real bundle gerbe module if it is a bundle gerbe module and the Real
structure commutes with the bundle gerbe action on E in the sense that for
every pair (y1, y2) ∈ Y [2] there is a commutative diagram

P(y1,y2) ⊗ Ey2

τ⊗τE
��

// Ey1

τE

��

P ∗
(τ(y1),τ(y2))

⊗ Eτ(y2)
// Eτ(y1)

We say that two Real bundle gerbe modules are isomorphic if they are
isomorphic as Real vector bundles and the isomorphism preserves the ac-
tion of the Real bundle gerbe (P, Y ). Denote by RMod(P, Y ) the set of all
isomorphism classes of Real bundle gerbe modules. It is straightforward to
check that it is a commutative semi-group under direct sum.
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Remark 6.2. A Real trivialisation of (P, Y ) is precisely a rank one Real
bundle gerbe module. As P⊗r acts on the top exterior power

∧r E, where
r = rank(E), it follows that if the Real bundle gerbe (P, Y ) admits a finite-
dimensional bundle gerbe module of rank r, then the Real Dixmier–Douady
class DDR(P ) is a torsion element in H2(M ;Z2,U(1)) of order dividing r.

Denoting by RVect(M) the semi-group of Real vector bundles on M in
the sense of Atiyah [2], we have

Proposition 6.3. 1) If (P, Y ) and (Q,X) are Real bundle gerbes, then a

Real stable isomorphism (P, Y ) → (Q,X) induces an isomorphism of

semi-groups RMod(P, Y ) → RMod(Q,X).

2) If (P, Y ) is a trivial Real bundle gerbe, then a choice of Real trivialisa-

tion defines an isomorphism of semi-groups RMod(P, Y ) → RVect(M).

Proof. For (1) it is enough to follow the proof of [14, Proposition 4.3] and
notice that the bundle gerbe module in RMod(Q,X) carries a Real structure.
Similarly the proof of (2) follows that of [14, Proposition 4.2] and it is
straightforward to verify that the Real structure descends. □

If (P, Y ) is a Real bundle gerbe with torsion Dixmier–Douady class over
a Real compact manifold M , we denote by KRbg(M,P ) the Grothendieck
group of the semi-group RMod(P, Y ) and call it the KR-theory group of
the Real bundle gerbe. As an immediate corollary of Proposition 6.3 (1), we
note that any choice of Real stable isomorphism (P, Y ) → (Q,X) induces an
isomorphism KRbg(M,P ) ≃ KRbg(M,Q). In particular, the isomorphism
class of the bundle gerbe KR-theory group depends only on the cohomology
class of the Real Dixmier–Douady invariant. By Proposition 6.3 (2) it fol-
lows that KRbg(M,P ) ≃ KR(M) for any trivial Real bundle gerbe (P, Y ).
Furthermore, KRbg(M,P ) is naturally a module over KR(M) under ten-
sor product with pullback of KR-theory classes to Y . More generally, if
(P, Y ) and (Q,X) are Real bundle gerbes on M , then there is a homomor-
phism KRbg(M,P )⊗KRbg(M,Q) → KRbg(M,P ⊗Q). One easily checks
that KRbg(·) is contravariant under pullback and is thus a well-defined func-
tor from the category of Real spaces equipped with Real bundle gerbes to
the category of abelian groups.

Remark 6.4. We note that just as in the case of complex twisted K-
theory, the isomorphism KRbg(M,P ) ≃ KRbg(M,Q) depends on a choice
of stable isomorphism P ≃ Q. The latter can be changed by pullback and
tensor product with a Real line bundle on M . Hence the isomorphism on
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KR-theory is only defined up to the action on KRbg(M,Q) by the Picard
group of Real line bundles on M . When we have a specific Real bundle
gerbe (P, Y ) representing a class [H] ∈ H2(M ;Z2,U(1)), we will often abuse
notation and write KRbg(M, [H]) for KRbg(M,P ).

Example 6.5. If M is a Real compact manifold with a trivial involution
and (P, Y ) is a Real bundle gerbe with τ acting trivially on Y , then the
bundle gerbe KR-theory is related to the twisted KO-theory defined in [43]
via

KRbg(M,P ) ≃ KO(M, [H])

where [H] = DDR(P ) ∈ Tor(H2(M,Z2)) ⊆ H2(M ;Z2,U(1)). For this, we
recall from Example 5.7 that in this case a Real bundle gerbe reduces to
a real gerbe when the involution acts trivially on the space, and similarly a
Real vector bundle becomes an ordinary real vector bundle [2]. It is straight-
forward to check that the gerbe action gives rise to a real bundle gerbe
module and the result then follows by [43, Proposition 7.3].

Example 6.6. Let N be any compact manifold and let M = N × Z2 with
the involution τ defined in Example 5.8. Recall that any Real bundle gerbe
(Q,Z) on M is of the form Q = (P, P ∗), Z = Y × Z2 for a bundle gerbe
(P, Y ) onN , with τQ acting as (P, P ∗) 7→ (P ∗, P ). The Real Dixmier–Douady
class DDR(Q) = (DD(P ),−DD(P )) is an element of the anti-diagonal sub-
group ker(1× τ∗) of H2(M,U(1)) = H2(N,U(1))⊕H2(N,U(1)). It follows
that

KRbg(M,Q) ≃ Kbg(N,P ) ≃ K(N, [H])

where [H] = DD(P ) ∈ Tor(H2(N,U(1))) ⊆ H2(M ;Z2,U(1)).

We recall from Proposition 5.16 that there is a bijective correspondence
between stable isomorphism classes of Real bundle gerbes and isomorphism
classes of Real principal PU(H)-bundles. Every Real PU(H)-bundle de-
termines a Real lifting bundle gerbe with the same Real Dixmier–Douady
class. Conversely, given any Real bundle gerbe (P, Y ) and a Real bundle
gerbe module E → Y , the projectivisation of E descends to a Real projective
bundle PE →M due to the bundle gerbe action, and it is straightforward to
check that the class of the Real PU(H)-bundle associated to PE is DDR(P ).
In the case of a torsion class in H2(M ;Z2,U(1)), we have the Real analogue
of the Serre–Grothendieck Theorem (cf. [4, 26]).

Theorem 6.7 (Real Serre–Grothendieck Theorem). Any torsion class

in H2(M ;Z2,U(1)) can be represented by a Real principal PU(n)-bundle.
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Proof. The torsion class can be represented by a Real bundle gerbe (P, Y ).
The Dixmier–Douady class of this bundle gerbe is torsion so it is represented
by a PU(n)-bundle. This is equivalent to the bundle gerbe (P, Y ) admitting
a rank n bundle gerbe module F → Y . Define E = F ⊕ τ−1(F ). We show
that E is a Real bundle gerbe module for (P, Y ). First note that there is the
bundle gerbe module action

P(y1,y2) ⊗ Fy2
−→ Fy1

and thus an induced action

P ∗
(y1,y2)

⊗ F y2
−→ F y1

.

Defining Ey = Fy ⊕ F τ(y) we have

P(y1,y2) ⊗ Ey2
= P(y1,y2) ⊗ (Fy2

⊕ F τ(y2))

= (P(y1,y2) ⊗ Fy2
)⊕ (P(y1,y2) ⊗ F τ(y2))

= (P(y1,y2) ⊗ Fy2
)⊕ (P ∗

(τ(y1),τ(y2))
⊗ F τ(y2))

≃ Fy1
⊕ F τ(y1)

= Ey1
.

Clearly this is a bundle gerbe module action.
Moreover we have

τ−1(Ey) = Eτ(y) = Fτ(y) ⊕ F y

and flipping elements maps this complex linearly to

F y ⊕ Fτ(y) = Ey

so that E is a Real bundle gerbe module.
The existence of the Real bundle gerbe module implies that the Real

Dixmier–Douady class of (P, Y ) is associated to a Real principal PU(n)-
bundle. □

Remark 6.8. If (P, Y ) is a Real bundle gerbe, then we have constructed a
map from the twisted K-theory with respect to the underlying U(1)-bundle
gerbe to Real twisted K-theory of (P, Y ). This is a generalisation of the
corresponding construction from [2, p. 371] in the untwisted case.
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Notice also that this proof does not actually use the fact that the class in
H2(M ;Z2,U(1)) is torsion, but rather that its image in H3(M,Z) is torsion.
So we have proved that every class in H2(M ;Z2,U(1)) which is torsion in
H3(M,Z) is actually torsion in H2(M ;Z2,U(1)) by Remark 6.2.

6.2. Twisted KR-theory

We now turn to the problem of showing that the bundle gerbe KR-theory
of a Real bundle gerbe on a compact Real manifold M is in fact the same
as the twisted KR-theory of M .

Let H be a complex separable Hilbert space with a conjugation v 7→ v̄
and take it to be Z2-stable, that is the one-dimensional irreducible represen-
tation of Z2 occurs in H with infinite multiplicity. The space of Fredholm
operators Fred(H) acquires a natural involution defined by σ(T )(v) = T (v̄)
for all T ∈ Fred(H) and v ∈ H. In order to get a representing space for KR-
theory, with a continuous action by the Real projective unitary group in the
compact-open topology, we proceed as in [4] and replace Fred(H) by an-
other space of Fredholm operators Fred(0)(Ĥ) where Ĥ = H⊗ C2. We refer
to Section 3 in [4] for a detailed description of this space and its topol-
ogy. The involution on Fred(H) extends naturally to Fred(0)(Ĥ) and the
Real projective unitary group PU(Ĥ) acts continuously on Fred(0)(Ĥ) by
conjugation. For a Real PU(Ĥ)-bundle P →M we can form the associ-

ated Real bundle Fred
(0)
P = P ×PU(Ĥ) Fred

(0)(Ĥ) classified by its invariant

DDR(P) ∈ H2(M ;Z2,U(1)). The twisted KR-theory group of M is defined

as the group of Real homotopy classes of continuous sections of Fred
(0)
P ,1

(6.9) KR(M,P) = π0
(
ΓZ2

M (Fred
(0)
P )
)
,

or equivalently as the space of all homotopy classes of PU(Ĥ)⋊ Z2-
equivariant maps

KR(M,P) = [P,Fred(0)(Ĥ)]PU(Ĥ)⋊Z2
,

where the homotopies are through equivariant maps and the Z2-action is via
the Real structures on the spaces. At this point we abuse notation again as

1For locally compact Real manifolds, this definition still works by restricting to
Real admissible sections, see Definition 2.1 in [19].
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in Remark 6.4 and write

KR(M, [H]) = KR(M,P) = [P,Fred(0)(Ĥ)]PU(Ĥ)⋊Z2
,

where P is chosen such that DDR(P) = [H].

Theorem 6.10. Let M be a Real compact manifold, P be a Real PU(n)-
bundle over M with torsion Real Dixmier-Douady class [H] and (LP ,P)
denote the corresponding lifting bundle gerbe. Then there is an isomorphism

of abelian groups

KRbg(M,LP) ≃ KR(M, [H]).

Proof. First we note that by Theorem 6.7, there always exists a Real PU(n)-
bundle P →M associated to any torsion Real Dixmier–Douady class [H] ∈
H2(M ;Z2,U(1)). The proof proceeds along the same lines as the proof of
Proposition 3.2 in [19], although we only consider the compact-open topology
which by Appendix 3 in [4] is equivalent to using the norm topology. The
basic idea is to identify the additive category of Real bundle gerbe modules
on M with the additive category of Real U(n)-equivariant vector bundles of
Real central character 1 on the Real compact manifold P.

Namely, any element of the center g ∈ U(1) ⊂ U(n) gives rise to a U(n)-
equivariant vector bundle automorphism gE : E → E, which is a central
character if gE = χ(g) idE . As explained at the end of Section 6.2 in [14], the
bundle gerbe multiplication implies that χ(g) = 1, i.e. center must act by
scalar multiplication. It is further straightforward to check that the compati-
bility between the bundle gerbe multiplication and the Real structure in Def-
inition 6.1 corresponds precisely to the compatibility between the Real struc-
ture and the U(n)-action on vector bundles on P. Therefore, if follows that
KRbg(M,LP) is isomorphic to the submodule KRU(n),(1)(P) ⊂ KRU(n)(P)
of weight 1, where KRU(n)(P) is regarded as an RR(U(1))-module and
RR(U(1)) ⊂ KRU(1)(pt) is the Real representation ring of U(1).

Next we can view P as a reduction of a Real PU(Ĥ)-bundle P̃ with
the same Dixmier–Douady invariant, via the embedding PU(n) → PU(Cn ⊗
Ĥ), g 7→ g ⊗ 1 and by choosing an isomorphism Cn ⊗ Ĥ ≃ Ĥ of Real Hilbert
spaces, where the involution on Cn is by complex conjugation. We further
require that Ĥ is a Real stable U(n)-Hilbert space and denote by Ĥ(1) the
Real U(n)-Hilbert subspace of weight 1 under the Real U(1)-action. By the
results in Section 6 and Appendix 3 of [4], it follows that

KRU(n),(1)(P) = [P,Fred(0)(Ĥ(1))]PU(n)⋊Z2
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and we have

KRbg(M,LP) ≃ KRU(n),(1)(P)

= [P,Fred(0)(Ĥ(1))]PU(n)⋊Z2

≃ [P ×PU(n) PU(Ĥ(1)),Fred
(0)(Ĥ(1))]PU(Ĥ(1))⋊Z2

≃ KR(M, [H]). □

Remark 6.11. We note that a similar argument as in [51] shows that every
Real bundle gerbe module is a direct summand of a trivial Real bundle gerbe
module, so it follows that every element in KRbg(M,LP) can be represented
in the form [E]− [CN

P ] where CN
P is the trivial Real vector bundle on P.

We now sketch the generalisation of this construction to bigraded KR-
theory groups. For this, let ep,q : R

n → Rn be the involution acting on (x, y) ∈
Rp × Rq as (x, y) 7→ (x,−y), where p+ q = n; we denote the Real space Rn

with this involution as Rp,q. Let Cℓ(n) be the complex Z2-graded Clifford
C∗-algebra on n generators e1, . . . , en of degree one with the relations

ei ej + ej ei = −2 δij ,

together with the linear embedding of Rn into Cℓ(n) which sends the stan-
dard basis of Rn to e1, . . . , en. The involution ep,q : R

n → Rn induces an
involutive automorphism of Cℓ(n), also denoted ep,q, and the corresponding
Real algebra Cℓ(n) is denoted Cℓ(Rp,q).

Let Ĥ be a Z2-graded Real separable Hilbert space which is a ∗-module
over the Real Clifford algebra Cℓ(Rp,q); we assume that each simple subalge-

bra of Cℓ(Rp,q) is represented with infinite multiplicity on Ĥ. Let Fred
(0)
p,q(Ĥ)

be the Real space of Fredholm operators of odd degree on Ĥ which commute
with the Cℓ(Rp,q)-action and topologised as in [4]; it is a classifying space
for the bigraded KR-theory KRp,q. Let PUp,q(Ĥ) ⊆ PU(Ĥ) be the subgroup
of projective unitaries commuting with the Cℓ(Rp,q)-action. Then PUp,q(Ĥ)

preserves Fred
(0)
p,q(Ĥ). The bigraded (p, q) twisted KR-theory group of M is

defined for a Real principal PUp,q(Ĥ)-bundle P →M by

KRp,q(M,DDR(P)) = [P,Fred(0)p,q(Ĥ)]PUp,q(Ĥ)⋊Z2

as above.
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Let πp,q : M × Rp,q →M be the projection and define

KRp,q
bg (M,P ) := KRbg(M × R

p,q, π−1
p,q (P ))

where π−1
p,q (P ) is the pullback Real bundle gerbe over the Real space M ×

Rp,q and we are implicitly using KR-theory with compact support, see foot-
note 1. Then we immediately deduce from Theorem 6.10 that

KRp,q
bg (M,P ) ≃ KRp,q(M,DDR(P ))

for all (p, q). This identifies KRp,q
bg (M,P ) as the group of virtual Real bundle

gerbe modules with an action of the Real Clifford algebra Cℓ(Rp,q).

Remark 6.12. In the case of a non-torsion Dixmier–Douady class, it is pos-
sible to introduce a Real analogue of infinite-rank UK-bundle gerbe modules
as in [14]. We leave the formulation to the reader. We will in fact see in
Section 8 that for the construction of geometric cycles for KR-homology
twisted by an arbitrary Dixmier–Douady class, only finite-rank Real bundle
gerbe modules are required.

7. Orientifolds and Real bundle gerbe D-branes

In this section we describe how our Real bundle gerbe constructions find
applications in the orientifold construction of Type II string theory, which
includes Type I string theory. In particular, our bundle gerbe KR-theory
provides an appropriate receptacle for the quantization of Ramond-Ramond
charges and fluxes on these backgrounds in a manner that we explain below.
Our considerations here motivate the definition of twisted KR-homology
that we give in Section 8. The reader uninterested in the physics background
behind our constructions may safely skip this section.

In the following, by a “B-field” we mean a gerbe with connection or a
class in a suitable differential cohomology theory as specified for example
in [24, 25]. By “quantum flux” we mean the Dixmier–Douady class of this
gerbe: in string theory the H-flux usually refers to the 3-form curvature
of the gerbe with connection, but the key feature is that it represents the
Dixmier–Douady class so has integer periods, and that is what we shall mean
by “quantum”.
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7.1. D-branes and anomalies

Let us begin by reviewing the well-known case without involution, see e.g.
[16], recast into the context of this paper. We interpret our manifold M
as spacetime of Type II string theory which comes with various geometric
fields F , such as a Riemannian metric g and a B-field whose three-form flux
H defines a class [H] ∈ H3(M,Z) by (generalised) Dirac charge quantiza-
tion [25]; we can take [H] = DD(P ) to be the Dixmier–Douady class of a
bundle gerbe (P, Y ) over M . In the worldsheet theory, these fields are given
by background functions F (ϕ(x)) of closed string field configurations which
are specified by a closed oriented Riemann surface Σ and a smooth map
ϕ : Σ →M . The string sigma-model associates to this data an exponenti-
ated Euclidean action functional, one of whose factors is the amplitude

(7.1) Ag,H(ϕ,Σ) = exp
(
− Skin(ϕ)

)
hol(Σ, ϕ∗H),

where Skin(ϕ) =
1
2

∫
Σ ∥dϕ∥2 is the kinetic term which involves the orien-

tation and a conformal structure on Σ as well as the metric on M ; in this
generality the Wess–Zumino–Witten term hol(Σ, ϕ∗H) from (5.11) is usually
called the B-field amplitude.

If Σ has a boundary, then one needs to specify suitable boundary condi-
tions for the maps ϕ : Σ →M which are represented by a choice of the ad-
ditional geometric data of a submanifold f : Z →֒M such that ϕ(∂Σ) ⊆ Z;
this submanifold specifies the worldvolume of a wrapped D-brane. The open
string field configurations on the D-brane include a “bundle” E on Z, which
is its Chan–Paton bundle; we shall clarify its precise geometric meaning
presently.

General considerations from string theory imply that E is not always a
complex vector bundle on Z but should be more precisely described as defin-
ing a class [E] in the K-theory of Z twisted by the class f∗[H] +W3(ν) ∈
H3(Z,Z). Here the 2-torsion class W3(ν) ∈ H3(Z,Z) is the third integral
Stiefel–Whitney class of the normal bundle ν → Z, which is the obstruction
to a spinc structure on ν and will be regarded as the Dixmier–Douady class
of the corresponding lifting bundle gerbe Lν [46] associated to the central
extension

1 −→ U(1) −→ Spinc(r) −→ SO(r) −→ 1

where r is the codimension of Z in M . This is due to the Freed–Witten
anomaly [31] in the string sigma-model associated to the space of smooth
maps ϕ : Σ →M , that is, a factor of the exponentiated action which takes
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values in a (non-canonically trivialised) line bundle rather than C. Then the
induced Ramond-Ramond charge is computed by pushforward

f! : Kbg(Z, f
∗[H] +W3(ν)) → K(M, [H])

under the inclusion f : Z →֒M [16], where f∗[H] +W3(ν) is the Dixmier–
Douady class of the bundle gerbe f−1(P )⊗ Lν . For vanishing H-flux and
when the D-brane is a stack of identical D-branes wrapping Z, the Chan–
Paton bundle E can be regarded as a bundle gerbe module of rank n for
this lifting bundle gerbe with [E] ∈ Kbg(Z,W3(ν)); in particular, for a single
D-brane n = 1 the complex line bundle E → ν provides a trivialization for
the lifting bundle gerbe Lν and describes a spinc structure on the normal
bundle ν → Z, as expected in this case [31].

Anomaly free D-branes wrapping Z satisfy the constraint [20, 39]

f∗[H] +W3(ν) = β
(
y(E)

)

in H3(Z,Z), where the ’t Hooft flux y(E) ∈ H2(Z,Zn) is the obstruction to
an SU(n)-structure on the principal bundle associated to the corresponding
projective vector bundle PE → Z, which may be regarded as the Dixmier–
Douady class of the corresponding lifting bundle gerbe associated to the
central extension

(7.2) 1 −→ Zn −→ SU(n) −→ PU(n) −→ 1,

and β : H2(Z,Zn) → H3(Z,Z) is the Bockstein homomorphism associated

to the exponential sequence 0 → Z
×n−−→ Z → Zn → 1. For n = 1 this is pre-

cisely the condition that the normal bundle ν → Z admits an H-twisted
spinc structure [55]; in this case the Chan–Paton bundle E is a Z2-graded
vector bundle on Z with class [E] ∈ K(Z). For vanishingH-flux the anomaly
cancellation condition for n = 1 reduces to W3(ν) = 0 and, when M is spin,
the worldvolume Z is a spinc manifold.

Another way to deal with the anomaly is to maintain the requirement
that the worldvolume Z is a spinc manifold; this ensures that the choice of
boundary conditions represented by the D-brane preserves a certain amount
of supersymmetry in the string sigma-model on the space of maps ϕ : Σ →
M . In this case [E] ∈ Kbg(Z, f

∗[H]), and combined with anomaly cancella-
tion we then arrive at

Definition 7.3. A bundle gerbe D-brane of a bundle gerbe (P, Y ) overM is
a triple (Z,E, f), where f : Z →֒M is a closed, embedded spinc submanifold
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and E is a bundle gerbe module of rank n for the bundle gerbe f−1(P, Y )
on Z.

Note that this definition does not require the quantum H-flux on M to
be torsion, but rather only that n [H] ∈ ker(f∗) ⊆ H3(M,Z); in particular,
for a single D-brane n = 1 the Chan–Paton bundle E → f−1(Y ) gives a
trivialization of the bundle gerbe f−1(P, Y ). A similar notion of D-brane
was considered in [18].

Deformation invariance, gauge symmetry enhancement and the possibil-
ity of branes within branes imply that any bundle gerbe D-brane (Z,E, f)
should be subjected to the usual equivalence relations of geometric K-
homology [8]: bordism, direct sum and vector bundle modification, respec-
tively [48]. For the topological classification of bundle gerbe D-branes, how-
ever, we need to consider a larger class of triples wherein the spinc subman-
ifold Z ⊆M is generalised to an arbitrary continuous map f : Z →M ; non-
embeddings f : Z →M correspond to “non-representable” D-branes which
are physically significant in the correspondence between D-branes and K-
homology, see [48]. Geometric twisted K-homology is defined in the present
context by [41]; see [9, 23, 42] for related approaches based on projective
bundles.

7.2. Orientifold constructions

Let us now apply the orientifold construction to this setting, which in-
troduces an involution τ making M into a Real manifold. The connected
components of the fixed point set M τ of the orientifold involution are called
orientifold planes, or O-planes for short. In the worldsheet theory, the com-
pact Riemann surface Σ is not oriented and need not even be orientable.
The string fields ϕ should now be regarded as smooth maps from Σ to the
orbifold quotient of M by the involution τ , which represents the physical
points of the orientifold spacetime. To make this precise, following [24, 50] we
introduce the orientation double cover π̂ : Σ̂ → Σ corresponding to the first
Stiefel–Whitney class w1(Σ) ∈ H1(Σ,Z2); it is canonically oriented with a
canonical orientation-reversing involution Ω: Σ̂ → Σ̂, called worldsheet par-

ity, which permutes the sheets and preserves the fibres. The string fields are
then smooth maps ϕ̂ : Σ̂ →M which are equivariant in the sense that there
is a commutative diagram

Σ̂
ϕ̂

//

Ω
��

M

τ

��

Σ̂
ϕ̂

// M
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Because of the orientation-reversing involution Ω, the geometric fields F
on M , which are background functions F (ϕ̂(x)) of the maps ϕ̂ : Σ̂ →M , are
required to satisfy equivariance conditions under τ in order to survive to the
orientifold quotient. In particular, the analog of the amplitude from (7.1),

Âg,H(ϕ̂,Σ) := exp
(
− Skin(ϕ̂ )

) (
hol( Σ̂, ϕ̂∗H)

)1/2
,

involves w1(Σ)-twisted forms, that is, forms on Σ̂ which are anti-invariant
under pullback by Ω (cf. [25, 33, 50]). We require that Âg,H(ϕ̂,Σ) be invari-
ant under the combined actions of the involutions Ω and τ ; this forces the
metric to be invariant, τ∗(g) = g (to ensure that the kinetic term Skin(ϕ̂ )
is invariant) whereas the three-form flux of the B-field is anti-invariant,
τ∗(H) = −H (ensuring that the B-field amplitude hol( Σ̂, ϕ̂∗H) is invari-
ant). By Dirac charge quantization, the H-flux thus determines a class
[H] ∈ ker(1× τ∗) ⊆ H3(M,Z). Recalling the discussion from Section 3, this
is a necessary condition for [H] to lift to a class in H2(M ;Z2,U(1)), but
it is not sufficient: In general the vanishing condition must be imposed in
equivariant cohomology as dictated by the long exact sequence (3.1). A Real
bundle gerbe connection whose 3-curvature H obeys τ∗(H) = −H renders
the orientifold B-field amplitude invariant, but to obtain a Real structure
on a given bundle gerbe with Dixmier–Douady class [H] typically requires
assumptions on the topology of spacetime M ; a situation where this occurs
is provided by the tautological bundle gerbe of Example 5.10. A precise def-
inition of connective structures on Real bundle gerbes and their holonomy
will be provided in [36]. For the purposes of the present discussion, we offer

Definition 7.4. An orientifold B-field is a B-field on M whose quantum
flux [H] ∈ ker(1× τ∗) ⊆ H3(M,Z) has a lift to the equivariant cohomology
H2(M ;Z2,U(1)) ≃ H3

Z2
(M,Z(1)).

This definition agrees with those of [33, Section 6], [24, Definition 2] and
[25, Section 3.2]. From the discussion above we have

Proposition 7.5. A B-field on M is an orientifold B-field if and only if

(1× τ∗)[H] vanishes as a class in H2(M ;Z2,U(1)) ≃ H3
Z2
(M,Z).

In this case we can take [H] to be the Real Dixmier–Douady class
DDR(P ) of a Real bundle gerbe on M . Hence spacetime M is now endowed
with a Real bundle gerbe (P, Y ).
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Remark 7.6. Arguing similarly to Section 3 via the Cartan–Leray spectral
sequence, the free part of the Borel equivariant cohomology H3

Z2
(M,Z) is

isomorphic to the invariants in ordinary cohomology H3(M,Z)Z2 . The class
(1× τ∗)[H] is automatically invariant, so the lifting condition of Proposi-
tion 7.5 on its free part is the necessary condition τ∗[H] = −[H] in H3(M,Z)
which usually appears in the string theory literature. However, the vanish-
ing of (1× τ∗)[H] in the torsion subgroup of H2(M ;Z2,U(1)) is required to
obtain a sufficient condition.

Similarly to the previous situation, we specify a submanifold Z ⊆M such
that the string fields ϕ̂ : Σ̂ →M satisfy the boundary condition ϕ̂(∂Σ̂) ⊆ Z.
Demanding that a D-brane be isomorphic to its orientifold image (in a suit-
able sense) defines the orientifold projection of open string states. We assume
that Z is preserved by τ ; for topological considerations a natural choice is to
take Z ⊆M τ to coincide with an O-plane. Again the open string field con-
figurations on the D-brane include a bundle gerbe module E for some Real
bundle gerbe on Z which we will specify momentarily; the worldsheet parity
involution Ω induces a map E → E. Equivariance requires that there be an
isomorphism τE : τ−1(E) → E satisfying (τE ◦ τ−1)2 = 1, hence E is natu-
rally a Real bundle gerbe module and defines an element in some twisted
KR-theory group.

At present there is no computation of the Freed–Witten anomaly avail-
able for orientifold (or even orbifold) string theories. However, we can glean
it from the definition of Real twisted spinc structures given by Fok [30]—
which we generalise and extend in Section 8—and by demanding that the
induced Ramond-Ramond charges can be computed by suitable pushfor-
ward to classes in the twisted KR-theory KR(M, [H]) under the inclusion
f : Z →֒M ; this pushforward will be constructed explicitly in Section 8,
see in particular Example 8.30. Then our Chan–Paton bundles will generi-
cally be bundle gerbe modules defining classes inKRbg(Z, f

∗[H] +WR3(ν)),
whereWR3(ν) is the Real Dixmier–Douady invariant of the Real lifting bun-
dle gerbe corresponding to the normal bundle ν → Z which is the obstruction
to a Real spinc structure on ν. (cf. also [24, Remark (g)]).

We shall elucidate these definitions and the precise meaning of this ob-
struction in some detail in Section 8. Again the open string field configura-
tions on the D-brane include a class in H3

Z2
(Z,Z(1)) associated with (7.2),

regarded now as a Real central extension, and by equating twisting classes
as before we generalize Definition 7.3 to
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Definition 7.7. A Real bundle gerbe D-brane of a Real bundle gerbe (P, Y )
over the Real manifold M is a triple (Z,E, f), where f : Z →֒M is a closed,
embedded Real spinc submanifold such that τ(Z) = Z and E is a Real bun-
dle gerbe module of rank n for f−1(P, Y ).

A similar definition of D-brane is given by [33] using Jandl gerbes. In
Section 8 we will generalize this definition in the category of Real spaces by
considering arbitrary continuous equivariant maps f : Z →M between Real
spaces, and defining geometric cycles for twisted KR-homology by suitably
combining them with an equivariant construction. For vanishing quantum
H-flux, equivariant geometric K-homology is constructed in [11, 53]; this
definition is extended to the twisted case by [7] in the language of PU(H)-
bundles.

Example 7.8 (Discrete torsion). The difference between orientifold
group actions on a fixed B-field is known as discrete torsion. In our set-
ting, the orientifold discrete torsion is parameterized by H2(M ;Z2,U(1))
via the map

H2(M ;Z2,U(1)) −→ Tors
(
H3

Z2
(M,Z(1))

)
.

In particular, the subgroup of discrete B-fields is classified by the inclu-
sion H2(pt;Z2,U(1)) ⊂ H2(M ;Z2,U(1)) under pullback by the projection
M → pt; in Example 5.18 we gave an explicit construction of the non-trivial
discrete B-field in H2(pt;Z2,U(1)) ≃ Z2, reflecting the fact even a point has
over it a non-trivial Real bundle gerbe. Alternatively, it is classified by the
equivariant cohomology H3

Z2
(pt,Z(1)), which is computed by [30] to be

H3
Z2
(pt,Z(1)) = Z2.

This coincides with the group cohomology H2(BZ2,U(1)) ≃ H3
gp(Z2,Z(1)),

which also classifies non-central extensions of the orientifold group Z2 by
U(1), or equivalently projective Real representations of Z2 [15, 24]; this is
used by [15] to provide projectivised group actions on D-branes and a defini-
tion of twisted KR-theory in terms of projective Real vector bundles for tor-
sion quantum H-flux in this subgroup. For the two inequivalent Real struc-
tures on the trivialisable gerbe here, the corresponding twisted KR-theory
groups are KO and KO4 = KSp (this is also a special case of [30, Proposi-
tion 3.29]); more generally, the non-trivial projective Real representation of
Z2 is a Real representation of the cyclic group Z4 and the KR-theory twisted
by the generator ξ of H2(pt;Z2,U(1)) ⊂ H2(M ;Z2,U(1)) can be computed



✐

✐

“5-Murray” — 2020/5/15 — 12:43 — page 2134 — #42
✐

✐

✐

✐

✐

✐

2134 Hekmati, Murray, Szabo, and Vozzo

from the equivariant KR-theory KRZ4
(M) = KR(M)⊕KR(M, ξ) for any

Real manifold M [15].

Example 7.9 (Type I D-branes). Consider the Real involution τ that
acts trivially on M ; this is the receptacle for Type I string theory. The
B-field reduces to a discrete field with quantum flux [H] ∈ H2(M,Z2)⊕
Z2 by Example 4.8, and the Chan–Paton bundles E now define classes
[E] in KObg(Z, f

∗[H] + w2(ν)) or KSpbg(Z, f
∗[H] + w2(ν)) corresponding

to ± 1 ∈ Z2, respectively, where w2(ν) ∈ H2(Z,Z2) is the second Stiefel–
Whitney class of the normal bundle ν → Z. Thus in this case we recover
Type I D-branes which support either an orthogonal or symplectic gauge the-
ory. For vanishing quantum H-flux, geometric KO-homology is constructed
in [10, 49].

Example 7.10 (D-branes in S1,3). Let M = S1,3 be the unit sphere in
R1,3, or equivalently the Lie group SU(2) ≃ S3 with group inversion g 7→ g−1

as Real structure. The orientifold fixed point set consists of two elements,
the identity and its negative which comprise the center of SU(2), corre-
sponding respectively to the north and south poles (± 1, 0, 0, 0) ∈ R1,3. By
Example 5.20 we have

H2(S1,3;Z2,U(1)) = Z2 ⊕ Z,

where the basic gerbe over SU(2) is (0, 1) while the gerbe coming from the
coboundary map on H1(S1,3;Z2,U(1)) = Z2 is (−1, 0). Generally, symmet-

ric D-branes in Lie groups correspond to (integral) conjugacy classes [1].
For SU(2) the conjugacy class of an element corresponding to (x, y) ∈ R1,3

is the intersection of S3 with a hyperplane with fixed first coordinate x ∈
R. For any x ̸= ± 1 these are two-spheres S2

x ⊂ R0,3 which are preserved
by the involution e1,3 and are Real spinc, and by Example 5.19 we have
H2(S2

x;Z2,U(1)) = 0; hence these conjugacy classes correspond to single
(rank 1) spherical Real bundle gerbe D2-branes. For x = ± 1 the conjugacy
classes correspond to Real bundle gerbe D-particles sitting at the O0-planes
which can support either real or symplectic bundles since H2(pt;Z2,U(1)) =
Z2. These results are in agreement with those of [5, 17, 37].

8. Real bundle gerbe cycles and twisted KR-homology

In this section we define cycles for a geometric realisation of the homol-
ogy theory dual to the bundle gerbe KR-theory constructed in this paper.
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Amongst other things, this will provide the topological classification of the
Real bundle gerbe D-branes discussed in Section 7.

8.1. Real spinc structures

Let Z be a Real space, and let V → Z be an equivariant oriented real vec-
tor bundle of even rank n equipped with a fibrewise inner product with
respect to which the involution τV : V → V is orthogonal. The bundle F(V )
of oriented orthonormal frames of V is a principal SO(n)-bundle on Z. Fol-
lowing [30], we can make its structure group SO(n) into a Real Lie group
SO(Rp,q) by assigning the involutive automorphism g 7→ σp,q(g) = ep,q g ep,q
of SO(n) which corresponds to the involution ep,q : R

n → Rn introduced
in Section 6.2, where p+ q = n. Note that ep,q ∈ SO(n) if q is even and
ep,q ∈ O(n) if q is odd; moreover e0,n acts trivially and e0,n ep,q = eq,p, so
that σp,q = σq,p.

Definition 8.1. The vector bundle V is Real (p, q)-oriented if its frame
bundle F(V ) is a Real SO(Rp,q)-bundle.

Let us examine some necessary and sufficient conditions under which V
admits a Real (p, q)-orientation in this sense. For this, let F(V )σp,q → Z be
the SO(n)-bundle which as a manifold is equal to F(V ) but with twisted
group action u ·σp,q

g = uσp,q(g) for u ∈ F(V ) and g ∈ SO(n). Then a Real
structure τp,q

F(V ) : F(V ) → F(V ) commuting with the involution τ : Z → Z and

satisfying τp,q
F(V )(u g) = τp,q

F(V )(u)σp,q(g) is the same thing as an SO(n)-bundle

morphism τp,q
F(V ) : F(V ) → F(V )σp,q covering τ , since F(V ) = F(V )σp,q as man-

ifolds, it makes sense to demand that τp,q
F(V ) be an involution. Such an involu-

tion is easy to construct; with the involutive bundle morphism τF(V ) on F(V )
induced fibrewise by τV that satisfies τF(V )(u g) = τF(V )(u) g, the involution
ep,q : R

n → Rn induces a fibrewise involutive map which composed with τF(V )

yields the desired isomorphism τp,q
F(V ) when either τV is orientation-preserving

and q is even or τV is orientation-reversing and q is odd. Then a necessary
condition is that F(V ) and τ−1

(
F(V )σp,q

)
are isomorphic as SO(n)-bundles.

Now if f : Z → BSO(n) is a classifying map for F(V ) then B(σp,q) ◦ f ◦ τ is
a classifying map for τ−1

(
F(V )σp,q

)
, where B(σp,q) : BSO(n) → BSO(n) is

the involution induced by σp,q. It can be checked that σp,q = σq,p is an inner
automorphism of SO(n) if and only if q is even, in which case it can be
deformed via automorphisms to the identity map. Then B(σp,q) can be de-
formed to the identity so that B(σp,q) ◦ f ◦ τ and f ◦ τ are homotopic maps,
and hence τ−1

(
F(V )σp,q

)
≃ τ−1

(
F(V )

)
≃ F(V ) since τF(V ) commutes with τ .
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We conclude that if τV : V → V is an orientation-preserving involution and
q is even, then V is Real (p, q)-oriented.

Henceforth we assume that the bundle V → Z is Real (p, q)-oriented.
Its Z2-invariant fibrewise inner product defines a Real bundle of Clifford
algebras

Cℓ(V ) := F(V )×SO(Rp,q) Cℓ(R
p,q)

on Z. The Lie group Spinc(n) ⊆ Cℓ(n) is a central extension Spinc(n) :=
Spin(n)×Z2

U(1) of SO(n), which is a Real Lie group Spinc(Rp,q) under the
involutive automorphism which descends to the Real structure on SO(Rp,q)
and restricts to complex conjugation on U(1). In particular, there is a Real
central extension

(8.2) 1 −→ U(1) −→ Spinc(Rp,q) −→ SO(Rp,q) −→ 1.

Following again [30] we have

Definition 8.3. Let V be an equivariant oriented real vector bundle of
even Real rank n = p+ q over a Real space Z which is Real (p, q)-oriented.
A Real (p, q)-spinc structure or KR-orientation of type (p, q) on V is an
extension of the frame bundle F(V ) to a Real Spinc(Rp,q)-bundle F̂(V ) over
Z whose structure group lifts that of F(V ) as the Real central extension
(8.2). The bundle V with a given Real spinc structure is called a Real spinc

or KR-oriented vector bundle.

Remark 8.4. If V → Z has odd rank n, we apply the above considerations
to Cℓ(V ⊕ RZ) instead, where RZ := Z × R is the trivial real line bundle
with the trivial involution on its fibre.

For a KR-oriented bundle V of type (p, q), the extension F̂(V ) may
be regarded as a Real U(1)-bundle over F(V ) which fits in a diagram of
fibrations

Spinc(Rp,q) //

��

SO(Rp,q)

��

U(1)

66

((

F̂(V ) //

((

F(V )

ww
Z

The topological obstruction to the existence of a Real spinc structure on V is
the Real Dixmier–Douady class of the Real lifting bundle gerbe associated to
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the Real central extension (8.2). It is easy to see that when the involution on
Z is trivial then a Real spinc structure is the same thing as a spin structure
on V .

Lemma 8.5. If V and W are Real spinc vector bundles, then their Whitney

sum V ⊕W carries a natural Real spinc structure.

Proof. Let n = p+ q andm = r + s be the respective ranks of V andW . The
maps ei 7→ ei, i = 1, . . . , p and ei 7→ ei+r, i = p+ 1, . . . , n, and ej 7→ ej+p,
j = 1, . . . , r and ej 7→ ej+n, j = r + 1, . . . ,m give respective equivariant in-
clusions of Cℓ(Rp,q) and Cℓ(Rr,s) in Cℓ(Rp+r,q+s). These inclusions induce
a diagram

Spinc(Rp,q)× Spinc(Rr,s)

��

// Spinc(Rp+q,r+s)

��

SO(Rp,q)× SO(Rr,s) // SO(Rp+r,q+s)

which gives the desired Real (p+ r, q + s)-spinc structure on V ⊕W . □

Let V → Z be any Real spinc vector bundle with Real spinc struc-
ture F̂(V ) → F(V ) of type (p, q). Any fixed equivariant orientation-reversing
isometry η of Rp,q induces an equivariant automorphism of Cℓ(Rp,q), and
hence of Spinc(Rp,q), which is also denoted η. Define a Real U(1)-bundle
F̂η(V ) → F(V ) with the same Real total space as F̂(V ), but with the action
of the Real group Spinc(Rp,q) twisted by η; it defines the opposite Real spinc

vector bundle −V .
If Z is a Real manifold, a Real orientation of its tangent bundle TZ can

be specified by choosing a complete Riemannian metric on Z and taking
τ : Z → Z to be an isometric involution. A Real spinc structure on Z is a
Real spinc structure on TZ. A Real manifold together with a given Real
spinc structure is called a Real spinc manifold.

Lemma 8.6. If Z is a Real spinc manifold, then its boundary ∂Z carries

a natural Real spinc structure.

Proof. The frame bundle F(T∂Z) can be mapped to ∂ F(TZ). If Z has Real
dimension n = p+ q, then the Real (p, q)-spinc structure on Z can be pulled
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back to a Real (p− 1, q)-spinc structure on ∂Z via the pullback diagram

Spinc(Rp−1,q) //

��

Spinc(Rp,q)

��

SO(Rp−1,q) // SO(Rp,q)

induced by the equivariant inclusion Cℓ(Rp−1,q) →֒ Cℓ(Rp,q) which sends
ei 7→ ei+1 for i = 1, . . . , n− 1. □

8.2. Bundle gerbe KR-homology

Let M be a Real space and let (P, Y ) be a Real bundle gerbe over M with
Dixmier–Douady class [H] = DDR(P ) ∈ H2(M ;Z2,U(1)).

Definition 8.7. A bundle gerbe KR-cycle is a triple (Z,E, f) where Z is a
compact Real spinc manifold without boundary, f : Z →M is a continuous
equivariant map, and E is a Real bundle gerbe module for f−1(P ∗, Y ).

Notice that the definition of a Real bundle gerbeD-brane (Definition 7.7)
is a special case of this definition.

We note that since E is of finite rank, the pullback to Z of the Real
Dixmier–Douady class DDR(f

−1(P ∗, Y )) = −f∗(DDR(P, Y )) must be tor-
sion. Moreover, the manifold Z need not be connected, hence the disjoint
union

(Z1, E1, f1)⨿ (Z2, E2, f2) := (Z1 ⨿ Z2, E1 ⨿ E2, f1 ⨿ f2)

is a well-defined operation on the set of all bundle gerbe KR-cycles. We say
that two bundle gerbeKR-cycles (Z1, E1, f1) and (Z2, E2, f2) are isomorphic

if there exists an equivariant diffeomorphism h : Z1 → Z2 preserving the Real
spinc structures such that f1 = f2 ◦ h and h−1(E2) ≃ E1 as Real bundle
gerbe modules for f−1

1 (P ∗, Y ). We denote the set of isomorphism classes of
bundle gerbeKR-cycles by RCyc(P, Y ); it is a commutative semi-group with
addition + induced by disjoint union of bundle gerbe KR-cycles. Henceforth
when we refer to a bundle gerbe KR-cycle we shall mean an isomorphism
class of bundle gerbe KR-cycles.

Definition 8.8. Two bundle gerbe KR-cycles (Z1, E1, f1) and (Z2, E2, f2)
are Real spinc bordant if there exists a compact Real spinc manifold Z
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with a Z2-invariant boundary, a continuous equivariant map f : Z →M

and a Real bundle gerbe module E for f−1(P ∗, Y ) such that the two bun-
dle gerbe KR-cycles ∂(Z , E , f ) := (∂Z , E|∂Z , f |∂Z ) and (Z1, E1, f1)⨿
(−Z2, E2, f2) are isomorphic, where −Z2 denotes the Real manifold Z2 with
the opposite Real spinc structure on its tangent bundle TZ2. The triple
(Z , E , f ) is called a Real spinc bordism of bundle gerbe KR-cycles.

The most intricate equivalence relation on the semi-group RCyc(P, Y )
is a twisted Real version of vector bundle modification. For this, let Sp,q be
the unit sphere of dimension p+ q − 1 in Rp,q with respect to the standard
flat Euclidean metric on Rp × Rq; then Sn,0 = Sn−1 is the standard n− 1-
sphere with the trivial Real involution. The frame bundle of TRp,q can be
identified with Rp,q × SO(Rp,q), and we can equip Rp,q with the trivial Real
spinc structure Rp,q × Spinc(Rp,q). Then the associated Real spinc structure
on Sp,q is the Real Spinc(Rp−1,q)-bundle F̂(TSp,q) with fibre at x ∈ Sp,q

given by the space of all elements of Spinc(Rp,q) whose image in SO(Rp,q)
is a matrix with first column equal to x.

Let Vp,q be a Real spin
c vector bundle of type (p, q) with even-dimensional

fibres over a compact Real spinc manifold Z. Then the Whitney sum Vp,q ⊕
RZ is a Real spinc vector bundle over Z of type (p+ 1, q), with the trivial in-
volution on the trivial real line bundle RZ and bundle projection λ. Fixing a
representative within the Z2-homotopy class of Real Spinc(Rp+1,q)-bundles
F̂(Vp,q ⊕ RZ) over Z, we define a Z2-invariant metric on Vp,q ⊕ RZ . Let Zp,q

be the unit sphere bundle of Vp,q ⊕ RZ ; it is Real spinc bordant to any
other sphere bundle defined by choosing a different representative of the
Z2-homotopy class. The Real manifold Zp,q may be described explicitly as
the fibre bundle

Zp,q = F̂(Vp,q ⊕ RZ)×Spinc(Rp+1,q) S
p+1,q

over Z with a Real structure commuting with τ and projection ρp,q; here
Spinc(Rp+1,q) acts on the Real sphere Sp+1,q by projection to its isometry
group SO(Rp+1,q). The tangent bundle of Vp,q ⊕ RZ sits in a split exact
sequence

0 −→ λ−1(Vp,q ⊕ RZ) −→ T (Vp,q ⊕ RZ) −→ λ−1(TZ) −→ 0

and upon choosing a splitting we can identify the tangent bundle

TZp,q ≃ ρ−1
p,q(TZ) ⊕

(
F̂(Vp,q ⊕ RZ)×Spinc(Rp+1,q) TS

p+1,q
)
.
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It follows that the Real spinc structures on TZ and Vp,q naturally induce
a Real spinc structure on TZp,q, so Zp,q is a compact Real spinc manifold.
There are two special instances of this construction that we are interested
in, which will respectively implement the periodicities of complex and real
K-theory.

Firstly, consider the case (p, q) = (k, k) for k ≥ 1. As a Real space Rk,k ≃
Ck with the involution given by complex conjugation, and Cℓ(Rk,k) ≃
Cℓ(2k) = Cℓ+(2k)⊕ Cℓ−(2k) is the complex Clifford algebra with its natural
Z2-grading. The group Spinc(2k) has two irreducible half-spin representa-
tions ∆±

k,k of equal dimension 2k−1, and the associated bundles of half-spinors

S±
k,k := F̂(TSk+1,k)×Spinc(Rk,k) ∆

±
k,k on Sk+1,k are Real vector bundles. By

the Atiyah–Bott–Shapiro construction, the dual of the positive spinor bun-
dle (S+

k,k)
∗ together with the trivial line bundle generate KR(Sk+1,k) [2, 40];

for k = 1 this is essentially the Bott generator constructed from the Hopf
bundle H → S2 = CP 1 with its natural Real structure induced by complex
conjugation, see Example 4.10 (c).

Secondly, let (p, q) = (8k, 0) for k ≥ 1. Then R8k,0 ≃ R8k is endowed with
the trivial involution and Cℓ(R8k,0) ≃ Cℓ(8k) is a real Clifford algebra. The
group Spin(8k) has two irreducible real half-spin representations ∆±

8k,0 of

equal dimension 24k−1, and the associated bundles of half-spinors S±
8k,0 :=

F̂(TS8k)×Spin(8k) ∆
±
8k,0 on S

8k are real vector bundles. Again by the Atiyah–

Bott–Shapiro construction, the dual of the positive spinor bundle (S+
8k,0)

∗

together with the trivial line bundle generate KR(S8k) ≃ KO(S8k).
In both of these instances, the bundle

Sp,q := F̂(Vp,q ⊕ RZ)×Spinc(Rp+1,q)

(
S+
p,q

)∗

is a Real vector bundle over Zp,q.

Definition 8.9. Let (P, Y ) be a Real bundle gerbe. Let (Z,E, f) be a
bundle gerbe KR-cycle and let Vp,q → Z be a Real spinc vector bundle of
type (p, q). Let π̃p,q : (f ◦ ρp,q)−1(Y ) → Zp,q be the pullback of the surjective
submersion Y →M to Zp,q, and let ρ̃p,q : (f ◦ ρp,q)−1(Y ) → f−1(Y ) be the
induced projection. Then the Real vector bundle modification of (Z,E, f) by
Vp,q is the bundle gerbe KR-cycle

(Z,E, f)p,q :=
(
Zp,q , ρ̃

−1
p,q(E)⊗ π̃−1

p,q (Sp,q) , f ◦ ρp,q
)

for (p, q) = (k, k) and (p, q) = (8k, 0) with k ≥ 1, which we respectively call
the complex and real modifications.
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The KR-homology group KRbg
∗ (M,P ) of the Real bundle gerbe (P, Y )

is defined to be the abelian group obtained by quotienting RCyc(P, Y ) by
the equivalence relation ∼ generated by the disjoint union/direct sum re-
lation, that is (Z,E1, f)⨿ (Z,E2, f) ∼ (Z,E1 ⊕ E2, f), Real spin

c bordism,
and Real vector bundle modification. The homology class of a bundle gerbe
KR-cycle (Z,E, f) ∈ RCyc(P, Y ) is denoted [Z,E, f ] ∈ KRbg

∗ (M,P ). The
group operation is induced by disjoint union of bundle gerbe KR-cycles.
The identity element of the group KRbg

∗ (M,P ) is represented by [∅, ∅, ∅],
or more generally by any null bordant KR-cycle ∂[W,E, f ], see Defini-
tion 8.8. Inverses are induced by taking opposite Real spinc structures,
that is −[Z,E, f ] := [−Z,E, f ]; this follows from the Real spinc bordism
(Z,E, f)⨿ (−Z,E, f) = ∂(Z × [0, 1], π−1

Z (E), f ◦ πZ) with the trivial invo-
lution on [0, 1] and πZ : Z × [0, 1] → Z the projection.

By construction, the equivalence relation on RCyc(P, Y ) preserves the
type (p, q) of the Real spinc structure on Z mod (1, 1) and the dimen-
sion of Z mod 8 in bundle gerbe KR-cycles (Z,E, f), so one can define
the subgroups KRbg

p,q(M,P ) consisting of classes of bundle gerbe KR-cycles
(Z,E, f) for which all connected components of Z carry Real spinc struc-
tures of type (p, q) mod (1, 1) and are of dimension n = p+ q mod 8. Then
the abelian group

KRbg
∗ (M,P ) =

7⊕

n=0

KRbg
n (M,P )

has a natural Z8-grading, where KR
bg
n (M,P ) := KRbg

0,n(M,P ).

Lemma 8.10. The homology class of a bundle gerbe KR-cycle (Z,E, f)
depends only on the class of E in KRbg(Z, f

−1(P ∗)).

Proof. Let [E] denote the class of E in KRbg(Z, f
−1(P ∗)) and suppose that

[E] = [F ] for another Real bundle gerbe module F . Then there exists a
Real bundle gerbe module G such that E ⊕G ≃ F ⊕G. Passing to equiv-
alence classes in KRbg

∗ (M,P ) using the disjoint union/direct sum relation
gives [Z,E, f ] + [Z,G, f ] = [Z,F, f ] + [Z,G, f ], and so [Z,E, f ] = [Z,F, f ]
in KRbg

∗ (M,P ). □

Remark 8.11. Lemma 8.10 implies that any Real stable isomorphism
(P, Y ) → (Q,X) induces a canonical isomorphism

KRbg
∗ (M,P ) ≃ KRbg

∗ (M,Q),
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and in particular the isomorphism class of the abelian groupKRbg
∗ (M,P ) de-

pends only on the Real Dixmier–Douady class of P . As in Remark 6.4, when
the bundle gerbe P with class [H] is understood, we write KRbg

∗ (M, [H]).
Since KRbg(Z, f

−1(P ∗)) ≃ KR(Z) for any trivialisable Real bundle gerbe
(P, Y ), our formalism includes also a definition of geometric KR-homology
in the untwisted case in terms of Real vector bundles. Moreover, we may use
it to define an isomorphic version of bundle gerbe KR-homology wherein the
Real bundle gerbe module E is replaced by a class ξ ∈ KRbg(Z, f

−1(P ∗)).
Representing ξ = [E]− [F ] by two Real bundle gerbe modules, we get a
well-defined element [Z, ξ, f ] ∈ KRbg

∗ (M,P ) by setting

[Z, ξ, f ] := [Z,E, f ]− [Z,F, f ].

Conversely, there is a map [Z,E, f ] 7→ [Z, [E], f ].

The functor KRbg
∗ is defined to be the Z8-graded covariant functor from

the category of pairs of Real manifolds with Real bundle gerbes to the cat-
egory of abelian groups defined on objects by (M,P ) 7→ KRbg

∗ (M,P ) and
on equivariant continuous maps ϕ : (M,ϕ−1(Q)) → (N,Q) by the induced
homomorphism of Z8-graded abelian groups

KRbg
∗ (ϕ) := ϕ∗ : KR

bg
∗ (M,ϕ−1(Q)) −→ KRbg

∗ (N,Q)

with

ϕ∗[Z,E, f ] := [Z,E, ϕ ◦ f ].

Note that this transformation is well-defined and functorial; one has
(id(M,P ))∗ = idKRbg

∗ (M,P ) and (ϕ ◦ ψ)∗ = ϕ∗ ◦ ψ∗, and since Real bundle gerbe
modules over Z extend to Real bundle gerbe modules over Z × [0, 1], it fol-
lows by Real spinc bordism that induced homomorphisms depend only on
their Z2-homotopy classes. By restricting our definitions to the category of
manifolds with real bundle gerbes, our formalism also includes a definition
of bundle gerbe KO-homology.

Using the KR(Z)-module structure of the bundle gerbe KR-theory
groups KRbg(Z, f

−1(P ∗)), we can endow the bundle gerbe KR-homology

group KRbg
∗ (M,P ) with the structure of a module over the KR-theory ring

KR(M). We define the Z8-graded left action

KR(M)⊗KRbg
∗ (M,P ) −→ KRbg

∗ (M,P )
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which is given for any Real vector bundle F →M and any bundle gerbe
KR-cycle class [Z,E, f ] ∈ KRbg

p,q(M,P ) by

[F ] · [Z,E, f ] := [Z, (f ◦ π̃)−1(F )⊗ E, f ]

and extended linearly, where π̃ : f−1(Y ) → Z is the pullback of the surjective
submersion.

If (M1, (P1, Y1)) and (M2, (P2, Y2)) are Real spaces endowed with Real
bundle gerbes, then the exterior product

KRbg
p1,q1(M1, P1)⊗KRbg

p2,q2(M2, P2) −→ KRbg
p1+p2,q1+q2(M1 ×M2, P1 ⊗ P2)

is defined on [Z1, E1, f1]∈KRbg
p1,q1(M1, P1) and [Z2, E2, f2]∈KRbg

p2,q2(M2, P2)
by

[Z1, E1, f1]⊗ [Z2, E2, f2] := [Z1 × Z2, E1 ⊗ E2, (f1, f2)],

where Z1 × Z2 has the product Real (p1 + p2, q1 + q2)-spin
c structure

uniquely induced by the Real (p1, q1) and (p2, q2) spin
c structures on Z1 and

Z2, respectively (cf. Lemma 8.5), and here E1 ⊗ E2 is the Real f−1
1 (P ∗

1 )⊗
f−1
2 (P ∗

2 )-bundle gerbe module with fibres (E1 ⊗ E2)(y1,y2) = (E1)y1
⊗ (E2)y2

for (y1, y2) ∈ f−1
1 (Y1)× f−1

2 (Y2). This product is natural with respect to
continuous equivariant maps.

8.3. Twisted KR-homology

We shall now review the constructions of twisted KR-homology groups,
which were defined in [30, 45] using a Real version of Kasparov’s KK-theory.

Definition 8.12. Let A be a separable Z2-graded C
∗-algebra. A Real struc-

ture on A is an anti-linear, degree 0 involutive ∗-automorphism σ; the pair
(A, σ) is called a Real Z2-graded C

∗-algebra. An equivariant graded homo-

morphism A→ B is a grading preserving ∗-homomorphism that intertwines
the Real structures.

If A is a Real ungraded C∗-algebra, then we assign the trivial Z2-grading
with A as its even part and 0 as its odd part.

Example 8.13. Let H be a separable Z2-graded Hilbert space equipped
with an anti-linear, degree 0 involution τH. The Z2-graded C

∗-algebra B(H)
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of bounded linear operators on H inherits a Real structure σ defined by

σ(T ) = τH ◦ T ◦ τH,

for all T ∈ B(H). This further induces a Real structure on the two-sided
∗-ideal of compact operators K(H). Let B(H)σ denote the fixed point set of
the involution σ, that is the set of operators which commute with τH.

Example 8.14. Let (M, τ) be a Real manifold. Then the separable C∗-
algebra C (M) of continuous complex-valued functions f : M → C vanishing
at infinity has an induced Real structure given by σ(f)(m) = f(τ(m)).

Definition 8.15. Let A be a Real separable Z2-graded C
∗-algebra. A (p, q)-

graded Real Fredholm module over A is a triple (ρ,H, F ) where

1) H is a Real Z2-graded separable Hilbert space which is a ∗-module over
the Real Clifford algebra Cℓ(Rp,q) whose generators are skew-adjoint
operators of odd degree in B(H)σ;

2) ρ : A→ B(H) is a Real graded representation that commutes with the
Cℓ(Rp,q)-action; and

3) F ∈ B(H)σ is a bounded operator of odd degree which commutes with
the Cℓ(Rp,q)-action and satisfies

(F 2 − 1)ρ(a), (F − F ∗)ρ(a), [F, ρ(a)] ∈ K(H)

for all a ∈ A.

Let RFModp,q(A) denote the set of all (p, q)-graded Real Fredholm
modules over A. The direct sum of two Real Fredholm modules (ρ,H, F )
and (ρ′,H′, F ′ ) is the Real Fredholm module (ρ⊕ ρ′,H⊕H′, F ⊕ F ′ ) and
(0, 0, 0) is the zero module. We introduce an equivalence relation ∼ on the
semi-group (RFModp,q(A),⊕) generated by the relations:

(i) Real unitary equivalence: (ρ,H, F ) ∼ (ρ′,H′, F ′ ) if and only if there is
a degree preserving unitary isomorphism U : H′ → H that intertwines
with the Cℓ(Rp,q) generators and the Real structures, and satisfies

(ρ′,H′, F ′ ) = (U∗ ρU,H′, U∗ F U).

(ii) Real homotopy equivalence: (ρ,H, F ) ∼ (ρ′,H′, F ′ ) if and only if there
exists a norm continuous function t 7→ Ft such that (ρt,Ht, Ft) is a
Real Fredholm module for all t ∈ [0, 1] with F0 = F and F1 = F ′.
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The KR-homology group of a Real separable Z2-graded C∗-algebra A
is the free abelian group KRp,q(A) generated by RFModp,q(A)/ ∼ mod-
ulo the relation [x0 ⊕ x1] = [x0] + [x1] where [x0], [x1] ∈ RFModp,q(A)/ ∼.
Equivalently, we could have defined KRp,q(A) := KR(A⊗̂Cℓ(Rp,q)) where
the (1, 1)-periodicity is more discernible. The inverse of a class in KRp,q(A)
represented by the module (ρ,H, F ) is given by (ρ,Hop,−F ), where Hop is
the Hilbert space H with the opposite Z2-grading, opposite Real structure
and where the Clifford algebra generators reverse their signs. The zero ele-
ment in KRp,q(A) is represented by degenerate Real Fredholm modules, that
is those for which the three operators listed in item (3) of Definition 8.15 are
identically zero in K(H). For a Real manifoldM we define its KR-homology
groups by

KRp,q(M) := KRp,q(C (M)).

As usual this is (1, 1)-periodic in (p, q), so thatKRp,q(M) ≃ KRq−p(M), and
8-periodic in (0, q).

Recall that a Real PU(H)-bundle over M is a principal PU(H)-bundle
P with a Real structure τP that commutes with the involution τ onM and is
compatible with the right PU(H)-action, that is τP(p g) = τP(p)σ(g), where
σ is the anti-linear involution on PU(H) induced by complex conjugation
on H. From Proposition 5.16, we know that Real PU(H)-bundles are clas-
sified up to isomorphism by their Real Dixmier–Douady class DDR(P) ∈
H2(M ;Z2;U(1)). The Real projective unitary group PU(H) acts by au-
tomorphisms on the Real elementary C∗-algebra K(H) and the associated
bundle

A = P ×PU(H) K(H)

is called a Real Dixmier–Douady bundle. It is a locally trivial K(H)-bundle
with an induced involution that maps fibre to fibre anti-linearly. The oppo-
site Real Dixmier–Douady bundle Aop is obtained by replacing each fiber
Am by the opposite Real C∗-algebra Aop

m , so in particular DDR(Aop) =
−DDR(A).

A Real spinor bundle for A is a Real bundle of Hilbert spaces S on
M such that A is isomorphic to K(S). Two Real Dixmier–Douady bundles
A1 and A2 are Morita isomorphic if A1⊗̂Aop

2 admits a Real spinor bundle.
Morita isomorphism is the appropriate notion of stable isomorphism for Real
Dixmier–Douady bundles and we have

Proposition 8.16 ([30]). Real Dixmier–Douady bundles over M are clas-

sified up to Morita isomorphisms by their Real Dixmier–Douady class

DDR(A) ∈ H2(M ;Z2,U(1)).
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Let M be a Real manifold with a Real Dixmier–Douady bundle A and
let ΓM (A) denote the Real separable C∗-algebra of sections of A vanishing
at infinity. The twisted KR-homology group of the pair (M,A) is defined by

KRp,q(M,A) := KRp,q(ΓM (A)).

A Morita morphism between two Real Dixmier–Douady bundles
(M1,A1), (M2,A2) locally modelled on K(H1),K(H2) consists of a pair

(f, E) : (M1,A1) −→ (M2,A2)

where f : M1 →M2 is an equivariant proper smooth map and E is a Real
(f−1(A2),A1)-bimodule, that is a Real bundle of Hilbert spaces onM1 which
is a Hilbert f−1(A2)

op⊗̂A1-module locally modelled on the (K(H1),K(H2))-
bimodule K(H1,H2). A Morita morphism exists if and only if DDR(A1) =
f∗DDR(A2). Any two Morita morphisms are related by a Real line bun-
dle via (f, E) 7→ (f, E ⊗ L) where L is classified by its Real Chern class in
H1(M1;Z2,U(1)). A trivialisation of L is called a 2-isomorphism between
the Morita morphisms. Twisted KR-homology is then a covariant 2-functor
relative to Morita morphisms (f, E) : (M1,A1) → (M2,A2),

f∗ : KR∗(M1,A1) −→ KR∗(M2,A2),

where the induced pushforward map f∗ depends only on the 2-isomorphism
class of (f, E), and the Real Picard group H1(M1;Z2,U(1)) acts on KR-
homology by Morita automorphisms.

The notion of Real Fredholm modules generalises straightforwardly to
Real Kasparov (A,B)-modules, by substituting H in Definition 8.15 with
Real Hilbert (A,B)-bimodules, leading to bivariant KKR-theory; see [45,
Chapter 9] for more details on the construction of the KKR-bifunctor via
correspondences and the Real Kasparov product. TwistedKR-theory groups
of a pair (M,A) can thus be defined as

KRp,q(M,A) := KRp,q(ΓM (A)) = KKRp,q(C,ΓM (A))

where the Real structure on the C∗-algebra C is given by complex conjuga-
tion. We have
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Proposition 8.17. Let P →M be a Real PU(H)-bundle with torsion Real

Dixmier-Douady class, LP the associated lifting bundle gerbe and A the as-

sociated Real Dixmier-Douady bundle. Then there is a natural isomorphism

KRp,q
bg (M,LP) ≃ KRp,q(M,A),

sending Real bundle gerbe modules to ΓM (A)-modules.

Proof. This follows from Proposition 5.16, Theorem 6.10 and the subsequent
discussion on extension to bigraded groups. □

Let V be a Real (p, q)-oriented vector bundle onM and recall that aKR-
orientation of type (p, q) on V corresponds to a lift of the frame bundle F(V )
to a Real Spinc(Rp,q)-bundle F̂(V ). The obstruction to KR-orientability
can be equivalently characterised by the Clifford bundle Cℓ(V ): this is a
Real Dixmier–Douady bundle and V is KR-oriented if and only if Cℓ(V )
admits a Real spinor bundle, that is it is Morita trivial. In analogy with
the complex case, if the tangent bundle TM is Real (p, q)-oriented, then
(C (M),ΓM (Cℓ(TM))) is a Poincaré duality pair; that is there exists a KR-
homology fundamental class [M ] ∈ KRp,q(M,Cℓ(TM)) which implements
the Poincaré duality isomorphism

PDM : KRr,s(M,A) −→ KRp−r,q−s(M,Aop⊗̂Cℓ(TM)), [E] 7−→ [E] ∩ [M ].

Poincaré duality in twisted KR-theory can be proven along the same lines
as in [29, 54], but using instead the framework of KKR-theory and Real
Dixmier–Douady bundles. In particular, the cap product ∩ corresponds to
Kasparov product with [M ].

Remark 8.18. In the case thatM is a Real spinc manifold of type (p, q), its
fundamental class [M ] ∈ KRp,q(M) can be represented by the (unbounded)
(p, q)-graded Real Fredholm module (ρ,H, T ), where H is the Hilbert space
of L2-sections of the Real spinor bundle Sp,q = F̂(TM)×Spinc(Rp,q) Cℓ(R

p,q),
ρ is the natural module action of C (M) on H by multiplication, and T is
the corresponding Dirac operator; in the untwisted case Poincaré duality
maps the class of a Real vector bundle E →M to the Fredholm module
obtained as above with the spinor bundle replaced by Sp,q ⊗ E and T the
corresponding twisted Dirac operator.

Let (M1,A1), (M2,A2) be pairs of Real manifolds with Real Dixmier–
Douady bundles, and assume that TM1 is Real (p1, q1)-oriented and TM2

is Real (p2, q2)-oriented.
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Definition 8.19. For any Morita morphism (f, E) : (M1,A1) → (M2,A2),
the Gysin homomorphism in twisted KR-theory is the unique group homo-
morphism

f! : KR
r,s(M1,A1⊗̂Cℓ(TM1)) −→ KRr+p2−p1,s+q2−q1(M2,A2⊗̂Cℓ(TM2))

defined by declaring the diagram
(8.20)

KRr,s(M1,A1⊗̂Cℓ(TM1))

PDM1

��

f!
// KRr+p2−p1,s+q2−q1(M2,A2⊗̂Cℓ(TM2))

PDM2

��

KRp1−r,q1−s(M1,Aop
1 )

f∗
// KRp1−r,q1−s(M2,Aop

2 )

to be commutative.

Remark 8.21. By construction the Gysin homomorphism is functorial,
and in particular it depends only on the homotopy class of the map f .

We further have a corresponding Thom isomorphism in twisted KR-
theory.

Proposition 8.22 ([45]). Let M be a Real manifold with Real Dixmier–

Douady bundle A. If π : V →M and TM are Real (p, q)-oriented vector

bundles, then there is an isomorphism of abelian groups

KRr+p,s+q(M,A⊗̂Cℓ(V )) ≃ KRr,s(V, π−1(A)).

8.4. The Real twisted assembly map

We will finally define a natural isomorphism from bundle gerbeKR-homology
to twisted KR-homology. Throughout this sectionM is a Real manifold and
P →M a Real PU(H) bundle with Real lifting bundle gerbe LP and asso-
ciated Real Dixmier-Douady bundle A.

If (Z,E, f) represents a bundle gerbe KR-cycle in KRbg
p,q(M,LP),

then by Proposition 8.17 the bundle gerbe module E defines a class [E]
in KR(Z, f−1(Aop)). Since all connected components of Z carry Real spinc

structures of type (p, q) mod (1, 1), Poincaré duality gives a homology class
PDZ [E] ∈ KRp,q(Z, f

−1(A)).
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To proceed we first need an alternative description of Real vector bun-
dle modification in terms of the Gysin homomorphism. Let ρp,q : Zp,q → Z
denote the unit sphere bundle of Vp,q ⊕ RZ as in Definition 8.9. It ad-
mits a canonical north pole section s : Z → Zp,q defined by x 7→ (s0(x), 1),
where s0 is the zero section of Vp,q. By Definition 8.19 and the isomorphism
in Proposition 8.17, we obtain homomorphisms s! : KR

r,s
bg (Z, f

−1(L∗
P)) →

KRr+p,s+q
bg (Zp,q, (f ◦ ρp,q)−1(L∗

P)).

Lemma 8.23. Let (Z,E, f) be a bundle gerbe KR-cycle. Then its Real vec-

tor bundle modification (Z,E, f)p,q is Real spinc bordant to [Zp,q, s![E], f ◦
ρp,q].

Here s![E]∈KRp,q
bg (Zp,q, (f ◦ ρp,q)−1(L∗

P))≃KRbg(Zp,q, (f ◦ ρp,q)−1(L∗
P))

where the isomorphism is due to Clifford periodicity since (p, q) is either
(k, k) or (8k, 0). The proof of Lemma 8.23 is a Real twisted analogue of the
proof of [12, Lemma 3.5] and amounts to showing that the bundle gerbe
KR-theory classes [ρ̃−1

p,q(E)⊗ π̃−1
p,q (Sp,q)] and s![E] agree in KRbg(Zp,q, (f ◦

ρp,q)
−1(L∗

P)), using Proposition 8.22. The details are left for the reader.

We define the assembly map η : KRbg
p,q(M,LP) → KRp,q(M,A) by

η[Z,E, f ] = f∗(PDZ [E])

where f∗ : KR
p,q
(
ΓZ(f

−1(A))
)
→ KRp,q

(
ΓM (A)

)
is the induced pushfor-

ward map.

Proposition 8.24. The assembly map η is well-defined and functorial.

Proof. Functoriality of η follows by the naturality property of the pushfor-
ward map in twisted KR-homology. To show that η is well-defined, we verify
that it respects the three equivalence relations on bundle gerbe KR-cycles.
For the disjoint union/direct sum relation, we have

η([Z,E1, f ]⨿ [Z,E2, f ]) = η[Z ⨿ Z,E1 ⨿ E2, f ⨿ f ]

= (f ⨿ f)∗(PDZ [E1]⊕ PDZ [E2])

= η[Z,E1, f ] + η[Z,E2, f ]

= η[Z,E1 ⊕ E2, f ].
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If [Zp,q, s![E], f ◦ ρp,q] is the Real vector bundle modification of a bundle
gerbe KR-cycle (Z,E, f) using the description in Lemma 8.23, then

η[Zp,q, s![E], f ◦ ρp,q] = f∗ρp,q∗PDZp,q
(s![E]) = f∗ρp,q∗s∗PDZ [E] = η[Z,E, f ]

where the second equality follows by the commutative diagram (8.20) while
the last equality is due to ρp,q ◦ s = idZ . Finally, if (Z , E , f ) is any Real
spinc bordism, then we need to show that η[∂Z , E|∂Z , f |∂Z ] = 0. By adapt-
ing the proof of [12, Lemma 3.8] to the Real twisted setting, it follows that

∂[
◦

Z ] = [∂Z ] where ∂ : KRp,q(
◦

Z ) → KRp−1,q(∂Z ) is the connecting bound-
ary homomorphism. If i : ∂Z →֒ Z denotes the inclusion, then

η[∂Z , E|∂Z , f |∂Z ] = (f ◦ i)∗PD∂Z [E|∂Z ] = f∗ ◦ i∗ ◦ ∂
(
PD ◦

Z
[E ]

)
= 0

because i∗ ◦ ∂ = 0. □

We will prove that the assembly map η is an isomorphism by adapting
the arguments in [12] to the Real twisted setting and constructing an explicit
inverse to η. For this, we first need a few preliminary technical results.

Lemma 8.25. Let M be a Real compact manifold. Then there exists an

equivariant retraction M
j−→W

f−→M into a Real compact spinc manifold W
of type (p, q).

Proof. Let V = Rr,s be an n-dimensional Real vector space equipped with
the involution given by er,s : (x, y) 7→ (x,−y) such that n = r + s = p+ q
and (p− q)− (r − s) = 0 mod 8. Then V has a Real spinc structure of type
(p, q) by [30, Proposition 3.15].

By the Mostow embedding theorem [44], every Real compact manifoldM
has a Z2-equivariant closed embedding into a finite-dimensional real linear
Z2-space V . By [38] there exists further a Z2-invariant open neighbourhood
U with a Z2-equivariant retraction fU : U →M ontoM , that is a Real com-
pact manifold is a Z2-Euclidean neighbourhood retract. As shown by [22],
the dimension of V can be chosen to be 3d+ 2 or 3d+ 3 where d = dim(M).
We may then take V with the Z2-module structure er,s and a Real spinc

structure of type (p, q) as above.
Next we proceed as in the proof of [12, Lemma 2.1]. We choose a Z2-

invariant metric ϱ on U , define ϕ : U → R≥0 by ϕ(m) = infm′∈M ϱ(m,m′ )
to be the distance to M , and fix an approximation to ϕ in the chosen metric
by a smooth Z2-invariant function ψ. Since M is compact, ϕ−1[0, a] ⊂ U is
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compact if a is chosen to be smaller than the distance fromM to the comple-
ment V \ U . For a regular value a′ ∈ (0, a), the level set ψ−1(−∞, a′ ] ⊂ U
is then a compact Real manifold with boundary and a neighbourhood of
M . The double of this space is a Real closed manifold W with a Real spinc

structure of type (p, q) induced by V , an equivariant inclusion j : M →W
into one of the two copies and an equivariant retraction f : W →M given
by the fold map composed with fU : U →M . □

Proposition 8.26. Let M be a Real manifold with a Real bundle gerbe

(P, Y ) and let [Z,E, f ] ∈ KRbg
p,q(M,P ). If the equivariant map f factorises

as Z
h−֒→ Z̃

f̃−→M where h is an inclusion of Real spinc manifolds of type

(p, q) and f̃ is an equivariant smooth map, then

[Z,E, f ] = [Z̃, h![E], f̃ ].

Proof. The statement is a Real analogue of [12, Theorem 4.1] and the proof
proceeds along similar lines. Let ν = h−1(T Z̃)/TZ denote the Real normal
bundle of h with the induced Real spinc structure of type (1, 1). The idea
is to construct an explicit Real spinc bordism between the Real vector bun-
dle modifications of [Z,E, f ] along ν ⊕ R

1,1
Z with its canonical Real spinc-

structure as defined in Lemma 8.5 and [Z̃, h![E], f̃ ] along the Real trivial
bundle R

1,1

Z̃
.

The unit sphere bundle of R1,1

Z̃
⊕ RZ̃ is simply Z̃1,1 = Z̃ × S1,1 and its

north pole section is the inclusion s̃ : Z̃ → Z̃ × S1,1, so the Real vector
bundle modification of [Z̃, h![E], f̃ ] is given by [Z̃1,1, s̃!h![E], f̃ ◦ πZ̃ ] where
πZ̃ : Z̃1,1 → Z̃ is the projection. Note that Z̃1,1 is the boundary of the Real

unit disc bundle Z̃ ×D2,1. By the equivariant tubular neighbourhood the-
orem, the normal bundle ν is Z2-equivariantly diffeomorphic to a tubu-
lar neighbourhood of Z. Thus for any ϵ ∈ (0, 1), the Real ϵ-disc bundle
Dϵ(ν ⊕ R

1,1
Z ⊕ RZ), defined with respect to a Z2-invariant metric on ν, is

contained in Z̃ ×D2,1 and its boundary is the Real ϵ-sphere bundle Zϵ
1,1.

Recall that if s : Z → Zϵ
1,1 is the canonical north pole section and ρ1,1 is the

projection, then the Real vector bundle modification of [Z,E, f ] is given by
[Zϵ

1,1, s![E], f ◦ ρ1,1], as the ϵ-scaling of the sphere bundle Z1,1 does not affect
the Real vector bundle modification.

Now the space W = (Z̃ ×D2,1)\Dϵ(ν ⊕ R
1,1
Z ⊕ RZ) obtained by remov-

ing the Real ϵ-disc bundle is a Real compact spinc manifold with boundary
Z̃1,1 ⨿ (−Zϵ

1,1). Unlike the case of [12], the manifoldW does not have corners

because we are only dealing with closed manifolds Z and Z̃. The canonical
embedding of the cylinder e : Z × [ϵ, 1] →W , which sends [ϵ, 1] to the north
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pole direction RZ , gives rise to the diagram

Z

s̃◦h

zz

idZ ×ϵidZ ×1
��

s

$$

Z̃1,1 � r

j̃
$$

Z × [ϵ, 1]

e

��

Zϵ
1,1L l

j
zz

W

of embeddings of Real spinc compact manifolds, where both the left and
right triangles are pullback diagrams. The Real spinc bordism between
[Z̃1,1, s̃!h![E], f̃ ◦ πZ̃ ] and [Zϵ

1,1, s![E], f ◦ ρ1,1] is then given by

[W, e!π
−1
Z (E), f̃ ◦ πZ̃ ]

where f̃ ◦ πZ̃ is the canonical extension to W : Then W has the correct
boundary and by functoriality of the Gysin homomorphism we have

e!π
−1
Z [E]

∣∣
Z̃1,1

= j̃−1e!π
−1
Z [E] = (s̃ ◦ h)!(idZ ×1)−1π−1

Z [E] = s̃!h![E],

and

e!π
−1
Z [E]

∣∣
−Zϵ

1,1
= j−1e!π

−1
Z [E] = s!(idZ ×ϵ)−1π−1

Z [E] = s![E].

As remarked in [12], the restriction of f̃ ◦ πZ̃ to Zϵ
1,1 is only homotopic to

f ◦ ρ1,1, but it is possible to modify the map f̃ ◦ πZ̃ by scaling the radius of
S1,1 in order to achieve a true bordism. □

Corollary 8.27. Let M be a Real compact spinc manifold of type (p, q)
with a Real bundle gerbe (P, Y ) and let [Z,E, f ] ∈ KRbg

p,q(M,P ). Then

[Z,E, f ] = [M, f![E], idM ].

Proof. Choose a Real equivariant embedding j : Z → V into a finite-
dimensional Real vector space V with a Real spinc structure of type (p, q).
The map j is Z2-homotopic to the Real constant map c : Z → V with value
0 via a linear homotopy, and this extends to the one-point compactification
V + ≃ Sp,q by composition with the inclusion map V →֒ V +. Thus we obtain
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embeddings of Real compact spinc manifolds

Z � s

(f,j)

%%

M × V + πM
//M

M
+ �

(idM ,c)

99

with πM ◦ (f, j) = f , πM ◦ (idM , c) = idM and where (f, j) is equivariantly
homotopic to (f, c) = (idM , c) ◦ f . The result then follows by

[Z,E, f ] = [Z,E, πM ◦ (f, j)]
= [M × V +, (f, j)![E], πM ]

= [M × V +, (f, c)![E], πM ]

= [M × V +, (idM , c)!f![E], πM ]

= [M,f![E], πM ◦ (idM , c)]
= [M,f![E], idM ],

where we have applied Proposition 8.26 at the second and fifth equality,
and the functoriality of the Gysin homomorphism at the third and fourth
equality. □

We can now use Lemma 8.25 to define a group homomorphism βW :
KRp,q(ΓM (A)) → KRbg

p,q(M,LP) by

βW (x) = [W, PD−1
W j∗(x), f ],

where PD−1
W j∗(x) ∈ KRbg(W, f

−1(L∗
P)) using j

−1(f−1(A)) = A and the nat-
ural isomorphism in Proposition 8.17. It follows by Remark 6.11 and Lemma
8.10 that this is a well-defined bundle gerbe KR-cycle for any fixed re-
tract W .

Theorem 8.28. Let M be a Real compact manifold with a Real bundle

gerbe (P, Y ). Then the assembly map η : KRbg
p,q(M,LP) → KRp,q(M,A) is

an isomorphism of abelian groups.

Proof. First let us assume that M has a Real spinc structure of type (p, q)
and let βM be the homomorphism corresponding to W =M and j = f =
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idM in Lemma 8.25. Then we have

(βM ◦ η)[Z,E, f ] = βM (f∗(PDZ [E]))

= βM (PDM (f![E])) = [M,f![E], idM ] = [Z,E, f ]

where the second equality follows by the commutative diagram (8.20) and
Proposition 8.17 understood, and the last equality follows by Corollary 8.27.
This implies that η is injective with right inverse βM .

On the other hand, for any choice of retract W we have

(η ◦ βW )(x) = η[W, PD−1
W j∗(x), f ] = f∗(PDWPD−1

W j∗(x)) = f∗j∗(x) = x

which implies that η is surjective with left inverse βW . Consequently η is
a bijection and βM = βW = η−1 by uniqueness of inverses. In particular, it
follows that βW is independent of the choice of retract.

For an arbitrary Real compact manifold M , the surjectivity argument
still applies and it suffices to show that βW ◦ η = idKRbg

p,q(M,P ) for any choice

of retract W . For any [Z,E, f̃ ] ∈ KRbg
p,q(M,P ) we have

(η ◦ j∗ ◦ βW ◦ η)[Z,E, f̃ ] = j∗f∗PDWPD−1
W j∗f̃∗PDZ [E]

= (j∗ ◦ η)[Z,E, f̃ ] = (η ◦ j∗)[Z,E, f̃ ]

where the last equality follows by functoriality of η. Since j∗ is (split) injec-
tive by naturality and η is an isomorphism on KRbg

p,q(W, f−1(P )) where j∗
and j∗ ◦ βW ◦ η take values, we conclude that βW ◦ η = idKRbg

p,q(M,P ). □

Remark 8.29. The Z2-Euclidean neighbourhood retraction property, and
hence Lemma 8.25, holds more generally for any Real finite CW-complex
M [38]. The proof of Theorem 8.28 therefore applies verbatum to Real
finite CW-complexes, if we realise twistings on M by Real Dixmier–Douady
bundles A and twisted KR-homology by cycles [Z, σ, f ] with σ ∈
KR(Z, f−1(Aop)). The equivalence relation on these KR-cycles is generated
by Real spinc bordism and Real vector bundle modification formulated in
terms of the Gysin homomorphism as in Lemma 8.23.

Example 8.30 (K-theoretic Ramond-Ramond charge). Let us work
in the setting of Corollary 8.27. In this case the fundamental KR-homology
class [M ] of the manifold M can be taken to lie in the untwisted group
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KRp,q(M), and under the assembly map η it arises from

η[M,CM , idM ] = (idM )∗(PD[CM ]) = [CM ] ∩ [M ] = [M ].

Since η defines a natural equivalence between the functors KRbg
∗ and KR∗,

it follows that the bundle gerbe KR-cycle [M,CM , idM ] can be identified as
the fundamental class ofM inKRbg

p,q(M, [H]). Moreover, by Poincaré duality
and Proposition 8.17, every class in the twisted KR-theory KR(M,−[H]) is
represented by a bundle gerbe KR-cycle.

Now let (Z,E, f) be a Real bundle gerbe D-brane in the sense of Def-
inition 7.7. Then these considerations together with Corollary 8.27 give a
twisted KR-theory definition of the Ramond-Ramond charge of such a D-
brane as the canonical element

f![E] ∈ KR(M,−[H]).

This formula generalises the special case where Z ⊆M τ coincides with an
O+-plane and f : Z →֒M is the inclusion, with [E] ∈ KObg(Z,−f∗[H]).
Moreover, the charges of (generalised) Real bundle gerbe D-branes are clas-
sified by the twisted KR-theory KR(M,−[H]) of spacetime; the model (6.9)
for KR(M,−[H]) then nicely makes contact with the tachyon field picture
of K-theory charges [56] (cf. also [32]).
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